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Abstract

This paper reconsiders the problem of ordering infinite utility streams. As has been estab-

lished in earlier contributions, if no representability condition is imposed, there do exist

strongly Paretian and finitely anonymous orderings of intertemporal utility streams. We

examine the possibility of adding suitably formulated versions of classical equity condi-

tions to these two requirements. In particular, we provide a characterization of all strongly

Paretian and finitely anonymous rankings satisfying the strict transfer principle. We also

offer a characterization of an infinite-horizon extension of leximin obtained by adding

an equity-preference axiom to strong Pareto and finite anonymity. Journal of Economic

Literature Classification Nos.: D63, D71.

Keywords: Intergenerational justice, multi-period social choice, leximin.



1 Introduction

Treating generations equally is one of the basic principles in the utilitarian tradition of

moral philosophy. As Sidgwick (1907, p. 414) observes, “the time at which a man exists

cannot affect the value of his happiness from a universal point of view; and [. . . ] the inter-

ests of posterity must concern a Utilitarian as much as those of his contemporaries”. This

view, which is formally expressed by the anonymity condition, is also strongly endorsed

by Ramsey (1928).

Following Koopmans (1960), Diamond (1965) establishes that anonymity is incompat-

ible with the strong Pareto principle when ordering infinite utility streams. Moreover,

he shows that if anonymity is weakened to finite anonymity—which restricts the appli-

cation of the standard anonymity requirement to situations where utility streams differ

in at most a finite number of components—and a continuity requirement is added, an

impossibility results again. Suzumura and Shinotsuka (2003) adapt the well-known strict

transfer principle due to Pigou (1912) and Dalton (1920) to the infinite-horizon context.

They show that this principle is incompatible with strong Pareto and continuity even if

the social preference is merely required to be acyclical. Basu and Mitra (2003a) show

that strong Pareto, finite anonymity and representability by a real-valued function are

incompatible.

Faced with these impossibilities, it seems to us that the most natural assumption to

drop is that of continuity or representability. We view the strong Pareto principle and

finite anonymity as being on much more solid ground than axioms such as continuity or

representability, especially in the context of the ranking of infinite utility streams where

these conditions may be considered to be overly demanding. Svensson (1980) proves

that strong Pareto and finite anonymity are compatible by showing that any ordering

extension of an infinite-horizon variant of Suppes’ (1966) grading principle satisfies the

required axioms. The Suppes grading principle is a quasi-ordering that combines the

Pareto quasi-ordering and finite anonymity. Given Arrow’s (1951) version of Szpilrajn’s

(1930) extension theorem, this establishes the compatibility result. As noted by Asheim,

Buchholz and Tungodden (2001), Svensson’s possibility result is easily converted into

a characterization: ordering extensions of the Suppes grading principles are the only

orderings satisfying strong Pareto and finite anonymity.

Once the possibility of satisfying these two fundamental axioms is established, another

natural question to ask is what orderings satisfy additional desirable properties. Asheim

and Tungodden (2004) provide a characterization of an infinite-horizon version of the lex-
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imin principle by adding an equity-preference condition (the infinite-horizon equivalent

of Hammond equity; see Hammond, 1976) and a preference-continuity property to strong

Pareto and finite anonymity. An infinite-horizon version of utilitarianism is characterized

by Basu and Mitra (2003b) by adding an information-invariance condition to the two

fundamental axioms. Furthermore, they narrow down the class of infinite-horizon utili-

tarian orderings to those resulting from the overtaking criterion (von Weizsäcker, 1965).

This is accomplished by using a consistency condition in addition to the three axioms

characterizing their utilitarian orderings.

In this paper, we focus on equity properties. One of the most fundamental equity

properties (if not the most fundamental) is the Pigou-Dalton transfer principle, adapted

to the infinite-horizon framework by Suzumura and Shinotsuka (2003). Our first result

characterizes all orderings that satisfy strong Pareto, anonymity and the strict transfer

principle.

In the presence of strong Pareto, the axiom of equity preference (the infinite-horizon

version of Hammond equity) is a strengthening of the strict transfer principle. We use it

to identify a subclass of the class of orderings satisfying the three axioms just mentioned.

These orderings are extensions of a particular infinite-horizon incomplete version of lex-

imin. This second result leaves a larger class of orderings than that identified by Asheim

and Tungodden (2004) because they employ an additional axiom. The relationship be-

tween our leximin characterization and that of Asheim and Tungodden is analogous to

the relationship between Basu and Mitra’s (2003b) characterizations of infinite-horizon

leximin and of the overtaking criterion.

