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Abstract. In this paper, we will give a new framework of barrier
options to generalize ‘Parisian Option‘ and ‘Delayed Barrier
Option‘. Take a stopping time τ as the caution time. When τ
occurs, derivatives are given ‘Caution‘. After τ , if K.O. time
σ = σ(τ) occurs, derivative contracts vanish. We simply say that
first ‘Caution‘ second ‘K.O.‘. Using this framework, designs of
barrier options become more flexible than before and new risk
management will be possible. New barrier options in this category
are called Edokko Options or Tokyo Options.
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1 Introduction

Barrier options are useful and popular derivatives in over the-counter markets
because they are less expensive than plain vanilla contracts. Usual barrier op-
tions are so called ‘one touch options‘ i.e. the contracts of which are knocked out
when the price of the underlying asset St hits a prespecified level (K.O. barrier)
from above or below. In this barrier option, the option writer might see that the
underlying asset approaches the bar and could try to sell the underlying asset
intentionally and escape payment. It might be unfair that this kind of price
manipulation is possible. So far, ‘Parisian Option(Chesney, Jeanblanc-Picque
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and Yor[2])‘ and ‘Cumulative Parisian Option((Chesney, Jeanblanc-Picque and
Yor[2])=Delayed Barrier Option(Linetsky[9]) are exotic barrier options which
make this price manipulation difficult.

The main purpose of this paper is to generalize ‘Parisian Option‘ and ‘Delayed
Barrier Option‘ and give a new framework of barrier options in order to save
options from intentional knock out and price new derivatives in this category.

First, the period from a present time to a maturity time is classified into
the following maximum three periods. Let τ be a stopping time. Though it
is possible to take τ some other exotic stopping times, for simplicity, in this
paper, we take for τ as the first hitting time τA of the underlying asset St to
the bar(threshold) A. We call this τA a Caution Time or a 1-st Trigger Time
and RS = {t|0 � t < τ} a Safety Region. As far as derivatives belong to this
Safety Region, we decide that derivatives are secured and derivative contracts
never vanish. We call RC = {t|t � τ} the Caution Region. If derivatives belong
to RC , they are given ‘Caution‘ and might be knocked out. Once derivatives
are given ‘Caution‘, we usually assume that this caution will never disappear
till expiry. But we may make other contracts which recover from ‘Caution‘ as
we mention later. Whether contracts are knocked out or not is determined by
the following. We take σ as a K.O.Time or a 2-nd Trigger Time. Let us assume
that　　

1. σ � τ .

2. σ = σ(τ), σ is a random variable which may depend on τ .

3. σ is a FT measurable random variable, not necessarily a stopping time.
Actually, in later examples we may take a last exit time for σ.

RK.O. = {t|T � t � σ} is called Knock Out Region and if RK.O. �= ∅,
derivative contracts should be knocked out. In other words, if σ occurs before
the maturity time T , contracts vanish. We simply say that first ‘Caution‘ second
‘K.O.‘. Using this framework and adjusting a Caution Threshold A, a Caution
Time τ , a K.O. Time σ, K.O. Region RK.O., designs of barrier options become
more flexible than before. We may give derivative holders an extra option such
that derivatives can escape from ‘Caution‘ by paying some extra money when
the Caution Time τ occurs. This extra option of the contract is thought of the
same as ‘Insurance‘ in ‘Black Jack‘ game.

New barrier options that belong to this framework are called Edokko Op-
tion, Edokko Barrier Option or Tokyo Option where ‘Edo‘ means the old name
of Tokyo and ‘ko‘ means people. Also this first ‘Caution‘ and second ‘K.O.‘
framework is called Edokko framework. In later examples, the K.O. time σ
is completely dependent on the caution time τ especially, Remaining Caution
Time ( T − τ ) but it is possible to consider many other cases.

2 Examples

　 In this section, we give many examples of barrier options which belong to
this framework. As the first example, we give the usual one touch barrier option
that is considered as τA = σ.



Example 2.1 One Touch Option (usual barrier option)

　 RC = RK.O. i.e. ‘Caution‘ immediately gives ‘K.O‘. 　

¿From now on, we give examples of exotic barrier options that τA �= σ. All
the following examples have features such that

• It is more difficult to make price manipulation.

• In the Black Scholes model, there exists closed form expressions of the
prices.

• The contents of derivative contracts are easily understood.

We assume that any Caution Time is of the form τA = inf{t|St = A}.

