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Optimal Portfolio Choice for Unobservable and
Regime-Switching Mean Returns

1 Introduction

We study dynamic optimal consumption and portfolio choice for a setting in
which the mean returns of a risky asset depend on an unobservable regime
variable of the economy, which is defined as a continuous-time Markov chain.
The investor estimates the current regime by observing past and current
asset prices. We compute the optimal consumption and portfolio policies
of an investor with power utility. A risky asset price and interest rates are
exogenously given. The investor is assumed to be a “small investor,” in the
sense that his or her actions do not influence market prices. The model is a
basic building block in an equilibrium problem of agents whose joint actions
determine market prices. In addition to its role in theoretical studies of
financial markets, the model can form the basis of portfolio management.

Optimal portfolio and consumption choice in a continuous-time setting
was investigated by Merton [39] [40]. By assuming a model with constant co-
efficients and solving the relevant Hamilton-Jacobi-Bellman equation, Mer-
ton [39] produces solutions when the utility function is a member of the
Hyperbolic Absolute Risk Aversion (HARA) family of utility functions. If
coefficients are not assumed to be constant, in other words, the investment
opportunity set is time varying, explicit solutions for portfolio weights are
available only in special cases, for example, where the investor has log utility.

The difficulty of solving the optimal portfolio problem is particularly un-
fortunate because there is now considerable evidence that the investment
opportunity set is not constant. For example, the evidence for predictable
variation in the equity premium is particularly strong (see, for example,
Campbell [10], Campbell and Shiller [11] [12], Fama and French [21] [22],
Campbell, Lo, and MacKinlay [9], Chapter 7.) Changes in return volatility
tend to be persistent, giving rise to the well documented “GARCH” behavior
of returns (see, for example, Bollerslev, Chou and Kroner [4].)

A number of recent papers address the issue of portfolio choice by a
multi-period investor facing time-varying investment opportunity sets. Bren-
nan, Schwartz, and Lagnando [8], Barberis [1], Campbell and Viceira [13],
Lynch [38], and Xia [49] consider portfolio allocations by a multi-period
investor confronted with return predictability. Kim and Omberg [32] and
Liu [36] obtain exact analytical solutions for a range of continuous-time
problems with predictability. All these papers point out the importance
of a “hedging portfolio” that is a demand for the asset as a vehicle to hedge



against “unfavorable” shifts in the investment opportunity set.

In the above studies, the parameters of the stochastic processes that de-
termine changes in prices and the investment opportunity set are typically
supposed to be known. From a practical point of view, the parameters could
be estimated from past data. Even if the investment opportunity is constant,
this could be problematic, in particular for the drift coefficient of the price
process. (See Merton [43] for example.) The precision of the estimator may
not be constant because an investor will learn more about the parameters
as time passes. In general, the estimates of the unknown parameter values
are “state variables” in an investor’s dynamic optimization problem, and it is
necessary to hedge against anticipated changes in these state variables. Thus,
it is reasonable to expect that an investor’s behavior may differ when tak-
ing estimation risk into account. The question is how an investor’s behavior
actually changes.

Bawa and Klein [2] examine the effect of estimation risk on optimal portfo-
lio choice in a single period context. The topic is studied in a continuous-time
setting by, for example, Detemple [18], Detemple and Murthy [17], Dothan
and Feldman [19], Feldman [23], Gennnote [27], Karatzas and Xue [31], and
Kuwana [34]. In general, estimation risk could increase or reduce the op-
timal allocation of the risky assets depending upon models and parameter
values. Brennan [7] demonstrates the practical importance of the parameter
uncertainty in a simple continuous time setting, in which the stock return
is independently and identically distributed. In Brennan’s example, it is
shown that for reasonable parameter values the parameter uncertainty could
reduce the investor’s optimal allocation to the risky asset by as much as
50%. Xia [49] examines the effects of the parameter uncertainty when the
asset prices are possibly predictable and the predictive variables themselves
are stochastic. It is shown that the optimal allocation can be quite different
from the case where there is no parameter uncertainty or predictability.

In these articles, the processes of the coefficients and the signals have
continuous sample paths. Some important sources of uncertainty may be
discontinuous, recurrent, and fluctuating. Such significant events include
innovations in technique, introduction of new products, natural disasters,
and changes in laws or government policies. Although these events may
affect the profitability of risky assets, the relationship among these events
and the profitability of risky assets can be very complicated. Furthermore,
there are numerous events and economic variables that are potentially related
to the profitability of risky assets. It is in general difficult to conclude which
one is really relevant. Thus investors may not try to count up all potentially
relevant events and variables, and simply assume that there are a few possible
states, for example, good and bad states, of an asset’s profitability. Investors



attempt to learn about the current state of mean returns by observing the
market price of assets and to update their expectation with the arrival of
new information. Even if an investor is relatively confident about the current
profitability of assets, the regime can shift at the next instant. Therefore the
precision of the estimator will fluctuate even when investors have so many
historical data.

In order to describe this situation, it is assumed in this paper that the
unknown drift coefficient of the risky asset price process is an unobserved,
two-state, continuous-time Markov chain. The estimated (conditional mean)
drift process fi has outcomes in the interval [ug, t1], whose endpoints are
the mean-rate-of-return (“drift”) parameters of the two regimes. Thus, the
investor’s optimal control problem has, in effect, the estimated drift process
i1 as well as the wealth process as its state variables.

The model presented below is similar to David [15], who studies an in-
vestor’s portfolio and excess returns in equilibrium of a Cox-Ingersoll-Ross
production economy with the (unobservable) Markov-switching state vari-
able. Assuming the existence of the value function and symmetric switches
between good and bad states in two industries, it is shown that commonly
observed stylized facts in financial markets could be explained. In a simi-
lar setting, Veronesi [48] also investigates the effects of uncertainty and risk
aversion on the form of the stock price function and how this relates to stock
market volatility. Both authors mainly focus on the behavior of equilibrium
expected return and volatility.

The model presented below uses the underlying framework of David and
Veronesi, but differs from it in its emphasis. While they investigate behavior
of equilibrium expected return and volatility, this paper investigates the ef-
fects of uncertainty and risk aversion on investor portfolios and consumption.
Although David [15] also investigates the optimal consumption and portfolio
rule, it is difficult to see how each investor’s optimal consumption and port-
folio rule is affected by uncertainty and estimation risk, since an analytical
solution is not available. This paper investigates how various parameters of
the model affect the optimal consumption and portfolio rule, for example,
investors’ risk aversion and terminal horizon, frequency of regime switching,
and volatility of returns.

From the technical point of view, this paper makes the following contri-
butions. As is discussed above, to compute the optimal consumption and
portfolio rule is in general difficult when the investment opportunity set is
time-varying. Brennan, Schwartz, and Lagnando (1996) and Xia (1999),
for example, solve the non-linear partial differential equation (PDE), which
is associated with the Hamilton-Jacobi-Bellman (HJB) equation. Camp-
bell and Viceira (1998) use log-linear approximations to solve the investor’s
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multi-period discrete-time problem. Kim and Omberg (1996) and Liu (1999)
obtain exact analytical solutions for the value function of the problem that
allows a range of continuous-time problems with predictability. Brandt [5]
uses the investor’s Euler equations to estimate his or her portfolio allocation
to stocks.

In order to compute the optimal consumption-portfolio rule, we use the
Monte Carlo simulation approach in this paper. Our control problem is con-
verted into the martingale formulation by standard arguments, since markets
are complete from the investor’s point of view. The technique of stochastic
flows is then applied to facilitate the computation. (See, for example, Nu-
alart [44] and Protter [46].) It is possible that the result could be derived
as a corollary of the general result of Ocone and Karatzas [45] and Detem-
ple, Garcia, and Rindisbacher [16], in which the Malliavin calculus is applied.
However, any such relation is not transparent, and the stochastic flow is more
directly related to the derivatives of the value function.

The stochastic flow is also effective to prove the existence of a solution
to the Hamilton-Jacobi-Bellman (HJB) equation and to derive the optimal
portfolio rule explicitly. In this paper, following standard procedures, we
obtain the HJB equation, which is a partial differential equation (PDE) with
two boundaries for the state variable fi. The existence of a solution to the
HJB equation is hardly guaranteed because it is non-linear and degenerate.
Standard existence theorems cannot be applied.? For a particular value of
the risk-aversion coefficient, however, the HJB equation is reduced to a linear
PDE by a change of variables. We then overcome the difficulty associated
with degenerate PDE by showing that the naturally conjectured solution
is in fact sufficiently smooth. For the particular value of the risk-aversion
coefficient, interesting properties are found by looking at the explicit optimal
portfolio rule without carrying out a numerical computation.

From a careful examination of the solution to the HJB equation and
numerical examples, we can see how the optimal consumption rate and the
optimal portfolio depend on the estimated drift process /i, time horizon and
risk-aversion of investors, and other parameters. In particular, the terminal

!The Malliavin calculus can also be applied to compute option Greeks. See, for exam-
ple, Fournié, Lasry, Lebuchoux, Lions, and Touzi [25]. Roughly speaking, the Malliavin
calculus is a differentiation of a stochastic process on its domain, that is, on a probability
space. The stochastic flows is a differentiation of a stochastic process with respect to its
initial value. The relation between the Malliavin calculus and the stochastic flow is also
discussed in Colwell, Elliott, and Kopp [14].