2 Basic definitions

The set of infinite utility streams is X = RN, where R denotes the set of all real numbers

and N denotes the set of all natural numbers. A typical element of X is an infinite-

dimensional vector x = (x1, x2, . . . , xn, . . .) and, for n ∈ N, we write x−n = (x1, . . . , xn)

and x+n = (xn+1, xn+2, . . .). The standard interpretation of x ∈ X is that of a countably

infinite utility stream where xn is the utility experienced in period n ∈ N. Of course,

other interpretations are possible—for example, xn could be the utility of an individual

in a countably infinite population.

Our notation for vector inequalities on X is as follows. For all x, y ∈ X, (i) x ≥ y

if xn ≥ yn for all n ∈ N; (ii) x > y if x ≥ y and x 6= y; (iii) x � y if xn > yn for all

n ∈ N. For n ∈ N and x ∈ X, (x(1), . . . , x(n)) is a rank-ordered permutation of x−n such

2



that x(1) ≤ . . . ≤ x(n), ties being broken arbitrarily.

R ⊆ X × X is a weak preference relation on X with strict preference P (R) and

indifference relation I(R). A quasi-ordering is a reflexive and transitive relation, and

an ordering is a complete quasi-ordering. Analogously, a partial order is an asymmetric

and transitive relation, and a linear order is a complete partial order. Let R and R′ be

relations on X. R′ is an extension of R if R ⊆ R′ and P (R) ⊆ P (R′). If an extension

R′ of R is an ordering, we call it an ordering extension of R, and if R′ is an extension of

R that is a linear order, we refer to it as a linear order extension of R. The transitive

closure of a relation R is denoted by R, that is, for all x, y ∈ X, (x, y) ∈ R if there exist

K ∈ N and z0, . . . , zK ∈ X such that x = z0, (zk−1, zk) ∈ R for all k ∈ {1, . . . , K} and

zK = y.

A finite permutation of N is a bijection ρ: N → N such that there exists m ∈ N
with ρ(n) = n for all n ∈ N \ {1, . . . , m}. The corresponding finite permutation matrix

Bρ = (bρ
ij)i,j∈N is defined by letting, for all i ∈ N, bρ

iρ(i) = 1 and bρ
ij = 0 for all j ∈ N\{ρ(i)}.

Two of the most fundamental axioms in this area are the strong Pareto principle and

finite anonymity, defined as follows.

Strong Pareto: For all x, y ∈ X, if x > y, then (x, y) ∈ P (R).

Finite anonymity: For all x ∈ X and for all finite permutations ρ of N,

(Bρx, x) ∈ I(R).

Szpilrajn’s (1930) fundamental result establishes that every partial order has a linear

order extension. Arrow (1951, p. 64) presents a variant of Szpilrajn’s theorem stating that

every quasi-ordering has an ordering extension; see also Hansson (1968). This implies that

the sets of orderings characterized in the theorems of the following sections are non-empty.

The Suppes (1966) grading principle combines the requirements of strong Pareto and

anonymity into a criterion for establishing a partial social ranking. Adapted to the multi-

period framework, the Suppes quasi-ordering RS on X is defined as follows. For all

x, y ∈ X, (x, y) ∈ RS if there exists a finite permutation ρ of N such that x ≥ Bρy.

Svensson (1980, Theorem 2) shows that any ordering extension of RS satisfies strong

Pareto and finite anonymity and Asheim, Buchholz and Tungodden (2001, Proposition 1)

extend this result to a characterization: an ordering R on X satisfies strong Pareto and

finite anonymity if and only if R is an ordering extension of RS.
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3 Transfer-sensitive infinite-horizon orderings

Now we examine the consequences of adding the strict transfer principle to strong Pareto

and finite anonymity. In order to define the strict transfer principle, we introduce the

notion of a finite bistochastic matrix. A finite bistochastic matrix is a matrix B = (bij)i,j∈N

such that there exists m ∈ N such that bij ≥ 0 for all i, j ∈ {1, . . . , m},
∑m

i=1 bij = 1 for

all j ∈ {1, . . . , m},
∑m

j=1 bij = 1 for all i ∈ {1, . . . , m}, bii = 1 for all i ∈ N \ {1, . . . , m}
and bij = 0 for all i, j ∈ N \ {1, . . . , m} with i 6= j. Clearly, finite permutation matrices

are special cases of finite bistochastic matrices.

