
COE-RES Discussion Paper Series 
Center of Excellence Project 

The Normative Evaluation and Social Choice of 
Contemporary Economic Systems 

 
 

Graduate School of Economics and Institute of Economic Research 
Hitotsubashi University 

 
 

COE/RES Discussion Paper Series, No.11 
December 8, 2003 

 

Arrovian Aggregation in Economic Environments:  
How Much Should We Know About Indifference Surfaces? 

Marc Fleurbaey 
(CATT, THEMA, IDEP, University of Pau) 

Kotaro Suzumura 
(Institute of Economic Research, Hitotsubashi University) 

Koichi Tadenuma 
(Faculty of Economics, Hitotsubashi University) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Naka 2-1, Kunitachi, Tokyo 186-8603, Japan 
Phone: +81-42-580-8350  Fax: +81-42-580-8351 

URL: http://wakame.econ.hit-u.ac.jp/~koho/1intro/COE/index.htm 
E-mail: COE-RES@econ.hit-u.ac.jp 

 
 



Arrovian Aggregation in Economic Environments:

How Much Should We Know About Indifference

Surfaces?∗

Marc Fleurbaey† Kotaro Suzumura‡ Koichi Tadenuma§

October 2003
(First version: July 2001)

∗The authors thank A. Leroux for a stimulating discussion, A. Trannoy for comments,
and participants at seminars in Cergy, Rochester and Hitotsubashi, and the 5th Inter-
national Meeting of the Society for Social Choice and Welfare in Alicante. Financial
supports from the Ministry of Education, Culture, Sports, Science and Technology of
Japan through Grant-in-Aid for Scientific Research No.10045010 (“Economic Institutions
and Social Norms: Evolution and Transformation”) and the 21st Century Center of Excel-
lence Project on the Normative Evaluation and Social Choice of Contemporary Economic
Systems are gratefully acknowledged.

†CATT, THEMA, IDEP, University of Pau, Av. du Doyen Poplawski, 64000 PAU,
France. Email: Marc.Fleurbaey@univ-pau.fr

‡Institute of Economic Research, Hitotsubashi University, Kunitachi, Tokyo 186-8603,
Japan. Email: suzumura@ier.hit-u.ac.jp

§Corresponding author. Faculty of Economics, Hitotsubashi University, Kunitachi,
Tokyo 186-8601, Japan. Phone: +(81) 42-580-8603. Fax: +(81) 42-580-8748. Email:
tadenuma@econ.hit-u.ac.jp

1



Abstract

Arrow’s celebrated theorem of social choice shows that the aggre-
gation of individual preferences into a social ordering cannot make the
ranking of any pair of alternatives depend only on individual prefer-
ences over that pair, unless the fundamental weak Pareto and non-
dictatorship principles are violated. In the standard model of division
of commodities, we investigate how much information about indiffer-
ence surfaces is needed to construct social ordering functions satisfying
the weak Pareto principle and anonymity. We show that local infor-
mation such as marginal rates of substitution or the shapes “within
the Edgeworth box” is not enough, and knowledge of substantially
non-local information is necessary.

Key words: social choice, preference aggregation, information, in-
dependence of irrelevant alternatives, indifference surfaces.

Journal of Economic Literature Classification Numbers : D63, D71.
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1 Introduction

From Arrow’s celebrated theorem of social choice, it is well known that the
aggregation of individual preferences into a social ordering cannot make the
social ranking of any pair of alternatives depend only on individual prefer-
ences over that pair (this is the famous axiom of Independence of Irrelevant
Alternatives). Or, more precisely, it cannot do so without trespassing basic
requirements of unanimity (the Pareto principle) and anonymity (even in the
very weak version of non-dictatorship). This raises the following question:
What additional information about preferences would be needed in order
to make aggregation of preferences possible, and compatible with the basic
requirements of unanimity and anonymity?
In the last decades, the literature on social choice has explored several

paths and gave interesting answers to this question. The main avenue of
research has been, after Sen [18] and d’Aspremont and Gevers [7], the intro-
duction of information about utilities, and it has been shown that the classical
social welfare functions, and less classical ones, could be obtained with the
Arrovian axiomatic method by letting the social preferences take account of
specific kinds of utility information with interpersonal comparability.
In this paper, we focus on the introduction of additional information

about preferences that is not of the utility sort. In other words, we retain
a framework with purely ordinal and interpersonally non-comparable prefer-
ences. The kind of additional information that we study is about the shapes
of indifference surfaces, and we ask how much one needs to know about in-
difference surfaces so as to be able to aggregate individual preferences while
respecting the unanimity and anonymity requirements. The introduction
of this additional information is formulated in terms of weakening Arrow’s
axiom of independence of irrelevant alternatives.
The model adopted here is an economic model, namely, the canonical

model of division of infinitely divisible commodities among a finite set of
agents. We chose to study an economic model rather than the abstract model
that is now commonly used in the theory of social choice1 for two reasons.
First, it allows a more fine-grained analysis of information about preferences,
because it makes it sensible to talk about marginal rates of substitution
and other local notions about indifference surfaces. Second, in an economic

1Recollect, however, that Arrow’s initial presentations [1, 2] dealt with this economic
model of division of commodities.
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model preferences are naturally restricted, and by considering a restricted
domain we can hope to obtain positive results with less information than
under unrestricted domain.
Our first extension of informational basis is to take account of marginal

rates of substitution. It turns out that such infinitesimally local informa-
tion would not be enough to escape from dictatorship, and we establish an
extension of Arrow’s theorem. Then, it is natural to take account of the
portions of indifference surfaces in some finitely sized neighborhoods of the
allocations. Based on this additional information, we can construct a non-
dictatorial aggregation rule or social ordering function, but still anonymity
cannot be attained.
The second direction of extending informational basis focuses on indif-

ference surfaces “within the Edgeworth box”. More precisely, for any two
allocations, we define the smallest vector of total resources that makes both
allocations feasible, and take the portion of the indifference surface through
each allocation in the region below the vector. The introduction of this kind
of information, however, does not help us avoid dictatorship.
The third avenue relies on some fixed monotone path from the origin in

the consumption space, and focuses on the points of indifference surfaces that
belong to this path. The idea of referring to such a monotone path is due to
Pazner and Schmeidler [16], and may be justified if the path contains relevant
benchmark bundles. Making use of this additional information, and following
Pazner and Schmeidler’s [16] contribution, we can construct a Paretian and
anonymous social ordering function.
Our final, the largest, extension of informational basis is to take whole

indifference surfaces. Given the above result, a Paretian and anonymous
social ordering function can be constructed on this informational basis.
The motivation for our research draws on many strands of recent and less

recent literature. Attempts to construct social ordering functions and similar
objects embodying unanimity and equity requirements were made by Suzu-
mura [19, 20] and Tadenuma [21]. The idea that information about whole
indifference surfaces is sufficient, hinted at by Pazner and Schmeidler [16]
and Maniquet [14], was made more precise in Pazner [15] and was revived
by Bossert, Fleurbaey and Van de gaer [4] and Fleurbaey and Maniquet
[8, 9] who were able to construct nicely behaved social ordering functions
on this basis. Campbell and Kelly [5] recently studied essentially the same
issue in an abstract model of social choice, and showed that limited infor-
mation about preferences may be enough. However, their model does not
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have the rich structure of economic environments, and they focus only on
non-dictatorship and do not study how much information is needed for the
stronger requirement of anonymity.
The paper is organized as follows. The next section introduces the frame-

work and the main notions. The following three sections consider the four
types of extensions of the informational basis of social orderings, and present
the results. Section 4 concludes. The appendix contains some proofs.

2 Basic Definitions and Arrow’s Theorem

The population is fixed. Let N := {1, ..., n} be the set of agents where
2 ≤ n < ∞. There are ` goods indexed by k = 1, ..., ` where 2 ≤ ` < ∞.
Agent i’s consumption bundle is a vector xi := (xi1, ..., xi`). An allocation is
denoted x := (x1, ..., xn). The set of allocations is Rn`

+ . The set of allocations
such that no individual bundle xi is equal to the zero vector is denoted X.
A preordering is a reflexive and transitive binary relation. Agent i’s

preferences are described by a complete preordering Ri (strict preference Pi,
indifference Ii) on R`

+. A profile of preferences is denoted R := (R1, ..., Rn).
Let R be the set of continuous, convex, and strictly monotonic preferences
over R`

+.
A social ordering function (SOF) is a mapping R̄ defined on Rn, such

that for all R ∈ Rn, R̄(R) is a complete preordering on the set of allocations
Rn`
+ . Let P̄ (R) (resp. Ī(R)) denote the strict preference (resp. indifference)
relation associated to R̄(R).
Let π be a bijection on N. For each x ∈ Rn`

+ , define π(x) :=
(xπ(1), . . . , xπ(n)) ∈ Rn`

+ , and for each R ∈ Rn, define π(R) :=
(Rπ(1), . . . , Rπ(n)) ∈ Rn. Let Π be the set of all bijections on N . The basic
requirements of unanimity and anonymity on which we focus in this paper
are the following.