2The degenerate PDE is an essential technical difficulty that is associated with an
incomplete information structure. In some cases, coefficients of PDE could be zero when
there is no estimation risk. See Kuwana [33] for example.



horizon effect on the optimal portfolio is important. The hedging portfolio
cannot be negligible when investors have a long time horizon. Depending
on an investor’s degree of risk aversion, the sign as well as the size of the
hedging portfolio could vary among investors.

This has interesting implications regarding the terminal horizon of the
investor. Financial planners often advise older people to invest less in stocks
than younger people. (See for example Siegel [47] and Jagannathan and
Kocherlakota [29].) Is this conventional advice true in our model? Our results
show that longer-time-horizon investors can invest more or less in the risky
asset than shorter-time-horizon investors, depending upon the investor’s risk
aversion. Furthermore, the hedging portfolio could depend on the estimated
drift in a very complicated way, if the expected return of an asset in a worse
regime is lower than the risk-free rate. Optimal consumption and portfolio
should be decided carefully by taking all related parameters into account,
and we cannot simply recommend younger people to invest more in stocks.

The remainder of this paper is structured as follows. Section 2 formally
describes the model. Some typical properties of the model are discussed in
Section 3. Section 4 proves the existence of the value function for a par-
ticular risk-aversion coefficient. Section 5 explains the numerical procedure
and shows the numerical examples for various parameter values. Section 6
concludes. All proofs appear in the Appendix.

2 Model

Let (€2, F, P) be a probability space on which a standard Brownian motion
B and a two-state, continuous-time Markov chain Y are defined. The process
Y is right-continuous with values in {0, 1} and represents the regime of the
economy. We suppose that, at the initial time ¢ = 0, Y; has outcome 1
with probability p and outcome 0 with probability 1 — p. The process Y,
starting at ¢, remains there for an exponentially distributed length of time,
and then jumps to state j(# 7). The exponential density has a parameter
Aij. For notational simplicity, we consider only the symmetric case, in which
for some A > 0,
Aot = Ap = A

The exponentially distributed inter-regime times are independent, and inde-
pendent of B. The underlying information filtration is F = {}"tB ’Y}, where
FPY = 6(B,,Y,,s < t)”. That is, F”" is the augmented o-algebra on
generated by observation of B; and Y; up to t.

One risky asset and one riskless asset are available for investment. The



riskless asset price process (3 satisfies

B, = Byr dt, (1)

for a positive constant r. The risky asset price process S satisfies
dS, = Syp(Y) dt + Sio5dBy, Sy >0, (2)

where og is a constant and p : {0,1} — IR. Let up = p(0) and g = p(1). We
assume that p; > g, which means that state 1 is the high-expected-return
state. It is assumed (realistically) that the investor can observe neither Y nor
p(Y") directly. The investor observes only the asset price process S. Thus, the
investment environment is described by the riskless asset’s price process (1),
the risky asset’s price process (2), and the investor’s information, defined by
the filtration F¥ = {F°}, where F = 0(S,,u < t)”. The parameters o, p,
A, o, and gy are supposed to be known constants.

As in previous works, see for example Gennnote [27] and Feldman [23],
we can identify a o-algebra equivalent economy with the filtered probability

WtEP(Kzl‘fts) and 1wy = p.

That is, m; is the probability that the current regime is the high-expected-
return state, given the observations S5, 0 < s < t. It follows from Theo-
rem 9.1 of Liptser and Shiryayev [35] that 7 satisfies the stochastic differential
equation

) (Ml - HU) dEt (3)

dﬂ't = )\(1 - 27rt) dt + 7Tt(1 — Tt
0s

= pr(m) dt + ox(m) dB;,
where B is the standard Brownian motion with respect to {F°} defined by

5 /t dSs — Ssfi(ms) ds
0 SsUS

, o with  A(m) = myn + (1 — m) po-

;=
A o-algebra equivalent economy is then described by the riskless price pro-
cess (1), the filtered probability (3), the risky price process S satisfying

dSt = Stﬂ(ﬂ't) dt + StO'S dﬁt, (4)

and the filtration F* generated by S. From now on, we work in this Marko-
vian equivalent economy.

The investor’s utility is defined on a terminal wealth wr (a non-negative
random variable) and a consumption process. A consumption process is an
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adapted non-negative jointly measurable process ¢ with fOT ¢ dt < oo almost
surely. Specifically, we suppose that the investor’s preferences are given by
the utility function U defined by

U(c,wr) =E </0T e "u(c) dt+u(wT)> :/ UOT e Pu(cy) dt +u(wr)| dP,

where p > 0, u(¢) = ¢*/a, and o < 1, « # 0. For the case with o = 0, we
let u(c) =loge.

A trading strategy is an adapted process 6 = (6°,0") satisfying technical
integrability conditions.®> This means that the investor holds ) units of the
risk-free asset and 0, units of the risky asset at time ¢, based on information
available at that time. For a trading strategy #, the investor’s wealth at time
tis wy = 6, - S, where §; = (3, S¢). Given an initial wealth wy > 0, we say
that (c, @) is budget feasible, denoted (¢, 0) € A(wy), if 6 satisfies

t t
9t-8t:w0+/ Hsts—/ csds >0, tel0,T].
0 0

Given 6, let ¢ be the fraction of wealth w invested in the risky assets. That
is,

91
_ 05 if  w; #0, (5)
Wy

and ¢; = 0 if w, = 0. The wealth process w generated by (c, @) satisfies

Pt

dw, = [wipy(fu(my) — 1) 4+ 1w — ¢ dt + (wepr0s) dB;
= pw(we, Ty, ¢4, 1) dt 4 0 (wy, 1) dBy.

We say that a control (c, ) is budget feasible if (¢, ) determined by (5)
is budget feasible. We write (¢, p) € A(wyp) if the corresponding (c, ) is in

A(wg). The utility of a control (¢, p) is
fUS) :
The value of a state (w, ) is then defined by
Viw,m)= sup VD (w, 7). (6)
(e.p)EA(wo)

T
VR (w, 1) = E </ e Pu(cs) ds + u(wr)
0

If V&) (w,7) = V(w, ), then (c, ¢) is an optimal control at (w, ).

3Let L! be the space of {F°}-adapted progressively measurable processes a satisfying
fOT lat| dt < co almost surely for each T'. Let £2 be the space of {F;° }-adapted progressively
measurable processes a satisfying fOT a? dt < oo almost surely for each 7. Given an Ito
process X with dX; = u; dt+ oy dB;, we write that a process a is in £(X) if {azu : t > 0}
is in £! and {a;0o; : t > 0} is in £2. A trading strategy § = (6°,0') satisfies the required
technical condition if #° € £(8) and ' € L(S).



3 Properties of the Model

In this section, we first discuss some properties of the filtering equation. The
properties of our filtering model are well explained in David [15], where the
stationary distribution of the filtered probability 7 is effectively used. We
repeat some of the properties that are important for the optimal consump-
tion and portfolio decision. It is interesting to see the differences between
the filtering equation (3) for the unobserved Markov chain and the filter-
ing equation for an unobserved Ornstein-Uhlenbeck process, which is typi-
cally assumed in previous works, for example, Dothan and Feldman [19] and
Gennote [27]. In the latter case, the filter is derived by using its Gaussian
structure, and consists of the conditional mean process and the conditional
variance process of the unobservable process. The unconditionally Gaussian
structure leads to a deterministic conditional variance, and the precision of
the mean estimate goes from an initial condition to a steady state.*

In our case, the precision of the mean estimate fluctuates randomly rather
than being deterministic. Both the mean estimate and its precision are sum-
marized in one variable, m(t). If m(t) takes values near the boundaries of
the interval [0, 1], then the investor may be fairly confident about the cur-
rent regime of the economy. On the other hand, when 7(¢) is near 1/2, the
investor is not confident about the current regime. Thus studying dynamic
behavior of 7 in (3) allows us to investigate the fluctuations of the mean
estimate and its precision.

It is easily seen that the larger the difference between two states, p; and
o, the larger the volatility of the filtered probability. On the other hand, the
larger the volatility of asset returns, the smaller the volatility of the filtered
probability, because asset returns provide little information (“low-signal-to-
noise” ).

The density A of regime shift is important in our model. If we suppose
A > 0, 7 has a tendency to drift inside the interval, as can be seen in (3). The
regime may switch before the investor completely learns about the current
regime. Therefore the investor’s filtered probability has a mechanism that
avoids “too much” confidence. In other words, the possibility of a regime
switch makes the speed of learning slower. If A is so large that the drift term
dominates the diffusion term in (3), then the speed of learning is very slow
and 7 may take values near 1/2 almost always.

If we suppose that A = 0, our model is similar to Brennan [7], where the
investment opportunity set is constant but uncertain about the mean return

4If the initial condition is higher than the steady state, the precision of the mean

estimate increases as more returns are observed. See, for example, Proposition 2 in Feld-
man [23].



on the risky asset. As a special case of Gennote [27] and other previous
literature, the conditional variance of the unobserved mean is deterministic.
In our model with A = 0, (3) is simplified to

)(Ml - Mo) dﬁt-

d7Tt == 7Tt(]- — T
os

The conditional variance of the unobserved mean is stochastic even if A = 0.
Notwithstanding, it would be reasonable to conclude that our model with
A = 0 is quite similar to Brennan [7], because there is no mean-reverting
effect and the precision of the mean estimate would increase as more returns
were observed.