Strict transfer principle: For all x, y ∈ X and for all n, m ∈ N, if xk = yk for all

k ∈ N \ {n, m}, ym > xm ≥ xn > yn and xn + xm = yn + ym, then (x, y) ∈ P (R).

The strict transfer principle is the natural analogue of the corresponding condition for

finite streams; see also Suzumura and Shinotsuka (2003).

To define the class of orderings satisfying the three axioms introduced thus far, consider

first the following relation RT . For all x, y ∈ X, (x, y) ∈ RT if there exist n, m ∈ N such

that xk = yk for all k ∈ N \ {n, m}, ym > xm ≥ xn > yn and xn + xm = yn + ym.

This relation captures the requirements imposed by the strict transfer principle. Clearly,

P (RT ) = RT . Note that if (x, y) ∈ RT , then there exists a finite bistochastic matrix B

such that x = By. This matrix is obtained by letting bnm = bmn = (xn − yn)/(ym − yn),

bnn = bmm = (xm − yn)/(ym − yn), bni = bin = bmi
= bim = 0 for all i ∈ N \ {n, m}, bii = 1

for all i ∈ N \ {n, m} and bij = 0 for all i, j ∈ N \ {n, m} with i 6= j.

Because, in addition, we want our ordering to satisfy strong Pareto and finite anonymity,

the relation RS must be respected as well. Finally, because we only consider transitive

relations, the transitive closure of the union of these two relations appears in the definition

of the relevant class of orderings. Clearly, the transitive closure RS ∪ RT of RS ∪ RT is a

quasi-ordering: reflexivity follows from the reflexivity of RS and transitivity is satisfied by

definition. We obtain the following characterization of the class of all ordering extensions

of RS ∪ RT .

Theorem 1 An ordering R on X satisfies strong Pareto, finite anonymity and the strict

transfer principle if and only if R is an ordering extension of RS ∪ RT .

Proof. ‘If.’ We first prove that RS ∪ RT is an extension of both RS and RT . It is

immediate that RS ⊆ RS ∪ RT and RT ⊆ RS ∪ RT , so we only need to establish the set

inclusions

P (RS) ⊆ P (RS ∪ RT ) (1)
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and

P (RT ) ⊆ P (RS ∪ RT ). (2)

To prove (1), suppose that (x, y) ∈ P (RS). This implies (x, y) ∈ RS ∪ RT . By way of

contradiction, suppose that (y, x) ∈ RS ∪ RT . Thus, there exist a finite permutation ρ of

N, K ∈ N and z0, . . . , zK ∈ X such that x > Bρy, y = z0, (zk−1, zk) ∈ RS ∪ RT for all

k ∈ {1, . . . , K} and zK = x. Let k ∈ {1, . . . , K}. If (zk−1, zk) ∈ RS, it follows that there

exists a finite permutation ρk of N such that zk−1 ≥ Bρk
zk. If (zk−1, zk) ∈ RT , it follows

that there exists a finite bistochastic matrix B such that zk−1 = Bzk. Suppose first that,

whenever (zk−1, zk) ∈ RS, we have zk−1 = Bρk
zk for some finite permutation ρk. Because

the set of finite bistochastic matrices is closed under matrix multiplication, it follows that

y = B0x for some finite bistochastic matrix B0. Let m ∈ N be such that b0
ii = bρ

ii = 1

for all i ∈ N \ {1, . . . , m}. Because y = B0x, it follows that
∑m

i=1 yi =
∑m

i=1 xi. But

x > Bρy implies
∑m

i=1 xi >
∑m

i=1 yi, a contradiction. If some of the inequalities are strict,

an analogous contradiction emerges. Therefore, (y, x) ∈ RS ∪ RT is impossible and (1)

follows. The proof of (2) is analogous.

Next, we prove that any ordering extension of RS ∪ RT satisfies the required axioms.

Suppose R is such an ordering extension.

We begin with strong Pareto. Suppose that x > y for some x, y ∈ X. This implies

(x, y) ∈ P (RS) and, by (1), (x, y) ∈ P (RS ∪ RT ). Because R is an ordering extension of

RS ∪ RT , it follows that (x, y) ∈ P (R) and strong Pareto is satisfied.

To establish finite anonymity, let x ∈ X and let ρ be any finite permutation of N. This

implies (Bρx, x) ∈ I(RS) and, because RS ⊆ RS ∪ RT ⊆ R, we obtain (Bρx, x) ∈ I(R).

