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1 Introduction

Productivity varies across firms even within the same industry. Some firms are more efficient

than others as they hire more-productive workers or they adopt more-advanced production

technology. Bartel and Lichtenberg (1987) show the evidences that educated workers have

comparative advantage in implementing new technology. Doms et al. (1997) also find that

the plants that adopt new automation technology tend to have more skilled workers. Even

if new advanced production technology is in the public domain, some firms choose not to

adopt it perhaps due to the lack of human capital that is essential to the adoption of new

technology.

This linkage between the difference in the intrinsic productivity of firms, due to the

difference in the amount of human capital, and the adoption rate of new technology explains

the coexistence of capital-intensive advanced technology and labor-intensive old technology

within the same industry. Anecdotal evidences suggest that even the same firm often uses

different technologies depending on the plant location. Firms tend to adopt capital-intensive

advanced technology in capital-abundant developed countries while they tend to use labor-

intensive old technology in labor-abundant less-developed countries. Firms in less-developed

countries use less-advanced technology on average, not just because of its lack of capacity to

absorb new technology but perhaps because that less-developed countries tend to be labor-

abundant so firms that operate there deliberately adopt old technology to save capital.1

In this paper, we formalize the idea that the endowment of production factors affects

firm-level productivity heterogeneity through firms’ technology adoption. To this end, we

extend the framework of monopolistic competition and heterogeneous firms developed by

Melitz (2003), by introducing firms’ appropriate technology choices à la Zeira (1998, 2006).

Melitz (2003) introduces productivity difference across firms within the same industry and

builds a general equilibrium model in which less productive firms sell only domestically

while productive firms sell both domestically and internationally. He also investigates how

trade liberalization affects firms with different productivity levels differently. In his model,

different productivity levels are assigned to ex ante symmetric firms exogenously, and pro-

ductivity of a firm remains unchanged once it is assigned. In reality, however, efficiency

gaps between productive firms and unproductive ones tend to expand with technological

1Examining a sample of 230 U.S. cities over the period from 1980 to 2000, Beaudry et al. (2006) find
that firms located in cities endowed with relatively abundant and cheap skilled labor on average adopted
personal computers more aggressively than cities with relatively expensive skilled labor.

1



progress.

In our model, firms are allowed to choose either labor-intensive old technology or capital-

intensive new technology; unlike Zeira (1998, 2006), however, firms are different in their

intrinsic productivity levels, which leads to the dispersion of technology adoption within the

same industry. Labor-intensive old technology is standardized so that all firms can utilize it

in the same manner. Capital-intensive new technology, on the other hand, requires cognitive

skills that vary across firms. Thus, the difference in productivity arises once they adopt new

production technologies. Our model specification is rich enough that efficiency gap between

inherently-productive firms and inherently-unproductive firms expands with technological

progress; inherently-productive firms become more efficient as the technology advances while

inherently-unproductive firms stop adopting new technologies once the technological frontier

reaches certain levels.

In the model where firms’ technological choice endogenously determines productivity

differences, we investigate the link between the factor endowment and productivity both in

the firm and industry levels. The wage-rental ratio in free trade will be higher in the country

with a higher frontier of new technology, which we argue may well depend on the factor

endowment. We find among others that firms in capital-abundant countries tend to adopt

new advanced technologies more in their production processes, but opening to international

trade will equalize factor prices across countries and as a result productivity differences

across countries disappear, if their technological frontiers are the same. If the technological

frontiers are different, on the other hand, the country with a higher technological frontier

has a lower wage-rental ratio than the other. We argue that the capital-abundant country

tends to have a higher state of technology, so if that is the case the wage-rental ratio is

lower in the capital-abundant country in free trade.

Bernard et al. (2007) also investigate the link between the factor endowment and the

industry-wide productivity distribution across firms, assuming as Melitz (2003) that the

productivity of each firm is exogenously given. Ederington and McCalman (2008, forth-

coming) consider the models in which ex ante identical firms become heterogeneous in their

productivities as a result of their diversified timing of the date of technology adoption. In

their model, firms are faced with the tradeoff between adopting the new technology at an

earlier date so that they obtain cost advantage over their rivals and delaying the adoption

until the adoption cost becomes sufficiently small. In equilibrium, firms are indifferent as

to when to adopt the new technology, so they are dispersed in their adoption timing of the
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new technology. Unlike theirs, our model emphasizes the effects of factor endowments on

technology adoption.

2 The Model

This section lays out the basic one-country model that contains two sectors, two factors,

and a continuum of potentially heterogeneous firms; section 4 extends the model to a two-

country free-trade model. One sector (sector Z) competitively produces a homogenous,

numeraire good from labor and capital. The other sector (sector Y ) produces a continuum

of differentiated varieties from a continuum of inputs, which in turn are produced from

labor and capital.