Example 2.2 Delayed Barrier Option(Linetsky[10])=Cumulative Parisian Op-
tion(Chesney, Jeanblanc-Picque and Yor [2])

This option is a down-and -out option that is knocked out when the occupation
time below the barrier A exceeds a given fraction α, 0 < α < 1 of the maturity
time T . Using our framework, for α(0 < α < 1),

RK.O. = {t|
∫ t

0

1(−∞,A](Su)du � αT}

In other words, we remark that the condition which the α percentile of the
underlying asset Su(0 � u � T ) becomes less than A is equivalent to this K.O.
condition.

Example 2.3 Cumulative Parisian Edokko Option

This option is a down-and -out option that is knocked out when the occupation
time below the barrier A exceeds a given fraction α, 0 < α < 1 of the remaining
caution time T − τA. Using our framework,

for α(0 < α < 1),

RK.O. = {t|
∫ t

τA

1(−∞,A](Su)du � α(T − τA)}

Remark 2.1
�

t
τA

1(−∞,A](Su)du

T−τA
� α ⇐⇒ α − percentile of Su(τA � u � T ) �

A

In other words, we remark that the condition which α percentile of the under-
lying asset Su(τA � u � T ) becomes less than A is equivalent to this K.O.
condition.

Example 2.4 Parisian Option(Chesney, Jeanblanc-Picque and Yor [2])



A Parisian option becomes worthless if the underlying asset reaches a prespeci-
fied level A and remains continuously below this level for a time interval longer
than a fixed number D. Specifying RK.O., for a positive constant D,
RK.O.={t|the length of the current excursion below under the level A straddling
t � D}.

Example 2.5 Parisian Edokko Option

A Parisian Edokko option becomes worthless if the underlying asset reaches a
prespecified level A and remains continuously below this level for a time interval
longer than a fixed number α(T − τA) for α(0 < α < 1). Specifying RK.O., for
α(0 < α < 1),
RK.O.={t|the length of the current excursion below under the level A straddling
t � α(T − τA)}

Example 2.6 Two Touch Option

The K.O. condition of ‘two touch option‘ is that taking two numbers T0 and
T1 (T0 � T1 � T ), τA < T0 and there exists some t(t � T1) such that St = A.
That is, equivalently, putting g:=the last exit time from A before T , the payoff
of ‘two touch option‘ at T is (1− 1(τA�T0)1(g�T1))f(ST ) where the payoff of the
derivative without K.O. condition is f(ST ). Giving RC and RK.O.,

RC =

{
{t|t � τA} if τA � T0

∅ if τA > T0.

RK.O. =

{
{t � t0|∃t0 > T1, St0 � A} if τA � T0

∅ if τA > T0.

Remark 2.2

This ‘two touch option‘ is knocked out if the underlying asset reaches A more
than two times. But unconditional two touch option is mathematically mean-
ingless because once Brownian motion or Brownian motion with drift reaches A,
it reaches A infinitely many times near that time. For this ‘two touch option‘,
if there exists a touch after T1, this option should be knocked out. Saying more
exactly, we should call it ‘More Than Two Touch Option‘.

Example 2.7 Two Touch Edokko Option

The K.O. condition of ‘two touch Edokko option‘ is that taking α(0 < α < 1),
there exists some t(t � (1 − α)τA + αT ) such that St = A. That is, the
payoff of ‘two touch Edokko option‘at T is (1 − 1(g�(1−α)τA+αT ))f(ST ) where
the payoff of the derivative without K.O. condition is f(ST ). Giving RC and
RK.O., RC = {t|t � τA}.

RK.O. = {t � t0|∃t0 > (1 − α)τA + αT ), St0 � A}



Example 2.8 Monitoring Barrier Option

After T0 of the caution time τA, if the underlying asset is less than another
bar B, a derivative should be knocked out and we call this derivative Monitoring
Barrier Option. At the time τA + T0, the underlying asset is monitored. That
is, for fixed T0(< T ) and B,

τA + T0 � T and SτA+T0 � B → K.O.

otherwise → O.K.(does not vanish)

Example 2.9 Edokko Monitoring Option

At the time (1 − α)τA + αT (0 < α < 1), if the underlying asset is less than
another bar B, a derivative should be knocked out and we call this derivative
Edokko Monitoring Option. At the time (1 − α)τA + αT , the underlying asset
is monitored. That is, for α(0 < α < 1) and B,

S(1−α)τA+αT � B → K.O.

S(1−α)τA+αT > B → O.K.