Finally, we prove that the strict transfer principle is satisfied. Suppose x, y ∈ X

and n, m ∈ N are such that xk = yk for all k ∈ N \ {n, m}, ym > xm ≥ xn > yn and

xn + xm = yn + ym. This implies (x, y) ∈ P (RT ) and, by (2) and the assumption that R

is an ordering extension of RS ∪ RT , we obtain (x, y) ∈ P (R).

‘Only if.’ Suppose R satisfies the three axioms of the theorem statement. To prove

that R is an ordering extension of RS ∪ RT , suppose first that (x, y) ∈ RS ∪ RT . By

definition, there exist K ∈ N and z0, . . . , zK ∈ X such that x = z0, (zk−1, zk) ∈ RS ∪
RT for all k ∈ {1, . . . , K} and zK = y. As a consequence of the Svensson-Asheim-

Buchholz-Tungodden characterization of the Suppes grading principle mentioned at the

end of the previous section, (zk−1, zk) ∈ R follows whenever (zk−1, zk) ∈ RS and, by the

strict transfer principle, (zk−1, zk) ∈ R follows whenever (zk−1, zk) ∈ RT . Because R is

transitive, it follows that (x, y) ∈ R.

Now suppose that (x, y) ∈ P (RS ∪ RT ). By definition, there exist K ∈ N and
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z0, . . . , zK ∈ X such that x = z0, (zk−1, zk) ∈ RS ∪ RT for all k ∈ {1, . . . , K} and

zK = y. Moreover, at least one of these preferences must be strict because otherwise we

would have (y, x) ∈ RS ∪ RT , contradicting (x, y) ∈ P (RS ∪ RT ). If the strict preference

is such that (zk−1, zk) ∈ P (RS), (zk−1, zk) ∈ P (R) follows from the characterization of

the Suppes grading principle. If the strict preference is such that (zk−1, zk) ∈ P (RT ),

(zk−1, zk) ∈ P (R) follows immediately from the strict transfer principle. Therefore, in

either case, the transitivity of R implies (x, y) ∈ P (R). This completes the proof that R

is an ordering extension of RS ∪ RT .

4 Infinite-horizon leximin

An equity property that has received a considerable amount of attention in finite settings

is Hammond equity and some of its variations. The infinite-horizon version we use is

defined as follows.

Equity preference: For all x, y ∈ X and for all n, m ∈ N, if xk = yk for all k ∈ N\{n, m}
and ym > xm > xn > yn, then (x, y) ∈ R.

Equity preference is the extension of Hammond’s (1976) equity axiom to the infinite-

horizon environment. The axiom is used in Asheim and Tungodden (2004); see also

Asheim and Tungodden (2005) for an alternative version which they call Hammond equity

for the future. d’Aspremont and Gevers (1977) use a stronger condition by requiring

(x, y) ∈ P (R) rather than merely (x, y) ∈ R in the conclusion of the axiom. In the

presence of strong Pareto, the two axioms are equivalent. Moreover, strong Pareto and

equity preference together imply the following property which, in turn, obviously implies

the strict transfer principle.

Strict equity preference: For all x, y ∈ X and for all n, m ∈ N, if xk = yk for all

k ∈ N \ {n, m} and ym > xm ≥ xn > yn, then (x, y) ∈ P (R).

To see that strict equity preference is implied by strong Pareto and equity preference,

suppose that R satisfies the first two axioms, and let x, y ∈ X and n, m ∈ N be such that

xk = yk for all k ∈ N \ {n, m} and ym > xm ≥ xn > yn. Let z ∈ X be such that zk =

xk = yk for all k ∈ N \ {n, m} and xn > zm > zn > yn. By strong Pareto, (x, z) ∈ P (R)

and by equity preference, (z, y) ∈ R. Thus, transitivity implies (x, y) ∈ P (R) and strict

equity preference is satisfied.
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If the strict transfer principle is replaced by equity preference (which, in the presence

of strong Pareto, is a strengthening), the only remaining orderings are infinite-horizon

versions of the leximin criterion. Let n ∈ N. We denote the usual leximin ordering on Rn

by Rn
` , that is, for all x, y ∈ X,

(x−n, y−n) ∈ Rn
` ⇔ x−n is a permutation of y−n or there exists m ∈ {1, . . . , n} such that

x(k) = y(k) for all k ∈ {1, . . . , n} \ {m, . . . , n} and x(m) > y(m).