2.1 Preferences

We consider an economy with many identical consumers who own as a whole L units of

labor and K units of capital. A representative consumer’s preferences are characterized by

the utility function

U =
[∫

i∈Ω
y(i)αdi

]γ/α

z1−γ , γ ∈ (0, 1),

where y(i) denotes the consumption of variety i of good Y , Ω the set of available varieties,

and z the consumption of the homogeneous good. The varieties of differentiated goods are

substitutable from one another with the elasticity of substitution σ = 1/(1−α) > 1. These

preferences yield the iso–elastic demand function for each variety i such that

y(i) =
γEpy(i)−σ

P 1−σ
,

where E represents the total expenditure, py(i) the price of variety i, and P the aggregate

price index in sector Y such that

P =
[∫

i∈Ω
py(i)1−σdi

]1/(1−σ)

. (1)

2.2 Production Technology

The numeraire good Z is produced from labor and capital with a constant-returns-to-scale

production technology characterized by the unit cost function cz(w, r), where w and r are

the wage rate and rental rate, respectively. Perfect competition ensures that

cz(w, r) = 1. (2)
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For analytical concreteness, we specify the functional form of cz(w, r) such that cz(w, r) =

w1−mzrmz where mz ∈ (0, 1).

Production of a variety of good Y requires a continuum of inputs, which can be either

intermediate goods or tasks. The set of inputs is given by the interval [0, 1]. The following

Cobb-Douglas function characterizes the process of production for each variety i from the

inputs {xi(j)}j∈[0,1]:

y(i) = exp
[∫ 1

0
lnxi(j)dj

]
. (3)

The inputs are produced from labor and capital. There potentially exist two types of

technologies for each input production. The first one is a standardized technology that

is labor intensive. We assume for simplicity that the production of each unit of input j

requires l(j) units of labor without any input of capital. This production technology is well

known to the economy and always available to any firm.

In contrast, the second type is a new technology that replaces labor with capital, i.e.,

it is capital intensive. The new technology is skill complement in the sense that firms

with higher productivity levels use it more efficiently than others. Specifically, we assume

that the input production with the new technology requires capital only such that the unit

requirement of capital equals k(j)/ϕ for input j where ϕ > 0 denotes the firm-specific

intrinsic productivity level. Moreover, the new technology is not in general available for

all the inputs; it is available only up to a certain input on the technological frontier that

expansion can be considered as technological progress of the industry (or the country) as a

whole.

We order inputs in the interval [0, 1] so that the one with a higher index corresponds to

a larger requirement of capital that is needed to replace one unit of labor when firms switch

from the old technology to the new one. Namely, defining the following function λ(ϕ, j) by

λ(ϕ, j) =
k(j)
ϕl(j)

,

we order j such that λ(ϕ, j) is non-decreasing in j, which implies that the new technology

is more efficient for firms with higher productivity levels in the sense that they would save

the same amount of labor with less capital than those with lower productivity levels.

We define the technological frontier as a critical input θ ∈ [0, 1] such that new technology

is known for any input j ∈ [0, θ] while it is yet to be discovered for any remaining input

j ∈ (θ, 1]. Firms can choose whether or not to adopt the new technology for input j ∈ [0, θ]
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whereas they have to use the old technology to produce the remaining set of inputs. An

increase in θ means that the new technology becomes available for more inputs with higher

λ. This specification captures the real-world observation that newly discovered technologies

are skill complement and require more capital to replace labor than those discovered earlier.

These specifications are consistent with empirical findings by Autor et al. (1998), Doms et

al. (1997), and Bresnahan et al. (2002), for example.

Firms adopt the new technology as long as it reduces the production costs. That is,

they choose the new technology rather than the old one for the production of input j if

and only if rk(j)/ϕ ≤ wl(j), or equivalently λ(ϕ, j) ≤ w/r. Of course, they cannot adopt

the new technology for input j > θ. This constraint is binding for productive firms with

ϕ higher than rk(θ)/[wl(θ)]. At the other extreme, unproductive firms with ϕ lower than

rk(0)/[wl(0)] will not adopt the new technology at all. But otherwise, firms adopt the new

technologies for all inputs up to m that satisfies λ(ϕ, m) = w/r. Letting λ−1
ϕ denote the

inverse function of λ with respect to the second argument for a given ϕ, therefore, we write

a firm’s adoption level of the new technology–the extent to which the firm with ϕ adopts

the new technology–as

m(ϕ, w, r, θ) =


0 if ϕ ≤ rk(0)/[wl(0)],
λ−1

ϕ (w/r) if rk(0)/[wl(0)] < ϕ < rk(θ)/[wl(θ)],
θ if ϕ ≥ rk(θ)/[wl(θ)].

(4)

The unit variable costs for firms with productivity level ϕ are given by

c(ϕ, w, r, θ) = exp

[∫ m(ϕ,w,r,θ)

0
ln rk(j)dj −m(ϕ, w, r, θ) ln ϕ +

∫ 1

m(ϕ,w,r,θ)
lnwl(j)dj

]
. (5)

Figure 1 illustrates the technology choice by three representative firms with different

productivities which are faced with a given wage-rental ratio (w/r)′ and technological fron-

tier θ′. The upper panel shows the graphs of λ(ϕ, ·) with three levels of ϕ. The function

λ is non-decreasing in j by construction. For the firm with the highest productivity ϕ1,

λ(ϕ1, j) < (w/r)′ for the entire range of inputs. The firm adopts the new technologies for

every input j ≤ θ, and hence, its unit variable cost is monotonically decreasing in θ as the

graph of c(ϕ1, w, r, ·) shows in the lower panel of the figure. The firm with the intermediate

productivity ϕ2 adopts the new technologies up to λ−1
ϕ ((w/r)′) if they are available. But it

uses the old technologies for all inputs beyond this range as the new technologies are too

costly for the firm; the unit variable cost c(ϕ2, w, r, θ) is flat for θ ≥ λ−1
ϕ ((w/r)′). Finally, the

firm with the lowest productivity considers the new technologies to be too costly to adopt
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so that it sticks to the old technologies for all inputs even though the new technologies are

available. The unit variable cost c(ϕ3, w, r, θ) is constant in θ.