We now study properties of the optimal solution to our control prob-
lem (6). One of the standard procedures is to find a function J : IR, x
[0,1] x [0, T] — IR that is suitably differentiable and solves the HJB equation

sup D) J(w,,t) + e Pulc) =0, (7)
(C,¢)€R+XR

where
DO J(w,m,t) = Jy(w, 7, t) pe(w, 7, @) + %wa(w,ﬁ, 1ol (w, @) + Jp(w, 7, 1) (1)
+ %Jm(w, T, 1)02() + Jur(w, 7, t) 00 (T, @) o (7, @) + Jo(w, 7, 1),
with the boundary condition
J(w, 7, T) = u(w).

If such a function J exists, and if other technical conditions are satisfied,
then we can find the optimal control by a well-known verification argument.

For the moment, let us assume that there exists such a function, J. By
standard homogeneity arguments, a natural conjecture is that

[0}

J(w,m,t) = f(r, 1), (8)

(%

where f is in C*!([0,1] x [0,T]).> Tt follows from the first-order conditions
of the HJB equation (7) that the optimal consumption and portfolio rule
(¢*, ¢*) implied by this conjectured value function is given by

C: = ept/(a_l)f(ﬂ-ta t)l/(a_l)wta (9)

5That is, f is twice continuously differentiable with respect to 7 and once continuously
differentiable with respect to t.
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o = flm) = w1 =) (1 — o) fr(m, t)
(1 —a)o? (1—a)o? [, t)
The arguments of f and its partial derivatives are suppressed below for nota-

tional convenience. By substituting this policy back into the HJB equation,
we obtain the non-linear partial differential equation on [0, 1] x [0, T]:

. ((/l(ﬁ)—r)2+T> oy (w(l—r)(m;uo)(ﬂ(ﬂ)_THéA(l_QW)) I

(10)

20_%(1 . Oé) (1 — Oé)O'S

(1 —m)* (k1 — pio)? (1= T — po)” :
+ ( 2(1 — a)o? ) (7" ( 2007 ) AR
N (1 ;a) ePt/(0=1) p2a=1)/(o-1). (m,t) €10,1] x [0,T7, (11)

with the boundary condition
f(m,T) =1, m € [0,1]. (12)

Thus, questions about the existence of a solution .J to the HJB equation are
essentially reduced to the existence of the solution f to the PDE (11).

Since (11) is non-linear, it seems quite hard to find a solution in general.
Furthermore, to show the existence of a solution to (11) is not straightfor-
ward, because it is degenerate, in the sense that some coefficients are zero at
the boundaries 0 and 1 for 7.

In section 4, it is shown for the case a = 1/2 that (11) can be reduced
to a linear PDE. The existence of a solution to (11) is proved by using the
stochastic flow. Interesting properties are found without using numerical
estimation. For a general value of a, we apply the martingale approach in
section 5.° Since markets are complete from the investor’s point of view,
our control problem is converted into a martingale formulation by standard
arguments. The optimal control to (6) is numerically computed by Monte
Carlo simulation. Stochastic flow also plays an important role to simplify
numerical computation.

Before closing this section, we briefly review the case of log utility. The
natural conjecture of the value function is

J(w,m,t) = f(w,t) + g(m,t),

for some differentiable f : IRy x [0,7] — IR and ¢ : [0,1] x [0,7] — IR.
The PDE, derived as above, is degenerate, and the existence of a solution is
not trivial. It has been already shown, however, that certainty equivalence

6See, for example, Duffie [20].
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holds if and only if the investor has log utility. (See Kuwana [34].)" In the
current context, certainty equivalence means that the investor behaves as if
the estimator ji is the true drift. Thus, the optimal consumption portfolio
rule of the log-utility investor is conjectured to be

lm) —r

2
Og

cr = e P f(w,t) and op =

Verification of this policy in this setting is relatively straightforward. Thus,
for log-utility investors, it turns out that the time horizon and the incomplete
observation of mean rates of return do not play a role in determining the op-
timal portfolio. The optimal consumption rule is irrelevant to the estimator

A~

it

4 Optimal Consumption and Portfolio for a =
1/2

In this section, we show the optimal consumption and portfolio rule and
the value function for a = 1/2. As discussed above, it seems quite hard to
show the existence of a solution to (11) in general, since it is non-linear and
degenerate. Although the PDE (11) is non-linear, it can be transformed into
a linear PDE by the change of variables for the case o = 1/2:

h(m,t) = (f(m,1))% (13)
leaving
o = (M n (TR ey — )4 a1 - 2m) ) 1,
N (7r2(1 — ﬂ)jé/h — M0)2> %hm g+ ertlaD), (14)

with the boundary condition h(m,T) = 1.

To show the existence of a solution to the PDE (14) is still not straightfor-
ward, because standard existence theorems cannot be applied.® We overcome
this difficulty by using stochastic-flow techniques.

"See also the argument about the “generalized myopia” and the log utility investor for
the Gaussian uncertainty case in Feldman [24].

8The standard references usually assume the non-degeneracy of PDE in order to guar-
antee the existence of its solution. See, for example, Karatzas and Shreve [30], Remark
7.8.
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Proposition 4.1. Suppose that u(c) = ¢*/«, with the risk-aversion coeffi-
cient o = 1/2. Then there is a solution f to (11)-(12) and the value function
J solving (7) is given by

J(w,m,t) = 2f (m, t)w'/?.

Moreover, V(w,n) = J(w,,0) for all w > 0 and 7 € [0,1]. The unique
optimal control (¢*, ¢*) of problem (6) is given by

- - 2(fa(me) — ) | 2m(1 — ) (pa — pro) fa(met)
* 2pt t 2. % d * )
c; = e P f(m,t)"w;  an 0y g + o2 Flmnd)

(15)

where w* is the unique solution of

dwz< = /Lw(wra Tty Cra 90:) dt + O—w(wz’ (,0?;) dEt

Our proof strategy is to show that a naturally conjectured solution A of the
PDE (14) is in fact sufficiently smooth and solves (14). We then confirm that
the obtained properties of f = v/h are sufficient for the verification argument.
From “Feynman-Kac” reasoning, the naturally conjectured solution of the
PDE (14) is’

T
h(a;, t) =E (/ 672ps¢t,5 ds + ¢t,T
t

™= x) , (16)

Do = eXD </t <W+r> dT>.

The next proposition shows, using the theory of stochastic flows, that the
function h defined by (16) is sufficiently smooth for our purpose.

where

Proposition 4.2. The function h(-, -) given by (16) is in C*'([0,1] %[0, T7).
The derivatives Oh/0x and Of /0x are bounded.

Proof. See Appendix. |

9This conjecture comes from the Feynman-Kac Formula. We can also think of it as
the “generalized” solution of a PDE, whose existence and uniqueness can be shown. See
Freidlin [26], ITL. 3.5 for details.

13



In the proof of proposition 4.2, it is shown that 0h/dx is given by

T S
Ohtw,t) - _ E( / ¢ G < / k’(wf)WTdT> ds m::c>
oz t t

+E (d)t,T /T K ()W, dr |7 = x) , (17)

where 77 is the process that solves (3) with the initial condition m; = z. The
function k(-) is given by

k(m) = (/1(7272—7“)2 + .

The process W is the stochastic flow of 7 and is defined by

9
Wt = %ﬂ't, (18)

satisfying
H1 — o
Js

th = —2)\Wt dt + (]. - 27Tt) Wt dﬁt,

We now verify that h given by (16) satisfies the PDE (14).

Proposition 4.3. The function h given by (16) satisfies the PDE (14).

Proof. See Appendix. |

We can then prove proposition 4.1 by a relatively standard verification
argument. We define a function J : IRy x [0,1] x [0,7] — IR by

J(’Uj, , t) = 2f(7ra t)w1/27 (19)
where f( -, -) is defined by (13) and (16).
Proof of Proposition 4.1. See Appendix.

We can observe some properties of f directly from (13) and (17). When
1o > 1, it turns out that f is a relatively simple function of 7.

Proposition 4.4. Suppose py > r. For allt € [0,T), f(m,t) is increasing
with respect to .
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Proof of Proposition 4.4. See Appendix.

The investor thus expects higher remaining utility if it is more likely that
the market is in the high-expected-return regime (Y; = 1). The optimal
consumption rate is thus decreasing with respect to 7. The investor with
a = 1/2 thus consumes less when it is more likely that the market is in
the high-expected-return state (Y; = 1). In other words, the investor with
« = 1/2 invests more in the assets to increase the future wealth level, when
the market is more likely to be in the high-expected-return state. We will
compare the optimal consumption rule with other values of o and consider
this property again in the next section.

The optimal portfolio ¢* in (15) consists of two parts. The first term,

2(“(7“3 T) , (20)
Os
is the usual demand for a risky asset by a single-period mean-variance max-
imizer. (See Merton [41], equation (36), for example.) This part depends
linearly on the filtered probability m;. The terminal horizon does not play a
role.
The second component of ¢*,

27Tt(1 - 71't)(lﬁl - NO) f?r(ﬂ-ta t)
O'gf f(ﬂ-tat) ’

is the so-called “hedging demand,” a term coined by Merton [42]. This is a
demand for the asset as a vehicle to hedge against “unfavorable” shifts in
the investment opportunity set. The hedging demand is always positive if
[o > 1, since f is increasing and all other terms are positive. Since f is
increasing with respect to 7, the marginal utility of wealth, V,,, is larger in
the better state. Thus, the investor with risk-aversion coefficient @ = 1/2
“tries” to have more wealth in the better state. Ignoring the effect of the
drift in (3), the filtered probability 7 rises when the asset price S rises.
Therefore, by holding more of the risky asset, the investor will have more
wealth when investment opportunities will be better. We can conjecture that
risk-averse investors with @ < 0 may show the opposite behavior, because
the log investor (o = 0) does not have a hedging demand. This conjecture is
partially confirmed by numerical examples in the following section.
The part of the hedging demand defined by

(21)

2m (1 — ) (1 — pho)

2
Og

(22)
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is easy to analyze. This term is large if u; — po is large. In other words,
the hedging demand is large if there is a large difference in expected returns
between the two regimes. The term (22) is also large if the price volatility
og is small. Since small 0g means small noise in observation, the conditional
probability 7 reacts to price changes more sensitively. In other words, the
volatility of = is larger, against which the investor needs to hedge more.
Furthermore, if 7 is near its boundaries and estimation risks are small, the
hedging demand is small because of the term m(1 — 7). Thus the hedge
against changes in m may be large if (i) the difference in the two states is
large (large f4 —pio), (ii) the noise in the price process is small and inference of
the expected return is easy (small og), and (iii) the investor is not confident
about the current state (7 is near 1/2).

