<table>
<thead>
<tr>
<th>Title</th>
<th>Existence of periodic traveling wave solutions for the Ostrovsky equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ishimura, Naoyuki; Mizumachi, Tetsu</td>
</tr>
<tr>
<td>Citation</td>
<td>Mathematical Methods in the Applied Sciences</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-02-04</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Text Version</td>
<td>author</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10086/15147</td>
</tr>
</tbody>
</table>

Copyright (c) 2008 John Wiley & Sons, Ltd.
EXISTENCE OF PERIODIC TRAVELING WAVE SOLUTIONS
FOR THE OSTROVSKY EQUATION

NAOYUKI ISHIMURA AND TETSU MIZUMACHI

Abstract. We are concerned with the Ostrovsky equation, which is derived from the theory of weakly nonlinear long surface and internal waves in shallow water under the presence of rotation. Based on a variational method, we show the existence of periodic traveling wave solutions.

1. Introduction

Waves in shallow water have been the subject for intensive studies. Well known examples include the famous Korteweg-de Vries (KdV) equation, which is derived as a model for weakly nonlinear long waves. If the fluid is rotating and the wave frequency is greater than the Coriolis frequency, then the evolution is described by the so called Ostrovsky equation [10]

\[(u_t - \beta u_{xxx} + (u^2)_x) = \varepsilon^2 u, \quad u = u(x, t), \quad x \in \mathbb{R}, \quad t > 0,\]

where \(\varepsilon > 0, \beta \in \mathbb{R}\) are constant coefficients. The equation (1) is also referred to as the rotation-modified KdV equation [1]. If \(\beta = 0\) then J.P. Boyd [2] pointed out that the equation should be called as the Ostrovsky-Hunter equation. For physical background and other properties we refer to these cited papers.

Key words: Ostrovsky equation, periodic traveling wave, variational methods.
In a recent paper [9], Y. Liu and V. Varlamov investigated the existence and the stability of solitary waves for (1). Here a solitary wave solution of (1) means a traveling wave solution; namely, by abuse of notation, the solution has the form $u(x,t) = u(x-ct)$ with a parameter $c \in \mathbb{R}$ which represents the velocity and $u = u(x)$ verifies

\begin{equation}
(-cu - \beta u_{xx} + u^2)_{xx} = \varepsilon^2 u, \quad x \in \mathbb{R}.
\end{equation}

Part of main accomplishments in [9] states that if $\beta < 0$ and $c < \sqrt{140|\beta||\varepsilon|}$ then (2) has no nontrivial solitary wave, while $\beta > 0$ and $c < 2\sqrt{\beta|\varepsilon|}$ then (2) admits a nontrivial one.

This note, on the other hand, is focused on the existence of periodic traveling waves for the Ostrovsky equation. To be specific, we deal with the existence of periodic solutions to (2). Although a family of periodic traveling waves for the Ostrovsky equation is numerically indicated to exist [4][8], there seems little analytical attempt so far; we make up for such lack of literatures. For related nonlinear, dispersive wave equations, we refer to [3] for instance.

Before formulating our main achievements, we transform (2) in order to clarify the point of the problem. In (2) we make a change $u \to -u$, $c \to -c$ so that (2) becomes

\begin{equation}
(-cu + \beta u_{xx} + u^2)_{xx} = -\varepsilon^2 u.
\end{equation}

Therefore the sign of β corresponds to the sign of the coefficient ε^2, and it is legitimate to assume $\beta > 0$ without loss of generality. Finally the change of variables $x \to \sqrt{\beta}x$ and $\varepsilon^2 \to \varepsilon^2/\beta$ brings us to the equation

\begin{equation}
(-cu + \beta u_{xx} + u^2)_{xx} = -\varepsilon^2 u.
\end{equation}
EXISTENCE OF PERIODIC TRAVELING WAVE

We intend to prove the existence of periodic solutions, whose period will be denoted by L. We recall once again that ε^2 is a fixed constant and c is a parameter representing the velocity.

Now our main contributions of this article reads as follows.

Theorem 1. In the $+$ sign case, there exists a periodic solution to (3) for every period $L > 0$. Furthermore if $L > 2\sqrt{6(1 + \varepsilon^{-2})}$, the velocity c does not vanish. While in the $-$ sign case, there exists a periodic traveling wave solution for every period $L > 0$. Furthermore if $L < \min\{1, |\varepsilon|/2\}$, then there holds $c < -(L^{-2} - L)/2 < 0$.