As the lower panel of Figure 1 illustrates, the higher is the technological frontier θ,

the larger is the disparity in the unit variable costs across firms with different intrinsic

productivities. In this sense, firms become more heterogeneous in their productivities as the

technological frontier expands (i.e., θ increases). Firms with lower intrinsic productivities

drop out of the technology adoption race and cease to adopt the new technologies for more

inputs while those with higher intrinsic productivities keep up with the pace of technological

advances and continue to adopt the new technologies.

Moreover, all firms but those with the highest (and possibly lowest) intrinsic productivi-

ties adopt the new technologies for more inputs when the wage-rental ratio becomes higher;

they have more incentive to replace labor with capital when faced with a higher wage-rental

ratio. Firms with the highest intrinsic productivities adopt the new technologies for all

inputs up to the technological frontier and their adoption level is unaffected by a small

change in the wage-rental ratio.

With the optimal choice of production technology, firms operate under monopolistic

competition. As is standard in the monopolistic competition model á la Dixit and Stiglitz

(1977), firm i with productivity level ϕ sets the price at p(c(ϕ, w, r, θ)) = c(ϕ, w, r, θ)/α and

produces

y(ϕ, w, r, θ) =
γE

P

[
p(c(ϕ, w, r, θ))

P

]−σ

units of variety i.2 The production of differentiated varieties also requires fixed costs. We

assume that all firms have a common fixed cost of purchasing f units of the numeraire good

Z. Then, the profit, net of the fixed cost, is expressed as

π(ϕ, w, r, θ) =
γE

σ

[
p(c(ϕ, w, r, θ))

P

]1−σ

− f.

The profit π(ϕ, w, r, θ) is increasing in ϕ if ϕ is high enough to adopt the new technology

for at least some input: i.e., ϕ > rk(0)/[wl(0)]. Otherwise, the profits are independent of

firms’ intrinsic productivities as they use the old technologies for all inputs.

Finally, it is useful to note that the ratio of any two firms’ outputs and that of revenues

R(ϕ, w, r, θ) depend only on the ratio of their unit variable costs: i.e.,

y(ϕ1, w, r, θ)
y(ϕ2, w, r, θ)

=
[
c(ϕ1, w, r, θ)
c(ϕ2, w, r, θ)

]−σ

,
R(ϕ1, w, r, θ)
R(ϕ2, w, r, θ)

=
[
c(ϕ1, w, r, θ)
c(ϕ2, w, r, θ)

]1−σ

. (6)

2With the abuse of notation, we redefine y as a function of ϕ, w, r, and θ.
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2.3 Entry and Exit

We model firms’ entry to the good Y sector similarly to Melitz (2003). In order to ob-

tain a blueprint of a variety, potential firms are required to invest fe units of good Z, and

independently draw their intrinsic productivity levels ϕ from the common probability dis-

tribution on (0,∞) which is characterized by the cumulative distribution function H with

the continuous density function h. Firms enter sector Y until their expected profits become

equal to the entry cost fe. As the unit variable cost c(ϕ, w, r, θ) is decreasing and hence

π(c(ϕ, w, r, θ)) is increasing in ϕ, firms with ϕ smaller than a critical value, which we call

ϕ∗, would earn negative profits and hence immediately exit from the market. This critical

productivity ϕ∗ is given by

γE

σ

[
p(c(ϕ∗, w, r, θ))

P

]1−σ

= f. (7)

We focus on the case in which the cutoff productivity ϕ∗ exceeds rk(0)/[wl(0)] so that all

operating firms adopt the new technologies at least for some inputs. Letting Ne be the

mass of the entrants and N the mass of surviving firms, we have, therefore, the relationship

between Ne and N as

[1−H(ϕ∗)]Ne = N. (8)

Now, we can express key variables in terms of ϕ∗, w, r, and θ. First, we define the

conditional distribution of ϕ for operating firms as

µϕ∗(ϕ) =


h(ϕ)

1−H(ϕ∗)
if ϕ ≥ ϕ∗

0 otherwise.

The price index P given by (1) can be written as:

P =
[∫ ∞

0
p(c(ϕ, w, r, θ))1−σNdµϕ∗(ϕ)

]1/(1−σ)

= N1/(1−σ)p(c̃(ϕ∗, w, r, θ)), (9)

where c̃(ϕ∗, w, r, θ) denotes the unit variable cost for the average firms:

c̃(ϕ∗, w, r, θ) =
[∫ ∞

0
c(ϕ, w, r, θ)1−σdµϕ∗(ϕ)

]1/(1−σ)

. (10)

The price p(c̃(ϕ∗, w, r, θ)) is the average price in the sense that the price index P can

be replicated by N homogenous firms that set the price p(c̃(ϕ∗, w, r, θ)) as shown in (9).

