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1 Introduction

Since the seminal work of Olson (1965), it has been widely argued that public goods
should be undersupplied by voluntary contribution due to free-riding incentives (see e.g.
Bergstrom, Blume and Varian 1986; Andreoni 1988). To solve the free-riding problem, a
large volume of literature has investigated the mechanisms that can achieve an efficient
provision of public goods. The principle theoretical approaches are listed below.

First, the theory of repeated games considers ways in which long-term relationships
can facilitate cooperation among selfish individuals. It considers the level of contributions
attained under decentralized punishment rules. Second, the theory of mechanism design
investigates the use of mechanisms to encourage or force an efficient provision of public
goods. Groves and Ledyard (1977) proposed a mechanism that achieves Pareto efficient
allocation in a public good economy. For a survey of mechanism design, see Groves and
Ledyard (1987). More recently Moore and Repullo (1988) have shown that almost any
social choice rule can be implemented by the subgame perfect equilibria of multi-stage
mechanisms, in an economic environment with at least one private good. Finally, other
works have used cooperative game theory (especially core theory) to study how individuals
can reach an efficient solution through voluntary bargaining. For examples of this type
of work, see Foley (1970) and Mas-Colell (1980).

Most previous studies of the free-riding problem implicitly assume a restrictive prop-
erty. It is usually assumed either that all individuals in question have already participated
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(or been forced to participate) in a mechanism?, or that individuals are only willing to

2We interpret the notion of a mechanism broadly so that it includes repeated game strategies and



participate if they become better off by participating than by maintaining the status quo.
The latter condition is called the participation constraint in the literature of mechanism
design. It should be remarked, however, that any mechanism which achieves an efficient
provision of public goods is itself a kind of public good. Individuals may thus have an
incentive to free ride on the mechanism, which may in turn lead to the failure of the mech-
anism. This problem is called the second-order dilemma of public goods (Oliver 1980 and
Ostrom 1990). No external power can force individuals to participate in a mechanism;
participation should always be voluntary.

The voluntary participation problem has recently been studied by several authors
(Palfrey and Rosenthal 1984; Okada 1993; Saijo and Yamato 1999; Dixit and Olson
2000). These works use a two-stage game model to analyze whether or not individuals
will voluntarily participate in a mechanism which implements an efficient provision of
public goods.? It has been shown that individuals do not necessarily participate in such a
mechanism, and that the likelihood of all individuals participating becomes lower as the
population increases. These results partially support a widely held negative view in the
literature, namely that efficient provision of public goods is not possible due to the second-
order dilemma. To solve the second-order dilemma, recent literature has extensively
explored a number of social and behavioral factors: norm, community, social sanctions,
trust, fairness, reciprocity, and inequity-averse preferences. These devices can significantly

change individuals’ free-riding incentives.

cooperative bargaining games.

3Palfrey and Rosenthal (1984) consider a one-stage model of voluntary participation in providing
binary public goods. The payoff structure of their model is similar to that obtained in the reduced form
of the two-stage games studied by other authors.



In this paper, we reexamine the voluntary participation game from the viewpoint of
public goods accumulation. The motivation of our analysis is twofold. First, most studies
on voluntary participation have ignored the possibility of accumulation. Many public
goods, however, can be accumulated for generations. Some examples include forests,
parks, common lands, irrigation systems, public libraries, and museums. The relationship
between accumulation and strategic behavior of group formation is subtle and worth
investigating. Second, individuals’ free-riding incentives will naturally change as public
goods accumulate. We thus consider a role of accumulation in the second-order dilemma.

We present a dynamic model of a public good economy with Cobb-Douglas utility
functions. A voluntary participation game is played by (non-overlapping) generations. In
the first stage, every individual decides independently whether or not to participate in
a group. In the second stage, all participants negotiate over the mechanism (for exam-
ple, the Groves and Ledyard mechanism) that will implement efficient provision within
the group. It is assumed that if all participants agree on a mechanism, then it can be
effectively created and implemented at a cost to be borne by the participants.* Non-
participants are allowed to free ride on the mechanism. Depending on the outcome of
voluntary participation, public goods may be accumulated and inherited by the next gen-
eration. We will prove that if the depreciation rate of public goods is low, then the stock
of public goods will monotonically increase owing to consistent group formation. Further-
more, it will continue to increase until group formation is no longer beneficial. In this

sense, accumulation is effective in solving the second-order dilemma of public goods. The

4The mechanism implementation problem is an important research field in its own right. Since we
wish to focus on the second-order dilemma, however, this issue is beyond the scope of the paper.
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maximum level of public goods is an increasing function of the population. We will also
show that population growth increases the accumulation of public goods in the long run.

To our knowledge, there is little literature on voluntary provision games with accu-
mulation. Fershtman and Nitzan (1991) and Marx and Matthews (2000) have considered
dynamic contribution games with infinitely long-lived individuals. They obtain a result
similar to the folk theorem of repeated games, describing two polar cases of voluntary con-
tribution. In a linear-quadratic differential game, Fershtman and Nitzan (1991) showed
the inefficiency of voluntary contribution by a feedback Nash equilibrium in Markovian
strategies. Marx and Matthews (2000) demonstrated that efficient results could be im-
plemented by trigger-type strategies with a long horizon. Pecorino and Temimi (2007)
analyze a repeated game of voluntary contributions to rival public goods without accumu-
lation, and show that a small participation cost prevents the largest possible group from
being sustained by a grim trigger strategy as group size grows sufficiently. Their result is
based on the property of rival public goods that the cooperative payoff is driven towards
zero in a large group. In all these studies, the second-order dilemma of public goods is
not an issue.