The principal tool of our proof is a variational technique; we present two methods. One is to increase the number of unknown variable and to seek for a critical point of a certain functional of two unknown variables. The strategy is then akin to the one developed in other higher-order equation [5][6][7]. The other is to utilize an integral term, which is somewhat familiar in this field of researches. In our case, however, there seems an interesting question from the viewpoint of variational structure. Each step of the analysis is itself elementary and much transparent.

There remain several problems to be considered further. One of them includes the convergence of periodic solutions as $L \to \infty$. There is hope to be obtained by this method a global solution, possible a soliton-like solution, which, combined with other related issues, will be revisited in the near future.
2. Proof of the Theorem

Our aim is to show the existence of periodic solutions for the fourth-order equation (3). First we deal with the + sign case and introduce an auxiliary variable

\[v = -cu + u^2 + u_{xx}, \]

which makes it possible to transform the single equation (3) into the system of second-order equations

\[
\begin{align*}
\begin{cases}
 u_{xx} + u^2 - cu &= v \\
 v_{xx} &= \varepsilon^2 u.
\end{cases}
\end{align*}
\]

We remark that to recover (3) from (5), auxiliary variable \(v \) in (4) is allowed to be up to additive constants; namely, with regard to \(u \) variable, in place of (4), \(v = -cu + u^2 + u_{xx} - \lambda \) (\(\lambda \in \mathbb{R} \)) works as well.

To proceed further, we fix an interval \((0, l)\) \((l > 0)\) for simplicity, which turns out to be without loss of generality. Define functionals

\[
J(u, v) := \int_0^l \left(\frac{1}{2} u_x^2 + \frac{1}{2\varepsilon^2} v_x^2 + uv \right) dx - \frac{1}{3} \int_0^l u^3 dx.
\]

The functionals \(J \) is handled on a function space

\[
\mathcal{A} := \left\{ (u, v) \in (H^1(0, l))^2 \mid \int_0^l u dx = 0, \int_0^l u^2 dx = 1 \right\}.
\]

It can be seen that the critical point \((u, v)\) of \(J \) among \(\mathcal{A} \) verifies
where constants c and λ originate in the Lagrange multiplier of the constraints $\int_0^l u^2 \, dx = 1$ and $\int_0^l u \, dx = 0$, respectively. In particular, u realizes a solution to (3) with $u_x = u_{xxx} = 0$ at $x = 0, l$.

If we extend u over the interval $(0, 2l)$ by the reflection

$$u(x) := \begin{cases} u(x) & \text{for } 0 \leq x \leq l \\ u(2l - x) & \text{for } l \leq x \leq 2l, \end{cases}$$

then we obtain a desired periodic solution with period $L := 2l$. Here, with abuse of notation, the extended u has been denoted by the same.

Now the following proposition will be settled.

Proposition 2. There exists a global minimizer (\bar{u}, \bar{v}) of J on A. Moreover, if $l > \sqrt{6(1 + \varepsilon^2)}$, then the Lagrange multiplier c in (8) does not vanish.

Proof. First we ascertain that J is bounded below on A. To do so, we compute

$$\left| \int_0^l u^3 \, dx \right| \leq |u|_{L^\infty(0,l)} \int_0^l u^2 \, dx \leq \sqrt{l} |u_x|_{L^2(0,l)},$$

$$\left| \int_0^l uv \, dx \right| = \left| \int_0^l u(x) \left(v(0) + \int_0^x v_x(y) \, dy \right) \, dx \right| \leq \int_0^l |u(x)| \sqrt{l} |v_x|_{L^2(0,l)} \, dx \leq l |v_x|_{L^2(0,l)},$$
by virtue that \(\int_0^l u \, dx = 0, \int_0^l u^2 \, dx = 1 \) for \((u, v) \in A\). We also note that
\[
\int_0^l u(x)v(0) \, dx = 0.
\]
We thus infer that
\[
(9) \quad J(u, v) \geq \frac{1}{2} |u_x|^2_{L^2(0, l)} - \sqrt{l}|ux|_{L^2(0, l)} + \frac{1}{2\epsilon^2} |v_x|^2_{L^2(0, l)} - l|v_x|_{L^2(0, l)}.
\]
This proves that \(J \) is bounded below on \(A \).