The actual size of the hedging demand is the product of f,/f and (22).
Because of the boundary condition, f(m,T) = 1 for all 7, for a short-horizon
investor, f, is almost zero for all 7w, which makes the hedging demand small.
For long-horizon investors, f./f can achieve a notable size. Furthermore,
the effect of parameters through the term (22) could be strengthened or
weakened by f./f, since this term also depends on parameters. We will
show this through the numerical example in the following section.

5 Optimal consumption and portfolio for gen-
eral risk-aversion coeflicients

In this section, we study the value function and the optimal consumption/portfolio
rule for various values of risk-aversion coefficient o. Since an analytical so-
lution is not available, we first study general properties of optimal rule and
then compute the optimal solution numerically by Monte Carlo simulation.

It follows from the first-order condition for (7) that

ue(c*) = Jy(w, m, ), (23)

o Jeln ) (0)r) el ((0)

_waw(w,ﬂ,t) 0% B Wy (W, 7, ) og

Following previous literature, such as Merton [42] and Breeden [6], we study
properties of the optimal consumption/portfolio rule (23) and (24). As dis-
cussed above, the optimal portfolio rule (24) consists of two parts: the mean-
variance portfolio and the hedging portfolio. How much an investor should
invest in the mean-variance portfolio depends on the investor’s relative risk
tolerance —.J,,/w.Jy,, which is constant 1/(1 — «) in our case. On the other
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hand, how much an investor should invest in the hedging portfolio depends

on
Jor(w,m,t) 1 fr(m,t)
Wlyw(w,m,t) 1 —a f(m,t)’
which is not trivial. Applying implicit function theorem to the function for

marginal utility of wealth J,,, it follows from (23) and Breeden [6] (equation
(18), p.286) that

(25)

Jwr 1 fr ow

B Jx _ Ow
wlyw 1—af  Or

9 on

u
That is, (25) is the compensating variation in wealth for a change in 7 that
is required to maintain the current level of marginal utility of wealth. Thus
we can see that (25) will provide state-contingent wealth that combines with
investment opportunity changes to maintain the utility of current consump-
tion.

To indicate the implications, consider the effect on an individual of an
increase in 7. Assume that an increase in 7 has a real wealth effect that
is positive, thereby tending to increase current consumption expenditure.
However, the change has a negative effect on current consumption, in that
the price of current consumption has increased relative to the price of future
consumption. The net result on current consumption is ambiguous; thus, an
individual’s demand component may be either positive or negative, depend-
ing upon the sign of f./f. We can see from (9) and (10) that those who
consume more with an increase in m would tend to be short in the hedging
portfolio, and those who consume less would tend to be long in the hedging
portfolio. We cannot however confirm who consumes more with an increase
in 7, because the value of f,/f is not known.

Since an individual chooses consumption and asset portfolio to maximize
his expected utility of lifetime consumption, we then consider the use of a
risky asset in stabilizing an individual’s expected utility of lifetime consump-
tion. A perfect hedge, if possible, is a portfolio of assets whose return in
the various states of the world is such that the individual’s utility of lifetime
consumption J(w,r,t) is the same in all states of the world. Although a
perfect hedge may not be possible in our case, an investor may try to have
a hedging portfolio that realizes the compensating variations in wealth re-
quired to maintain expected lifetime utility. In order to see how expected
lifetime utility J depends on the state variable 7, we have to study function
f- In the following, we compute f and f; numerically.

Our control problem (6) is converted into a martingale formulation by
standard arguments, since markets are complete from the investor’s point of
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view. It follows from the first-order condition of the HJB equation (7) that
the optimal portfolio rule can be computed by evaluating a function f in (8)
and its first derivative f.. As shown below, a function f can be easily esti-
mated by Monte Carlo simulation. We could estimate f for many values of 7
and approximate f, by taking differences between two grid points. However,
to evaluate function f for many points is time consuming. Furthermore it
may not be easy to find a good grid size that approximates f, with suffi-
cient accuracy. We can resolve these difficulties by using the stochastic flow
technique. The value of f and f, are estimated in one simulation procedure.
The risky asset price S satisfies

dSt = ﬂtSt dt + USSt dEt,

and the estimator f satisfies
. . L N\ B
diy = M + po — 2f1) dt + U—S(Mt — o) (1 — fu) dBy.

Since markets are complete from the investor’s point of view, the equivalent
martingale measure is uniquely determined. We define processes 7 and £ by

N t . 1 t
Ve = H : and gt = exp <_/ Vs st - _/ 752 dS‘) :
0s 0 2 Jo

It is easy to show that ¢ satisfies d§, = —&y; dB; and & = 1. Problem (6) is
converted into a martingale formulation by standard arguments:*°

sup E [fUT e "L dt + e"’T%] (26)
st. wy=E [fOT e ey dt + e’rTfTwT] :

The Lagrangean of problem (26) is given by

T a e T
E [/ e PPl dt + G”TET] +1 [wg — / e "¢ dt — e”TfTwT] ,
0 0

(%

where 17 > 0 is a scalar Lagrange multiplier. The first-order conditions for
optimality are given, state by state, by (c/)*~' = nel?=%, and (wh)*! =
nelr="T¢n where ¢ and wy are optimal consumption rate and terminal

wealth. We define X by

T
p—ar o p—ar =
X:E[/0 eXp(a—lt)t dt—i—exp(a_lT)T } (27)

10See, for example, Duffie [20].
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It is then easy to show that

E /T e—pt (C:)a dt + 6_’0T (w;)a — w_gXl—a
0 o o o '

Since the left-hand side of the above equation is the maximized value of
expected utility, X'~ coincides with f(m,0) where f is defined in (8).

Let 7 be the process that solves (3) with the initial condition 7y = =.
The stochastic flow W of 7 is defined by (18). Since we can think of X as a
function of the initial value z of 7, f,(x,0) is given by

_0X

fala,0) = (1= )X,

where

oX  « r p—ar _10& p—ar L0y
a—a_lE{/o exp(rﬁ) : a—xd”exp(a_lT) T %]’

t . o t .
0 _ <_/ (Nl Mo) WsdBt—/ . (Nl uo> Wsds>,
ox 0 s 0 s

W, = —2AW, dt + <M> (1—2m)W,dB,,

0s

with Wy = 1. We can thus estimate f and f; by Monte Carlo simulation:

N T
~ P=OT )\ ey 2 P—OT LY )y oy
XNN;:;UO exp(a_1t>(§t ) dt+exp<a_1T>(§T)
X 1 a <« r p—ar (n)y L 85,5(”) p—ar (n)\ L 8§(n)
Rl MYa=T T "Namr 22T
Ox Na—lnz;[/o eXP(a—1t>(§t) Ox dt—l—exp(a_l >(§T) ox |’

where £ and 9¢™ /0x are n-th sample path of £ and 9¢/0x.
In Panel A and B of Table 1, we show f(-,-) and f(-,-) for investors
with a = 0.5, 0, —0.5, —5, —10, and —15 for the parameters:

i =020, po=007, A=025 og=025 r=0.05 p=D0.07,

wy = 100, N = 20000, T =10.

These parameter values are used in the following examples unless otherwise
stated. As shown in Proposition 4.4, the function f for an investor with
a = 0.5 is increasing with respect to 7. The log-investor (o = 0) is the
knife-edge case and the function f does not depend on 7 and ¢. It is seen
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that the function f is increasing with respect to 7 for &« = 0.5 and decreasing
for « = —0.5 and —5. The investors with o = —0.5 and —5 thus expect
lower remaining utility if it is more likely that the market is in the high-
expected-return regime (Y; = 1). It is interesting that f is decreasing near
7 = 0 and increasing near m = 1 for « = —10, and that f is increasing with
respect to m for a = —15. In this example, the investor with very low risk
tolerance may expect higher remaining utility if the market is more likely in
the high-expected-return regime.

It may be rather counter-intuitive that the slope of f is positive for in-
vestors with o = —15. In Panel C of Table 1, we compute

o T
X=F [/ exp(—rt)& dt + exp(—rT)ér| ,
0

which would be a good approximation of X in (27) for investors with very
low risk tolerance. It turns out that X is increasing with respect to m for
our parameter combination. As we can see easily, X is the price of a bond
maturing at 1" whose face value is one unit of account and dividend is one
unit of consumption for ¢ € [0, T]. In other words, X is the price of the stable
future consumption stream. This bond is expensive in our example when the
market is more likely in a higher-expected-return regime. Thus it may not
be curious that investors with very low risk tolerance have lower expected
lifetime utility for higher .