Weak Pareto: ∀R ∈ Rn, ∀x, y ∈ Rn`
+ , if ∀i ∈ N, xiPiyi, then xP̄ (R)y.

Anonymity: ∀R ∈ Rn,∀x, y ∈ Rn`
+ , ∀π ∈ Π :

xR̄(R)y ⇔ π(x) R̄(π(R)) π(y).

Concerning the non-dictatorship form of anonymity, we only define here
what dictatorship means, for convenience. Notice that it has to do only with
allocations in X, that is, without the zero bundle for any agent.
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Dictatorial SOF: A SOF R̄ is dictatorial if there exists i0 ∈ N such that:

∀R ∈ Rn, ∀x, y ∈ X : xi0Pi0yi0 ⇒ xP̄ (R)y.

The traditional, Arrovian, version of Independence of Irrelevant Alterna-
tives is:

Independence of Irrelevant Alternatives (IIA): ∀R,R0 ∈ Rn, ∀x, y ∈
Rn`
+ , if ∀i ∈ N , Ri and R0i agree on {xi, yi}, then R̄(R) and R̄(R0) agree on
{x, y}.
IIA requires that the social ranking of any pair of allocations depends

only on agents’ binary preferences over that pair. Hence, the informational
basis of construction of social orderings is very restricted.
The version of Arrow’s theorem for the present canonical model of division

of commodities is due to Bordes and Le Breton [3].

Proposition 1 (Bordes and Le Breton [3]) If a SOF R̄ satisfies Weak Pareto
and IIA, then it is dictatorial.

3 Local Extension of Informational Basis

The IIA axiom can be weakened by strengthening the premise: that is, for any
two preference profiles and any pair of allocations, only when some properties
about indifference surfaces associated with the two allocations coincide in
addition to pairwise preferences, it is required that the social ranking over
the two allocations should agree. This amounts to allowing the SOF to make
use of more information about indifference surfaces when ranking each pair
of allocations.
In this paper, we consider four types of extensions of the informational

basis of social orderings. First, we use information about marginal rates of
substitution. Economists are used to focus on marginal rates of substitution
when assessing the efficiency of an allocation, especially under convexity,
since for convex preferences the marginal rates of substitution determine the
half space in which the upper contour set lies. Moreover, for efficient alloca-
tions, the shadow prices enable one to compute the relative implicit income
shares of different agents, thereby potentially providing a relevant measure
of inequalities in the distribution of resources. Therefore, taking account
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of marginal rates of substitution is a natural extension of the informational
basis of social choice in economic environments.
Let C(xi, Ri) denote the cone of price vectors that support the upper

contour set for Ri at xi :

C(xi, Ri) := {p ∈ R`|∀y ∈ R`
+, py = pxi ⇒ xiRiy}.

When preferences Ri are strictly monotonic, one has C(xi, Ri) ⊂ R`
++ when-

ever xi À 0.

IIA except Marginal Rates of Substitution (IIA-MRS): ∀R,R0 ∈ Rn,
∀x, y ∈ Rn`

+ , if ∀i ∈ N , Ri and R0i agree on {xi, yi}, and

C(xi, Ri) = C(xi, R
0
i),

C(yi, Ri) = C(yi, R
0
i),

then R̄(R) and R̄(R0) agree on {x, y}.
It is clear that IIA implies IIA-MRS. The converse does not hold as an

example in Appendix A.4 shows. It turns out, unfortunately, that weaken-
ing IIA into IIA-MRS cannot alter the dictatorship conclusion of Arrow’s
theorem. Introducing information about marginal rates of substitution, in
addition to pairwise preferences, does not make room for satisfactory SOFs.

Proposition 2 If a SOF R̄ satisfies Weak Pareto and IIA-MRS, then it is
dictatorial.

The proof of Proposition 2 is long and is relegated to the appendix, but
here we sketch the main line of the proof. Since IIA implies IIA-MRS, Propo-
sition 2 is a generalization of the theorem by Bordes and Le Breton [3, The-
orem 3]. An essential idea of the proofs of Arrow-like theorems in economic
environments (Kalai, Muller and Satterthwaite [13], Bordes and Le Breton
[3], and others) is as follows: First, we find a “free triple”, that is, three
allocations for which any ranking is possible in each individual’s preferences
satisfying the standard assumptions in economics. By applying Arrow’s the-
orem for these three allocations, it can be shown that there exists a “local
dictator” for each free triple. Then, we “connect” free triples in a suitable
way to show that these local dictators must be the same individual.
Turning to IIA-MRS, notice first that for each free triple, IIA-MRS works

just as IIA only in the class of preference profiles for which all individuals’
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marginal rates of substitution at the three allocations are the same, and
satisfy certain “supporting conditions”. Invoking Arrow’s theorem, we can
only show that there exists a “local dictator” for each free triple in this much
restricted class of preference profiles (Lemmas 4 and 5). The difficulty in the
proof of Proposition 2 lies in extending “local dictatorship” over the class of
all preference profiles. This requires much work to do. See Lemmas 6 and 7
in the Appendix.
Inada [12] also considered marginal rates of substitution in an IIA-like ax-

iom, but the difference from our work is that he looked for a local aggregator
of preferences, namely a mapping defining a social marginal rate of substi-
tution between goods and individuals, on the basis of individual marginal
rates of substitution. Hence, Inada requires that, for each allocation, social
preferences in an infinitely small neighborhood of the allocation should not
change whenever every agent’s marginal rates of substitution at the alloca-
tion remain the same. By contrast, our IIA-MRS requires that, for each pair
of allocations, social preferences over that pair should not change whenever
every agent’s marginal rates of substitution at each of the two allocations
remain the same. There is no logical relation between Inada’s axiom and
ours.
Marginal rates of substitution give an infinitesimally local piece of infor-

mation about indifference surfaces at given allocations. A natural extension
of the informational basis would be to take account of the indifference sur-
faces in some finitely sized neighborhoods of the two allocations. Define, for
any given real number ε > 0,

Bε(xi) := {v ∈ R`
+| max

k∈{1,...,`}
|xik − vk| ≤ ε}

Define
I(xi, Ri) := {z ∈ R`

+ | z Ii xi}.
The set I(xi, Ri) is called the indifference surface at xi for Ri.
The next axiom is defined for any given ε > 0.

IIA except Indifference Surfaces in ε-Neighborhoods (IIA-ISεN):
∀R,R0 ∈ Rn, ∀x, y ∈ Rn`

+ , if ∀i ∈ N , Ri and R0i agree on {xi, yi}, and
I(xi, Ri) ∩ Bε(xi) = I(xi, R

0
i) ∩ Bε(xi),

I(yi, Ri) ∩ Bε(yi) = I(yi, R
0
i) ∩ Bε(yi),

then R̄(R) and R̄(R0) agree on {x, y}.
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It is clear that for any given ε > 0, IIA-MRS implies IIA-ISεN. Notice also
that the larger is the value of ε, the weaker the condition IIA-ISεN becomes.
The next proposition shows that as soon as one switches from IIA-MRS

to IIA-ISεN, the dictatorship result is avoided even if ε is arbitrarily small.
However, it remains impossible to achieve Anonymity even for an arbitrarily
large ε.

Proposition 3 For any given ε > 0, there exists a SOF that satisfies Weak
Pareto, IIA-ISεN, and is not dictatorial. However, for any given ε > 0, there
exists no SOF that satisfies Weak Pareto, IIA-ISεN and Anonymity.