Substituting (9) into (7), we can rewrite the zero-profit condition as

γE

σN

[
c(ϕ∗, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

= f. (11)
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Note that the gross profit for the critical firm expressed on the left-hand side equals

R(ϕ∗, w, r, θ)/σ where R(ϕ∗, w, r, θ) is the revenue for the average firms, γE/N , multiplied

by [c(ϕ∗, w, r, θ)/c̃(ϕ∗, w, r, θ)]1−σ as (6) indicates.

The free-entry condition ensures that the ex ante expected profit equal the entry cost

fe. Noting that the profit of the average firms, net of the fixed cost, is π̃ = (γE)/(σN)− f ,

the free entry condition can be expressed as

[1−H(ϕ∗)]
[

γE

σN
− f

]
= fe. (12)

Using the zero-profit condition (11), the profit earned by the average firm can be written as

π̃(ϕ∗, w, r, θ) = fφ(ϕ∗, w, r, θ), (13)

where φ(ϕ∗, w, r, θ) ≡ [c̃(ϕ∗, w, r, θ)/c(ϕ∗, w, r, θ)]1−σ − 1. Substituting this expression into

the free-entry condition (12), we obtain

Φ(ϕ∗, w, r, θ) ≡ [1−H(ϕ∗)]φ(ϕ∗, w, r, θ) = fe/f. (14)

Equation (14) restates the free-entry condition in terms of ϕ∗, w, r, and θ. It should

be noted that unlike Bernard et al. (2007), the free-entry condition (14) depends on factor

prices. This is because in our model, firms are heterogeneous in their intrinsic productivities

and hence they are different in their factor intensities.

2.4 Factor Market

Having obtained the free-entry condition (14), we turn our attention to factor-market clear-

ing conditions to derive the equilibrium. Capital-market clearing requires K = KY p +

KY f +KY fe +KZ where KY p denotes capital demands as variable inputs in the production

of good Y , KY f and KY fe capital demands to cover the fixed cost and the entry investment,

respectively, and KZ capital used in sector Z.

Applying Shephard’s lemma to (5), we obtain the capital requirements for the unit

production of a variety as ∂c/∂r = c(ϕ, w, r, θ)m(ϕ, w, r, θ)/r . Then, defining the average

level of technological adoption by

m̃(ϕ∗, w, r, θ) =
∫ ∞

0
m(ϕ, w, r, θ)

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

dµϕ∗(ϕ), (15)

where the relative revenues are used as the weights (see (6)), we can rewrite the total amount

of capital used as variable inputs in the production of varieties of good Y as

KY p =
∫ ∞

0

c(ϕ, w, r, θ)m(ϕ, w, r, θ)
r

y(ϕ, w, r, θ)Ndµϕ∗(ϕ) =
αγE

r
m̃(ϕ∗, w, r, θ).
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Due to the mark-up pricing where price equals 1/α times the unit costs, the fraction α of

the total revenue covers the variable costs while the remaining 1−α of it is the gross profits

for every firm. Noting that the production function given by (3) is of the Cobb-Douglas

type, this implies that αγEm̃(ϕ∗, w, r, θ) represents the total spending on capital as variable

inputs by firms in sector Y .

Total capital demands in sector Y to cover the fixed costs of production and the invest-

ment cost upon entry can be written, with the use of (8), as KY f + KY fe = N [f + fe/(1−
H(ϕ∗))]mz/r. The capital demands in sector Z is simply mz(1− γ)E/r. Consequently, the

capital-market clearing condition is expressed as

αγEm̃(ϕ∗, w, r, θ) + N

[
f +

fe

1−H(ϕ∗)

]
mz + (1− γ)Emz = rK.

Using (12), we can rewrite this equation as

{αγm̃(ϕ∗, w, r, θ) + [(1− α)γ + 1− γ]mz}E = rK. (16)

Note that the total gross profits in sector Y equal (1− α)γE, which in turn equal the sum

of total fixed costs and total investment costs.

Likewise, the labor market clearing condition is given by

{αγ[1− m̃(ϕ∗, w, r, θ)] + [(1− α)γ + 1− γ](1−mz)}E = wL. (17)

Eliminating E from these two factor-market clearing conditions, (16) and (17), we obtain

a rather familiar form of the factor-market clearing condition:

w

r
=

1− m̂(ϕ∗, w, r, θ)
m̂(ϕ∗, w, r, θ)

K

L
, (18)

where m̂ is the average capital share of the economy such that m̂(ϕ∗, w, r, θ) ≡ αγm̃(ϕ∗, w, r, θ)+

[(1− α)γ + 1− γ]mz.

Since the extent to which the average firms adopt the new technology, m̃ (which critically

affect m̂), is a summary index of technology adoption in the economy, it is important to

understand how m̃ depends on the cutoff productivity level, ϕ∗, and factor prices, w and

r. If the cutoff productivity level exceeds a certain value, which will be discussed further

in the next section, all firms adopt the new technologies for all inputs. As a result, the

average productivity level m̃ equals θ and becomes insensitive to ϕ∗, w, and r. Otherwise,

there will be the two types of firms in equilibrium: firms that partially adopt the new

technologies and firms that fully adopt them. As expected, given that not all firms adopt

9



the new technologies up to the technological frontier θ, the average technology adoption m̃

is increasing in ϕ∗ and w and decreasing in r.