The paper is organized as follows. Section 2 presents a dynamic model of the voluntary
provision of public goods. Section 3 analyzes group formation. Section 4 examines the
accumulation of public goods. Section 5 discusses implications of the model. All proofs

are given in the Appendix.



2 The model

Consider a simple economy with one private good and one public good, which evolves over
several generations ¢ (=1, 2,- - -). The public goods are assumed to be non-excludable and
non-rival. Let n; be the number of individuals in generation ¢ where n < n; < N. In
each generation, every individual 7 is initially endowed with wealth w and voluntarily
contributes an amount x; (0 < x; < w) of the private goods to the provision of public
goods. The public goods are produced using technology that provides a constant return
to scale, and the production of public goods is given by 3 " x; where § (> 0) is the
marginal productivity of private goods.

The total amount K; of public goods in generation ¢ is given by

K=(1-0)K_1+8) (1)

1=1

where K;_; is the stock of public goods in the last generation (¢ — 1) and 0 (0 < ¢ < 1)
is the depreciation rate of public goods. For clarity of analysis, in this paper we employ
a Cobb-Douglas utility function for individuals, u;(y;, K;) = y&K;™®, 0 < a < 1, where
y; is the private consumption, satisfying y; + r; = w, and « is the preference weight of
private goods. Each generation lives for only one period, and does not care about the
welfare of future generations. The population change An;_; is defined as n; — ny_1.

Given K, ;, the voluntary contribution game of generation ¢ is defined as follows.



Every individual ¢ (= 1,---,n;) has an action z; € [0,w]| and a payoff function given by

i@y, T K1) = (w = 2) (L= 0) K+ 8 a)t 0 (2)

1=1

The first proposition characterizes both a Nash equilibrium and a collectively rational
(Pareto efficient) outcome of the game.
ZNE)TLt

Proposition 2.1. A Nash equilibrium V% = (z¥#)", of the voluntary contribution

game at generation ¢ exists uniquely, and is characterized as follows.

() IF0 < Ky y < 15225, then g]F = U=aiualogfin

(2) If Lo be < K, 4, then zlY¥ = 0.

[0}

PE PE

) of the game is given as follows.

A symmetric Pareto efficient contribution x
_ —0) K¢
(1) If0< Ky < 22 8%y, then ol = (1 — a)w — O‘(lﬂ%

(2) If %%nt < K;_1, then 2F'F = 0.

When the depreciated stock (1 — §)K; 1 of public goods is low, all individuals vol-
untarily contribute some positive amount of their private goods. Otherwise, the zero
contribution is the dominant action for each individual. A Nash equilibrium does not in
general lead to the collectively rational outcome. The proposition reveals the following
three phases in the voluntary contribution game, depending on the stock K;_; of public

goods; (1) 0 < Ky 4 < %%: the Nash equilibrium with positive contributions is not

5To save symbols we use the notation u; to denote several different types of payoffs, whenever the
type is clear from the context.



Pareto efficient, (ii) %% < K, 4 < %%nt: the zero contribution is the dominant

action of every individual, which leads to an inefficient outcome (a multi-person prisoners’

dilemma), (iii) %f—_ﬁsnt < K;_1: the Nash equilibrium with zero contributions is Pareto

efficient. In phase (i), the accumulation of public goods is possible through voluntary
contribution under the dynamical system (1). The following proposition shows to what

level public goods can be accumulated through voluntary contribution.

Proposition 2.2. If the initial stock K, of public goods satisfies 0 < K, < 1_—"‘1’3_—‘”6,

«
the sequence of public goods stocks K; (t = 1,2,---) converges to the stationary point

. The stationary point K* is smaller than 1776“1’37—‘”5

x _ (1—a)Bniw
K = nta—f—ﬁ(lja)

The proposition shows that, although the accumulation of public goods is possible

through voluntary contribution when the initial stock of public goods is very low, the

loa Buw

—* 15 between

accumulation is only in a small-scale. It can not go beyond the boundary
phases (i) and (ii). Without any suitable mechanism to induce more contributions, the
public goods can not be accumulated beyond this boundary. The next section considers

how the mechanism design approach can effectively solve the first-order (and the second-

order) dilemma of public goods when participation is voluntary.

3 The group formation

We consider a situation where individuals voluntarily form a group to provide public

goods. We assume that if such a group is formed, its members can establish a suitable



mechanism to implement the collective provision of public goods. The mechanism itself
certainly incurs additional costs: communication, negotiations, monitoring, punishment,
staffing, and maintaining the group organization. In what follows, all these costs are
simply referred to as group costs. The participants bear the group costs equally. The
focus of our analysis is on whether or not individuals will voluntarily participate in such
a costly group to enforce an efficient provision of public goods, and (if they do) on how
many individuals participate. All non-participants are free from any enforcement by the
group; they are allowed to free ride on the group contributions without consequence.

To consider the problem of voluntary participation in a pure form, we present a two-
stage game of group formation in each generation ¢t (=1,2,---).
(1) Participation decision stage:
Given the stock K; ; of public goods, all individuals of generation ¢ decide independently
whether to participate in a group or not. Let s be the number of participants in the
group. If s =0 or 1, then no group forms.
(2) Group negotiation stage:
All participants decide independently whether or not they should agree to establish a
mechanism to enforce the optimal provision of public goods by the group. The mechanism
is established if and only if all participants agree to it (unanimous rule). A group is formed
if the mechanism is established, every participant bearing an equal share of the group cost.
The group cost per member is denoted by ¢(s) (> 0), where s is the group size. All non-
participants can choose their contributions freely. If a group is not formed, then the

voluntary contribution game described in section 2 is played. As individuals make their



choice in the group negotiation stage, it is assumed that all have perfect knowledge of the
participation decision outcome.