Table 2A shows the optimal consumption rate for investors with o = 0.5,
0, —0.5, =5, —10, and —15. As shown in section 4, the optimal consumption
rate for the investor with a = 0.5 is decreasing with respect to m. On the
other hand, the optimal consumption rate for the investor with o = —0.5 and
—5 is increasing with respect to 7. Since f is increasing with respect to 7 for
a = —15, the optimal consumption rate is decreasing with respect to 7. For
each value of 7, the optimal consumption rate of the investor with o = —0.5
is highest in our example. The optimal consumption rate decreases as the
investor becomes more risk averse or more risk tolerant than the investor
with a = —0.5.

As is well known, the log-investor maximizes the growth rate of his wealth,
and the utility of the investor with o > 0 increases with respect to the
variance of the log of return. The investor with o < 0 is risk averse in a
dynamic context in the sense that the utility decreases with respect to the
variance of the logarithm of return. (See for example Luenberger [37], p.427.)
When the market is more likely in the high-expected-return regime, investors
with a > 0, who are very aggressive in the above sense, increase investment in
the risky asset and try to increase their future consumption. Investors with
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a = —0.5 and —5, on the other hand, increase their current consumption
rate when the expected return of the risky asset is higher. They appreciate
a gain in their purchasing power, and the income effect of higher expected
return dominates the substitution effect. In our example, this tendency is
reversed for more risk-averse investors. Given that X is increasing with
respect to m, the price of stable future consumption stream is expensive
when the market is more likely in the high-expected-return regime. Since
stable future consumption is strongly preferred by investors with very low
risk tolerance, the current consumption is decreasing with respect to 7.

The level of consumption rate is also informative. The optimal consump-
tion rate for investors with o = 0.5 is low and very sensitive to 7, because
these investors are eager to increase their future wealth level. Investors with
a = —0.5 have a higher consumption rate, which is not very sensitive to
m. More risk-averse investors, such as a = —10 and —15, try to maintain a
similar consumption level in the various states of the world, and the optimal
consumption rate is not sensitive to .

Table 2C shows the hedging portfolio. The main determinant of the
hedging demand is estimation risk, which is large when the investor is not
confident about the current regime. On the other hand, as m approaches the
boundaries, the hedging demand is small because of the term 7(1 — ) in the
hedging portfolio.

Since f is increasing with respect to m for @ = 0.5, the hedging portfolio
of the investor with @ = 0.5 is positive. On the other hand, the hedging
portfolio of the investor with o = —0.5 and —5 is negative. Ignoring the
effect of the drift in (3), the filtered probability 7 is positively correlated to
the asset price S. Thus, by short selling the risky asset, the investor can
transfer the wealth from the higher [ state to the lower i state. On the
other hand, if investors long the risky asset, they can transfer their wealth
from the lower [ state to the higher i state. In any case, investors stabilize
their lifetime utility using the hedging portfolio.

It is interesting to see that the hedging portfolios of investors with very
low risk tolerance and o = —15 is positive. They transfer their wealth from
the lower /i state to the higher /i state. Since the price X of stable future
consumption and income is expensive in the higher ji state, they may want
to have more wealth to stabilize the future consumption stream.

Although the size of the hedging portfolio is smaller for more risk-averse
investors, Table 2D shows that the ratio of the hedging portfolio to the
optimal portfolio is larger for them. For example, when o = —15and 7 = 0.4,
16.1% of risky-asset-holding is motivated for hedging reasons. As in other
literature, such as Lynch [38] and Xia [49], the hedging demand could be
important in our example.
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Table 3 compares the optimal consumption and portfolio of investors
with @ = —0.5 who have different time horizons 17" =1, 5, 10, 30, and 50. In
general, the hedging portfolio is larger for longer-horizon investors, because
they pay more attention to changes in investment opportunity sets. For
example, the hedging portfolio is —0.012 for 7" = 1 but —0.035 for T" = 50,
when m = 0.5. We can thus see that the hedging portfolio is more important
for the longer-time-horizon investors.

Table 4 shows the optimal consumption and portfolio for price volatility
(0s) parameters of 0.15, 0.25, or 0.35, when the risk aversion is @ = —0.5.
The other parameters are as above. The parameter og affects the optimal
consumption and portfolio rule through two channels. First of all, the risky
asset is more attractive when og is smaller, for given parameters p, and
p1. The optimal consumption rate increases as og decreases, since the same
wealth level in the future could be realized by a smaller quantity of investment
in the risky asset. When 7 = 0.5, for example, the optimal consumption rate
is 12.995 if o = 0.35 and 15.093 if 0g = 0.15. Secondly, a small o0g makes
estimation of u(Y;) easier, because the volatility of observations is smaller.
When og is small, the investor then can actively hedge against changes in
the investment opportunity set, and the hedging portfolio is larger. Not only
the size of hedging demands, but also the ratio of the hedging portfolio to
the optimal portfolio, increases as g becomes smaller. When 7« = 0.5, for
example, the ratio of the hedging portfolio to the optimal portfolio is —0.018
if g = 0.35 and —0.1 if 6g = 0.15. We can thus see that smaller estimation
risk increases the importance of the hedging portfolio in our model.

Table 5 compares the optimal consumption and portfolio for different
low-expected-return parameters (p) of 0.07, 0, or —0.05. The risk-aversion
coefficient is &« = —0.5. The other parameters are as for the base case. In
general, the optimal consumption rate decreases as j decreases since the
risky asset becomes less attractive. Since the difference p; — o is one of a
component in the hedging portfolio (21), the size of the hedging portfolio is
large if |py — pol is large.

When the expected return of the risky asset is negative and py = —0.05,
the optimal consumption and the hedging portfolio depend on 7 in a compli-
cated way. The optimal consumption rate is high when the market is more
likely in a high-expected-return regime as in the case of positive py. The
optimal consumption rate is decreasing with respect to m near 7 = 0 and
increasing near m = 1. As opposed to the case where pg is positive, the
hedging portfolio is positive for small 7 and is negative for large m. The
investor with a longer time horizon can invest more in the risky asset than
the shorter-time-horizon investor.

Table 6 considers the case where jump intensities are A = 0.05, 0.25,
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0.5, and 5. The risk-aversion coefficient is @ = —0.5. We can see that the
consumption rate is more sensitive to m and the size of hedging demand
is larger when regime switches are infrequent. When jump intensities are
large, the value of 7; is less important because the filtered probability m; is
likely to take values near 1/2. On the other hand, when regime switches
do not happen very frequently, information about a current regime is more
important and hedging against a current regime is large. When 7 = 0.5, for
example, the ratio of the hedging portfolio to the optimal portfolio is —0.083
if A =0.05 and —0.002 if A = 5.

In summary, our examples show that the optimal consumption rate and
the hedging portfolio have the following properties:

e When o = 0.5, investors are aggressive. They consume less and invest
more in assets if the market is more likely in the high-expected-return
regime. The hedging portfolio is positive so that they can transfer their
wealth from a lower [ state to a higher i state.

e When a = —0.5 and —5, investors consume more and invest less in
assets if the market is more likely in the high-expected-return regime.
The income effect of higher expected returns dominates the substitution
effect. The hedging portfolio is negative so that they can maintain
similar wealth levels among different /i states.

e Investors who are less risk tolerant (o« = —15) consume less and invest
more in assets if the market is more likely in the high-expected-return
regime. The hedging portfolio is positive so that they can transfer their
wealth from a lower /i state to a higher [ state. In our numerical exam-
ple, the price of the security that delivers a stable future consumption
stream is higher if the market is more likely in the high-expected-return
regime. Investors with o = —15 want to have more wealth in a higher
ji state so that they can spend more money to stabilize the future
consumption stream.

e The hedging portfolio is more important when the time horizon is
longer. In general, the longer the time horizon, the larger the size
of the hedging portfolio.

e Smaller noise in the risky asset price makes estimation easier and the in-
vestment in the risky asset more attractive. Both the hedging portfolio
and the consumption rate are more sensitive to m when og is smaller.

e The difference |p; — ug| between the expected returns in the two states
makes the hedging portfolio large. When the expected return pg in a
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worse state is lower than the short rate, both the optimal consumption
rate and the hedging portfolio depend on the estimation 7 in a very
complicated way.

e If switching between the two regimes is not frequent, the regime switch-
ing is more important from the investor’s point of view. The hedging
portfolio is larger, and the optimal consumption rate is more sensitive
to .

In our example, the recommendation that younger people invest more in
stocks could be right or wrong depending upon the parameters. There is no
simple rule between the hedging portfolio and the time horizon of investors.
For example, the hedging portfolio can be positive or negative depending
upon the risk-aversion coefficient « for our example parameter set. When
the drift of the risky asset could be smaller than the riskless rate, the hedging
portfolio takes both positive and negative value depending upon the value of
m. The time horizon effect is so complicated that we cannot simply recom-
mend younger people to invest more in the risky asset as a rule of thumb.
The complexity of the terminal horizon effects is consistent with findings in
other recent papers, such as Lynch [38] and Xia [49)].

6 Conclusion

In this paper, we study dynamic optimal consumption and portfolio choice
for a setting in which the mean returns of a risky asset depend on an un-
observable regime variable of the economy. The underlying optimization
problem was solved both analytically and numerically with the stochastic
flow. The optimal portfolio of a long-time-horizon investor can be substan-
tially different from the optimal portfolio of a short-time-horizon investor.
The difference is caused by an investor’s hedging demand of assets against
fluctuations in the estimated mean returns. The optimal consumption rate
of a long-time-horizon investor is also sensitive to the estimated mean return.
The optimal rule depends on the estimated mean return in a very compli-
cated way. An investor’s degree of risk aversion and time horizon, parameters
of asset returns, and frequency of regime switching are key factors in his or
her decision.
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7 Appendix: Proof of Propositions

Proof of Proposition 4.1. Let
1
DA (w,m 1) = fu P (wp(i(r) = 1) + 1w = ¢) = L fuT (wpos)?