Lemma 1. Unless all firms in sector Y adopt the new technologies for all inputs up to θ,

we have

∂m̃

∂ϕ∗ > 0,
∂m̃

∂w
> 0,

∂m̃

∂r
< 0,

∂m̃

∂θ
> 0. (19)

Proof. See the Appendix.

An increase in the cutoff productivity level ϕ∗ forces firms with the lowest productivity

levels to exit from the market so that the average level of technology adoption rises. The

responses of the average technology adoption to changes in the factor prices involve some-

what more, although they also seem intuitive. Obviously, if the wage rate decreases or the

rental rate increases, firms have less incentive to adopt the new technologies, which results

in a smaller m̃. In addition to this substitution effect, however, changes in the factor prices

affect the average adoption level through changing firms’ weights in the average technology

adoption. Recall that we use the ratios of each firm’s revenue to the average revenue as the

weights when we calculate the average technological adoption level m̃ (see (6) and (15)).

A decrease in w or an increase in r will lower the revenues for productive firms relative to

the average since productive firms use more capital-intensive technology to produce their

varieties. As a result, the weights attached to firms that adopt the new technologies above

the average fall while those attached to firms that adopt the new technologies below the

average rise, which lowers the average technology adoption level. The impact of the expan-

sion of the technological frontier also involves subtle effects. But most importantly, most

productive firms adopt the up-to-date technologies as a result, which raises the average

technology adoption level.

3 Closed-Economy Equilibrium

As we have shown in the last section, endogenous variables yet to be determined are reduced

to ϕ∗, w, and r, which must satisfy the three equations: the zero profit condition in sector

Z (equation (2)), the free-entry condition (equation (14)), and the factor-market clearing

condition (equation (18)). Now, with a slight abuse of notation, we let w(r) denote the

wage rate that satisfies (2) for a given r. Then, the system is reduced to two unknown

variables ϕ∗ and r with two equations, (14) and (18), where w(r) is substituted for w.

10



Before we investigate the case of interest in which some firms adopt new technologies

only partially, we examine the extreme case where ϕ∗ is greater than rk(θ)/[wl(θ)] so that

all firms fully adopt the new technologies (see (4)). When all firms fully adopt the new

technologies, m̂ becomes constant at m̂θ ≡ αγθ + (1 − αγ)mz. Then the factor-market

clearing condition (18) becomes
w

r
=

1− m̂θ

m̂θ

K

L
, (20)

so the wage-rental ratio in equilibrium is linear in the capital-labor endowment ratio. Sub-

stituting (20), we can rewrite rk(θ)/[wl(θ)], the threshold value of ϕ∗, as

ϕθ ≡
m̂θ

1− m̂θ

L

K

k(θ)
l(θ)

.

When all firms fully adopt the new technology, the free-entry condition (14) is reduced

to

[1−H(ϕ∗)]

[∫ ∞

0

(
ϕ

ϕ∗

)θ(σ−1)

dµϕ∗(ϕ)− 1

]
= fe/f, (21)

which implies that the cutoff productivity level ϕ∗ is solely determined by the free-entry

condition, independent of the factor prices (and factor endowments). We define ϕ̄ as ϕ∗

that satisfies (21). If ϕ̄ ≥ ϕθ, then in equilibrium all firms adopt the new technology for all

inputs up to θ. Equilibrium factor prices are readily derived from (2) and (20) as

wθ =
[
1− m̂θ

m̂θ

K

L

]mz

and rθ =
[

m̂θ

1− m̂θ

L

K

]1−mz

,

respectively. In this type of equilibrium, all firms in sector Y employ the same production

technologies (with different productivities) regardless of the diversification in their intrinsic

productivities. This case is in essence the same as the one considered by Bernard et al.

(2007).

Now, we turn to the case of our main interest in which firms are diversified in their

technology adoption. To derive an equilibrium, we examine properties of the free-entry

condition (14) and the factor-market clearing condition (18). Noting that these two con-

ditions can be expressed by two endogenous variables, ϕ∗ and r, with the use of (2), it is

rather straightforward to establish the following lemma.

Lemma 2. Consider the case in which firms are diversified in their technology adoption.

Then, the free-entry condition is represented by a down-sloping schedule in the (r, ϕ∗)-space,

whereas the factor-market clearing condition is illustrated by an upward-sloping schedule.
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Proof. See the Appendix.

When the entry to the market becomes more difficult (a higher ϕ∗), the average profit

π̃ (which equals the ex ante expected profit conditioning on the successful entry) must rise

in order to make firms willing to incur the initial investment fe. This is enabled by a

reduction of the rental rate, which raises the profits earned by inframarginal firms through

both reducing the production costs directly (as sector Y is capital intensive relative to

sector Z) and encouraging the technology adoption. Thus, the free-entry (FE) schedule is

downward-sloping in the (r, ϕ∗)-space.

As for the factor-market clearing (FM) schedule, a higher rental rate lowers the demands

for capital by discouraging the technology adoption and raising the production costs. In

order to compensate this demand fall, firms must become more productive on average,

demanding more capital, with a rise in ϕ∗.

