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Abstract: In this paper, we will give a simple symmetric random walk
analogue of Lévy’s Theorem. We will take a new definition of a local time of
the simple symmetric random walk. We apply a discrete Itô formula to some
absolute value like function to obtain a discrete Tanaka formula. Results in
this paper rely upon a discrete Skorokhod reflection argument. This random
walk analogue of Lévy’s theorem was already obtained by G.Simons([14]) but
it is still worth noting because we will use a discrete stochastic analysis to
obtain it and this method is applicable to other research. We note some
connection with previous results by Csáki, Révész, Csörgő and Szabados.
Finally we observe that the discrete Lévy transformation in the present
version is not ergodic. Lastly we give a Lévy’s theorem for simple
nonsymmetric random walk using a discrete bang-bang process.
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1 Introduction

The following celebrated Lévy’s Theorem([8], [12]) is well known:

(M· − W·, M·) = (|W·|, L·) in law,

where Wt is a Brownian motion, Mt = max0�s�t Ws and Lt=the local time

of Wt at 0=(limε→0(1/2ε)
∫ t

0
1(−ε,ε)(Ws)ds).

First this paper shows that there exists a simple symmetric random walk
analogue of this theorem. Second we remark that Discrete Lévy’s transfor-
mation is not ergodic on path space, while the question (the original Lévy’s
transformation is ergodic or not) is still open. Last we give the Lévy’s theorem
for a simple nonsymmetric random walk, using a discrete bang-bang process.

1This paper appeared on Studia Scientiarum Mathematicarum Hungarica, Vol.45, No.2,
(2008), 223-233.
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2 Facts

Let Zt be a simple symmetric random walk, that is, Zt = ξ1+ξ2+· · · ξt, Z0 = 0
where ξ1, . . . , ξt are i.i.d. with P (ξi = 1) = P (ξi = −1) = 1/2. We put
Mt = max0�s�t Zs, while the local time of Zt at 0 up to the time t is defined
as:

Lt = �{i|i = 0, . . . t − 1(Zi = 0 ∩ Zi+1 = 1) ∪ (Zi = 1 ∩ Zi+1 = 0)}.

Then we obtain the following theorem:

Theorem 1.

(M· − Z·, M·) = (�Z·�, L·) in law.

where �x� := max (x − 1,−x) (a quasi-absolute value function)

Before proving this theorem, we prepare a discrete Itô formula for the simple
symmetric random walk. This formula was obtained in [5] when the author
studied a derivative pricing in a discrete time model.

Lemma (Discrete Itô formula [5])

f(Zt+1) − f(Zt) =
f(Zt + 1) − f(Zt − 1)

2
(Zt+1 − Zt) +

f(Zt + 1) − 2f (Zt) + f(Zt − 1)
2

.

f(Zt) − f(0) =
t−1∑
i=0

f(Zi + 1) − f(Zi − 1)
2

(Zi+1 − Zi)

+
t−1∑
i=0

f(Zi + 1) − 2f (Zi) + f(Zi − 1)
2

.

(Doob-Meyer Decomposition of f(Zt))

Proof

f(Zt+1) − f(Zt) − f(Zt + 1) − 2f (Zt) + f(Zt − 1)
2

=

{
f(Zt+1)−f(Zt−1)

2 if ξt+1 = 1
f(Zt−1)−f(Zt+1)

2 if ξt+1 = −1
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=
f(Zt + 1) − f(Zt − 1)

2
(Zt+1 − Zt).

(q.e.d.)

Remark 1.

