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Abstract. We are concerned with the Ostrovsky equation, which is derived

from the theory of weakly nonlinear long surface and internal waves in shallow

water under the presence of rotation. Based on a variational method, we show

the existence of periodic traveling wave solutions.

1. Introduction

Waves in shallow water have been the subject for intensive studies. Well known

examples include the famous Korteweg-de Vries (KdV) equation, which is derived

as a model for weakly nonlinear long waves. If the fluid is rotating and the wave

frequency is greater than the Coriolis frequency, then the evolution is described by

the so called Ostrovsky equation [10]

(1) (ut − βuxxx + (u2)x)x = ε2u, u = u(x, t), x ∈ R, t > 0,

where ε > 0, β ∈ R are constant coefficients. The equation (1) is also referred to

as the rotation-modified KdV equation [1]. If β = 0 then J.P. Boyd [2] pointed out

that the equation should be called as the Ostrovsky-Hunter equation. For physical

background and other properties we refer to these cited papers.
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In a recent paper [9], Y. Liu and V. Varlamov investigated the existence and

the stability of solitary waves for (1). Here a solitary wave solution of (1) means

a traveling wave solution; namely, by abuse of notation, the solution has the form

u(x, t) = u(x − ct) with a parameter c ∈ R which represents the velocity and

u = u(x) verifies

(2) (−cu− βuxx + u2)xx = ε2u, x ∈ R.

Part of main accomplishments in [9] states that if β < 0 and c <
√

140|β||ε| then

(2) has no nontrivial solitary wave, while β > 0 and c < 2
√

β|ε| then (2) admits a

nontrivial one.

This note, on the other hand, is focused on the existence of periodic traveling

waves for the Ostrovsky equation. To be specific, we deal with the existence of

periodic solutions to (2). Although a family of periodic traveling waves for the

Ostrovsky equation is numerically indicated to exist [4][8], there seems little ana-

lytical attempt so far; we make up for such lack of literatures. For related nonlinear,

dispersive wave equations, we refer to [3] for instance.

Before formulating our main achievements, we transform (2) in order to clarify

the point of the problem. In (2) we make a change u → −u, c → −c so that (2)

becomes

(−cu + βuxx + u2)xx = −ε2u.

Therefore the sign of β corresponds to the sign of the coefficient ε2, and it is

legitimate to assume β > 0 without loss of generality. Finally the change of variables

x →
√

βx and ε2 → ε2/β brings us to the equation
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(3) (−cu + u2 + uxx)xx = ±ε2u, u = u(x), x ∈ R.

We intend to prove the existence of periodic solutions, whose period will be de-

noted by L. We recall once again that ε2 is a fixed constant and c is a parameter

representing the velocity.

Now our main contributions of this article reads as follows.

Theorem 1. In the + sign case, there exists a periodic solution to (3) for every

period L > 0. Furthermore if L > 2
√

6(1 + ε−2), the velocity c does not vanish.

While in the − sign case, there exists a periodic traveling wave solution for every

period L > 0. Furthermore if L < min{1, |ε|/2}, then there holds c < −(L−2 −

L)/2 < 0.

The principal tool of our proof is a variational technique; we present two methods.

One is to increase the number of unknown variable and to seek for a critical point of

a certain functional of two unknown variables. The strategy is then akin to the one

developed in other higher-order equation [5][6][7]. The other is to utilize an integral

term, which is somewhat familiar in this field of researches. In our case, however,

there seems an interesting question from the viewpoint of variational structure.

Each step of the analysis is itself elementary and much transparent.

There remain several problems to be considered further. One of them includes

the convergence of periodic solutions as L → ∞. There is hope to be obtained by

this method a global solution, possible a soliton-like solution, which, combined with

other related issues, will be revisited in the near future.
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2. Proof of the Theorem

Our aim is to show the existence of periodic solutions for the fourth-order equation

(3). First we deal with the + sign case and introduce an auxiliary variable

(4) v = −cu + u2 + uxx,

which makes it possible to transform the single equation (3) into the system of

second-order equation

(5)


uxx + u2 − cu = v

vxx = ε2u.

We remark that to recover (3) from (5), auxiliary variable v in (4) is allowed to

be up to additive constants; namely, with regard to u variable, in place of (4),

v = −cu + u2 + uxx − λ (λ ∈ R) works as well.