Proof. The proof of the impossibility part is in the appendix. Here we prove
the possibility part. Define R̄ as follows: x R̄(R) y if either x1 R1 y1 and
[I(x1, R1) * Bε(0) or I(y1, R1) * Bε(0)], or x2 R2 y2 and [I(x1, R1) ⊆ Bε(0)
and I(y1, R1) ⊆ Bε(0)]. For brevity, let Γ(v) denote [I(v, R1) ⊆ Bε(0)].
Weak Pareto and the absence of dictator are straightforwardly satisfied. IIA-
ISεN is also satisfied because when Γ(x1) and Γ(y1) hold, we have Bε(0) ⊆
Bε(x1)∩Bε(y1), and therefore Γ(x1) and Γ(y1) remain true if the indifference
surfaces are kept fixed on Bε(x1) and Bε(y1). It remains to check transitivity
of R̄(R). First, note the following property: If Γ(v) holds and v R1 v

0, then
Γ(v0) also holds. Assume that there exist x, y, z ∈ Rn`

+ such that x R̄(R)
y R̄(R) z P̄ (R) x. If Γ(x1), Γ(y1) and Γ(z1) all hold, this is impossible
because one should have x2 R2 y2 R2 z2 P2 x2. If only one of the three
conditions Γ(x1), Γ(y1), Γ(z1) is satisfied, it is similarly impossible because
one should have x1 R1 y1 R1 z1 P1 x1. Assume Γ(x1) and Γ(y1) hold, but not
Γ(z1). Then, y R̄(R) z P̄ (R) x requires y1 R1 z1 P1 x1, which implies Γ(z1),
a contradiction. Assume Γ(x1) and Γ(z1) hold, but not Γ(y1). Then, x R̄(R)
y R̄(R) z requires x1 R1 y1 R1 z1, which implies Γ(y1), a contradiction.
Assume Γ(y1) and Γ(z1) hold, but not Γ(x1). Then, z P̄ (R) x R̄(R) y requires
z1 P1 x1 R1 y1, which implies Γ(x1), a contradiction.

4 Extension of Informational Basis to the

“Edgeworth Box”

Our second type of extension of informational basis is to focus on the portions
of indifference surfaces which lie “within the Edgeworth box”. However, when
considering any pair of allocations, the two allocations may need different
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IIA-ISFA

good 1

good 2

O

x2

x1

y2

y1

x1 + x2

y1 + y2 ω(x, y)

IIA-ISεN

good 1

good 2

O

x2

x1

y2

y1

x1 + x2

y1 + y2 ω(x, y)

ε

Figure 1: Relevant Portions of Indifference Surfaces under IIA-ISFA and
IIA-ISεN

amounts of total resources to be feasible. Therefore we need to introduce the
following notions. For each good k ∈ {1, ..., `}, define

ωk(x, y) := max{
X
i∈N

xik,
X
i∈N

yik}.

Let ω(x, y) := (ω1(x, y), ...,ω`(x, y)). The vector ω(x, y) ∈ R`
+ represents

the smallest amount of total resources that makes two allocations x and y
feasible. Figure 1 illustrates the construction of ω(x, y). Then, define

Ω(x, y) :=
©
z ∈ R`

+ | z ≤ ω(x, y)
ª
.

The set Ω(x, y) ⊂ R`
+ is the set of consumption bundles that are feasible

with ω(x, y). The following axiom captures the idea that the ranking of two
allocations should depend only on the indifference surfaces over the region
satisfying the feasibility constraint.

IIA except Indifference Surfaces over Feasible Allocations (IIA-
ISFA): ∀R,R0 ∈ Rn, ∀x, y ∈ Rn`

+ , if ∀i ∈ N ,
I(xi, Ri) ∩ Ω(x, y) = I(xi, R

0
i) ∩ Ω(x, y),

I(yi, Ri) ∩ Ω(x, y) = I(yi, R
0
i) ∩ Ω(x, y),
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then R̄(R) and R̄(R0) agree on {x, y}.
The left figure in Figure 1 illustrates the relevant portions of indifference

surfaces under IIA-ISFA, which are indicated by thick curves, while the right
figure shows the relevant parts under IIA-ISεN. One can see that in general,
there is no inclusion relation between the relevant portions of indifference
surfaces under IIA-ISFA and those under IIA-ISεN. Hence, there is no logical
relation between the axioms IIA-ISFA and IIA-ISεN, either.2

The introduction of information about indifference surfaces “in the Edge-
worth box”, however, cannot help us avoid a dictatorial SOF.

Proposition 4 If a SOF satisfies Weak Pareto and IIA-ISFA, then it is
dictatorial.

The proof relies on the following lemmas. First, we define a weak form of
IIA:

Weak Independence of Irrelevant Alternatives (WIIA): ∀R,R0 ∈ Rn,
∀x, y ∈ X, if ∀i ∈ N , Ri and R0i agree on {xi, yi}, and for no i, xi Ii yi, then
R̄(R) and R̄(R0) agree on {x, y}.
A key lemma to prove Proposition 4 is the following:

Lemma 1 If a SOF R̄ satisfies Weak Pareto and IIA-ISFA, then it satisfies
WIIA.

The proof of this lemma is long and relegated in the appendix. We also define
a weak form of dictatorship:

Quasi-Dictatorial SOF: A SOF R̄ is quasi-dictatorial if there exists i0 ∈ N
such that:

∀R ∈ Rn, ∀x, y ∈ X : [xi0Pi0yi0 and 6 ∃i ∈ N with xi Ii yi]⇒ xP̄ (R)y.

Lemma 2 If a SOF R̄ satisfies Weak Pareto and Weak IIA, then it is quasi-
dictatorial.

Proof. Let R̄ be a SOF that satisfies Weak Pareto and Weak IIA. By an
adaptation of a standard proof of Arrow’s theorem (for instance, Sen [18]), we
can show that for every free triple Y ⊂ X, there exists a quasi-dictator over

2See counterexamples in Appendix A.4.
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(Y,Rn). Then, a direct application of Bordes and Le Breton [3] establishes
quasi-dictatorship of R̄.

It is interesting that in our economic environments, quasi-dictatorship is
equivalent to dictatorship as the next lemma shows.

Lemma 3 If a SOF R̄ is quasi-dictatorial, then it is dictatorial.

Proof. Let R̄ be a quasi-dictatorial SOF. Let x, y ∈ X and R ∈ Rn be
such that xi0 Pi0 yi0. By continuity and strict monotonicity of preferences,
there exists x0 ∈ X such that xi0 Pi0 x

0
i0
Pi0 yi0 and for all i ∈ N, either

xi Pi x
0
i Pi yi or yi Ri xi Pi x

0
i. Since R̄ is quasi-dictatorial, it follows that

x P̄ (R) x0 and x0 P̄ (R) y. By transitivity, x P̄ (R) y.

Given these lemmas, the proof of Proposition 4 is straightforward.

Proof of Proposition 4: Let R̄ be a SOF that satisfies Weak Pareto and
IIA-ISFA. By Lemma 1, R̄ satisfies WIIA. Then, by Lemmas 2 and 3, R̄ is
dictatorial.

One may define a weaker axiom than IIA-ISFA by considering a radial
expansion of the “Edgeworth box,” namely λΩ(x, y) for a given λ ≥ 1, where
λ can be arbitrarily large. With this version, however, the same impossibility
still holds as Proposition 4.

5 Extension of Informational Basis with a

Monotone Path

The previous sections have shown that non-local information about indiffer-
ence surfaces is needed to construct a satisfactory social ordering function.
This does not mean, however, that a lot of information is needed. In this
section we show that knowing one point in each indifference surface may be
enough.
Our third way of extending information about indifference surfaces is to

rely on a path
Λω0 := {λω0 ∈ R`

++ | λ ∈ R+},
where ω0 ∈ R`

++ is fixed, and to focus on the point of each indifference
surface that belongs to this path. The idea of referring to such a path is
due to Pazner and Schmeidler [16], and may be justified if the path contains
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relevant benchmark bundles. Although the choice of ω0 is not discussed here,
it need not be arbitrary. For instance, one may imagine that it could reflect
an appropriate equity notion, or it could be the bundle of the total available
resources.

IIA except Indifference Surfaces on Path ω0 (IIA-ISPω0): ∀R,R0 ∈
Rn, ∀x, y ∈ Rn`

+ , if ∀i ∈ N ,
I(xi, Ri) ∩ Λω0 = I(xi, R

0
i) ∩ Λω0 ,

I(yi, Ri) ∩ Λω0 = I(yi, R
0
i) ∩ Λω0 ,

then R̄(R) and R̄(R0) agree on {x, y}.
Following Pazner and Schmeidler’s [16] contribution, we can derive the

next result, which means that not much information is needed to have an
anonymous SOF if only we are prepared to accept an externally specified
reference bundle.

Proposition 5 For any given ω0 ∈ R`
++, there exists a SOF that satisfies

Weak Pareto, IIA-ISPω0 and Anonymity.

Proof. For each i ∈ N , each Ri ∈ R and each xi ∈ R`
+, let α(xi, Ri) ∈ R+ be

the scalar such that α(xi, Ri)ω0 Ii xi. By continuity and strict monotonicity
of preferences, α(xi, Ri) always exists uniquely. Let R̄ be defined by:

x R̄(R) y ⇔ min
i∈N

α(xi, Ri) ≥ min
i∈N

α(yi, Ri).