2
+ 2w 2 f N1 = 27) + w2 fram?(1 — )2 (M)
s

+ frw' (1 = 1) (1 = o) + 2fsw'?

From the first-order conditions, the maximum of D) J(w,7,t) 4+ e~'u(c),
as a function of (¢, ), is attained at

¢ =ef(mt)Pw  and " = 2(/)(7;)%_ 7")+27r(1 — WU)?EMI — i) ];f((:’;).

Since we know that f solves the PDE (11),
D) J(w, 7, t) + e Plu(c”) = 0.
Thus, for any (¢, ¢),
DO J(w, m,t) + e Pu(c) < 0. (28)

We now consider an arbitrarily chosen (¢,¢) € A(wp). Because f is
sufficiently differentiable, it follows from Ito’s Lemma that

J(wT7 T, T) = wOa 7T07 / D ctsr) wt7 Trta dt + / f ﬂ-ta SOtO-S dBt
/ 2, (s Yol (1 — m) L2 4B, (29)
0 0s

It follows from the HJB equation that

T
J(wT,WT,T)—i—/ e Pu(c)dt < J(wg,m, 0 / f(my,t gptagdBt
0

T / ()20 21, (1 — o) 2 HO 4B, (30)
0

0s

Since the left-hand side of (30) is non-negative, the right-hand side is non-
negative.
It is then easy to show that

f(”tat)wtl/Z%US and  fr(m, t)(zwtl/Z)Wt(l — ) (1 = o) /0s)
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are in £2, and both

/ F(re w205 dB,  and / Fo (s £) (202w (1) (11— o) /rs) B,

are local martingales. Since a non-negative local martingale is a supermartin-
gale, the right-hand side of (30) is supermartingale.
We can now take the expectation of each side of (30) and obtain

E <u(wT) + /0 ' e u(cy) dt) < J(wg, m, 0),

where the boundary condition of .J is used on the left-hand side and the
supermartingale property is used on the right-hand side.

It remains for us to show that, for the candidate optimal control (¢*, p*),
we have J(wy, m,0) = E[u(wr) + fOT e "u(cy) dt]. Tt follows from the HJB
equation that the inequality in (30) is replaced with equality if the candidate
optimal control (¢*, ¢*) is used. That is,

T T
J(wy, mr, T) —i—/ e Pu(ch)dt = J(wo,m,0) +/ f(ﬂt,t)(w;‘)l/waag dB,
0 0

T
+/ 2 f (7, 8) (w27, (1 — ) L 4B, (31)
0

0g

We want to show that the last two terms on the right-hand side are martin-
gales. In order to show this, it is enough to show that E [f wy dt] < 00.
By direct computation,

o [20(m) —r)? 2r(l —m) (= po) falmet) \
dw;, = p + 2 ) (fu(my) — 7“)] wy dt
+[r — ept/(a_l)f(wt,t)l/(a_l)]w;‘ dt + {2(/1(7:;) - 7")2 i 2m(1 — 72(#1 - Mo)] w dB,.
s s

By Chapter 5, Lemma 2 of Protter [46], we can see || sup, |w;|||z» < oo for
1 < p < oo, which implies that E [fUT w} dt] < 00. Since f is bounded, we
can see that

B[ (mntuioios)” i) < oo

Similarly, we can see that

E [/OT (fw(wt,t) (2(w)"/?) m(1 — ) <”10_S”°)>2 dt] < .
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Then, by Proposition 5B of Duffie [20], the last two terms of the right-
hand side of (31) are martingales. Therefore, taking expectations on both
sides of (31) leaves J(wy, m,0) = E[u(wr) + fOT e "u(c;) dt], verifying that
a candidate optimal policy is actually given by (¢*, »*). Uniqueness follows
from the strict concavity of u. |

Proof of Proposition 4.2. Let 7® be the process that solves (3) with
the initial condition my = z. It is easy to see that the diffusion and drift
coefficients of (3) are globally Lipschitz and have linear growth. That is, the
conditions (h1) and (h2) of Nualart [44], (p.99, Section 2.2) are satisfied. It
follows from Corollary 2.2.1 and Theorem 2.2.1 of Nualart [44] or Theorem 39
in Chapter 5 of Protter [46] that the random variable ¥ (w) is differentiable
with respect to x, w by w, and that the process W defined by

0
Wt = —71'?.

ox

satisfies
H1 — o

Os
with Wy = 1. Furthermore, by Lemma 2.2.2 or Theorem 2.2.2 of Nualart [44]
or Theorem 40 in Chapter 5 of Protter [46], the process Z defined by

th = —2)\Wt dt + (]. - 27Tt) Wt dﬁt,

7, = —W,
t 333 t

satisfies

dZ, = —27Z, dt + "1

_2Wt2 + (1 — 27Tt)Zt) dEt,
s

with Zy = 0. Since the coefficients of the processes W and Z are random
Lipschitz, all conditions in Lemma 2 in Chapter 5 of Protter [46] are satisfied.
Thus we can find constants Cy and C such that, for 1 < p < oo,

|sup |[Will|lzr < Cw  and  |[[sup|Z|||r < Cz.
t t

(See Protter [46], Chapter 5, Section 2.)
The first derivative of h with respect to z, if it exists, is given by

T
Oh(z, 1) = 2E (/ 672ps¢t,s ds + ¢ 7Tt> :
t

o0x oxr

If we can exchange the order of differentiation and integration, then the
derivative of A is given by

oh(x,t) T aps 0 0
or B (/t © 3x¢t’s ds + 8x¢t’T

7rt> . (32)
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By the Dominated Convergence Theorem, the exchange is possible if there
are measurable functions A : Q x [0,7] — IR and C : Q — IR such that

< | Ay

S |Ct,T|7

0
6_21)8%@,5 ) ‘%Q%,T

T
E U Ay ds
t

(See Billingsley [3], Theorem 16.8, for example.)
We define for convenience

7Tt:| < oo, and E[|Cyr||m] < oc.

k =
(m) ) +r
Because
T s ) o s
3(/ k(wf)dr)‘: / K (n®)W, dr ngax{ml—ﬂ,mO—ﬂ}/ W, dr
Ox t t Og t
and

|¢t,s| S

)

s o _ 2
o ([ = rblin =D )
t

Og

we can find constants Ky and K such that

‘%Qﬁt,s < Kopexp(Ky(s —t)) </t K (m2)W, d7'> .

Thus, by the Cauchy-Schwartz inequality,

‘E </tT%¢t,sds 7rt>‘ < K [E </tTexp(2K1(s—t))ds 7rt>]1/2

B (/tT (/tSWTde ds wtﬂm. (33)

The right-hand side is finite because || sup, |[W;|||z» is finite. By similar ar-
guments, we can also find an integrable function that dominates (0/0z) ;..
Therefore h is differentiable with respect to x and

7Tt>

T s
ah(QT,t) — E </ 6_2ps¢t,3 (/ kl(ﬂ-f)WT dT) dS
81: t t

T
+E ((f)t,T/ K (m2)W. dr 7rt>.
t
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For the second derivative, we remark that

62 a s a s
wd)t,s = (8_x¢t’s> </t K (ms)W, dT) + s <$ (/t K (72 )W, d7'>>

9 S 2y —
(gmne) (2 waxtlin = o = o0,
S 2 _ S 2 _
+ b </ wmdw/ wmax{ml—r|,|u0—7"|}|ZT|dT>.
t S t

S

IN

By similar arguments and because || sup, |W:|||L» and || sup, |Z;|||z» are finite,
the expectation of the right-hand side is finite. Thus
32
wgbt,s

is dominated by an integrable function, and the second derivative of h(x,t)
with respect to x is given by
ﬂ-t) )

0*h(z,1) T 82
78{1;2 = E (/; e P d)ts a 2¢)
where

8822¢> ( cbts) </ts ( f)WTdT>+¢>t,s </ts E" (%) dr+/ts K (1) Z, d7->,

It follows from direct computation that the partial derivative with respect
to t exists and is given by

y _ 2
W — e—?pt + (M _|_ 7") E |:6—2ps¢t’s dS _|_ d)t,T ‘ 7Tt] )

Og

For the boundedness, notice that

o[ (257 ) o)
t Og

agqst,s S ¢t,s / (Ml — T)g MO) WT dT.

S

Thus h and Oh/0x are bounded for E[|[W;|]] < oo by Theorem 2.2.1 of
Nualart [44]. Since df/0x = (1/2)h~'/2(0h/0z), we have that Of/0x is
bounded. |

and that
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Proof of Proposition 4.3. Let H be the Ito process defined by H; =
h(m,t), s < t, and
Hs — h(ﬂ—s; 5)¢t,sa S Z t.

By Ito’s Lemma,

(/l(ﬂ-s) B T)Q

Og

Hy = him, 1)+ /t b [Dh(ﬂs,s)Jr( —|—7"> h(ﬂs,s)] ds

g i — p
+ / d)t,shw(ﬂ'sa 3) . Oﬂ's(l - ﬂ's) dBs, (34)
t

0s

where

Dhire,s) = halm,s) (A(l omy) 4 LT ) r>)

2
Og

1 B 2
R (s, 8)T2(1 — )2 (M> + Ry (s, 8).
2 og
If follows from Proposition 4.2 that both ¢, and h, are bounded. Thus the
last term on the right-hand side of (34) is martingale. (See, for example,
Duffie [20], Section 5B.) By taking expectations through each side,

.