Let Z
(p)
t be a simple nonsymmetric random walk,that is, Z

(p)
t = ξ

(p)
1 + ξ

(p)
2 +

· · · ξ(p)
t , X0 = 0 where ξ

(p)
1 , . . . , ξt are i.i.d. with P (ξ(p)

i = 1) = p, P (ξ(p)
i = −1) =

q = 1 − p. In this case, Itô’s formula is the same as in the simple symmetric
random walk case, as follows:

f(Z(p)
t+1) − f(Z(p)

t ) =
f(Z(p)

i + 1) − f(Z(p)
i − 1)

2
(Z(p)

t+1 − Z
(p)
t )

+
f(Z(p)

i + 1) − 2f (Z(p)
i ) + f(Z(p)

i − 1)
2

f(Z(p)
t ) − f(0) =

t−1∑
i=0

f(Z(p)
i + 1) − f(Z(p)

i − 1)
2

(Z(p)
i+1 − Z

(p)
i − (2p − 1))

+
t−1∑
i=0

(
f(Z(p)

i + 1) − 2f (Z(p)
i ) + f(Z(p)

i − 1))
2

+ (2p − 1)
f(Z(p)

i + 1) − f(Z(p)
i − 1)

2

(Doob Meyer Decomposition of f(Z(p)
t ).)

Remark 2.

Szabados ([15]) obtained the following discrete version of Itô formula.
Let g(k) = εk

{
(1/2)f (0) +

∑|k|−1
j=1 f(εkj) + (1/2)f (k)

}
where

εk =

⎧⎪⎨
⎪⎩

1 · · · (k > 0)
0 · · · (k = 0)
−1 · · · (k < 0)

He called g a trapezoidal sum of f .
The following is Szabados’s version of the discrete Itô formula.

g(Zt) =
t−1∑
i=0

f(Zi)ξi+1 + (1/2)
t−1∑
i=0

f(Zi+1) − f(Zi)
ξi+1

.
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Using this formula and limiting procedure, Szabados proved Itô’s formula
for Brownian motion in the following form:

∫ Wt

0 f(s)ds =
∫ t

0 f(Ws)dWs +
(1/2)

∫ t

0
f ′(Ws)ds and investigated some consequences. We note that this pa-

per’s version of discrete Itô formula also yields Itô formula f(Wt) − f(0) =∫ t

0
f ′(Ws)dWs + (1/2)

∫ t

0
f ′′(Ws)ds by using limiting procedure by an appropri-

ate scale change taking Zδt
t =

√
δtZ[t/δt]. Actually Fujita and Kawanishi([6])

prooved the Itô formula using this paper version of discerte Itô’s fromula.
So if we consider the limit case, both discrete versions of Itô’s formula give

the same result. But within the discrete case there exist some differences be-
cause this paper’s version gives the Doob Meyer decomposition of f(Zt), while
Szabados’s version does not give it in general.

Proof of Theorem 1.

Applying f(x) = �x� to discrete Itô formula, we have that

�Zt� =
t−1∑
i=0

�Zi + 1� − �Zi − 1�
2

(Zi+1 − Zi)

+(1/2)
t−1∑
i=0

(�Zi + 1� − 2�Zi� + �Zi − 1�).

We note that

�x + 1� − �x − 1�
2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 · · ·x � 2
1/2 · · ·x = 1
−1/2 · · ·x = 0
−1 · · ·x � −1

.

So putting

sgn(x) =

{
1 · · ·x � 1
−1 · · ·x � 0

,

h1(x) =

⎧⎪⎨
⎪⎩

1/2 · · ·x = 1
−1/2 · · ·x = 0
0 · · · otherwise

,

h2(x) =
�x + 1� − 2�x� + �x − 1�

2
=

{
1/2 · · ·x = 0, 1
0 · · · otherwise

,
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�Zt� =
t−1∑
i=0

sgn(Zi)(Zi+1 − Zi) +
t−1∑
i=0

h2(Zi) −
t−1∑
i=0

h1(Zi)(Zi+1 − Zi)

holds.
Here we will show that Lt =

∑t−1
i=0 h2(Zi) − ∑t−1

i=0 h1(Zi)(Zi+1 − Zi) by
induction.

For t=1, clearly, L1 = h2(Z0) − h1(Z0)(Z1 − Z0) = 1+Z1
2 holds.

Assuming t,

t∑
i=0

h2(Zi) −
t∑

i=0

h1(Zi)(Zi+1 − Zi) = Lt + h2(Zt) − h1(Zt)(Zt+1 − Zt)

= Lt + 1(Zt=0∩Zt+1=1)∪(Zt=1∩Zt+1=0) = Lt+1.