This SOF clearly satisfies Weak Pareto and Anonymity. It also satisfies IIA-
ISPω0 because whenever I(xi, Ri)∩Λω0 = I(xi, R

0
i)∩Λω0, we have α(xi, Ri) =

α(xi, R
0
i).

By relying on the leximin criterion rather than the maximin for the SOF
defined in the above proof, we could have the Strong Pareto property as
well: ∀x, y ∈ Rn`

+ ,∀R ∈ Rn if ∀i ∈ N, xi Ri yi, then x R̄(R) y and if, in
addition, ∃i ∈ N, xi Pi yi, then x P̄ (R) y.
The final extension of informational basis that we consider is to introduce

whole indifference surfaces. This condition was already introduced and stud-
ied by Hansson [11] in the abstract model of social choice, who showed that
the Borda rule, which does not satisfy the Arrow IIA condition, satisfies this
constrained variant thereof. Pazner [15] also proposed it, in a study of social
choice in economic environments.
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IIA except Whole Indifference Surfaces (IIA-WIS): ∀R,R0 ∈ Rn,
∀x, y ∈ Rn`

+ , if ∀i ∈ N ,

I(xi, Ri) = I(xi, R
0
i),

I(yi, Ri) = I(yi, R
0
i),

then R̄(R) and R̄(R0) agree on {x, y}.
Since IIA-ISPω0 (as well as every other IIA type axiom introduced so far)

implies IIA-WIS, we have the following corollary.

Corollary 1 There exists a SOF that satisfies Weak Pareto, IIA-WIS and
Anonymity.

There are many examples of SOFs satisfying Weak Pareto, IIA-WIS and
Anonymity. Thus, in addition to these three axioms, we may add other
requirements embodying various equity principles. Notice that Strong Pareto
and Anonymity already entail a version of the Suppes grading principle:
for all R ∈ Rn, all x, y, if there are i, j such that Ri = Rj, xi Pi yj and
xj Pi yi, and for h 6= i, j, xh = yh, then x P̄ (R) y. We can also construct
SOFs satisfying Strong Pareto, IIA-WIS (or IIA-ISPω0), Anonymity and
the following version of the Hammond equity axiom (Hammond [10]):
for all R ∈ Rn, and all x, y ∈ Rn`

+ , if there are i, j such that Ri = Rj,
yi Pi xi Pi xj Pi yj, and for all h 6= i, j, xh = yh, then x P̄ (R) y.
Let us summarize below the various IIA type axioms that we have in-

troduced, and the main results in this paper. The arrows indicate logical
relations between the axioms. Weaker axioms allows SOFs to depend on
more information about indifference surfaces. In the appendix we show that
all the implications are strict. (The converse relations do not hold.) The
dotted lines in the figure indicate borderlines between possibility and impos-
sibility, under Weak Pareto, of Non-Dictatorship and of Anonymity.

6 Conclusion

The construction of a non-dictatorial Arrovian social ordering function, in a
framework with purely ordinal, interpersonally non-comparable preferences,
requires information about the shape of indifference surfaces that goes well
beyond infinitesimally local data such as marginal rates of substitution or
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IIA IIA-ISFA IIA-WIS

IIA-MRS IIA-ISεN

IIA-ISPω0

Non-Dictatorship

possibilityimpossibility

Anonymity

possibilityimpossibility

data “within the Edgeworth box”. On the basis of information in some
finitely sized neighborhoods, one can construct a non-dictatorial social or-
dering function, but still cannot have an anonymous one. Only substantially
non-local information about indifference surfaces enables one to construct
a Paretian and anonymous social ordering function. These are the main
messages of this paper, in which we proved two extensions of Arrow’s im-
possibility theorem, and several possibility results. We hope that our paper,
more broadly, contributes to clarifying the informational foundations in the
theory of social choice.
There are limits to our work which may be noticed here, and call for

further research. First, we study a particular economic model, and it would
be worth analyzing the same issues in other models such as the standard ab-
stract model of social choice or other economic models, in particular models
with public goods (the case of consumption externalities in our model could
also be subsumed under the case of public goods). Second, the information
about indifference surfaces is a complex set of object, and our analysis is far
from being exhaustive on the pieces of data which can be extracted from
this set. We have focussed on what seemed to us the most natural parts of
indifference surfaces to which one may want to refer in social evaluation of
allocations, namely, the marginal rates of substitution, the Edgeworth box
(bundles which are achievable by redistributing the considered allocations),
and reference rays. But there may be other ways of considering indifference
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surfaces. For instance, it would be nice to have a measure of the degree to
which a given piece of information is local, and the connection between this
work and topological social choice (e.g. Chichilnisky [6]) might be worth
exploring. Third, there may be other kinds of interesting additional infor-
mation. For instance, Roberts [17] considered introducing information about
utilities and about non-local preferences at the same time, and was able to
characterize the Nash social welfare function on this basis. There certainly
are many avenues of research along these lines. The purpose of this paper
would be well-served if it could open the gate towards these enticing avenues.
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Appendix

A.1 Proof of Proposition 2

The proof of Proposition 2 relies on the following lemmas.
Let Y ⊂ X be a given finite subset of X. Let i ∈ N be given. Define

Yi := {yi ∈ R`
+ | ∃y−i ∈ R(n−1)`

+ , (yi, y−i) ∈ Y }. Let Q denote the set of
convex cones in R`

++. For each yi ∈ Yi, let Q(yi) ∈ Q be given. We say that
the set Yi satisfies the supporting condition with respect to {Q(yi) | yi ∈ Yi}
if for all yi ∈ Yi, all q ∈ Q(yi), and all y0i ∈ Yi with y0i 6= yi, q · yi < q · y0i.
Define

R(Yi, {Q(yi) | yi ∈ Yi}) := {Ri ∈ R | ∀yi ∈ Yi, C(yi, Ri) = Q(yi)}.

The set of all preorderings on Yi is denoted by O(Yi). For all Ri ∈ R, Ri|Yi

denotes the restriction of Ri on Yi
3. For all R0⊂ R, let R0|Yi

:= {Ri|Yi
| Ri ∈

R0}. For all xi ∈ X and all Ri ∈ R, let U(xi, Ri) := {x0i ∈ X | x0i Ri xi}
denote the (closed) upper contour set of xi for Ri.

Lemma 4 If a finite set Yi ⊂ R`
+ satisfies the supporting condition with

respect to {Q(yi) | yi ∈ Yi}, then R(Yi, {Q(yi) | yi ∈ Yi})|Yi
= O(Yi).

Proof. We have only to show that O(Yi) ⊆ R(Yi, {Q(yi) | yi ∈ Yi})|Yi
. Let

R0 ∈ O(Yi) be any preordering on Yi. Construct a preordering Ri ∈ R so
that the upper contour set of each yi ∈ Yi is defined as follows. Let xi ∈ Yi
be such that for all yi ∈ Yi, yi R0i xi. Define Y 1i := {yi ∈ Yi | yi I 0i xi}. For
each a ∈ R`

+ and each q ∈ R`
++, define H(a, q) := {b ∈ R`

+ | q · b ≥ q · a}. Let

U(xi, Ri) :=
\
yi∈Y 1

i

⎡⎣ \
q∈Q(yi)

H(yi, q)

⎤⎦
Let I(xi, Ri) be the boundary of U(xi, Ri). Clearly, for all yi ∈ Y 1i , C(yi, Ri) =
Q(yi).We also have that for all yi ∈ Yi\Y 1i , and for all x0i ∈ I(xi, Ri), yi Pi x0i.
Given δ > 0, let (1+δ)U(xi, Ri) := {x0i ∈ R`

+ | ∃ai ∈ U(xi, Ri), x0i = (1+δ)ai},
and let (1 + δ)I(xi, Ri) be the boundary of (1 + δ)U(xi, Ri). For sufficiently
small δ, we have that for all yi ∈ Yi\Y 1i and all x0i ∈ (1 + δ)I(xi, Ri), yi Pi x

0
i

3Namely, Ri|Yi is the preordering on Yi such that for all xi, yi ∈ Yi, xi Ri|Yi yi ⇔ xi Ri

yi.
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by continuity of preferences. Let zi ∈ Yi\Y 1i be such that for all yi ∈ Yi\Y 1i ,
yi R

0
i zi. Define Y

2
i := {yi ∈ Yi\Y 1i | yi I 0i zi}. Let

U(zi, Ri) := (1 + δ)U(xi, Ri)
\⎛⎝ \

yi∈Y 2
i

⎡⎣ \
q∈Q(yi)

H(yi, q)

⎤⎦⎞⎠
Let I(zi, Ri) be the boundary of U(zi, Ri). By definition, for all yi ∈ Y 2i ,
C(yi, Ri) = Q(yi). We have that for all yi ∈ Yi\ (Y 1i ∪ Y 2i ) and all x0i ∈
I(zi, Ri), yi Pi x

0
i. Similarly we can construct the upper contour set of each

yi ∈ Yi\ (Y 1i ∪ Y 2i ) . By its construction, Ri ∈ R(Yi, {Q(yi) | yi ∈ Yi}) and
Ri|Yi

= R0. Thus, R0 ∈ R(Yi, {Q(yi) | yi ∈ Yi})|Yi
.