In this two-stage process, individuals decide whether or not to participate in a group by
rationally anticipating the outcome of the group negotiation stage. We will characterize
a subgame perfect equilibrium of the game of group formation. In this paper we consider
only pure strategy equilibria.®

We first analyze the group-optimal level of contributions that will maximize the sum
of all members’ payoffs. Suppose that a group S of individuals forms. Let xg be the
common contribution of every participant in S, and let x,, be the contribution of every
non-participant. A pair (:rf; ,Typ) is a Nash equilibrium of the voluntary contribution
game with group S if xg maximizes the sum of all participants’ payoffs, given all non-
participants’ contributions x,,, and if z,,, maximizes every non-participant’s payoff, given
all other individuals’ contributions. The next lemma characterizes a Nash equilibrium of

the voluntary contribution game with group S.

Lemma 3.1. Let s(> 2) be the number of participants in a group S. The group-

S

optimal contribution z;

of every participant and the non-participant’s contribution x,,,

are characterized as follows.

(1) I 0 < K,y < =282 then ¢f = (0z0etlobnsalio a0k

1-67 P (I4+(ne—s)a)Bs

, and x,, =

(1—as)fw—a(l1—0)Ki_1
(1+(ne—s)a)B '

(2) If —1;"‘51’8%6 <K < %%5, then 27 = (1 — a)w — 70‘(1_2):(“1, and xp, = 0.

6Okada (1993) characterizes a mixed strategy equilibrium in the context of an n-person prisoners’
dilemma.
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(3) If ﬂ%s < Ky, then x5 =z, = 0.

@

The lemma shows that phase (i) (0 < K;—; < l_—af—_‘”&) characterized by Proposition

«

2.1 is further divided into two sub-phases, depending on whether or not non-participants
contribute positive amounts of their private goods to the provision of public goods. The

stationary point K* of the dynamical system (1) given by Proposition 2.2 is larger than

1;20‘ % when the depreciation rate § is sufficiently low.” Thus, considering the accumu-

lation of public goods through voluntary contributions by individuals, we can ignore the
first case of the lemma without loss of generality. In what follows, we will assume that all
non-participants make the zero contributions when any group forms.

When the group-optimal contributions are positive (the second case in Lemma 3.1),

the payoff of each participant, denoted by w,(s, K;_1), is given by

a“(1 —a)t@

uy(s, K1) = B

[Bsw+ (1 —8) Ky 4]. (3)
The payoff of non-participants, denoted by (s, K;_1), is given by

Upp (8, K1) = w*(1 — ) ?[Bsw + (1 — ) K, ]2 (4)

When a group fails, all individuals receive the Nash equilibrium payoffs of the voluntary

contribution game. For simplicity of exposition, we will focus our analysis on the case

"The condition is 0 < § < 25 25— We remark that this condition holds for any § < 1 when
0<a<1/2
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that K; 1 > %O‘ffw From Proposition 2.1 the Nash equilibrium payoff is given as
w(0, K; 1) = w[(1 - 0)K, 1] . (5)
The same analysis can be applied to the case of K; | < %%

Lemma 3.2. Let s(> 2) be the number of participants. The payoffs u, and uy,, for
participants and non-participants respectively, satisfy:
(1) U’p(SJKt—l) > U(O, Kt—l)a

(2) upy(s, Ky—1) and wpy(s, K;—1) are monotonically increasing in s,

(3) Unp(s—1,K¢_1)

G R 8 monotonically increasing in s.

All participants can guarantee their payoffs in the case of zero contribution. The
payoffs for both participants and non-participants increase, however, as the group becomes
larger. Furthermore, the ratio of a non-participant’s payoff to the payoff he would obtain
by joining a group increases as the group size increases. This last property implies that
if there is any incentive to not join a particular group, this incentive will also be present
for any larger group.

We next analyze the group negotiation stage. When a group S implements the group-
optimal contribution, the net payoff of every participant is given by wu,(s, K;—1) — c(s).

We assume that the group cost function ¢(s) has the following property:

Assumption 3.1. The net payoff u,(s, ;1) —c(s) of each participant is a monotonically

12



increasing function of the group size s. Furthermore, there exists some integer s < ny

such that the net payoff is larger than the payoff u(0, K;_1).

The participant’s (gross) payoff u,(s,, K;_1) increases monotonically with the group
size s (Lemma 3.2). This assumption implies that the participant’s net payoff has the same
property. If this last assumption does not hold, then no size of group is more beneficial

than the non-cooperative outcome and the problem of group formation becomes vacuous.

Definition 3.1. Given K; i, the group size threshold is defined as the (unique) solution

s of the equation u,(s, Ky—1) — ¢(s) = u(0, K;_1), and is denoted by s(K;_1).®

The group size threshold will play a critical role in our analysis of group formation.
Assumption 3.1 guarantees its existence.” The next lemma shows that the group size

must be larger than the threshold in order for participants to agree to form the group.
Lemma 3.3. In the group negotiation stage, unanimous agreement to form a group is
reached in a strict Nash equilibrium®® if and only if the group size s is larger than the

threshold s(K; ;).

Since the proof of the lemma is straightforward, we omit it. We remark that there are

8In the following analysis, we will treat the group size variable s as a real number rather than a natural
number for technical convenience. This treatment does not affect our results in any crucial way.