As Figure 2 shows, the equilibrium is uniquely determined as the FE schedule is downward-

sloping while the FM schedule is upward-sloping. Thus, we have shown the following propo-

sition.

Proposition 1. There exists the environment such that in equilibrium, only the most pro-

ductive firms fully adopt the new technologies, while firms with lower productivity levels

adopt the new technologies only partially.

Once ϕ∗ and r are determined, the characteristics of the average operating firms, such

as the average unit variable cost c̃ (equation (10)), the average profit π̃ (equation (13)), and

the average technology adoption m̃ (equation (15)), are identified, which means that the

firms’ distribution including the mass of operating firms is also determined. Notice that a

change in the size of the economy (i.e., a proportional change in K and L) alters neither

the FE schedule nor the FM schedule. This means that the profile of the average firm is

independent of the size of the economy; an increase in the country size simply makes the

distribution of firms thick (i.e., a rise in N).

Now, let us examine further properties of equilibrium in which firms are heterogeneous

in their adoption of the new technologies.

First, we consider the impact of an increase in the capital-labor endowment ratio K/L.

It is immediate to see that only the factor-market clearing (FM) schedule is affected. That

is, the FM schedule shifts to the left as expected while the FE schedule is left unchanged.

As a result, the rental rate r declines (while the wage rate w increases) and the cutoff

12



productivity level ϕ∗ rises as shown in Figure 2. Firms with the lowest productivities exit

from the market since they become less competitive as the costs of labor, which they use

intensively, increase. Operating firms adopt the new technologies for more inputs than

before as a response to an increase in the wage-rental ratio. Together with the observation

that least productive firms exit from the market, we find that an increase in the capital-labor

endowment ratio raises the average productivity in sector Y .

Proposition 2. An increase in the capital-labor ratio induces the least productive firms to

exit from the market and the operating firms to adopt the new technologies more than before.

Consequently, the average productivity of the industry rises.

Proof. See the Appendix.

Next, we consider the effect of a decrease in the fixed cost f (or equivalently an increase

in fe). A decrease in f leaves the factor-market clearing (FM) schedule unchanged, while

it shifts the free-entry (FE) schedule downward since all operating firms become more

profitable for any given factor prices, and therefore the cutoff productivity level must decline.

As a result, both the cutoff productivity level ϕ∗ and the rental rate r fall. Lowering the

fixed cost invites less productive firms to enter the market. Since the tail of firm distribution

is stretched, however, the average technology adoption decreases. Consequently, the rental

rate declines.3 These results are recorded as follows.

Proposition 3. A decrease in the fixed cost f raises profitability of operating firms and

encourages less productive firms to enter the market. The average technology adoption level

falls as a result, leading to a lower rental rate.

Proof. See the Appendix.

An expansion of the technological frontier (i.e., an increase in θ) brings about relatively-

more ambiguous results. A rise in θ would increase the average profits for the operating

firms, which induces the free-entry (FE) schedule to shift up to lower the expected profits

upon entry to counter the effect. On the other hand, an increase in θ shifts the factor-market

clearing (FM) schedule to the right. An increase in θ directly increases most-productive

firms’ demands for capital. Moreover, it makes most productive firms more competitive than

others, which also increases the aggregate demand for capital. As a consequence, r increases
3Although each operating firm adopts the new technologies more, the effect of an increase in the mass of

low productivity firms outweighs, lowering the average technology adoption.
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for any given ϕ∗. Since the FE schedule shifts up while the FM schedule shifts to the right,

r increases unambiguously, but whether or not ϕ∗ increases is not clear. The resulting

increase in the rental rate dampens the favorable effect of the technological progress on the

expected profits of the operating firms. Therefore, it is not clear whether or not the cutoff

productivity rises as a consequence of the expansion of the technological frontier.

Proposition 4. An expansion of the technological frontier induces the most productive firms

to adopt the new technologies for more inputs. Since the wage-rental ratio decreases as a

result, however, other firms retreat in their adoption of the new technologies.

Proof. See the Appendix.

4 Two-Country Model

This section extends the basic model to the setting in which two countries, Home and

Foreign, differ in general in their factor proportions and technology frontiers trade each

other. Without loss of generality, we assume that Home is capital abundant while Foreign

is labor abundant, i.e., KH/LH > KF /LF where H and F signify Home and Foreign,

respectively. The two countries engage in free trade in both good Y and good Z, so intra-

industry trade of good Y occurs as well as inter-industry trade.

In sector Y , NT firms operate in the world as a whole, where T signifies variables that

are sum of corresponding Home’s and Foreign’s variables in free trade equilibrium. The

fraction nH of them are located in Home, so the mass of firms in Home is NH = nHNT

while that in Foreign is NF = (1 − nH)NT . We define the world-wide average of the unit

cost in sector Y by

c̃T =
[
nH c̃(ϕ∗

H , wH , rH , θH)1−σ + (1− nH)c̃(ϕ∗
F , wF , rF , θF )1−σ

]1/(1−σ)
,

where we suppress the arguments of c̃T to simplify the exposition. Then, the price index,

which is common to both countries, is given by

PT = N
1/(1−σ)
T p(c̃T ).