Let R̄ be a social ordering function. Let Y ⊆ X and R0 ⊆ Rn be given.
We say that agent i0 ∈ N is a local dictator for R̄ over (Y,R0) if for all
x, y ∈ Y , and all R ∈ R0, xi0 Pi0 yi0 implies x P̄ (R) y.

Lemma 5 Let R̄ be a social ordering function satisfying Weak Pareto and
IIA-MRS. Let Y ⊂ X be a finite subset of X such that |Y | ≥ 3.4 Sup-
pose that for all i ∈ N , Yi satisfies the supporting condition with respect to
{Q(yi) | yi ∈ Yi}. Then, there exists a local dictator i0 ∈ N for R̄ over
(Y,
Q
i∈N R(Yi, {Q(yi) | yi ∈ Yi})).

Proof. For all R,R0 ∈ Qi∈N R(Yi, {Q(yi) | yi ∈ Yi}), all y ∈ Y, and all
i ∈ N, C(yi, Ri) = C(yi, R0i). Since R̄ satisfies IIA-MRS, we have that for all
x, y ∈ Y, and allR,R0 ∈Qi∈N R(Yi, {Q(yi)| yi ∈ Yi}), if for all i ∈ N, Ri and
R0i agree on {xi, yi}, then R̄(R) and R̄(R0) agree on {x, y}. By Lemma 4, for
all i ∈ N,R(Yi, {Q(yi) | yi ∈ Yi})|Yi

= O(Yi). Hence, by Arrow’s Theorem,
there exists a local dictator for R̄ over (Y,

Q
i∈N R(Yi, {Q(yi) | yi ∈ Yi})).

We say that a subset Y of X is free for agent i if R|Yi
= O(Yi). It is

free if it is free for all i ∈ N. If Y contains two elements, it is a free pair.
If Y contains three elements, it is a free triple. Note that a set {x, y} is a
free pair for i ∈ N if and only if for some k, k0 ∈ {1, · · · , `}, xik > yik and
yik0 > xik0 . Given two consumption bundles xi, yi ∈ R`

+, define xi ∧ yi ∈ R`
+

as (xi ∧ yi)k = min{xik, yik} for all k ∈ {1, · · · , `}.
Lemma 6 Let R̄ be a social ordering function satisfying Weak Pareto and
IIA-MRS. If {x, y} ⊂ X is a free pair, then there exists a local dictator for
R̄ over ({x, y},Rn).

4Given a set A, |A| denotes the cardinality of A.
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Figure 2: Proof of Lemma 6

Proof. Let R̄ be a social ordering function satisfying Weak Pareto and IIA-
MRS. Let {x, y} ⊂ X be a free pair. Let

K1 := {k ∈ {1, · · · , `} | xik > yik}
K2 := {k ∈ {1, · · · , `} | xik < yik}

Since {x, y} is a free pair, K1,K2 6= ∅.
Step 1 : For each i ∈ N , we define two consumption bundles zi, wi ∈ X as
follows:

zi := xi ∧ yi + 1
2

∙
2

3
(xi − xi ∧ yi) + 1

3
(yi − xi ∧ yi)

¸
(1)

wi := xi ∧ yi + 1
2

∙
1

3
(xi − xi ∧ yi) + 2

3
(yi − xi ∧ yi)

¸
(2)

Figure 2 illustrates the bundles xi, yi, xi∧yi, zi, wi, and also bi, vi, ti, which
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are defined in the next step. Let q ∈ R`
++. Then, q · yi < q ·wi if and only if

2

3

X
k∈K2

qk(yik − xik) < 1

6

X
k∈K1

qk(xik − yik) (3)

Since K1 6= ∅, the right-hand-side of (3) can be arbitrarily large as (qk)k∈K1

become large, (qk)k∈K2 being constant. Hence, there exists a price vector
q(yi) ∈ R`

++ that satisfies inequality (3). With some calculations, it can be
shown that q(yi) · yi < q(yi) · zi and q(yi) · yi < q(yi) · xi.
Similarly, for each a ∈ {xi, zi, wi}, we can find a price vector q(a) ∈ R`

++

such that for all a0 ∈ {xi, zi, wi, yi} with a0 6= a, q(a) · a < q(a) · a0. Hence,
the set Y 0i = {xi, zi, wi, yi} satisfies the supporting condition with respect to
{q(xi), q(zi), q(wi), q(yi)}.5
Let z := (zi)i∈N and w := (wi)i∈N . Let Y 0 := {x, z, w, y}.

By Lemma 5, there exists a local dictator i0 ∈ N for R̄ over
(Y 0,

Q
i∈N R(Y 0i , {q(xi), q(zi), q(wi), q(yi)}).

Step 2: We will show that agent i0 is a local dictator for R̄ over ({x, y},Rn).
Suppose, on the contrary, that there exists a preference profile R0 ∈ Rn

such that (i) xi0P
0
i0
yi0 and yR̄(R

0)x or (ii) yi0P
0
i0
xi0 and xR̄(R

0)y. Without
loss of generality, suppose that (i) holds. Let Y 1 := {z, w, y}. Since agent i0
is the local dictator for R̄ over (Y 0,

Q
i∈N R(Y 0i , {q(xi), q(zi), q(wi), q(yi)}),

he is also the local dictator for R̄ over (Y 1,
Q
i∈N R(Y 1i , {q(zi), q(wi), q(yi)}).

(Otherwise, by Lemma 5, there exists a local dictator j 6= i0
for R̄ over (Y 1,

Q
i∈N R(Y 1i , {q(zi), q(wi), q(yi)})), and we can con-

struct a preference profile R ∈ Q
i∈N R(Y 0i , {q(xi), q(zi), q(wi), q(yi)}) ⊂Q

i∈N R(Y 1i , {q(zi), q(wi), q(yi)}) such that zi0Pi0wi0 and wjPjzj. Hence we
must have zP̄ (R)w and wP̄ (R)z, which is a contradiction.)
We define two allocations v, t ∈ X in the following steps. Let i ∈ N . First,

define bi ∈ R`
+ as follows: If for all q ∈ C(xi, R0i ), q · (yi − xi) ≥ 0, then let

bi := yi. If for some q ∈ C(xi, R0i ), q ·(yi−xi) < 0, then let θ > 0 be a positive
number such that for all q ∈ C(xi, R0i ), q·[yi + θ(yi − xi ∧ yi)− xi] > 0. Since
q ∈ R`

++ by strict monotonicity of preferences, and yi − xi ∧ yi > 0, such a
number θ exists. Then, define bi := yi+ θ(yi−xi∧ yi). By definition, bi > yi,
and for all q ∈ C(xi, R0i ), q · (bi − xi) > 0. Define

vi := bi + 2(bi − xi ∧ yi)
Then, vi > bi > yi, and for all q ∈ C(xi, R0i ), q · (vi − xi) > 0.