Proof of Proposition 4.4. Note that h, is given by (17). Since py > r,
¢1,s and k'(7,) are positive. We know that W = 277 is a positive process
because Wy = 1. Thus h, > 0 for all 7, which implies that f is increasing in

. 1

T
h(ﬂ—ta t) =E |:/ ¢t,s€72pt ds + ¢t,T
t

This completes the proof. |
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Table 1: Utility Multiplier and its First Derivative for Various Risk-Aversion Coefficients

This table reports utility multiplier f(r,t) and its first derivative fr(m,¢) for different
values of investor’s risk-aversion coefficient « = 0.5, 0, —0.5, —5, —10, and —15. Other
parameters are given by p; = 0.20, uo = 0.07, A = 0.25, 05 = 0.25, r = 0.05, p = 0.07,
wo = 100, N = 20000, and 7" = 10. We also report X, which may be a good approximation
of X in (27) for investors with very low risk tolerance.

Panel A: Utility multiplier f(m,t)

T | a=0.5 a=0 a=-0.>5 a= -5 a=-10 a=-15

0 | 3.247TE+00 7.699E+4+00 2.117E+01 2.910E+05 1.319E+10 7.122E+14
0.1 | 3.313E+00 7.699E+00 2.107E+401 2.875E+05 1.314E+10 7.286E+14
0.2 | 3.389E+00 7.699E+00 2.094E+4+01 2.835E+05 1.308E+10 7.499E+14
0.3 | 3.476E+00 7.699E+00 2.079E+4+01 2.792E+05 1.303E+10 7.765E+14
0.4 | 3.572E+00 7.699E+00 2.063E+4+01 2.746E+05 1.298E+10 &8.089E+14
0.5 | 3.708E+00 7.699E+00 2.040E+4+01 2.684E+05 1.293E+10 &8.577E+14
0.6 | 3.828E+00 7.699E+00 2.021E+4+01 2.632E+05 1.290E+10 9.034E+14
0.7 | 3.960E+00 7.699E+00 2.000E+401 2.578E+05 1.288E+10 9.548E+14
0.8 | 4.104E+00 7.699E+00 1.977E+401 2.522E+05 1.289E+10 1.012E+15
0.9 | 4.263E+00 7.699E+00 1.953E+401 2.464E+05 1.292E+10 1.074E+15

1 | 4.440E400 7.699E+00 1.928E+01 2.405E+405 1.300E+10 1.143E+15

Panel B: First derivative fr(m,t)

T | a=0.5 a=0 a=-0.>5 a= -5 a=-10 a=-—15
0 6.132E-01  0.000E+00 -1.033E+400 -3.398E+04 -1.119E+09 1.396E+14
0.1 | 7.200E-01  0.000E+00 -1.221E+400 -3.837E+04 -1.143E+09 1.846E+14
0.2 | 8.233E-01 0.000E+00 -1.397E+4+00 -4.219E+04 -1.109E+09 2.370E+14
0.3 | 9.245E-01 0.000E+00 -1.564E+4+00 -4.553E+04 -1.030E+09 2.946E+14
0.4 | 1.025E+00 0.000E+00 -1.722E+400 -4.843E+04 -9.113E+08 3.554E+14
0.5 | 1.151E+00 0.000E+00 -1.908E+400 -5.153E+04 -7.066E+08 4.335E+14
0.6 | 1.257TE+00 0.000E+00 -2.049E+400 -5.363E+04 -4.823E+08 4.957E+14
0.7 | 1.369E+00 0.000E+00 -2.181E+4+00 -5.542E+04 -1.742E+08 5.564E+14
0.8 | 1.495E+00 0.000E+00 -2.306E+400 -5.689E+04 2.740E+08 6.159E+14
0.9 | 1.645E+00 0.000E+00 -2.423E+4+00 -5.796E+04 9.865E+08 6.787E+14
1 | 1.839E400 0.000E+00 -2.534E+00 -5.838E+04 2.338E+4+09 7.623E+14

Panel C: X = E [fOT exp(—rt)&; dt + exp(—rT)fT]

I

0 | 8.4872

8.4883
8.4894
8.4907
8.4915
8.4928
8.4937
8.4946
8.4954
8.4960

1 | 8.4967
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Table 2: Optimal Consumption and Portfolio Rule for Various Risk-Aversion Coefficients

This table reports, for different values of investor’s risk-aversion coefficient o« = 0.5,
0, —0.5, =5, —10, and —15, the optimal consumption rate ¢ = e?*/(@=1) f(m, )1/ (@~ Dy,
the mean-variance portfolio

* — /:L(ﬂ-t) —-r
Pmor = (1 a)o3’

the hedging portfolio
m(L—m)(p1 — po) fr(mest)
(1-a)o f(me,t)”
and the ratio of the hedging portfolio to the optimal portfolio, that is, wzp/(ap:m,p + cp;;p).

Other parameters are given by p; = 0.20, uo = 0.07, A = 0.25, 05 = 0.25, r = 0.05,
p =0.07, wp = 100, N = 20000, and T" = 10.

*
(Php

Panel A: Optimal consumption rate

s |a:0.5 a=0 a=-05 a=-5 a=-10 a=-15
0 9.487  12.989 13.066 12.284 12.022 11.795
0.1 ] 9.113 12.989 13.111 12.309 12.027 11.779
0.2 | 8707 12.989 13.164 12.338 12.031 11.757
0.3 | 8278 12.989 13.225 12.369 12.036 11.732
04| 7.836 12.989 13.294 12.404 12.040 11.702
0.5 | 7.273  12.989 13.392 12.451 12.044 11.659
0.6 | 6.823  12.989 13.479 12.491 12.046 11.621
0.7 | 6377 12.989 13.574 12.535 12.048 11.581
0.8 | 5936 12.989 13.677 12.581 12.047 11.539
0.9 | 5.502 12.989 13.788 12.630 12.045 11.496
1 5.073  12.989 13.907 12.681 12.038 11.452

Panel B: Mean-variance portfolio

T |a:0.5 a=0 a=-05 a=-5 a=-10 a=-15
0 0.640 0.320 0.213 0.053 0.029 0.020
0.1 1.046 0.523 0.349 0.087 0.048 0.033
0.2 | 1.452 0.726 0.484 0.121 0.066 0.045
0.3 | 1.858 0.929 0.619 0.155 0.084 0.058
0.4 | 2.263 1.132 0.754 0.189 0.103 0.071
0.5 2771 1.385 0.924 0.231 0.126 0.087
0.6 | 3.177 1.588 1.059 0.265 0.144 0.099
0.7 3.582 1.791 1.194 0.299 0.163 0.112
0.8 | 3.988 1.994 1.329 0.332 0.181 0.125
09| 4394 2.197 1.465 0.366 0.200 0.137
1 4.800 2.400 1.600 0.400 0.218 0.150
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Panel C: Hedging portfolio

s |a:0.5 a=0 a=-05 a=-5 a=-10 a=-15
0 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.080 0.000 -0.007 -0.004 -0.001 0.003
0.2 0.159 0.000 -0.015 -0.008 -0.003 0.006
0.3 | 0.229 0.000 -0.022 -0.012 -0.003 0.010
0.4 | 0.284 0.000 -0.028 -0.015 -0.003 0.014
0.5 0.323 0.000 -0.032 -0.017 -0.003 0.016
0.6 | 0.325 0.000 -0.033 -0.017 -0.002 0.017
0.7 | 0.298 0.000 -0.031 -0.015 -0.001 0.016
0.8 | 0.238 0.000 -0.025 -0.012 0.001 0.012
09| 0.141 0.000 -0.015 -0.007 0.001 0.007
1 0.000 0.000 0.000 0.000 0.000 0.000

Panel D: Ratio of hedging portfolio to optimal portfolio

T |a:0.5 a=0 a=-05 a=-5 a=-10 a=-15
0 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.071 0.000 -0.021 -0.049 -0.031 0.081
0.2 0.099 0.000 -0.031 -0.072 -0.040 0.125
0.3 | 0.110 0.000 -0.036 -0.082 -0.038 0.150
04| 0.111 0.000 -0.038 -0.084 -0.032 0.161
0.5 0.104 0.000 -0.036 -0.078 -0.021 0.159
0.6 | 0.093 0.000 -0.033 -0.068 -0.012 0.146
0.7 | 0.077 0.000 -0.027 -0.054 -0.003 0.123
0.8 | 0.056 0.000 -0.019 -0.038 0.003 0.091
0.9 | 0.031 0.000 -0.010 -0.020 0.006 0.050
1 0.000 0.000 0.000 0.000 0.000 0.000
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Table 3: Optimal Consumption and Portfolio Rule for Various Terminal horizons

This table reports, for different values of investor’s time horizon 7" = 1, 5, 10, 30,
and 50, the optimal consumption rate ¢*, the hedging portfolio ®}p» and the ratio of the
hedging portfolio to the optimal portfolio ¢ /(@5 + ¥h,). Other parameters are given
by a = —0.5, p1 = 0.20, po = 0.07, A = 0.25, 05 = 0.25, r = 0.05, p = 0.07, we = 100,
and N = 20000.