To derive the free-trade equilibrium, we first investigate the zero-profit conditions for

sector Y in both countries and derive the relationship between (rH , ϕ∗
H) and (rF , ϕ∗

F ) given

that the wage rates are determined by wH = w(rH) and wF = w(rF ). Then, we derive

14



the free-entry (FE) conditions and factor-market clearing (FM) conditions to identify an

equilibrium.

It follows from (7) that the zero-profit conditions for the least productive cutoff firms

in Home and Foreign can be written respectively as

γET

σNT

[
c(ϕ∗

H , w(rH), rH , θH)
c̃T

]1−σ

= f, (22)

γET

σNT

[
c(ϕ∗

F , w(rF ), rF , θF )
c̃T

]1−σ

= f.

Consequently, we have

c(ϕ∗
H , w(rH), rH , θH) = c(ϕ∗

F , w(rF ), rF , θF ). (23)

The condition (23) gives us the relationship between (rH , ϕ∗
H) and (rF , ϕ∗

F ). Now, it follows

from (A.7) in the Appendix and the definition of η that the total derivative of c(ϕ, w(r), r, θ)

with respect to r is given by

dc(ϕ, w(r), r, θ)
dr

=
c(ϕ, w(r), r, θ)

r

m−mz

1−mz
, (24)

where we use dc(ϕ, w(r), r, θ)/dr to denote the total derivative in order to make a clear

distinction from the partial derivative of c with respect to r. The total derivative (24)

is positive as we focus on the model environment such that sector Y is capital intensive

relative to sector Z. Together with the fact that c is decreasing in ϕ, therefore, we obtain

that (rH , ϕ∗
H) and (rF , ϕ∗

F ) must lie on a common upward-sloping zero-profit condition

(ZPC) schedule.

Turning to the free-entry condition, we first write the condition in Home under which

the expected profits upon entry equals the entry cost:

[1−H(ϕ∗
H)]

{
γET

σNT

[
c̃(ϕ∗

H , w(rH), rH , θH)
c̃T

]1−σ

− f

}
= fe,

where the expression in the curly brackets is the average profits for the operating firms

located in Home. Together with (22), we obtain

Φ(ϕ∗
H , w(rH), rH , θH) = fe/f, (25)

where Φ is defined in (14). Note that the functional form of (25) is the same as that in

autarky (equation (14)). Thus, the location of the free-entry (FE) schedule will not change
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by opening to trade. Note also that once rH is determined, so is ϕ∗
H = ϕ∗

H(rH). Similarly,

we obtain the free-entry condition in Foreign as

Φ(ϕ∗
F , w(rF ), rF , θF ) = fe/f. (26)

It follows immediately from (23) and (26) that ϕ∗
F and rF can also be expressed as a function

of rH .

As depicted in Figure 3, the FE schedule for Home (FEH) and that for Foreign (FEF )

coincide with each other if θH = θF . But FEH is located to the right of FEF if θH > θF ,

as shown in Figure 4. This is because Φ is increasing in θ as the proof of Proposition 4 in

the Appendix shows while Φ is decreasing in r as (A.9) in the proof of Lemma 2 shows.

Next, we derive the world-wide factor-market clearing condition. We define the average

technological adoption level of Home’s firms as

m̃H =
∫ ∞

0
m(ϕ, w(rH), rH , θH)

[
c(ϕ, w(rH), rH , θH)

c̃T

]1−σ

dµ∗H(ϕ),

and similarly for Foreign’s as m̃F . The aggregate demands for capital by all firms in

sector Y to produce varieties equal αγET (nHm̃H +nF m̃F ), while those as fixed costs equal

(1 − α)γET mz. Since the demands for capital in sector Z are (1 − γ)ET mz, the world-

capital-market-clearing condition can be written as

m̂T ET = rHKH + rF KF ,

where m̂T = αγ[nHm̃H + nF m̃F ] + [(1− α)γ + 1− γ]mz. The world-labor-market-clearing

condition, on the other hand, can be written as

(1− m̂T )ET = w(rH)LH + w(rF )LF .

Combining these two conditions, we obtain the world-factor-market clearing condition as

1− m̂T

m̂T
=

w(rH)LH + w(rF )LF

rHKH + rF KF
. (27)

The last condition we need in order to determine free-trade equilibrium is Home’s factor-

market clearing condition. Let ξ denote the share of Home’s production in the world-wide

production of good Z. Then, the capital-market clearing condition for Home can be written

as

ET

{
αγnHm̃H + (1− α)γ

[
nH c̃(ϕ∗

H , w(rH), rH , θH)1−σ

c̃1−σ
T

]
mz + (1− γ)ξmz

}
= rHKH .
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The labor-market clearing condition for Home can be similarly written as

ET

{
αγnH(1− m̃H) + (1− α)γ

[
nH c̃(ϕ∗

H , w(rH), rH , θH)1−σ

c̃1−σ
T

]
(1−mz) + (1− γ)ξ(1−mz)

}
= w(rH)LH .

Canceling ξ from these equations, we obtain the Home’s factor-market clearing condition:

αγET nH(m̃H −mz) = rHKH −mz[w(rH)LH + rHKH ], (28)

where ET = w(rH)LH + w(rF )LF + rHKH + rF KF .

Five equations, (23), (25), (26), (27), and (28), determine five unknown variables, rH ,

rF , ϕ∗
H , ϕ∗

F , and nH , which give us the free-trade equilibrium.