Example 2.10 Simple Parisian Like Option

After the caution time τA, if it takes more than αT, 0 < α < 1) for the
underlying asset to return to another bar B, a derivative should be knocked
out. In other words,

for fixed B(> A) and α(0 < α < 1),

τ
′
B � αT → K.O.

τ
′
B > αT → O.K.

where、τ
′
B = inf{t > τA|St = B}

Remark 2.3

　 Parisian Option monitors the length of any excursions. On the other hand
this derivative monitors the length of the first excursion including the caution
time.

Example 2.11 Simple Parisian Like Edokko Option



After the caution time τA, if it takes more than α(T − τA), (0 < α < 1) for
the underlying asset to return to another bar B, a derivative should be knocked
out. In other words,

for fixed B(> A) and α(0 < α < 1),

τ
′
B � (1 − α)τA + αT → K.O.

τ
′
B > (1 − α)τA + αT → O.K.

where、τ
′
B = inf{t > τA|St = B}

Remark 2.4

We obtain the extra money which makes derivatives escape from ‘Caution‘ when
the ‘Caution Time‘ τA = u and we notice that it is easily caluculated in all above
examples. .

the extra money which makes derivatives escape from ‘Caution‘ when the
‘Caution Time‘ τA = u

= e−r(T−u)E(1(σ(u)�T )f(ST )|τA = u)

The following example is not included in ‘Edokko Options‘ but using this
option we can have that smooth hedging of usual barrier options. Linetsky([10])
dealt with similar options using occupation times.

Example 2.12 Remaining Caution Time Discounted Option

The payoff of this option at T =e−λ(T−τA)f(ST ) for a positive constant λ.
We remark that if λ approaches ∞, the payoff of this option approaches the
payoff of a usual one touch barrier option.

3 Pricing

We can obtain closed form expressions of the prices of the above-mentioned
examples in Black Scholes model. In this section, choosing ‘cumulative Parisian
Edokko Option‘ and ‘two touch Edokko option‘ we will show these pricing for-
mulae.

Let X(t) be a continuous stochastic process.
We put AX(t, x) = 1

t

∫ t

0 1(−∞,x](X(s))ds, where

1(−∞,x](y) =

{
1 if y ≤ x
0 if y ≥ x

Since AX(t, ·) is increasing, the inverse function mX(t, ·) exists i.e.

AX(t,mX(t, α)) = α (0 < α < 1), mX(t, AX(t, x)) = x,



AX(t, x) > α � mX(t, α) < x

hold. Miura([10]) called options related to mX(t, α) α-percentile options. See-

ing that mX(t, 1/2)= the median of X(s) (0 ≤ s ≤ t) and mX(t, 1 − 0) =
max0≤s≤t X(s), we can observe that α-percentile options are based on order
statistics and have merits that are hardly affected by extreme values. For pric-
ing of α-percentile options, see([1],[3],[4],[5],[6],[11]). We use this α-percentile as
stopping conditions of derivative contracts. In this sense, we may call example
2.2 and example 2.3 α-percentile barrier options.

Let Wt denote a standard Brownian motion. First we prepare the following
theorem about the joint density of Brownian motion and its occupation time.
This formula is obtained by ([5]) to price the α percentile option with a payoff
Max(ST − mS(T, α), 0). This result is equivalent to an occupation time law
of Pinned Brownian motion(In the Brownian bridge case, this law is known
as ”Uniform law”). Actually, we recover the Arcsine law of usual Brownian
motions as a marginal distribution.

Theorem 3.1

P (Wt ∈ da,

∫ t

0

1(−∞,0](Ws)ds ∈ du)

=

⎧⎪⎨
⎪⎩

(
∫ t

u
a

2π
√

s3(t−s)3
e

−a2

2(t−s) ds)dadu · · · for a > 0

(
∫ u

0
−a

2π
√

s3(t−s)3
e

−a2
2s ds)dadu · · · for a < 0

proof
We put that f(t, x) = E[1[a,+∞)(x+Wt)e−β

�
t
0 1(−∞,0](x+Ws)ds] (for a > 0, β >

0).
Using the Feynman-Kac Theorem, we have :

∂f

∂t
=

1
2

∂2f

∂x2
− β1(−∞,0](x)f f(0, x) = 1[a,+∞)(x).

Taking Laplace transforms of both sides, and denoting:f̂(ξ, x) =
∫ +∞
0 dte−ξtf(t, x),

we obtain:

−1[a,+∞)(x) + ξf̂ =
1
2

∂2f̂

∂x2
− β1(−∞,0](x)f̂ .