Panel A: Optimal consumption rate

r |T=1 T=5 T=10 T=30 T=50
0 | 52.459 20.240 13.066  8.213 7.602
0.1 | 52,512 20.300 13.111  8.248 7.636
0.2 | 52.581 20.369 13.164  8.288 7.673
0.3 | 52.665 20.448 13.225  8.332 7.715
0.4 | 52.764 20.536 13.294  8.380 7.760
0.5 | 52.909 20.660 13.392  8.447 7.823
0.6 | 53.042 20.769 13.479  8.505 7.878
0.7 | 53.191 20.888 13.574  8.567 7.936
0.8 | 53.356 21.017 13.677  8.635 8.000
0.9 | 53.538 21.157 13.788  8.708 8.068
1 | 53.737 21.307 13.907 8.786 8.141

Panel B: Hedging portfolio
™ |T:1 T'=5 T=10 T=30 T=50
0 | 0.000 0.000  0.000 0.000 0.000
0.1 | -0.002 -0.006 -0.007 -0.008 -0.009
0.2 | -0.005 -0.012 -0.015 -0.017 -0.017
0.3 | -0.008 -0.018 -0.022 -0.024 -0.025
0.4 | -0.010 -0.023 -0.028 -0.030 -0.031
0.5 | -0.012 -0.027 -0.032 -0.035 -0.035
0.6 | -0.013 -0.028 -0.033 -0.035 -0.036
0.7 | -0.013 -0.026 -0.031 -0.033 -0.033
0.8 | -0.011 -0.021 -0.025 -0.026  -0.027
0.9 | -0.006 -0.013 -0.015 -0.016 -0.016
1 | 0.000 0.000 0.000 0.000 0.000

Panel C: Ratio of hedging portfolio to optimal portfolio
r |T=1 T=5 T=10 T=30 T=50
0 | 0.000 0.000 0.000 0.000 0.000
0.1 | -0.006 -0.017 -0.021 -0.025 -0.025
0.2 | -0.010 -0.026 -0.031 -0.036 -0.037
0.3 | -0.012 -0.030 -0.036 -0.041 -0.042
04| -0.014 -0.031 -0.038 -0.042 -0.043
0.5 | -0.014 -0.030 -0.036 -0.039  -0.040
0.6 | -0.013 -0.027 -0.033 -0.035 -0.035
0.7 | -0.011 -0.022 -0.027 -0.028  -0.029
0.8 | -0.008 -0.016 -0.019 -0.020 -0.021
0.9 | -0.004 -0.009 -0.010 -0.011 -0.011
1 | 0.000 0.000 0.000 0.000 0.000
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Table 4: Optimal Consumption and Portfolio Rule for Various Price Volatilities

This table reports, for different values of risky asset price volatilities g = 0.35, 0.25,
and 0.15, the optimal consumption rate ¢*, the hedging portfolio ®}p» and the ratio of the
hedging portfolio to the optimal portfolio ¢ /(¢5,.p, + ¥h,). Other parameters are given
by o = —0.5, p1 = 0.20, pp = 0.07, A = 0.25, » = 0.05, p = 0.07, woy = 100, N = 20000,
and T' = 10.

Panel A: Optimal consumption rate

s | 05 =035 0g=025 o0g5=0.15
0 12.832 13.077 14.072
0.1 12.856 13.125 14.222
0.2 12.883 13.180 14.394
0.3 12.914 13.241 14.586
0.4 12.948 13.309 14.799
0.5 12.995 13.404 15.093
0.6 13.036 13.487 15.354
0.7 13.081 13.577 15.639
0.8 13.130 13.675 15.950
0.9 13.182 13.781 16.292
1 13.238 13.894 16.670

Panel B: Hedging portfolio
T | 05=035 05=025 o0g5=0.15

0 0.000 0.000 0.000
0.1 -0.002 -0.007 -0.057
0.2 -0.004 -0.015 -0.114
0.3 -0.006 -0.021 -0.164
0.4 -0.007 -0.027 -0.204
0.5 -0.008 -0.031 -0.233
0.6 -0.009 -0.032 -0.237
0.7 -0.008 -0.030 -0.219
0.8 -0.006 -0.024 -0.177
0.9 -0.004 -0.015 -0.106

1 0.000 0.000 0.000

Panel C: Ratio of hedging portfolio to optimal portfolio
|05 =035 05=025 o0g5=0.15

0 0.000 0.000 0.000
0.1 -0.011 -0.021 -0.063
0.2 -0.016 -0.031 -0.093
0.3 -0.018 -0.036 -0.105
0.4 -0.019 -0.037 -0.108
0.5 -0.018 -0.035 -0.100
0.6 -0.016 -0.031 -0.088
0.7 -0.013 -0.026 -0.071
0.8 -0.010 -0.019 -0.050
0.9 -0.005 -0.010 -0.027

1 0.000 0.000 0.000
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Table 5: Optimal Consumption and Portfolio Rule for Various Price Drifts

This table reports, for different values of risky asset price volatilities g = 0.07, —0.05,
and 0, the optimal consumption rate c¢*, the hedging portfolio ©hp» and the ratio of the
hedging portfolio to the optimal portfolio ¢ /(@5 + ¥h,). Other parameters are given
by o = —0.5, p1 = 0.20, A = 0.25, 05 = 9.25, r = 0.05, p = 0.07, wy = 100, N = 20000,
and T' = 10.

Panel A: Optimal consumption rate
7 | o =0.07 po=-0.05 po=0

0 13.105 12.942 12.789
0.1 13.153 12.892 12.795
0.2 13.208 12.866 12.816
0.3 13.270 12.860 12.851
0.4 13.338 12.874 12.899
0.5 13.431 12.916 12.978
0.6 13.513 12.970 13.056
0.7 13.602 13.042 13.148
0.8 13.697 13.135 13.255
0.9 13.801 13.251 13.378

1 13.914 13.393 13.518

Panel B: Hedging portfolio
T | o =0.07 po=-0.05 pp=20

0 0.000 0.000 0.000
0.1 -0.007 0.010 -0.003
0.2 -0.015 0.008 -0.011
0.3 -0.021 -0.003 -0.022
0.4 -0.026 -0.017 -0.033
0.5 -0.030 -0.035 -0.045
0.6 -0.031 -0.047 -0.050
0.7 -0.029 -0.053 -0.050
0.8 -0.023 -0.050 -0.043
0.9 -0.014 -0.034 -0.028

1 0.000 0.000 0.000

Panel C: Ratio of hedging portfolio to optimal portfolio
7 | o =0.07 po=-0.05 po=0

0 0.000 0.000 0.000
0.1 -0.021 0.029 -0.009
0.2 -0.031 0.015 -0.024
0.3 -0.035 -0.005 -0.037
0.4 -0.036 -0.023 -0.046
0.5 -0.034 -0.040 -0.051
0.6 -0.030 -0.046 -0.050
0.7 -0.025 -0.046 -0.044
0.8 -0.018 -0.039 -0.034
0.9 -0.010 -0.024 -0.019

1 0.000 0.000 0.000
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Table 6: Optimal Consumption and Portfolio Rule for Various Jump Intensities

This table reports, for different values of regime-switch-jump-intensities A = 0.05,
0.25, 0.5, and 5, the optimal consumption rate ¢*, the hedging portfolio ©hp» and the ratio
of the hedging portfolio to the optimal portfolio ¢/ (¢}, + ¢,)- Other parameters are
given by a = —0.5, uy = 0.20, po = 0.07, 65 = 9.25, r = 0.05, p = 0.07, woy = 100,
N = 20000, and T" = 10.

Panel A: Optimal consumption rate
™ [A=005 X=025 A=05 A=5
0 12.759 13.066 13.202  13.363
0.1 | 12.850 13.111 13.230 13.366
0.2 | 12.963 13.164 13.262  13.369
0.3 | 13.094 13.225 13.297  13.373
0.4 | 13.243 13.294 13.336  13.377
0.5 | 13.455 13.392 13.390 13.383
0.6 | 13.645 13.479 13.438 13.388
0.7 | 13.856 13.574 13.489 13.394
0.8 | 14.087 13.677 13.544  13.400
0.9 | 14.344 13.788 13.604  13.407
1 14.631 13.907 13.667 13.414

Panel B: Hedging portfolio

™ |)\=0.05 A=025 A=05 A=5
0 0.000 0.000 0.000  0.000
0.1 | -0.015 -0.007 -0.004  0.000
0.2 | -0.031 -0.015 -0.008  -0.001
0.3 | -0.047 -0.022 -0.012  -0.001
0.4 | -0.060 -0.028 -0.015 -0.002
0.5 | -0.071 -0.032 -0.018  -0.002
06| -0.073 -0.033 -0.018  -0.002
0.7 | -0.069 -0.031 -0.017  -0.002
0.8 | -0.057 -0.025 -0.014  -0.002
09| -0.034 -0.015 -0.008  -0.001
1 0.000 0.000 0.000  0.000

Panel C: Ratio of hedging portfolio to optimal portfolio

T [A=005 X=025 A=05 A=5
0 0.000 0.000 0.000  0.000
0.1 | -0.045 -0.021 -0.012  -0.001
0.2 | -0.069 -0.031 -0.018  -0.002
0.3 | -0.082 -0.036 -0.020  -0.002
0.4 | -0.086 -0.038 -0.021  -0.002
0.5 | -0.083 -0.036 -0.020  -0.002
0.6 | -0.074 -0.033 -0.018  -0.002
0.7 | -0.061 -0.027 -0.015  -0.002
0.8 | -0.044 -0.019 -0.011  -0.001
09| -0.024 -0.010 -0.006  -0.001
1 0.000 0.000 0.000  0.000
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