So we have that

�Zt� =
t−1∑
i=0

sgn(Zi)(Zi+1 − Zi) + Lt (Discrete Tanaka formula)

.
Putting Ẑt =

∑t−1
i=0 sgn(Zi)(Zi+1−Zi), we remark that Ẑ· is clearly a simple

symmetric random walk.2

On the other hand, we have that

Mt − Zt = −Zt + Mt

holds.
So the uniqueness of following discrete Skorokhod Equation gives a proof of

this theorem.

(q.e.d)

Lemma 2.( Discrete Skorokhod Lemma) (For a proof of the continuous
versions, see [6])

Let us define the following three path spaces:

Ω1 = {f |f : Z+ → Z, f(0) = 0, and ∀x ∈ Z+, f(x + 1) − f(x) = ±1}
2If we use gambling terminology, a simple symmetric random walk Zt is the amount of

money which a gambler A makes after t times ”red or black” play with equal probability if
his each bet is 1 $. Let us assume that the gambler A continue to play ”red” continuously.
Consider another gambler B whose i-th play is ”black ” if Zi−1 � 0, ”red” if Zi−1 � 1 with

his each 1 $ bet. Then Ẑt is the amount of money which the gambler B makes after t times
play and clearly it is also a simple symmetric random walk.
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Ω2 = {f |f : Z+ → Z+ and∀x ∈ Z+, f(x + 1) − f(x) = 0 or ± 1}

Ω3 = {f |f : Z+ → Z+ and ∀x ∈ Z+, f(x + 1) − f(x) = 0 or 1, and , f(0) = 0}

where Z+ = {x|x � 0, x ∈ Z}.
Given f ∈ Ω1 andx ∈ Z, there exist unique g ∈ Ω2 andh ∈ Ω3 such that

1. g(t) = x + f(t) + h(t),

2. h(t + 1) − h(t) > 0 only if g(t) = 0 i.e. h(t) increases only on g(t)=0.

Proof

Set　 g(t) = x+f(t)−min0�s�t(min(x+f(s), 0), h(t) = −min0�s�t(min(x+
f(s), 0)). We can easily see that g(t) and h(t) satisfy both conditions above.
We will prove the uniqueness. Suppose ĝ(t),ĥ(t) satisfy the above conditions.
Then g(t) − ĝ(t) = h(t) − ĥ(t) for all t � 0. If there exists t1 ∈ N such
that g(t1) − ĝ(t1) > 0, we set t2 = max{t < t1|g(t) − ĝ(t) = 0, t ∈ N ∪ {0}}
Then g(t) > ĝ(t) � 0 for all t2 < t � t1 and hence by the above conditions
h(t1) = h(t2) = 0. Since ĥ is increasing, we have that 0 < g(t1) − ĝ(t1) =
h(t1) − ĥ(t1) � h(t2) − ĥ(t2) = g(t2) − ĝ(t2) = 0. This is a contradiction. Here
ĝ ≡ g and ĥ ≡ h.

(q.e.d)

Remark 3. This precise random walk analogue of Lévy’s theorem was
already obtained by G. Simons([14]). He gave a proof of this theorem by similar
discussions but without a discrete stochastic calculus.

Remark 4.

Saisho and Tanemura([13]) displayed similar discrete Skorokhod equations
through their research about Pitman type theorem for one dimensional diffu-
sions.

Similarly, we have the following facts.
We put

L−
t = �{i|i = 0, . . . t − 1, Zi = 0 ∩ Zi+1 = 1}

and

L+
t = �{i|i = 0, . . . t − 1, Zi = 1 ∩ Zi+1 = 0}.
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Then

max(Zt − 1, 0) =
t−1∑
i=0

1(Zi�1)(Zi+1 − Zi) + L+
t

max(0,−Zt) = −
t−1∑
i=0

1(Zi�0)(Zi+1 − Zi) + L−
t

= −
t−1∑
i=0

1(Zi�0)(Zi+1 − Zi) + (1/2)
t−1∑
i=0

1{0}(Zi) − (1/2)
t−1∑
i=0

1{0}(Zi)(Zi+1 − Zi).

max(Zt, 0) =
t−1∑
i=0

1(Zi�0)(Zi+1 − Zi) + (1/2)
t−1∑
i=0

1{0}(Zi) + (1/2)
t−1∑
i=0

1{0}(Zi)(Zi+1 − Zi).