5With a slight abuse of notation, we are writing q(·) for Q(·) = {αq(·) | α > 0}.
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Next, define

ti := xi ∧ yi + 1
2

∙
2

3
(vi − xi ∧ yi) + 1

3
(wi − xi ∧ yi)

¸
Then,

ti = bi +
1

6
(wi − xi ∧ yi) > bi

and for all q ∈ C(xi, R0i ), q · xi < q · ti.
As in Step 1, we can find price vectors q(vi), q(ti) ∈ R`

++ such that q(vi) ·
vi < q(vi) · a for all a ∈ {xi, zi, wi, ti}, and q(ti) · ti < q(ti) · a for all a ∈
{xi, zi, wi, vi}.
On the other hand, because vi > yi and ti > yi, we have that q(zi) · zi <

q(zi) · a for all a ∈ {ti, vi}, and q(wi) · wi < q(wi) · a for all a ∈ {ti, vi}.
So far we have shown that

(i) the set Y 2i := {xi, ti, vi} satisfies the supporting condition with respect to
{C(xi, R0i ), q(ti), q(vi)}.
(ii) the set Y 3i := {zi, wi, ti, vi} satisfies the supporting condition with respect
to {q(zi), q(wi), q(ti), q(vi)}.
Let v := (vi)i∈N and t := (ti)i∈N . Let Y 2 := {x, t, v} and Y 3 :=

{z, w, t, v}. By Lemma 5, there exist a local dictator i1 ∈ N for R̄ over
(Y 2,

Q
i∈N R(Y 2i , {C(xi, R0i ), q(ti), q(vi)}), and a local dictator i2 ∈ N for R̄

over (Y 3,
Q
i∈N R(Y 3i , {q(zi), q(wi), q(ti), q(vi)}). Recall that agent i0 ∈ N is

the local dictator for R̄ over (Y 1,
Q
i∈N R(Y 1i , {q(zi), q(wi), q(yi)}). Let R1 ∈

Rn be a preference profile such that for all i ∈ N , C(xi, R1i ) = C(xi, R
0
i ),

and for all ai ∈ {ti, vi, wi, yi, zi}, C(ai, R1i ) = {q(ai)}, and such that
xi0P

1
i0
zi0P

1
i0
wi0P

1
i0
ti0P

1
i0
vi0P

1
i0
yi0

and for all i ∈ N with i 6= i0,
xiP

1
i viP

1
i tiP

1
i wiP

1
i ziP

1
i yi

Since R1 ∈Qi∈N R(Y 1i , {q(zi), q(wi), q(yi)}, and agent i0 is the local dictator
for R̄ over (Y 1,

Q
i∈N R(Y 1i , {q(zi), q(wi), q(yi)}), we have zP̄ (R1)w. Because

R1 ∈ Qi∈N R(Y 3i , {q(zi), q(wi), q(ti), q(vi)}, this implies that i0 = i2. Hence,
we have tP̄ (R1)v. Since R2 ∈ Qi∈N R(Y 2i , {C(xi, R0i ), q(ti), q(vi)}, it follows
that i0 = i1.
Let R2 ∈ Rn be a preference profile such that xi0P

2
i0
vi0 and for all

i ∈ N , R2i |{xi,yi} = R0i |{xi,yi}, and C(xi, R
2
i ) = C(xi, R

0
i ), C(ti, R

2
i ) =
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{q(ti)}, C(vi, R2i ) = {q(vi)} and C(yi, R2i ) = C(yi, R
0
i ). Since agent i0 ∈ N

is the local dictator for R̄ over (Y 2,
Q
i∈N R(Y 2i , {C(xi, R0i ), q(ti), q(vi)}) and

R2 ∈ Qi∈N R(Y 2i , {C(xi, R0i ), q(ti), q(vi)}), we have that xP̄ (R2)v. Recall
that for all i ∈ N , vi > yi. Hence, by strict monotonicity of preferences,
viP

2
i yi for all i ∈ N . Because the social ordering function R̄ satisfies Weak

Pareto, we have vP̄ (R2)y. By transitivity of R̄, xP̄ (R2)y. However, since
R̄ satisfies IIA-MRS, and C(xi, R

2
i ) = C(xi, R

0
i ), C(yi, R

2
i ) = C(yi, R

0
i ), and

yR̄(R0)x, we must have yR̄(R2)x. This is a contradiction.

Lemma 7 Let R̄ be a social ordering function satisfying Weak Pareto and
IIA-MRS. If {x, y, z} ⊂ X is a free triple, then there exists a local dictator
for R̄ over ({x, y, z},Rn).

Proof. By Lemma 6, there exist a local dictator i0 over ({x, y},Rn), a local
dictator i1 over ({y, z},Rn), and a local dictator i2 over ({x, z},Rn). Suppose
that i0 6= i1. Let R ∈ Rn be a preference profile such that xi0Pi0yi0 , yi1Pi1zi1 ,
and zi2Pi2xi2 . Then, we have xP̄ (R)yP̄ (R)zP̄ (R)x, which contradicts the
transitivity of R̄(R). Hence, we must have i0 = i1. By the same argument,
we have i0 = i1 = i2.

Proof of Proposition 2: Let R̄ be a social ordering function satisfying
Weak Pareto and IIA-MRS. By Lemma 6, for every free pair {x, y} ⊂ X,
there exists a local dictator over ({x, y},Rn). By Lemma 7 and Bordes and Le
Breton [3, Theorem 2], these dictators must be the same individual. Denote
the individual by i0. It remains to show that for any pair {x, y} that is not
free, i0 is the local dictator over ({x, y},Rn). Suppose, on the contrary, that
there exist {x, y} ⊂ X and R ∈ Rn such that {x, y} is not a free pair, and
xi0Pi0yi0 but yR̄(R)x. Define zi0 ∈ R`

+ as follows.
Case 1: {x, y} is a free pair for i0.
For all λ ∈]0, 1[, {λx+ (1− λ)y, x} and {λx+ (1− λ)y, y} are free pairs for
i0. By continuity, there exists λ

∗ such that xi0Pi0 [λ
∗xi0 + (1 − λ∗)yi0 ]Pi0yi0 .

Then, let zi0 := λ∗xi0 + (1− λ∗)yi0.
Case 2: {x, y} is not a free pair for i0.
Then, for all k ∈ {1, · · · , `}, xi0k ≥ yi0k with at least one strict inequality.
Note that y 6= 0.
Case 2-1: There exists k0 such that for all k ∈ {1, · · · , `} with k 6= k0,
xi0k = yi0k and yi0k0 > 0.
Then, xi0k0 > yi0k0 > 0. Given ε > 0, define wi0 ∈ R`

+ as wi0k0 := yi0k0 and for
all k 6= k0, wi0k := yi0k + ε. For sufficiently small ε, we have xi0Pi0wi0Pi0yi0

24



by continuity and strict monotonicity of preferences. Given δ > 0, define
ti0 ∈ R`

+ as ti0k0 := wi0k0 − δ and for all k 6= k0, ti0k := wi0k. For sufficiently
small δ, we have xi0Pi0ti0Pi0yi0 , again by continuity and strict monotonicity
of preferences. Moreover, {t, x} and {t, y} are free pairs for i0. Then, let
zi0 := ti0.
Case 2-2: There exists k0 such that for all k ∈ {1, · · · , `} with k 6= k0,
xi0k = yi0k and yi0k0 = 0.
Then, for all k ∈ {1, · · · , `} with k 6= k0, xi0k = yi0k > 0. Let k00 6= k0. Given
ε > 0, define wi0 ∈ R`

+ as wi0k00 := xi0k00 − ε and for all k 6= k00, wi0k := xi0k.
For sufficiently small ε, we have xi0Pi0wi0Pi0yi0 . Given δ > 0, define ti0 ∈ R`

+

as ti0k0 := wi0k0 + δ and for all k 6= k0, ti0k := wi0k. For sufficiently small δ, we
have xi0Pi0ti0Pi0yi0 . Moreover, {t, x} and {t, y} are free pairs for i0. Then,
let zi0 := ti0.
Case 2-3: There exist k0, k00 ∈ {1, · · · , `} with k0 6= k00, xi0k0 > yi0k0 and
xi0k00 > yi0k00 .
Let k∗ be such that yi0k∗ > 0. Given ε > 0, define wi0 ∈ R`

+ as wi0k∗ :=
yi0k∗ − ε and for all k 6= k∗, wi0k := xi0k. For sufficiently small ε, we have
xi0Pi0wi0Pi0yi0. Let k

∗∗ 6= k∗. Given δ > 0, define ti0 ∈ R`
+ as ti0k∗∗ :=

wi0k∗∗ + δ and for all k 6= k∗∗, ti0k := wi0k. For sufficiently small δ, we have
xi0Pi0ti0Pi0yi0. Moreover, {t, x} and {t, y} are free pairs for i0. Then, let
zi0 = ti0.
Next, for each i 6= i0, let zi ∈ R`

+ be such that {z, x} and {z, y} are free
pairs for i. By the same construction as above, we can find such zi ∈ R`

+

for each i. Let z = (zi)i∈N ∈ Rn`
+ . Since i0 is the dictator over all free pairs,

we have that xP̄ (R)z and zP̄ (R)y. By transitivity of R̄, we have xP̄ (R)y,
which contradicts the supposition that yR̄(R)x.¥

A.2 Proof of Proposition 3

In order to prove the impossibility part, it is convenient to consider various
possible sizes of the population. Let ε > 0 be given. Suppose, to the con-
trary, that there exists a SOF R̄ that satisfies Weak Pareto, IIA-ISεN and
Anonymity.