Next we take a minimizing sequence \(\{(u_n, v_n)\}_{n \in \mathbb{N}} \subset A \) for \(J \). We may assume that
\[
\int_0^l v_n \, dx = 0
\]
with replacing \(v_n \) by \(v_n - l^{-1} \int_0^l v_n \, dx \) if necessary since \(J(u_n, v_n) = J(u_n, v_n - l^{-1} \int_0^l v_n \, dx) \). Invoking (9) and
\[
\int_0^l u_n \, dx = 0,
\]
we conclude that there exists a subsequence \((u_{n_m}, v_{n_m}) \) such that

\[
u_{n_m} \to \bar{u}, \quad v_{n_m} \to \bar{v} \quad \text{as} \quad n_m \to \infty
\]
weakly in \(H^1(0, l) \) as well as strongly in \(L^2(0, l) \). In particular we learn that \((\bar{u}, \bar{v}) \in A\). The lower semicontinuity of \(J \) yields

\[
\liminf_{n_m \to \infty} J(u_{n_m}, v_{n_m}) \geq J(\bar{u}, \bar{v}),
\]
which implies that \((\bar{u}, \bar{v})\) gives a global minimizer.

Finally we establish that \(c \neq 0 \) if \(l > \sqrt{6(1 + \epsilon^{-2})} \). For this purpose, multiplying
\(\bar{u} \) and \(\bar{v} \) equation of (8) by \(\bar{u} \) and \(\bar{v} \), respectively, we deduce, after integration,

\[
\int_0^l \bar{u} \bar{v} \, dx = \int_0^l (-\bar{u}_x^2 - c \bar{u}^2 + \bar{u}^3) \, dx = \int_0^l (-\bar{u}_x^2 + \bar{u}^3) \, dx - c
\]
\[
= -\frac{1}{\epsilon^2} \int_0^l \bar{v}_x^2 \, dx,
\]
from which we find that
On the other hand, \(J(-\bar{u}, -\bar{v}) \geq J(\bar{u}, \bar{v}) \) leads to \(\int_0^l \bar{u}^3 \, dx \geq 0 \). Therefore it follows that \(J(\bar{u}, \bar{v}) \geq 0 \) so long as \(c = 0 \).

A simple test function, however, reveals the absurdity. If we put \(u^0(x) := \alpha(x - 2^{-1}l) \) and \(v^0(x) := -u^0(x) \) with \(\alpha^2 = 12l^{-3} \), then we discover

\[
J(u^0, v^0) = -1 + 6(1 + \varepsilon^{-2})l^{-2} < 0
\]

if \(l^2 > 6(1 + \varepsilon^{-2}) \). This contradicts with the fact that \((\bar{u}, \bar{v})\) is a global minimizer. Consequently \(c > 0 \) and the proof is completed. \(\square \)

Remark 3. The reason why we introduce the two-component functional \(J \) is that it facilitates for us to choose a test function.

Next we turn our attention to the \(-\) sign case. This time we minimize

\[
(10) \quad J(u) := \int_0^l \left(\frac{1}{2} u_x^2 + \frac{\varepsilon^2}{2} (\partial_x^{-1} u)^2 \right) \, dx - \frac{1}{3} \int_0^l u^3 \, dx
\]

over \(A_u \), where we have introduced a nonlocal operator \(\partial_x^{-1} u := \int_0^x u(y) \, dy \) and

\[
A_u := \left\{ u \in H^1(0, l) \mid \int_0^l u \, dx = 0, \int_0^l u^2 \, dx = 1 \right\}.
\]

Since in the \(-\) sign case the two component functional would be of saddle type with respect to \(u_x^2 \) and \(v_x^2 \), this nonlocal term \(\partial_x^{-1} u \) may influence and alter the variational structure of the equation. We will pursue elsewhere this problem in rather general setting.
Now we show

Proposition 4. There exists a critical point \bar{u} of J on A_u for every $l > 0$. Moreover if $l < \min\{1/2, |\varepsilon|/4\}$ then it follows that $c < -8^{-1}l^{-2} + l < 0$.

Proof. First we treat the existence of a critical point. Consider the minimization problem $\min_{u \in A_u} J(u)$. Since $(\partial^{-1}_x u)(0) = (\partial^{-1}_x u)(l) = 0$, we have

$$|\partial^{-1}_x u|_{L^2(0,l)} \leq \frac{l}{\pi} |u|_{L^2(0,l)} \leq \frac{l}{\pi},$$

where the constant l/π is due to the optimality; indeed for $u(x) = \sqrt{2} \cos l^{-1} \pi x$, we have $|\partial^{-1}_x u|_{L^2(0,l)} = (l/\pi)|u|_{L^2(0,l)}$. Therefore a functional $J(u)$ is coercive and there exists a $u_0 \in A_u$ satisfying $J(u_0) = \min_{u \in A_u} J(u)$. The critical point \bar{u} satisfies

$$\int_0^l (\bar{u}_x \eta_x + \varepsilon^2 \bar{u}\partial^{-1}_x \bar{u} - \bar{u}_x^2 \eta) \, dx = c \int_0^l \bar{u} \eta \, dx$$

for every $\eta \in H^1(0, l)$ with $\int_0^l \eta \, dx = 0$, where c is a Lagrange multiplier. Integrating by part, we have

$$\begin{cases}
\partial^2_x \bar{u} - \varepsilon^2 \int_0^l \int_0^y \bar{u}(s) ds dy - c \bar{u} + \bar{u}_x^2 = 0, \\
\partial_x \bar{u}(0) = \partial_x \bar{u}(l) = 0.
\end{cases}$$

Differentiating (12), we obtain $\bar{u}_{xxx}(0) = \bar{u}_{xxx}(l) = 0$ and (3).