Again, let n ∈ N and define a relation Rn
L ⊆ X×X by letting, for all x, y ∈ X, (x, y) ∈ Rn

L

if (x−n, y−n) ∈ Rn
` and x+n ≥ y+n. It is straightforward to verify that Rn

L is a quasi-

ordering for all n ∈ N. Finally, let RL = ∪n∈NR
n
L. This relation is a quasi-ordering but

it is not complete—some infinite utility streams are not ranked by RL. Our next result

characterizes all ordering extensions of RL.

Theorem 2 An ordering R on X satisfies strong Pareto, finite anonymity and equity

preference if and only if R is an ordering extension of RL.

Proof. ‘If.’ First, we prove that, for all n, m ∈ N such that m > n,

Rn
L ⊆ Rm

L (3)

and

P (Rn
L) ⊆ P (Rm

L ). (4)

Let n, m ∈ N be such that m > n.

To prove (3), suppose that (x, y) ∈ Rn
L. By definition, (x−n, y−n) ∈ Rn

` and x+n ≥ y+n.

Hence (x−m, y−m) ∈ Rm
` and x+m ≥ y+m, that is, (x, y) ∈ Rm

L .

To establish (4), suppose that (x, y) ∈ P (Rn
L). By definition, at least one of the

following two statements is true:

(x−n, y−n) ∈ P (Rn
` ) and x+n ≥ y+n; (5)

(x−n, y−n) ∈ Rn
` and x+n > y+n. (6)

By (3), it follows that (x, y) ∈ Rm
L . To prove that (x, y) ∈ P (Rm

L ), suppose, by way of

contradiction, that (y, x) ∈ Rm
L . Then, by definition,

(x−n, y−n) ∈ I(Rn
` ) and x+n = y+n,

contradicting (5) and (6).
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Next, we prove that RL is a quasi-ordering. Reflexivity is immediate because, for all

x ∈ X, (x, x) ∈ Rn
L for all n ∈ N and hence (x, x) ∈ RL. To prove that RL is transitive,

suppose that (x, y), (y, z) ∈ RL. By definition, there exist n, m ∈ N such that (x, y) ∈ Rn
L

and (y, z) ∈ Rm
L . Let k = max{n, m}. By (3), (x, y), (y, z) ∈ Rk

L and by the transitivity

of Rk
L, (x, z) ∈ Rk

L which, in turn, implies (x, z) ∈ RL.

We now show that, for all x, y ∈ X,

(x, y) ∈ P (RL) ⇔ ∃n ∈ N such that (x, y) ∈ P (Rn
L). (7)

Suppose first that (x, y) ∈ P (RL). By definition, there exists n ∈ N such that (x, y) ∈
Rn

L. Moreover, (y, x) 6∈ Rn
L because otherwise we obtain (y, x) ∈ RL by definition and

thus a contradiction to our hypothesis that (x, y) ∈ P (RL). Hence (x, y) ∈ P (Rn
L).

Conversely, suppose that there exists n ∈ N such that (x, y) ∈ P (Rn
L). Suppose there

exists m ∈ N such that (y, x) ∈ Rm
L . Because (x, y) ∈ P (Rn

L), (4) implies n > m. But then

(3) implies (y, x) ∈ Rn
L, a contradiction. We conclude that (x, y) ∈ Rn

L and (y, x) 6∈ Rm
L

for all m ∈ N. By definition, this implies (x, y) ∈ P (RL).

Now let R be an ordering extension of RL. We complete the proof of the ‘if’ part by

showing that R satisfies the required axioms.

To establish that strong Pareto is satisfied, suppose that x, y ∈ X are such that x > y.

Let n = min{m ∈ N | xm > ym}. By definition, (x, y) ∈ P (Rn
L). By (7), (x, y) ∈ P (RL)

and, because R is an ordering extension of RL, we obtain (x, y) ∈ P (R).

Next, we show that finite anonymity is satisfied. Let x ∈ X and let ρ be a finite

permutation of N. By definition, there exists m ∈ N such that ρ(n) = n for all n ∈
N \ {1, . . . , m}. By definition of Rm

L , (Bρx, x) ∈ I(Rm
L ). By definition of RL, this implies

(Bρx, x) ∈ I(RL). Because R is an ordering extension of RL, we obtain (Bρx, x) ∈ I(R).