9For clarity of analysis, we ignore degenerate cases where the threshold happens to be an integer.

10A Nash equilibrium is called strict if every player has a unique best response. In a non-strict Nash
equilibrium, individuals may be indifferent to the actions of agreeing and disagreeing to form a group.

13



also many non-strict Nash equilibria, including all situations where at least two individuals
do not agree to form a group. We exclude such non-strict equilibria from our analysis.
An immediate implication of the lemma is that no group will form if the population of
generation ¢ is smaller than the threshold. This fact suggests that population growth is
an important consideration in the accumulation of public goods, a point which will be
examined in the next section.

The following lemma shows how the group size threshold depends on the stock of

public goods and the group costs.

Lemma 3.4. The threshold s(K;_1) of group size is a monotonically increasing function
of K; 1. If the group cost function ¢(s) shifts upward, then the threshold s(K; ;) also

increases for any value of K, ;.

An intuition for the lemma is as follows. Accumulation may increase the opportu-
nity costs of groups since individuals enjoy a high stock of public goods without any
group. To cover the opportunity costs, the group size threshold increases along with the
accumulation.!!

Finally, we analyze the participation decision stage. Each individual is faced with

two conflicting incentives. First of all, there is an incentive to free ride on the contri-

HDorsey (1992) reports experimental results of real time voluntary contribution games in which the
total contribution level is posted and subjects may adjust their contributions prior to making a final com-
mitment. It is observed that the final contribution increases when adjustments are limited to increases.
Since subjects’ contributions are costless signaling in the adjustment process, the observed behavior seems
to be understood as a signaling effect. I am grateful to the editor in chief for pointing out Dorsey’s work
to me.
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butions of others and thus not participate in a group. But if all individuals’ actions are
governed by this incentive, then no group will be formed and no contributions will be
made to public goods. Every individual thus has a second incentive: to participate in
a group, provided that a sufficient number of other individuals also participate. Due to
these different incentives, the individual’s participation decision is not trivial.

There always exists a (non-strict) Nash equilibrium in which no individuals participate
and no group is formed. We are interested only in the Nash equilibrium that forms a group,
and call this situation a group equilibrium. The following theorem characterizes the group

equilibrium of the participation decision stage.

Theorem 3.1. A group equilibrium of the participation decision stage is characterized
as follows.

(1) There exists a group equilibrium if and only if s(K;_;) < n;. That is, the number s*
of individuals in the group must satisfy s(K; 1) < s* < n,.

(2) The largest possible group, with n; participants, is a group equilibrium if and only if
either (a) ny = [s(K;—1)]*? or (b) uy(ng, Ki—1) — c(ng) > unp(ng — 1, K;—q).

(3) The number of participants in a group equilibrium is uniquely determined (except in

dc(s) Oup(s,Ke_1) c(s) 13
f ads 2> = Os up(8,Ke—1)"

degenerate cases) i

Theorem 3.1 shows that if the population n, is larger than the threshold s(K; ;), a

group may be formed voluntarily by self-interested individuals. One may wonder why self-

1277] represents the smallest integer which is larger than a real number z.
131t is assumed here that the cost function c¢(s) is differentiable.
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interested individuals would be willing to form a group for the collective provision of public
goods in any situation where they have an incentive to free ride on others’ contributions.
The answer to this question consists of two parts. First, individuals are better off joining
a group than they would be if a group doesn’t form, provided that the group size is larger
than the threshold. Second, when an individual opts out of the equilibrium group the
remaining participants have the opportunity to respond. This is possible because group
formation in this game is a two-stage process. In practice, the remaining participants
decrease their contributions and in the worst case (from the defector’s viewpoint) may
dissolve the group entirely if the group size drops below the threshold. This counter-
response thus always damages the defector. A corollary of the theorem is that when the
population is large, the largest group is not supported as a Nash equilibrium for a generic
class of the Cobb-Douglas utility functions (see Sac and Amado 1999 in the case of no
stock of public goods). The proof is left to readers since it is straightforward.

The first-order and second-order dilemmas of public goods describe different kinds of
strategic situations. The first-order dilemma arises in the voluntary contribution game,
which is typically formulated as an n-person prisoners’ dilemma where zero contribution
is the dominant action of every individual. The second-order dilemma, on the other hand,
arises in the voluntary participation game where non-participation is not the dominant
action.

From the result in this section, we conclude that the voluntary participation game
does not solve the second-order dilemma of public goods, in the sense that all individuals

do not contribute to the provision of public goods. On the other hand, one may argue that
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our model is one of possible participation games, and that a different game could solve
the second-order dilemma. It, however, should be remarked that, if anyone could design a
game which forces all individuals to participate in a group to provide public goods, then
the game itself would be a public good. Every individual thus has an incentive to free
ride, and we are again faced with the second-order dilemma.

In the next section, we will examine how much generations of individuals accumulate
the public goods through voluntary groups, and to what extent the accumulation itself

can serve as a device to solve the second-order dilemma.

4 The accumulation of public goods

We now consider the effect of allowing public goods to accumulate when the group forma-
tion game is played repeatedly by different generations. Although each generation lives
only for one period and does not care about future generations, the public goods they
provide are inherited by the next generation. In this way, the action of one generation
affects the welfare of the future generations.