So we have that

|Zt| =
t−1∑
i=0

(1(Zi�0) − 1(Zi�0))(Zi+1 − Zi) +
t−1∑
i=0

1{0}(Zi)

=
t−1∑
i=0

(sgn(Zi)(Zi+1 − Zi) +
t−1∑
i=0

1{0}(Zi) +
t−1∑
i=0

1{0}(Zi)(Zi+1 − Zi)

=
t−1∑
i=0

sgn(Zi)(Zi+1 − Zi) + 2L−
t .

Then we have also the following theorem.

Theorem 2.

|Z·| − 2L−
· = Z· in law.

Remark 4.
Csáki, Csörgő and Révész ([1],[2],[11])considered a local time of random walk

in the following way:

ζ(x, t) = �{i|i � t, Zi = x}
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and then they showed that

ζ(x, t) = |Zt − x| − |x| −
t−1∑
i=0

ˆsgn(Zi − x)ξi+1

where

ˆsgn(x) =

⎧⎪⎨
⎪⎩

1 · · ·x � 1
0 · · ·x = 0
−1 · · ·x � −1

.

Csáki and Révész([1]) obtained a ”nearly true ” Lévy’s theorem for a simple
symmetric random walk using ζ(x, t). We remark that their version of a discrete
Tanaka Meyer formula is also different from this paper’s version but we point
out that applying this paper’s version of discrete Itô formula to f(y) = |y − x|,
this version of discrete Tanaka Meyer formula is very easily obtained. Here we
also note that Miyazaki and Tanaka ([10],[16]) also researched a random walk
analogue of Pitman’ s theorem.

Remark 5.

This kind of problem is also related to the so called Lévy’s transformation:

W· → Ŵ· =
∫ ·

0

sgn(Ws)dWs,

which is measure-preserving on path space. Whether this transformation is
ergodic or not, a question raised by D.Revuz and M.Yor([12]), is still open.
Dubins and Smorodinsky([3]) gave a proof of ergodicity in the modified, dis-
crete and infinite time horizon case. Roughly speaking, their definition of Lévy
transform is Z ′

t= the one that skipping the flat path from
∑t−1

i=0 ˆsgn(Zi)ξi+1.
Also Dubins, Emery and Yor([4]) made some considerations about Lévy trans-
formation on some continuous martingales. We note that for original Lévy’s
transformation problem, Malric([9]) obtained recently that the union of zero
points of iterated Lévy’s transforms is a.s. dense in R+. This paper’s version of
Lévy’s transformation is the following natural generalization of the continuous
Lévy’s transformation:

Definition

T (Z·) = Ẑ· =
·−1∑
i=0

sgn(Zi)(Zi+1 − Zi)

is called discrete Lévy transformation.
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Observation

This Lévy’s transformation T : ΩM
1 → ΩM

1 is not ergodic if M � 4 where

ΩM
1 = {f |f : {0, 1, . . .M} → Z, f(0) = 0, and ∀x ∈ N ∪ {0}, f(x + 1) − f(x) = ±1}.

If we take M = 4 , we observe very explicitly that T 8 = id. Also we can observe
that when M = 5, T 16 = id, when M = 6, T 32 = id, when M = 7, T 32 = id,
. . . .
We denote the path Z0 = 0, Z1 = 1, Z2 = 2, Z3 = 3, Z4 = 4 as + + ++, the
path Z0 = 0, Z1 = −1, Z2 = −2, Z3 = −1, Z4 = −2 as − − +−. Then we
observe that T (+ + ++) = − + ++, T (−+ ++) = + −−+, T (+−−+) =
− − +−, T (−− +−) = + + −+, T (+ + −+) = − + −+, T (− + −+) =
+ − +−, T (+− +−) = −−−−, T (−−−−) = + + ++
and T (+ + +−) = − + +−, T (− + +−) = + − −−, T (+ − −−) = − −
++, T (−− ++) = + + −−, T (+ + −−) = − + −−, T (− + −−) = + −
++, T (+ − ++) = − − −+, T (− − −+) = + + +−. So putting Ω4′