To proceed further, we fix an interval (0, l) (l > 0) for simplicity, which turns

out to be without loss of generality. Define functionals

(6) J(u, v) :=
∫ l

0

(1
2
u2

x +
1

2ε2
v2

x + uv
)

dx− 1
3

∫ l

0

u3 dx.

The functionals J is handled on a function space

(7) A :=

{
(u, v) ∈ (H1(0, l))2 |

∫ l

0

u dx = 0,

∫ l

0

u2 dx = 1

}
.

It can be seen that the critical point (u, v) of J among A verifies
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(8)



uxx = v − u2 + cu + λ in 0 < x < l

vxx = ε2u in 0 < x < l

ux = vx = 0 at x = 0, l,

where constants c and λ originate in the Lagrange multiplier of the constraints∫ l

0
u2 dx = 1 and

∫ l

0
u dx = 0, respectively. In particular, u realizes a solution to (3)

with ux = uxxx = 0 at x = 0, l.

If we extend u over the interval (0, 2l) by the reflection

u(x) :=


u(x) for 0 ≤ x ≤ l

u(2l − x) for l ≤ x ≤ 2l,

then we obtain a desired periodic solution with period L := 2l. Here, with abuse

of notation, the extended u has been denoted by the same.

Now the following proposition will be settled.

Proposition 2. There exists a global minimizer (ū, v̄) of J on A. Moreover, if

l >
√

6(1 + ε−2), then the Lagrange multiplier c in (8) does not vanish.

Proof. First we ascertain that J is bounded below on A. To do so, we compute

∣∣∣ ∫ l

0

u3 dx
∣∣∣ ≤ |u|L∞(0,l)

∫ l

0

u2 dx ≤
√

l|ux|L2(0,l)

∣∣∣ ∫ l

0

uv dx
∣∣∣ =

∣∣∣ ∫ l

0

u(x)
(
v(0) +

∫ x

0

vx(y) dy
)

dx
∣∣∣

≤
∫ l

0

|u(x)|
√

l|vx|L2(0,l)dx ≤ l|vx|L2(0,l),
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by virtue that
∫ l

0
u dx = 0,

∫ l

0
u2 dx = 1 for (u, v) ∈ A. We also note that∫ l

0
u(x)v(0) dx = 0. We thus infer that

(9) J(u, v) ≥ 1
2
|ux|2L2(0,l) −

√
l|ux|L2(0,l) +

1
2ε2

|vx|2L2(0,l) − l|vx|L2(0,l).

This proves that J is bounded below on A.

Next we take a minimizing sequence {(un, vn)}n∈N ⊂ A for J . We may assume

that
∫ l

0
vn dx = 0 with replacing vn by vn−l−1

∫ l

0
vn dx if necessary since J(un, vn) =

J(un, vn−l−1
∫ l

0
vn dx). Invoking (9) and

∫ l

0
un dx = 0, we conclude that there exists

a subsequence (unm
, vnm

) such that

unm
→ ū, vnm

→ v̄ as nm →∞

weakly in H1(0, l) as well as strongly in L2(0, l). In particular we learn that (ū, v̄) ∈

A. The lower semicontinuity of J yields

lim inf
nm→∞

J(unm , vnm) ≥ J(ū, v̄),

which implies that (ū, v̄) gives a global minimizer.

Finally we establish that c 6= 0 if l >
√

6(1 + ε−2). For this purpose, multiplying

ū and v̄ equation of (8) by ū and v̄, respectively, we deduce, after integration,

∫ l

0

ūv̄ dx =
∫ l

0

(−ū2
x − cū2 + ū3) dx =

∫ l

0

(−ū2
x + ū3) dx− c

= − 1
ε2

∫ l

0

v̄2
x dx,

from which we find that
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J(ū, v̄) =
∫ l

0

1
2
(ū2

x + ūv̄) +
1
2
(

1
ε2

v̄2
x + ūv̄) dx− 1

3

∫ l

0

ū3 dx =
1
6

∫ l

0

ū3 dx− c

2
.

On the other hand, J(−ū,−v̄) ≥ J(ū, v̄) leads to
∫ l

0
ū3 dx ≥ 0. Therefore it follows

that J(ū, v̄) ≥ 0 so long as c = 0.

A simple test function, however, reveals the absurdity. If we put u0(x) := α(x−

2−1l) and v0(x) := −u0(x) with α2 = 12l−3, then we discover

J(u0, v0) = −1 + 6(1 + ε−2)l−2 < 0

if l2 > 6(1 + ε−2). This contradicts with the fact that (ū, v̄) is a global minimizer.