Case n = 2. Consider the consumption bundles x := (10ε, ε, 0, ...),
y := (20ε, ε, 0, ...), z := (ε, 20ε, 0, ...), w := (ε, 10ε, 0, ...). Define preference
relations R1 ∈ R and R2 ∈ R as follows.
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(i) On the subset

S1 := {v ∈ R`+ | ∀i ∈ {3, ..., `}, vi = 0 and v2 ≤ min{v1, 2ε}}
we have

v R1 v
0 ⇔ v1 + 2v2 ≥ v01 + 2v02,

and on the subset

S2 := {v ∈ R`+ | ∀i ∈ {3, ..., `}, vi = 0 and v1 ≤ min{v2, 2ε}},
we have

v R1 v
0 ⇔ 2v1 + v2 ≥ 2v01 + v02.

(ii) On Bε(x) ∪ Bε(y),

v R1 v
0 ⇔ v1 + 2v2 +

X̀
k=3

vk ≥ v01 + 2v02 +
X̀
k=3

v0k,

and on Bε(z) ∪ Bε(w),

v R1 v
0 ⇔ 2v1 + v2 +

X̀
k=3

vk ≥ 2v01 + v02 +
X̀
k=3

v0k.

(iii) Note that the projection of Bε(x) ∪ Bε(y) on the subspace of good 1
and good 2, namely, [Bε(x) ∪ Bε(y)] ∩ {v ∈ R`+ | ∀i ∈ {3, ..., `}, vi = 0}, is
included in S1, and the projection of Bε(z)∪Bε(w) on the subspace of good
1 and good 2 is included in S2. Since

(w1 + ε) + 2(w2 − 2ε) > x1 + 2x2
and

2(y1 − 2ε) + (y2 + ε) > 2z1 + z2,

it is possible to complete the definition of R1 so that w P1 x and y P1 z.
Then, define R2 so that it coincides with R1 on S1, on S2, and on Bε(a) for
all a ∈ {x, y, z, w}. Similarly, it is possible to complete the definition of R2
so that x P2 w and z P2 y. Figure 3 illustrates this construction.
If the profile of preferences is R := (R1, R2), by Weak Pareto we have

(y, x) P̄ (R) (z, w) and (w, z) P̄ (R) (x, y).
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Figure 3: Proof of Proposition 3

If the profile of preferences is R0 := (R1, R1), by Anonymity we have

(y, x) Ī(R0) (x, y) and (w, z) Ī(R0) (z, w).

Since R1 and R2 coincide on Bε(a) for all a ∈ {x, y, z, w}, it follows from
IIA-ISεN that

(y, x) Ī(R0) (x, y) ⇔ (y, x) Ī(R) (x, y),

(w, z) Ī(R0) (z, w) ⇔ (w, z) Ī(R) (z, w).

By transitivity, (x, y) P̄ (R) (x, y), which is impossible.
Case n = 3. Consider the consumption bundles x := (10ε, 2ε

3
, 0, ...), y :=

(20ε, 2ε
3
, 0, ...), t := (15ε, 2ε

3
, 0, ...), z := (2ε

3
, 20ε, 0, ...), w := (2ε

3
, 10ε, 0, ...),

r := (2ε
3
, 15ε, 0, ...). Define preference relations R1, R2 and R3 as above on

the subset S1, on S2, and on Bε(a) for all a ∈ {x, y, z, w, t, r}. Complete
their definitions so that y P1 z, w P1 x, t P2 r, z P2 y, x P3 w, and r P3 t.
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If the profile of preferences is R := (R1, R2, R3), then by Weak Pareto we
have

(y, t, x) P̄ (R) (z, r, w) and (w, z, r) P̄ (R) (x, y, t).

If the profile of preferences is R0 := (R1, R1, R1), by Anonymity we have

(y, t, x) Ī(R0) (x, y, t) and (w, z, r) Ī(R0) (z, r, w).

Since R1, R2 and R3 coincide on Bε(a) for all a ∈ {x, y, t, z, w, r}, it follows
from IIA-ISεN that

(y, t, x) Ī(R0) (x, y, t) ⇔ (y, t, x) Ī(R) (x, y, t),

(w, z, r) Ī(R0) (z, r, w) ⇔ (w, z, r) Ī(R) (z, r, w).

By transitivity, (x, y, t) P̄ (R) (x, y, t), which is impossible.
Case n = 2k. Partition the population into k pairs, and construct an
argument similar to the case n = 2, with the consumption bundles x =
(10ε, 2ε

n
, 0, ...), y = (20ε, 2ε

n
, 0, ...), z = (2ε

n
, 20ε, 0, ...), w = (2ε

n
, 10ε, 0, ...), and

the allocations (y, x, y, x, ...), (x, y, x, y, ...), (z, w, z, w, ...) and (w, z, w, z, ...).
Case n = 2k+1. Partition the population into k−1 pairs and one triple, and
construct an argument combining the cases n = 2 and n = 3, with the con-
sumption bundles x = (10ε, 2ε

n
, 0, ...), y = (20ε, 2ε

n
, 0, ...), t = (15ε, 2ε

n
, 0, ...),

z = (2ε
n
, 20ε, 0, ...), w = (2ε

n
, 10ε, 0, ...), r = (2ε

n
, 15ε, 0, ...), and the al-

locations (y, x, y, x, ..., y, t, x), (x, y, x, y, ..., x, y, t), (z, w, z, w, ...z, r, w) and
(w, z, w, z, ..., w, z, r).

A.3 Proof of Lemma 1

To prove Lemma 1, we need an auxiliary lemma. Define

X1 := {xi ∈ R`
+ \ {0} | ∀k ≥ 2, xik = 0}

X2 := {xi ∈ R`
+ \ {0} | ∀k 6= 2, xik = 0}.

Lemma 8 For all Ri ∈ R, and all x, y ∈ X, there exists R∗i ∈ R such that

I(xi, Ri) ∩ Ω(x, y) = I(xi, R
∗
i ) ∩ Ω(x, y)

I(yi, Ri) ∩ Ω(x, y) = I(yi, R
∗
i ) ∩ Ω(x, y)

I(xi, R
∗
i ) ∩X1 6= ∅

I(yi, R
∗
i ) ∩X1 6= ∅
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Proof. Let Ri ∈ R and x, y ∈ X be given. Without loss of generality, assume
that yi Ri xi. Define A := I(xi, Ri) ∩ Ω(x, y) and

U(xi, R
∗
i ) :=

\
a∈A

⎡⎣ \
q∈C(a,Ri)

H(a, q)

⎤⎦
where we recall that H(a, q) = {b ∈ R`

+ | q · b ≥ q · a}. Let I(xi, R∗i ) be the
boundary of U(xi, R

∗
i ).

Define a function g : A → R+ as follows: For every a ∈ A, if (a1 +
1, 0, . . . , 0) Pi a, then let g(a) = 0, and otherwise, let g(a) ∈ R be such that
(a1+1, g(a)a2, . . . , g(a)a`) Ii a. By continuity and strict monotonicity of Ri,
g(a) exists uniquely and 0 ≤ g(a) < 1. By continuity of Ri, g is continuous.
For every a ∈ A, let b(a) := (a1 + 1, g(a)a2, . . . , g(a)a`). Define f : A → X1
by

f(a) := a+
1

1− g(a) [b(a)− a]

=

µ
a1 +

1

1− g(a) , 0, . . . , 0
¶
.

Since b(a) Ri a, it follows that for every q ∈ C(a,Ri), q · b(a) ≥ q · a, and so
q · f(a) ≥ q · a. Hence, f(a) ∈ H(a, q).
The function f is continuous, and the set A is compact and nonempty.

Hence, the set f(A) is compact and nonempty. Therefore, there exists a∗ ∈ A
such that ||f(a∗)|| = maxa∈A ||f(a)|| = maxa∈A

h
a1 +

1
1−g(a)

i
. Then, for all

a ∈ A, and all q ∈ C(a,Ri), since f(a) ∈ H(a, q) and f(a∗) ≥ f(a), we have
f(a∗) ∈ H(a, q). Thus, f(a∗) ∈ U(xi, R∗i ), which proves that U(xi, R∗i )∩X1 6=
∅. By continuity and strict monotonicity of preferences, I(xi, R∗i ) ∩X1 6= ∅.
If yi Ii xi, then we are done. Assume that yi Pi xi. Define

U(yi, R
∗
i ) :=

\
a∈I(yi,Ri)∩Ω(x,y)

⎡⎣ \
q∈C(a,Ri)

H(a, q)

⎤⎦ .
By continuity of preferences, there exists δ > 0 such that for all zi ∈ [(1 +
δ)Ii(xi, Ri)] ∩ Ω(x, y), yi Pi zi. Define

Ũ(yi, R
∗
i ) := U(yi, R

∗
i ) ∩ (1 + δ)U(xi, R

∗
i )
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Then, let I(yi, R
∗
i ) be the boundary of Ũ(yi, R

∗
i ). Note that I(xi, R

∗
i ) ∩

I(yi, R
∗
i ) = ∅. A similar argument as above shows that U(yi, R∗i ) ∩X1 6= ∅.