1 =
{+ +++, −+++, +−−+, −−+−, ++−+, −+−+, +−+−, −−−−} and
Ω4′′

1 = {+++−, −++−, +−−−, −−++, ++−−, −+−−, +−++, , −−−+},
Ω4

1 = Ω4′
1 ∪ Ω4′′

1 holds, i.e. Ω4
1 has two ergodic components.

Also denoting Z0 = 0, Z1 = 1, Z2 = 2, Z3 = 3, Z4 = 4, . . . as + + + + ∗, putting
Ω4′

1 ∗ = {++++∗, −+++∗, +−−+∗, −−+−∗, ++−+∗, −+−+∗, +−+−
∗, −−−−∗} and Ω4′′

1 ∗ = {+++−∗, −++−∗, +−−−∗, −−++∗, ++−−∗, −+
−−∗, +−++∗, −−−+∗}, we obtain Ω1 = Ω4′

1 ∗∪Ω4′′
1 ∗holds i.e. Ω1 has at least

two ergodic components. Defining φ(M) = inf{i|T : ΩM
1 → ΩM

1 , T i = id}, we
note that generally φ(M) is so far not known.

Last we give the Lévy’s theorem for a simple nonsymmetric random walk
Z

(p)
t .

Theorem 3.(Lévy’s theorem for Z
(p)
t )

(Z(p)
. − min

0�s�.
Z(p)

s , − min
0�s�.

(Z(p)
s ) = (�J(p)

. �, LJ(p)

. ) in law

where J
(p)
t (J(p)

0 = 0) is a discrete bang-bang process which is defined as
follows:

the transition probability p(x, y) of J
(p)
t is the following:

For x � 1, p(x, y)=

{
p · · · y = x + 1
1 − p · · · y = x − 1

.

For x � 0, p(x, y)=

{
1 − p · · · y = x + 1
p · · · y = x − 1

We note that LJ(p)

t is the local time of J
(p)
t at 0 up to the time t := �{i|i =

0, . . . t − 1, (J(p)
i = 0 ∩ J

(p)
i+1 = 1) ∪ (J(p)

i = 1 ∩ J
(p)
i+1 = 0)}.
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Proof of Theorem 3.
We consider the following stochastic difference equation:

Xt+1 − Xt = sgn(Xt)(Z
(p)
t+1 − Z

(p)
t ) (X0 = 0)

.
By the definition of J

(p)
t , Xt=J

(p)
t .

For �J (p)
t �, applying the discrete Itô formula,

we get that

�J (p)
t � =

t−1∑
i=0

sgn(J (p)
i )(J(p)

i+1 − J
(p)
i ) + LJ(p)

t

.
Here we note that

∑t−1
i=0 sgn(J (p)

i )(J(p)
i+1 − J

(p)
i ) =

∑t−1
i=0(sgn(J (p)

i ))2(Z(p)
i+1 −

Z
(p)
i ) = Z

(p)
t .

Then by Discrete Skorokhod Lemma 2. and �J (p)
t � = Z

(p)
t + LJ(p)

t , we get
that

LJ(p)

t = − min
0�s�.

Z(p)
s , �J (p)

t � = Z(p)
. − min

0�s�.
Z(p)

s .
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nian motions and continuous martingales, Sem. Prob. XXVII. Lecture Note
in Mathematics, Vol. 1557, Springer, (1993), 122-132.

[5] Fujita,T., : Martingale methods in pricing derivatives (in Japanese), The
Hitotsubashi Review, Vol. 125, No.10,(2001), 1-26.

[6] Fujita, T and Kawanishi,Y. : A proof of Itô’s formula using discrete Itô’s
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