Next we show an estimate for the Lagrange multiplier c. We recall that the period of \bar{u} is $L := 2l$ and hence it is better to consider the equation satisfied by \bar{u} on the interval $[0, L]$.

(13) \((-c \bar{u} + \bar{u}^2 + \bar{u}_{xx})_{xx} = -\epsilon^2 \bar{u}\) on \(0 < x < L = 2l\).

Multiplying (13) by \(\bar{u}\) and noting that \(\int_0^L \bar{u}^2 \, dx = 2\), we have

\begin{equation}
|\bar{u}_{xx}|^2_{L^2(0,L)} - 2 \int_0^L \bar{u}\bar{u}_x^2 \, dx + c|\bar{u}_x|^2_{L^2(0,L)} + 2\epsilon^2 = 0.
\end{equation}

Here the sign of \(c\) takes effects and we divide our reasoning according to it.

If \(c > 0\), then we derive

\[2\epsilon^2 + c|\bar{u}_x|^2_{L^2(0,L)} + |\bar{u}_{xx}|^2_{L^2(0,L)} \leq \sqrt{L}|\bar{u}_x|^3_{L^2(0,L)}\]

in light of \(|\bar{u}|_{L^\infty(0,L)} = |\bar{u}|_{L^\infty(0,l)} \leq \sqrt{l}|\bar{u}_x|_{L^2(0,l)} \leq \sqrt{L}|\bar{u}_x|_{L^2(0,L)}/2\). Taking account that

\[|\bar{u}_x|^2_{L^2(0,L)} \leq |\bar{u}|_{L^2(0,L)}|\bar{u}_{xx}|_{L^2(0,L)} = \sqrt{2}|\bar{u}_{xx}|_{L^2(0,L)},\]

we infer that \(|\bar{u}_x|_{L^2(0,L)} \leq 2\sqrt{L}\) and as a by-product \(c < 2L\) and \(\epsilon^2 \leq 4L^2\) must be fulfilled.

If \(c < 0\) in (14), we find that

\[2\epsilon^2 + |\bar{u}_{xx}|^2_{L^2(0,L)} \leq \sqrt{L}|\bar{u}_x|^3_{L^2(0,L)} + |c||\bar{u}_x|^2_{L^2(0,L)}\]

A similar procedure as above leads to

\[|\bar{u}_x|^4_{L^2(0,L)} \leq 2\sqrt{L}|\bar{u}_x|^3_{L^2(0,L)} + 2|c||\bar{u}_x|^2_{L^2(0,L)}\]

and therefore
\[
|\bar{u}_x|_{L^2(0,L)} \leq \sqrt{L + \sqrt{L + 2|c|}} \leq 2\sqrt{L + 2|c|}
\]

\[
2 = |\bar{a}|^2_{L^2(0,L)} \leq L^2|\bar{u}_x|^2_{L^2(0,L)} \leq 2L^2(L + 2|c|).
\]

To summarize, if there holds \(l = L/2 < \min\{1/2, |\varepsilon|/4\} \), then we conclude that \(c < -(L^2 - L)/2 < 0 \). This completes the proof. \(\square\)

Remark 5. A straight modification of the functional \(J \) can be applied to prove the existence of solutions as well in the + sign case. However observe Remark 3.

Acknowledgments. We are grateful to the referee for helpful comments. Part of the work of the first author (N.I.) was performed during his visit to Department of Mathematics, National Taiwan Normal University in December 2004, whose warm hospitality as well as the criterion given by Professor Jong-Shenq Guo and Doctor Chin-Chin Wu are gratefully acknowledged. This work is partially supported by Grants-in-Aids for Scientific Research (Nos. 14740106 and 16540184), from the Japan Society for Promotion of Sciences.

References

Existence of periodic traveling wave

Naoyuki Ishimura: Department of Mathematics, Graduate School of Economics, Hitotsubashi University, Kunitachi, Tokyo 186-8601, Japan.

E-mail address: ishimura@econ.hit-u.ac.jp

Tetsu Mizumachi: Graduate School of Mathematical Sciences, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan.

E-mail address: mizumati@math.kyushu-u.ac.jp