Consequently c > 0 and the proof is completed. �

Remark 3. The reason why we introduce the two-component functional J is that

it facilitates for us to choose a test function.

Next we turn our attention to the − sign case. This time we minimize

(10) J (u) :=
∫ l

0

(1
2
u2

x −
ε2

2
(∂−1

x u)2
)

dx− 1
3

∫ l

0

u3 dx,

over Au, where we have introduced a nonlocal operator ∂−1
x u :=

∫ x

0
u(y)dy and

Au :=

{
u ∈ H1(0, l) |

∫ l

0

u dx = 0,

∫ l

0

u2 dx = 1

}
.

Since in the − sign case the two component functional would be of saddle type

with respect to u2
x and v2

x, this nonlocal term ∂−1
x u may influence and alter the

variational structure of the equation. We will pursue elsewhere this problem in

rather general setting.
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Now we show

Proposition 4. There exists a critical point ū of J on Au for every l > 0. More-

over if l < min{1/2, |ε|/4} then it follows that c < −8−1l−2 + l < 0.

Proof. First we treat the existence of a critical point. Consider the minimization

problem minu∈Au J (u). Since (∂−1
x u)(0) = (∂−1

x u)(l) = 0, we have

|∂−1
x u|L2(0,l) ≤

l

π
|u|L2(0,l) ≤

l

π
,

where the constant l/π is due to the optimality; indeed for u(x) =
√

2 cos l−1πx,

we have |∂−1
x u|L2(0,l) = (l/π)|u|L2(0,l). Therefore a functional J (u) is coercive and

there exists a u0 ∈ Au satisfying J (u0) = minu∈Au
J (u). The critical point ū

satisfies

(11)
∫ l

0

(
ūxηx + ε2∂−1

x ū∂−1
x η − ū2η

)
dx = c

∫ l

0

ūηdx

for every η ∈ H1(0, l) with
∫ l

0
ηdx = 0, where c is a Lagrange multiplier. Integrating

by part, we have

(12)


∂2

xū− ε2

∫ x

l

∫ y

0

ū(s)dsdy − cū + ū2 = 0,

∂xū(0) = ∂xū(l) = 0.

Differentiating (12), we obtain ūxxx(0) = ūxxx(l) = 0 and (3).

Next we show an estimate for the Lagrange multiplier c. We recall that the

period of ū is L := 2l and hence it is better to consider the equation satisfied by ū

on the interval [0, L].
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(13) (−cū + ū2 + ūxx)xx = −ε2ū on 0 < x < L = 2l.

Multiplying (13) by ū and noting that
∫ L

0
ū2 dx = 2, we have

(14) |ūxx|2L2(0,L) − 2
∫ L

0

ūū2
x dx + c|ūx|2L2(0,L) + 2ε2 = 0.

Here the sign of c takes effects and we divide our reasoning according to it.

If c > 0, then we derive

2ε2 + c|ūx|2L2(0,L) + |ūxx|2L2(0,L) ≤
√

L|ūx|3L2(0,L)

in light of |ū|L∞(0,L) = |ū|L∞(0,l) ≤
√

l|ūx|L2(0,l) ≤
√

L|ūx|L2(0,L)/2. Taking ac-

count that

|ūx|2L2(0,L) ≤ |ū|L2(0,L)|ūxx|L2(0,L) =
√

2|ūxx|L2(0,L),

we infer that |ūx|L2(0,L) ≤ 2
√

L and as a by-product c < 2L and ε2 ≤ 4L2 must be

fulfilled.

If c < 0 in (14), we find that

2ε2 + |ūxx|2L2(0,L) ≤
√

L|ūx|3L2(0,L) + |c||ūx|2L2(0,L).

A similar procedure as above leads to

|ūx|4L2(0,L) ≤ 2
√

L|ūx|3L2(0,L) + 2|c||ūx|2L2(0,L)

and therefore
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|ūx|L2(0,L) ≤
√

L +
√

L + 2|c| ≤ 2
√

L + 2|c|

2 = |ū|2L2(0,L) ≤ L2|ūx|2L2(0,L) ≤ 2L2(L + 2|c|).

To summarize, if there holds l = L/2 < min{1/2, |ε|/4},then we conclude that

c < −(L−2 − L)/2 < 0. This completes the proof. �

Remark 5. A straight modification of the functional J can be applied to prove the

existence of solutions as well in the + sign case. However observe Remark 3.
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