Finally, we show that equity preference is satisfied. Consider x, y ∈ X and n, m ∈ N
such that xk = yk for all k ∈ N \ {n, m} and ym > xm > xn > yn. Let j = max{n, m}.
By definition of Rj

L, we obtain (x, y) ∈ Rj
L. By (7), (x, y) ∈ RL and, because R is an

ordering extension of RL, (x, y) ∈ R.

‘Only if.’ Suppose R is an ordering on X satisfying the three axioms of the theorem

statement. Fix n ∈ N and z ∈ X and define the relation Q(n, z) ⊆ Rn × Rn as follows.

For all x, y ∈ X,

(x−n, y−n) ∈ Q(n, z) ⇔ ((x−n, z+n), (y−n, z+n)) ∈ R.

Q(n, z) is an ordering because R is. Furthermore, it is clear that

(x−n, y−n) ∈ P (Q(n, z)) ⇔ ((x−n, z+n), (y−n, z+n)) ∈ P (R) (8)
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for all x, y ∈ X. The three axioms imply that Q(n, z) must satisfy the n-person versions

of the axioms and, using Hammond’s (1976, Theorem 7.2) characterization of n-person

leximin (see also d’Aspremont and Gevers, 1977, Theorem 5), it follows that

Q(n, z) = Rn
` . (9)

Because n and z were chosen arbitrarily, (9) is true for all n ∈ N and for any z ∈ X.

By way of contradiction, suppose R is not an ordering extension of RL. There are two

possible cases.

Case 1. There exist x, y ∈ X such that (x, y) ∈ RL and (y, x) ∈ P (R). By definition

of RL, there exists n ∈ N such that (x, y) ∈ Rn
L, that is,

(x−n, y−n) ∈ Rn
` and x+n ≥ y+n.

Hence, by (9),

(x−n, y−n) ∈ Q(n, z) and x+n ≥ y+n

for all z ∈ X. Choosing z = y and using the definition of Q(n, z), it follows that

((x−n, y+n), (y−n, y+n)) ∈ R. Because x+n ≥ y+n, reflexivity (if x+n = y+n) or the con-

junction of strong Pareto and transitivity (if x+n > y+n) implies ((x−n, x+n), (y−n, y+n)) =

(x, y) ∈ R, a contradiction.

Case 2. There exist x, y ∈ X such that (x, y) ∈ P (RL) and (y, x) ∈ R. By (7), there

exists n ∈ N such that (x, y) ∈ P (Rn
L). Thus, (5) or (6) is true. If (5) holds, (9) implies

(x−n, y−n) ∈ P (Q(n, z)) and x+n ≥ y+n

for all z ∈ X. Setting z = y and using (8), we obtain ((x−n, y+n), (y−n, y+n)) ∈ P (R) and,

using reflexivity or strong Pareto and transitivity as in case 1, we obtain (x, y) ∈ P (R),

a contradiction. If (6) holds, we proceed as in case 1.

5 Concluding remarks

The results of this paper reinforce the findings of earlier contributions regarding the

existence of orderings of infinite utility streams with attractive properties. In particular,

we provide characterizations of two classes of such orderings. Given the nature of the

proofs, we do not provide explicit constructions of these orderings. However, this feature

is by no means unique to our approach. Extending quasi-orderings to orderings often

requires non-constructive techniques; see, for example, Richter’s (1966) use of Szpilrajn’s

(1930) extension theorem in the context of rational choice.
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A plausible conclusion to be drawn is that impossibility results such as those of Di-

amond (1965), Basu and Mitra (2003a) and Suzumura and Shinotsuka (2003) can be

avoided if continuity or representability assumptions are dispensed with. Because conti-

nuity and representability can be considered rather demanding in infinite-horizon settings,

this confirms, in our view, that the state of affairs in this area is not as disappointing and

negative as has been suggested by the impossibility results of many earlier contributions.

The technique employed to characterize infinite-horizon version of leximin appears

to be very powerful and applicable to the extension of other finite-population social-

choice rules; see also the characterization of infinite-horizon utilitarianism by Basu and

Mitra (2003b). We hope that our approach will stimulate further research in the area

of intergenerational social choice by identifying alternative sets of attractive axioms and

characterizing the social orderings that satisfy them.

The classes of orderings characterized in this paper are relatively large: there are many

comparisons of utility streams that are not determined by the axioms employed. An issue

to be addressed in future work is to examine to what extent the ranking of more pairs of

streams can be determined by employing plausible additional axioms.
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