Theorem 3.1 shows that individuals may form a group to provide public goods if the
population n; is larger than the group size threshold s(K;_1). When a group forms, the

total contribution of individuals is given by

—— K, (6)

where s*(K;_1) is an equilibrium group size (see Lemma 3.1). When there are multiple
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equilibria in the group formation game, we select a particular equilibrium. Our result is
not affected by the equilibrium selection in any critical way. Substituting (6) into (1), the

public good stock K; obeys the dynamic equation

K = (1—-a)((1=0)Ki_y + pws™ (K1) if s(K—y) <mny (7)

= (1-90)K; otherwise.

Since public goods are depreciated in this model, the formation of a group may not always

increase the stock of public goods.

Lemma 4.1. When s(K;_;) < ny in (7), K;—1 < K, if and only if the equilibrium group

size s*(K; 1) is larger than

a(K, ) = Q — K, 1. (8)

The lemma shows that the public goods produced by generation ¢ outweigh the de-
preciation of the inherited stock if the group size is larger than the critical level a(K; ;).
For this reason, we call a(K; 1) the critical level for accumulation.

Figure 4.1 illustrates the transition dynamics described by (7). In Figure 4.1, the
transition curve [; for generation ¢ describes how the stock of public goods increases
when a group is formed. If the group size increases in the next generation (¢ + 1), the
transition curve shifts upward from [; to l;y;. [y is the transition curve in which no

group is formed. Suppose that generation ¢ inherits a stock K;_; of public goods from
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the previous generation (point K; ;). If the population n; is larger than the threshold
s(K;_1), then a group with s*(K;_1) participants will form. The new stock K; of public
goods is then determined by the transition curve [; as shown by the arrows; the stock
of public goods will increase from K; | to K; if the group size is larger than the critical
level for accumulation a(K;_1). The condition for accumulation is satisfied if and only if
K, | lies below the intersection of the 45-degree line and the transition curve [;. Thus,
applying the same mechanism to the next generation (t+ 1) results in another increase of
public goods. If no group forms, the stock of public goods decreases due to depreciation
according to the transition curve [;.

Ke

45%ine

lt+1

/ﬁ
lo

| |
Ki_
0 Koy K, t—1

Figure 4.1 transitive dynamics of accumulation

The above arguments show that the dynamics of public goods accumulation depend on
two variables: the stock K;_; and the population n,. We may thus treat the pair (K;_1,n)

19



as a state variable of the economy, and investigate the dynamics of public goods in the

(K;—1,n¢) plane (Figure 4.2). Specifically, we can define the region of interest

1—-2
aﬁ_w < Ky and s(Kiq) < ng}.

F:{(Kt_l,nt)€R+><[n,N]| o 1_g =

In Figure 4.2, the curve marked s illustrates the group size threshold. The region F'is

bounded by the quadrangle ABCD. The line C'D indicates K; | = 1‘(3"‘%. In section
3 (after Lemma 3.1), we have shown that the stock of public goods exceeds the line C'D
through voluntary contributions by individuals when the depreciation rate ¢ is low. It
follows from Lemma 3.1 and Theorem 3.1 that inside the region F' groups will form. If
n; falls below the s-curve (n; < s(K; 1)), then (K; 1,n) is outside of region F', and no
group is formed. For this reason, we refer to F' as the feasible region of groups.

As Lemma 4.1 shows, the stock K, ; increases if and only if the equilibrium group size
s*(K;—1) is larger than the critical level a(K;_1). Since s*(K;_,) is larger than the group
size threshold s(K;—_;) by Theorem 3.1.(1), the public goods can increase if the threshold

s(K; 1) is larger than the critical level a(K; 1). The following lemma shows that this is

the case if the depreciation rate ¢ is sufficiently low.

Lemma 4.2. There exists some § > 0 such that s(K;_;) > a(K;_;) for all § < § and all

Ky .

We are now ready to investigate the accumulation of public goods derived from group
formation. To examine the relationship between accumulation and group formation, we
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Nt

Figure 4.2 Accumulation of public goods

first consider the case of no population change (An, = 0).

Theorem 4.1. Suppose that n, = n; forallt > 1. If § < 6, then starting from any initial
point (Ko, n1) € F, the sequence of public goods stocks K; (t = 1,2,---) generated by
(7) increases monotonically. At some generation ¢, K; will exceed the maximum level and

exit the feasible region F'.

The theorem shows that when the depreciation rate of public goods is sufficiently low,

the stock of public goods increases monotonically and eventually exceeds the maximum
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level in the feasible set F' of groups, beyond of which the second-order dilemma of public
goods disappears since group formation is no longer beneficial. In Figure 4.2, this sce-
nario of public goods accumulation is shown by the long, horizontal arrow. Short arrows
illustrate ways in which the public goods stock may evolve over time.

Figure 4.3 offers an intuitive explanation for the theorem. The feasible region F' can
be divided into several sub-regions I, by the smallest integers s larger than group size
thresholds, as illustrated in Figure 4.3.'* In the sub-region I, the equilibrium group size
is greater than or equal to s (Theorem 3.1). Since the group size threshold s(K;_;) is
larger than the critical level for accumulation a(K;_;) everywhere in this region (Lemma
4.2), the stock of public goods keeps increasing. Contrary to the theorem, suppose that
state variables (K;_1,n;) remain in one sub-region I;. Then, the stock K; ; converges to
the level K* with s = a(K™) or exceeds it. Since the level K* is greater than the boundary
between I and Iy, this is impossible. Several possible generations move K; ; from the
current sub-region I to the next one. After a sufficiently large number of generations,
K;_1 exceeds the maximum level M and exits the feasible region F'

Theorem 4.1 describes the accumulation of public goods only in the case of a fixed
population. In the following discussion, we will sketch the accumulation patterns of public
goods under various population change models with help of the (K;_1,n;) phase diagram
shown in Figures 4.2 and 4.3.