Since U(xi, R
∗
i ) ∩ X1 6= ∅, we have [(1 + δ)U(xi, R

∗
i )] ∩ X1 6= ∅. Thus,

Ũ(yi, R
∗
i ) ∩ X1 6= ∅. By continuity and strict monotonicity of preferences,

I(yi, R
∗
i ) ∩X1 6= ∅.

Proof of Lemma 1.
Let R,R0 ∈ Rn, x, y ∈ X be such that for all i ∈ N , Ri and R0i agree on
{xi, yi}, and for no i ∈ N, xi Ii yi. Assume that xP̄ (R)y.
By Lemma 8, there exists R∗ ∈ Rn such that for all i ∈ N,

I(xi, Ri) ∩ Ω(x, y) = I(xi, R
∗
i ) ∩ Ω(x, y)

I(yi, Ri) ∩ Ω(x, y) = I(yi, R
∗
i ) ∩ Ω(x, y)

I(xi, R
∗
i ) ∩X1 6= ∅

I(yi, R
∗
i ) ∩X1 6= ∅,

and similarly there exists R0∗ ∈ Rn such that for all i ∈ N, ,

I(xi, R
0
i) ∩ Ω(x, y) = I(xi, R

0∗
i ) ∩ Ω(x, y)

I(yi, R
0
i) ∩ Ω(x, y) = I(yi, R

0∗
i ) ∩ Ω(x, y)

I(xi, R
0∗
i ) ∩X2 6= ∅

I(yi, R
0∗
i ) ∩X2 6= ∅.

By strict monotonicity of preferences, each of I(xi, R
∗
i )∩X1, I(yi, R

∗
i )∩X1,

I(xi, R
0∗
i ) ∩ X2, and I(yi, R0∗i ) ∩ X2 is a singleton. Define x1, y1 ∈ Xn

1 by
{x1i } := I(xi, R∗i ) ∩X1 and {y1i } := I(yi, R∗i ) ∩X1 for all i ∈ N. Notice that
for all i ∈ N, x1i1 > 0, y1i1 > 0 because x, y ∈ X and preferences are strictly
monotonic. Construct x1∗, y1∗ ∈ Xn

1 as follows: for all i ∈ N ,

x1∗i1 := x1i1 +
1

3

¯̄
x1i1 − y1i1

¯̄
y1∗i1 := max

½
1

2
y1i1, y

1
i1 −

1

3

¯̄
x1i1 − y1i1

¯̄¾
.

Notice that for all i ∈ N,

x1∗i1 > y1∗i1 ⇔ xiPiyi

y1∗i1 > x1∗i1 ⇔ yiPixi.
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By Weak Pareto, x1∗P̄ (R∗)x and yP̄ (R∗)y1∗. By IIA-ISFA, xP̄ (R∗)y. There-
fore, by transitivity,

x1∗P̄ (R∗)y1∗.

Now, define x2, y2 ∈ Xn
2 by {x2i } := I(xi, R0∗i )∩X2 and {y2i } := I(yi, R0∗i )∩

X2 for all i ∈ N. Again, x2i2 > 0, y2i2 > 0 for all i ∈ N. Construct x2∗, y2∗ ∈ Xn
2

as follows: for all i ∈ N ,

x2∗i2 := max

½
1

2
x2i2, x

2
i2 −

1

3

¯̄
x2i2 − y2i2

¯̄¾
y2∗i2 := y2i2 +

1

3

¯̄
x2i2 − y2i2

¯̄
.

Notice that for all i ∈ N,
x2∗i2 > y2∗i2 ⇔ xiP

0
iyi ⇔ xiPiyi ⇔ x1∗i1 > y

1∗
i1

y2∗i2 > x2∗i2 ⇔ yiP
0
ixi ⇔ yiPixi ⇔ y1∗i1 > x

1∗
i1 .

By Weak Pareto, xP̄ (R0∗)x2∗ and y2∗P̄ (R0∗)y.
Let R∗∗ ∈ Rn be such that for all i ∈ N,

x2∗i P
∗∗
i x

1∗
i and y

1∗
i P

∗∗
i y

2∗
i .

Notice that for all i ∈ N,
I(x1∗i , R

∗∗
i ) ∩ Ω(x1∗, y1∗) = I(x1∗i , R

∗
i ) ∩ Ω(x1∗, y1∗) = {x1∗i },

I(y1∗i , R
∗∗
i ) ∩ Ω(x1∗, y1∗) = I(y1∗i , R

∗
i ) ∩ Ω(x1∗, y1∗) = {y1∗i }.

Therefore, by IIA-ISFA, x1∗P̄ (R∗∗)y1∗. By Weak Pareto, x2∗P̄ (R∗∗)x1∗ and
y1∗P̄ (R∗∗)y2∗, so that by transitivity, x2∗P̄ (R∗∗)y2∗.
Now, we also have that for all i ∈ N,

I(x2∗i , R
∗∗
i ) ∩ Ω(x2∗, y2∗) = I(x2∗i , R

0∗
i ) ∩ Ω(x2∗, y2∗) = {x2∗i },

I(y2∗i , R
∗∗
i ) ∩ Ω(x2∗, y2∗) = I(y2∗i , R

0∗
i ) ∩ Ω(x2∗, y2∗) = {y2∗i }.

By IIA-ISFA again, x2∗P̄ (R0∗)y2∗. By transitivity, we deduce xP̄ (R0∗)y. Fi-
nally, by IIA-ISFA,

xP̄ (R0)y.

We have proved that xP̄ (R)y implies xP̄ (R0)y,. It follows from symmetry
of the argument that yP̄ (R)x implies yP̄ (R0)x, and that xĪ(R)y implies
xĪ(R0)y.
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A.4 Logical Relations between the IIA Axioms

1. IIA-MRS implies neither IIA-ISFA nor IIA.
Consider the following SOF: ∀R ∈ Rn, ∀x, y ∈ Rn`

+ , x R̄(R) y if and only if
(i) ∃p ∈ R`

+ such that ∀i ∈ N , p ∈ C(xi, Ri), and ∀i, j ∈ N , p · xi = p · xj, or
(ii) 6 ∃p ∈ R`

+ such that ∀i ∈ N , p ∈ C(yi, Ri), and ∀i, j ∈ N , p · yi = p · yj.
This SOF satisfies IIA-MRS but violates IIA-ISFA and hence IIA.

2. IIA-ISεN implies neither IIA-ISFA nor IIA.
This is derived from fact 1 above and the fact that IIA-MRS implies IIA-
ISεN.

3. IIA-ISεN does not imply IIA-MRS.
This is derived from Propositions 2 and 3.

4. IIA-WIS implies neither IIA-ISεN nor IIA-ISFA.
This is derived from Propositions 3, 4 and Corollary 1.

5. IIA-ISFA implies none of IIA-ISεN, IIA-MRS and IIA.
Fix ω0 := (1, . . . , 1) ∈ R`. For each i ∈ N , each Ri ∈ R and each xi ∈ R`

+,
let α(xi, Ri) ∈ R+ be defined as in the proof of Proposition 5. Consider the
following SOF: ∀R ∈ Rn, ∀x, y ∈ Rn`

+ , x R̄(R) y if and only if (i) 6 ∃λ ∈ R+

such that
P

i∈N yi = λω0, or (ii) ∃λ,λ0 ∈ R+ such that
P

i∈N xi = λω0 andP
i∈N yi = λ0ω0, and mini∈N α(xi, Ri) ≥ mini∈N α(yi, Ri). This SOF satisfies

IIA-ISFA, but it violates IIA-ISεN and hence IIA-MRS and IIA.

6. IIA-ISPω0 implies none of IIA-ISεN, IIA-MRS, IIA-ISFA and IIA.
This is derived from Propositions 3, 4 and 5.

7. IIA-WIS does not imply IIA-ISPω0.
Fix p := (1, . . . , 1) ∈ R`. For each i ∈ N , each Ri ∈ R and each xi ∈
R`
+, define e(xi, Ri) := min{p · yi | yi ∈ I(xi, Ri)}. (That is, e(xi, Ri) is
the minimum expenditure to attain I(xi, Ri) at p.) Consider the following
SOF: ∀R ∈ Rn, ∀x, y ∈ Rn`

+ , x R̄(R) y if and only if mini∈N e(xi, Ri) ≥
mini∈N e(yi, Ri). This SOF satisfies IIA-WIS but violates IIA-ISPω0.
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