Solving this ordinary differential equation and considering boundary condi-
tions at 0 and a, we obtain

f̂(0) =
e−

√
2ξa

√
ξ(
√

ξ +
√

ξ + β).



Then, we see

−∂f̂(0)
∂a

=
√

2
e−

√
2ξa

√
ξ +

√
ξ + β

=
̂

(
e−βt − 1

(−β)
√

2πt3

)
̂

( √
2a

2
√

πt3
e−

(
√

2a)2
4t

)

=
̂(

1 − e−βt

√
2πt3β

∗ a√
2πt3

e−
a2
2t

)

=
̂(∫ t

0

a√
2πs3

1 − e−βs

β

a√
2π(t − s)3

e−
a2

2(t−s) ds

)

=
̂(∫ t

0

e−βudu

∫ t

u

a

2π
√

s3(t − s)3
e−

a2
2(t−s) ds

)
.

This shows that for a > 0,

P (Wt ∈ da,
∫ t

0 1(−∞,0](Ws)ds ∈ du) = (
∫ t

u
a

2π
√

s3(t−s)3
e

−a2
2(t−s) ds)dadu.

Similarily we obtain the joint density function for a < 0. 　　　　　　 (q.e.d.)

Remark 3.1

Chesney, Jeanblanc-Picque and Yor([2]) got the same results by another ap-
proach. Also Karatzas and Shreve([8] pp 423, Prop. 3.9) obtained the similar
results of this Theorem.

We denote the joint density function of (Wt,
∫ t

0
1(−∞,0](Ws)ds)

by f(Wt,
�

t
0 1(−∞,0](Ws)ds)(a, u).

Applying Girsanov’s theorem, we get that the joint density function g(Xμ,σ
t ,

� t
0 1(−∞,0](X

μ,σ
s )ds)(a, x)

for a Brownian motion with drift (σWt + μt = Xμ,σ
t ) is:

g(Xμ,σ
t ,

�
t
0 1(−∞,0](X

μ,σ
s )ds)(a, x) = e−

μ2t

2σ2 e
μa

σ2 (1/σ)f(Wt,
�

t
0 1(−∞,0](Ws)ds)(

a

σ
, x).

¿From we can determine the price of Cumulative Parisian Edokko Option
under the Black-Scholes model.

Under the risk neutral measure in the Black-Scholes model, we take the S.D.E.
which the underlying asset price S(t) satisfies as follows:

dSt = rStdt + σStdWt, S0 = S

where r= the instantaneous risk free rate, σ= the volatility.
Then we know that

St = SeσWt+(r− 1
2 σ2)t

= SeXr− 1
2 σ2,σ(t)



.
We denote a payoff at maturity T as f(ST ). Considering stopping condition

1mX(T,α)�A, we have that a payoff of Cumulatine Parisian Edokko Option at
the maturity T (1−1mX(T−τA,α)�A)f(ST ) where we assume that A < S . Then
the price of Cumulative Parisian Edokko Option (= C(T, S, α, x))is obtained by
C(T, S, α, A) = E(e−rT (1 − 1mX(T−τA,α)�A)f(ST )).

Remarking that E(e−rT f(ST )) = e−rT
∫ +∞
−∞ f(Se(r−(1/2)σ2)T+σx) e(−1/2)x2

√
2π

dx =
C1(T, S)=usual B.S., it is enough to calculate that E(e−rT 1mX(T−τA,α)�xf(ST )) =
C2(T, S, α, x).
So, it is sufficient to obtain the joint density function of (ST ,

∫ T

0 1(−∞,A](Ss)ds, τA).

(ST ,

∫ T

0

1(−∞,A](Ss)ds)

= (Se(r−(1/2)σ2)T+σWT ,

∫ T

0

1(−∞,A](Se(r−(1/2)σ2)s+σWs )ds)

= (SeX
(r−(1/2)σ2),σ
T ,

∫ T

0

1(−∞,log (A/S)](X(r−(1/2)σ2),σ
s )ds)

We put τA = inf {t|St =A} = inf {t|X(r−(1/2)σ2),σ
t = log A/S}.