Case (1): population increase

Suppose that the population n; monotonically increases over time, eventually reaching

MFor clarity, the lower and upper bounds on population are omitted.
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Figure 4.3 Accumulation in the feasible region of groups

some upper limit N. Two patterns of accumulation are possible. The first pattern roughly
corresponds to path (1) illustrated in Figure 4.2: the stock of public goods approaches
point A, but the pair (K; 1,n;) never goes outside the feasible region F. In the second
pattern, however, the pair (K;_1,n;) may exit the feasible region F'. If this happens then
(K} 1,n) will move towards the upper left-hand corner of the plot since K, ; decreases
(due to the failure of group formation) while the population n; increases. This is pictured
in the change from P to @) in Figure 4.3. Eventually (K; 1, n;) will move back into the
feasible region, and the accumulation process starts again. The accumulation process thus

moves the economy back and forth across the boundary of the feasible region F'.
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Population growth has a positive effect on the accumulation of public goods in the
long run. First of all, the condition for group formation that population should exceed
the group size threshold s(K; ;) is satisfied more easily under population growth. Fur-
thermore, since the group size threshold s(K; ;) increases monotonically with the stock
K;_1, the condition is likely to be violated early in the accumulation process if there is
no population growth. Second, even if at some point the condition for group formation is
not met, future population growth can restart the process of accumulation.

Case (2): population decrease

Now let us suppose that population n; monotonically decreases, eventually arriving at
the lower limit n. As is the case with increasing population, the accumulation process fol-
lows one of two typical patterns. In the first pattern the public good stock monotonically
decreases and approaches point B (Figure 4.2) . In the second pattern, roughly illustrated
as path (2) in Figure 4.2, (K;_1,n;) may exit the feasible region F'. The point (K;_1,n;)
can return to the feasible region if the rate of population decrease is not too steep. By
the same arguments used in case (1), the stock-population pair (K;_i,n;) moves towards
lower right corner of the plot until it reaches the boundary of F'. Thereafter it moves

approximately along the boundary and approaches point B.

5 Discussion

The second-order dilemma of public goods arises from individuals’ incentive to free-ride

on a mechanism which is designed to solves the (first-order) dilemma of public goods.
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Due to the second-order dilemma, the effectiveness of the institutional approach has been
placed in doubt ever since the work of Parsons (1937:89-94). Parsons brought up a logical
inconsistency in Hobbes” arguments on the “Leviathan”: if individuals are rational egoists,
then why should they act in the collective interest by establishing a coercive state? For
recent criticisms of the institutional approach, see Bates (1988), Dixit and Olson (2000)
among others. In his critique of the “new institutionalism”, Bates (1988) contends that
institutions provide a collective good and that rational individuals would seek to secure its
benefits for free. The proposed institution is thus subject to “the very incentive problems
it is supposed to resolve” (Bates 1988).

Although not as pessimistic as these critics, recent works on voluntary participation
games (Palfrey and Rosenthal 1984; Okada 1993; Saijo and Yamato 1999; Dixit and
Olson 2000) have provided partial support for this negative view. It has been shown that
when individuals are given the opportunity to decide freely whether or not they should
participate in a mechanism to provide public goods, then not all will participate due to
the incentive of free riding.

In this paper we have shown that strategic interactions of individuals underlying the
second-order dilemma can be captured well by the game of voluntary participation. Al-
though every individual has an incentive to not participate, non-participation is not his
dominant action. Individuals have the other incentive to participate in a group, provided
that the number of participants exceeds the group size threshold. Even if not efficient,
a positive amount of contributions can be made by self-interested individuals given the

opportunity to organize themselves (Theorem 3.1). The accumulation of public goods is
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thus possible when the depreciation rate of public goods is low. In the long run, public
goods will be accumulated until a voluntary group is no longer beneficial (Theorem 4.1).

Finally, we discuss implications of our result to real world examples of common-pool
resources. Despite a negative view expressed by the “ tragedy of commons”, there exist a
large number of empirical studies showing that people successfully self-govern common-
pool resources (Ostrom, 1990). Well-known examples are mountain commons in Switzer-
land and Japan. In these areas, common-pool resources of mountain grazing and forest
have been sustained for many centuries. Local residents established organizations formally
or informally to regulate the use of commons. Although memberships of organizations and
regulation rules are different, the two examples have several common properties. People
lived in steep mountains, and populations have remained stable over long periods. Mu-
tual monitoring was not very difficult. These environments made monitoring, sanctioning
and other transaction costs relatively low. The two conditions for accumulation of public
goods in our model, that is, the low group costs and the low depreciation rate of public
goods, seem to be satisfied in these examples of mountain commons.

In conclusion, we have shown that accumulation has a positive effect in solving the
second-order dilemma of public goods provision under certain conditions. It should be
remarked that our result does nothing to deny the importance of social and behavioral
factors such as community, norm and trust in human decision-making, which can also help
solve the second-order dilemma. The accumulation of public goods has a beneficial and
complementary effect. When combined with other social and behavioral factors, public

goods can increase in an incremental process as multiple generations of individuals solve
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the second-order dilemma.