Then, conditioning τA = u, we have

(ST ,

∫ T

0

1(−∞,A](Ss)ds)|τA=u

= (AeX
(r−(1/2)σ2),σ
T −X(r−(1/2)σ2),σ

u ,

∫ T

u

1(−∞,A](AeX(r−(1/2)σ2),σ
s −X(r−(1/2)σ2),σ

u )ds)|τA=u

= (AeX̂
(r−(1/2)σ2),σ
T−u ,

∫ T

u

1(−∞,0](X̂
(r−(1/2)σ2),σ
s−u )ds)|τA=u

= (AeX̂
(r−(1/2)σ2),σ
T−u ,

∫ T−u

0

1(−∞,0](X̂(r−(1/2)σ2),σ
s )ds)|τA=u

where we put X̂t = Xt − Xu and we remark that X̂t is independent Fu =
σ{Xs; s � u}.

So, we see that

C2(T, S, α, A) = E(e−rT 1mS(T−τA,α)�Af(ST ))

= e−rT E(E(1mS(T−τA,α)�Af(ST )|τA))



= e−rT

∫ T

0

E(1mS(T−u,α)�Af(ST )|τA = u)hτA(u)du

= e−rT

∫ T

0

∫ ∫
b�A(T−u)

f(Aea, b)g
(X

(r−(1/2)σ2),σ
T−u ,

� T−u
0 1(−∞,0](X

(r−(1/2)σ2),σ
s )ds)

(a, b)dadbhτ (u)du

where we recall the known result hτA(s)=the density function of hτA = | log A/S|
σ
√

2πs3 e
−(log A/S−(r−(1/2)σ2)s)2

2sσ2 .

That is,
the Price of Cumulative Parisian Edokko Option

= B.S. − C2(T, S, α, A).

Next we would like to obtain the price of two touch Edokko option.
First we prepare that some joint density results from Brownian Motion.

P (W1 ∈ du,

∫ 1

0

1(−∞, 0](Ws)ds ∈ da, g ∈ ds)

=

⎧⎪⎨
⎪⎩

u

π
√

s3(1−s)3
e

−u2
2(1−s) dsdadu · · · for 0 < a < s < 1 and 0 < u < ∞

−u

π
√

s3(1−s)3
e

−u2
2s dsdadu · · · for 0 < a < s < 1 and −∞ < u < 0

where g = sup{u < 1|Wu = 0}.

Decomposing the Brownian Path before and after g, we obtain the proof of
this formula which appeared on ([2],[8]).

By Girsanov’s Theorem and time scale change, we have that

P (WT + μT ∈ du,

∫ T

0

1(−∞, 0](Ws + μs)ds ∈ da, gT ∈ ds)

=

⎧⎪⎨
⎪⎩

eμu−(1/2)μ2T u

π
√

s3(T−s)3T 3
e

−u2
2(T−s) dsdadu · · · for 0 < a < s < T and 0 < u < ∞

eμu−(1/2)μ2T −u

π
√

s3(T−s)3T 3
e

−u2
2s dsdadu · · · for 0 < a < s < T and −∞ < u < 0

where gT = sup{u < T |Wu + μu = 0}

Price of two touch Edokko option



= e−rT E[(1 − 1((1−α)τA+αT<g))f(ST )]

= C1(T, S) − e−rT

∫ T

0

hτ ′
A
(t)dt∫ ∫ ∫

0<a<s<T−t,−∞<u<∞,(1−α)t+α(T−t)<s

f(Aeσu)

f(WT−t+(1/σ)(r−(1/2)σ2)(T−t),
� T−t
0 1(−∞,0](Ws+(1/σ)(r−(1/2)σ2)s)ds, gT−t)

(u, a, s)dudads

= B.S. − e−rT

∫ T

0

hτ ′
A
(t)dt

∫ T−t

α(T−t)

ds

∫ ∞

0

f(Aeσu)

e(1/σ)(r−(1/2)σ2)u−(1/2)(1/σ)2(r−(1/2)σ2)2(T−t) u

π
√

s(T − t − s)3(T − t)3
e

−u2
2(T−t−s) du

−e−rT

∫ T

0

hτ ′
A
(t)dt

∫ T−t

α(T−t)

ds

∫ 0

−∞
f(Aeσu)

e(1/σ)(r−(1/2)σ2)u−(1/2)(1/σ)2(r−(1/2)σ2)2(T−t) −u

π
√

s(T − t − s)3(T − t)3
e

−u2
2s du

where A′ = (1/σ) log (A/S) and hτ ′
A
(s) =

|A′|√
2πs3

e
−(A′−(1/σ)2(r−(1/2)σ2)s)2

2s .
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