Appendix

Proof of Proposition 2.1. (the first part) Let © = (z;);*, be a Nash equilibrium of the
voluntary contribution game in generation ¢. Since y = logx is monotonically increasing
each x; maximizes logu;(xy,-- -, z,,, K; 1), given all other individuals’ contributions and

K, 1, where u; is defined in (2). Under z; > 0, it can be shown that x; satisfies

x; = max(0, M — aij) where M = (1 — a)w — %(1 —0) K. (A.1)
J#i
When ITTQ% < K; 1, (A.1) implies z; = 0. When ITTQ% > K;_1, we can show without

(1—a)Bw—a(l—0)Ki_1
(I+nia—a)p

much difficulty that (A.1) has a unique solution z; = . (the second part)
It can be seen that the sum U of all individuals’ payoffs, U = Y0 w;(x1, -+, T, K1),
is maximized at a symmetric contribution profile z = (z;)1*; where they all contribute the
same amounts of private goods. Putting v = x; = --- =z, yields U = ny(w — z)*((1 —
§) K1 + Bngx)t~* where 0 < 2 < w. Considering 2 > 0, the identical contributions that
maximize U is given by z = max (0, (1 — a)w — %) Q.E.D.

Proof of Proposition 2.2. It follows from Proposition 2.1 that every individual con-

tributes 2V = (1—a)Bw—a(1-0)K;

. The dynamic system (1) of public goods is given by

(1+nia—a)pB

11—« 11—«
K, = 1—90)K;_ _ . A2
Al ww ey e ey AL (A2)
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It can be shown that (A.2) has the stationary point K* = %, and that the se-

quence K; converges to K* as ¢t goes to infinity. We can easily see that the inequality
K* < 177"‘1‘3—_"% holds for any 0 < @ < 1 and any 0 < 6 < 1. Q.E.D.

Proof of Lemma 3.1. It can be shown that all non-participants contribute the same
amounts z,,, of private goods in a Nash equilibrium. Then, the sum U of all participants’

payoffs is given by U® = s(w — x3)*((1 — 6) K;—1 + fsx; + B(ny — s)xnp)'~*. The partici-

pants’ contribution 7 which maximizes U? satisfies 25 = max (0, (1 — a)w — % -

%) The non-participant’s contribution x,, satisfies (A.1). We consider the follow-

ing four cases: (i) 5 > 0 and z,, > 0, (ii) 5 > 0 and z,,, = 0, (iii) 2, = 0 and x,,, > 0,

and (iv) 27 = 0 and ,, = 0. A calculation shows that case (i) has the solution (7, zy)

given by (1) in the lemma, and that K; ; must satisfy 0 < K; ; < 1_“5%. It is easy to

a
show that case (ii) and case (iv) have the solutions given by (2) and (3) in the lemma,
respectively, under the conditions on K;_;. Finally, we can see without much difficulty
that case (iii) is not possible. Q.E.D.

Proof of Lemma 3.2. (1): easy. (2): log uy(s, K;—1) is a monotonically increasing
function of s since Llog u, = KWB# — 2 > 0 from Lemma 3.1.(2). Therefore
u,(s, K1) is monotonically increasing in s. It easily follows from (4) that u,,(s, K;_1) is

monotonically increasing in s. (3): Let f(s) = log upp(s — 1, K;—1) —log up(s, Ky—y). It is

sufficient to show that f(s) is monotonically increasing in s. This can be proved by

df « afw
ds” s Bt (=0,
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Q.E.D.
Proof of Lemma 3.4. By definition, the threshold s(&;_) is the solution s of u, (s, K;_1)—

c(s) — u(0, K;_1) = 0. By applying the Implicit Function Theorem, we obtain

(% _dey ds Ou(0, K1)  Ouy
0s ds th,1 aKt,1 8Kt,1'

By Assumption 3.1, %” — % > 0. By (3) and (5), the RHS of (A.3) is rewritten as

ou(0,K;1) 0y,  (1—a)(1—-0)"%* oa*(1—a)"*(1-29)

0K, 1 oK, 1 K&, (Bs)e
w (84

= =)0 -5z~ Tam

)%)-

The RHS of the last equality is positive by Lemma 3.1.(2). Thus dl?f_l > 0 by (A.3),

which proves the first part of the lemma. The second part can be proved by the fact that
the function of s, g(s, K;—1) = uy(s, Ki—1) — ¢(s) — u(0, K;_1), shifts downward as the
group cost ¢(s) increases. The solution s of g(s, K;—1) = 0 therefore increases. Q.E.D.

Proof of Theorem 3.1. (1): It follows from Lemma 3.3 that the group size s of a Nash
equilibrium must satisfy s(K;_1) < s. Since s < ny, s(K;_1) < ng. Conversely, suppose
that s(K; 1) < n;. Consider two distinct cases: (i) ny = [s(K;_1)], and (ii) n; > [s(K1)].
In case (i), it follows from Lemma 3.3 that, if any participant defects from the largest
group, the remaining participants do not agree to form their group since n, — 1 < s(K;_1).
Since the defector’s payoff decreases from w,(n:, K;—1) — ¢(ny) to u(0, K;_;), the largest
group is a Nash equilibrium. In case (ii), even if one participant defects from the largest

group, the remaining participants form the group since s(K;_1) < n;—1. The defector thus
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receives the payoff u,,(n; — 1, K;_1). Now consider two subcases: case (iia) u,(n, K1) —
c(ng) > upp(ng — 1, K1), and case (iib) wy(ng, K—1) — c¢(ny) < tpp(ng — 1, K1), In
subcase (iia), it is clear that the largest group is a Nash equilibrium.

In subcase (iib), consider further the two distinct subcases: (iib-1) w,(s, K;—1) —c(s) <
Upp(s — 1, K1) for all s with s(K;—;) +1 < s < ny, and (iib-2) wuyp(s — 1, K1) <
uy(s, K1) —c(s) for some s with s(K;_;)+1 < s < n,. Insubcase (iib-1), the equilibrium
group size is equal to [s(K; 1)]. In subcase (iib-2), denote by m* the maximum integer
which satisfies un,(s — 1, K1) < up(s, Ki—1) — ¢(s). Then one has upy(m* — 1, K;—1) <
uy(m*, K1) — ¢(s*) and u,(m* + 1, K1) — c(m* + 1) < wu,y(m*, K;—1). These two
inequalities mean that a group with m* participants is also a Nash equilibrium.

(2): (2) can be proved by the arguments in case (i) and case (iia) of (1).

unp(sf]-:Kt—l)

up(s,K1—1)—c(s) 1S a 1mMono-

(3): In the same way as Lemma 3.2.(3), it can be proved that
tonically increasing function of s, where s > s(K;_1) if the assumption of the theorem
holds. This fact yields the following two properties (for notational simplicity, the stock
variable K;_; is omitted in the payoff functions u, and wuny): (a) tuny(s —1) > uy(s) —c(s)
implies wyy(t — 1) > uy(t) — ¢(t) for s < ¢, and (b) upy(s — 1) < wuy(s) — c¢(s) implies
Unp(t — 1) < uy(t) —c(t) for t < s.

According to the proof of (1), it suffices to show that the number of participants
in a group equilibrium is unique in each of three distinct cases: (iia), (iib-1), and (iib-
2) (except a degenerate case). In case (iia), the largest group is a Nash equilibrium
since up(ng, Ki—1) — e(ny) > upp(ng — 1, Ky—1). Property (b) yields u,(t, Ki—1) — ¢(t) >

Unp(t — 1, K1) for all ¢ with s(K;y1) < t < ny. This means that no other group is a
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Nash equilibrium. In subcase (iib-1), only groups with [s(K; ;)] participants are Nash
equilibria. In subcase (iib-2), as we have shown in the proof of (1), there exist some m*
which satisfy wp,(m*—1, K;—1) < uy(m*, K;—1) —c(m*) and u,(m*+1, K1) —c(m*+1) <

Upp(m*, K;—1). The first inequality and property (b) imply that

Unp(s — 1) < up(s) —c(s)  if s(Kipq) +1<s<m"—1, (A.4)

and the second inequality and property (a) imply that

Uup(s+ 1, K1) —c(s+1) < upyls, Kiq) if m" <s<ny. (A.5)

By (A.4) and (A.5), any group with s (# m* — 1, m*) participants is not a Nash equilib-
rium. It can be shown that if w,,(m* —1, K;_1) < u,(m*, K;_1) — ¢(s*), then only groups
with m* participants are Nash equilibria, and that if w,,(m* — 1, K; 1) = u,(m*, K;—1) —
c(m*), then groups with either m* — 1 or m* participants are Nash equilibria. Q.E.D.
Proof of Lemma 4.1. It follows from (7) that K; — K,y = {(1 —«a)(1 —0) — 1} Ky +
(1 —a)fws* (K 1). K — K1 > 0 is equivalent to s*(K; 1) > a(K; ;). Q.E.D.

Proof of Lemma 4.2. Recall that the group size threshold s(/;_;) is the solution of
uy(s, K1) — c(s) = u(0, K;_1). Since the LHS is increasing in s (Assumption 3.1), it
suffices us to prove that u,(a, K; 1) — ¢(a) < u(0, K;—1) at a = a(K;_,). Substituting (3)

and (5) to the inequality above, we have

(1—a){ 1 Baw + (1 — 6)Ky_1] — cla) < w*[(1 — &) K], (A.6)

(1 - a)fa
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Substituting (8) into (A.6) and arranging it, we obtain

<=6 (D)) e}

- (A7)

Q=

1+

(A.7) holds if

1—6.,, 1
0 <(—— )(Kt_1

)" e(a). (A.8)

We can prove that (A.8) holds for any sufficiently low 6. Q.E.D.

Proof of Theorem 4.1. Let K = K(s) be the inverse function of the group size
threshold s = s(K;—;). By Lemma 3.2, the function K(s) is well-defined and mono-
tonically increasing. The set of all K; | with (K; 1,n1) € F is divided into distinct
intervals I, = (K(s — 1),K(s)), for s = 2,---,n,. For every s, K, ; € I, implies
s(Ki—1) < s < s*(Ky—1) where s*(K;_,) is the equilibrium group size. By Lemma 4.2,
a(K; 1) < s(K; 1). Thus, by Lemma 4.1, K; ; < K;. This proves the first part.

To prove the second part, suppose, on the contrary, that K; < K(n;) for all ¢. Since
{K;} is a monotonically increasing sequence, it must be true that there exists some integer
m < ny such that Ky € I,; i.e., K(m — 1) < K; 1 < K(m) for almost all t = 1,2,---.
By Theorem 3.1, s*(K;) > m for K; € I,. Consider two cases: (1) s*(K;) = m for
all ¢, and (2) otherwise. In case (1), it follows from the dynamic system (7) that {K;}
monotonically increases and converges to the stationary point K* where m = a(K*). By
Lemma 4.2, m < s(K*), that is, K(m) < K*. Therefore, K(m) < K, for any sufficiently
large t. This contradicts that K(m — 1) < K;_; < K(m) for almost all ¢. In case (2),

{K;} may converge either to K* or to some larger value, since the equilibrium group size
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may be larger than m. The same contradiction arises as in case (1). Q.E.D.
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