In the remainder of this section, we examine the properties of free-trade equilibrium and

compare them with those in autarky. We first investigate the case in which θH = θF and

then the case in which θH > θF . We infer from Proposition 2 that in autarky, the capital

abundant country, Home, has a higher wage-rental ratio than Foreign and hence more firms

in sector Y use the new technologies, especially for the frontier input θH , if the size of Home

is similar to that of Foreign. Higher rewards to new technologies for inputs beyond θH than

Foreign give firms in Home more incentive to expand the technological frontier. Rigorous

modeling of the endogenous expansion of the technological frontier is beyond the scope of

this paper. Here we simply assume that θH > θF and explore the consequences of this

assumption.

When θH = θF , we find from (25) and (26) that the free-entry schedules of the two

countries, FEH and FEF , coincide as Figure 3 shows. Figure 3 depicts autarky equilibria

H and F for Home and Foreign, respectively. We confirm as a corollary to Proposition 2

that in autarky, the capital-abundant Home has a lower r and higher ϕ∗. Free trade induces

the rental rates and cutoff productivity levels to coincide between Home and Foreign, i.e.,

rH = rF and ϕ∗
H = ϕ∗

F , as we see from (23), (25), and (26). Then rental rate and nH are

determined by (27) and (28). In free trade, the rental rates (and hence the wage rates) and

cutoff productivity levels are same between Home and Foreign, as shown by T in Figure 3.

We have shown the following proposition.

Proposition 5. Suppose that the technological frontiers are the same between Home and

Foreign. In autarky, capital-abundant Home has a lower rental rate and higher cutoff pro-

ductivity level than Foreign. Opening to trade will equalize the factor prices and cutoff pro-
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ductivity levels, respectively, between Home and Foreign. As a result, firms with the same

intrinsic productivity adopt the same production technology regardless of their locations.

Next, we examine the case in which θH > θF . It follows from (25) that once rH is

determined, so is ϕ∗
H . Then (23) and (26) determine rF and ϕ∗

F as functions of rH . Finally,

rH together with nH are solved from the factor-market clearing conditions (27) and (28).

Figure 4 illustrates the autarkic equilibria H for Home and F for Foreign; it also shows the

free-trade equilibria HT , which is the intersection between FEH and FMT , for Home and

FT , which is the intersection between ZPC and FFF , for Foreign as the above argument

suggests.

Let us consider the autarkic equilibrium first. As the figure shows, if θH is not much

larger than θF , Home’s rental rate is smaller than Foreign’s as we correctly anticipate from

the last result when θH = θF . If θH is sufficiently larger than θF , however, this effect may

outweigh the effect of factor endowment, so Home’s rental rate is greater than Foreign’s.

In both cases, the cutoff productivity level is higher in Home than in Foreign. Opening to

trade will not equalize factor prices in this case. Since the ZPC schedule is upward-sloping

and the FEH schedule is located above the FEF schedule reflecting the difference in the

technological frontier, HT must be located to the northeast of FT . Thus, in free trade, both

rental rate and cutoff productivity level are higher in Home than in Foreign.

Proposition 6. Suppose that the technological frontier is higher in capital-abundant Home

than Foreign. Then, in autarky, the cutoff productivity level is higher in Home than in

Foreign. The rental rate is lower in Home than in Foreign if the difference in the techno-

logical frontiers is small, but it is larger in Home if the difference is large. Free trade will

not equalize factor prices. The rental rate is larger and hence the wage rate is lower in

Home whose technological frontier is higher than Foreign. The cutoff productivity level is

also higher in Home in the free-trade equilibrium.

Remark 1. If the capital-abundant country has a higher technological frontier as we argue

above, the wage-rental ratio is lower in the capital-abundant country than in the labor-

abundant country, contrary to the ranking in autarky when the difference in technological

frontier between the countries is small.
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5 Concluding Remarks

We have set up a general equilibrium trade model in which firm heterogeneity in their pro-

ductivities arise as a result of the choice of technology. The choice of technology depends

on the factor prices, which in turn depend on factor endowments in autarky. Thus, the

production technology is influenced by factor endowments. We have found among others

that firms in the capital-abundant country tends to adopt new advanced technologies more

in their production processes than the labor-abundant country, but opening to international

trade will equalize factor prices between them and as a result productivity differences across

countries disappear, if their states of technologies, which we have measured by the techno-

logical frontiers, are the same. If the states of technologies are different, on the other hand,

the country with a higher state of technology has a lower wage-rental ratio than the other.

We argue that the capital-abundant country tends to have a higher state of technology, so if

that is the case the wage-rental ratio is lower in the capital-abundant country in free trade.

We have assumed that there is no trade cost. It is easy to see that in the presence of

trade costs, unproductive firms only sell domestically whereas productive firms export their

products as well as selling them domestically. This is true for both countries. Thus, even the

labor-abundant country exports products that are most capital-intensive of all production

process carried out in the country.
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A Appendix

A.1 Proof of Lemma 1

The partial derivative of m̃(ϕ∗, w, r, θ) with respect to ϕ∗ is given by

∂m̃

∂ϕ∗ =

∫∞
ϕ∗

[
c(ϕ∗)1−σh(ϕ∗)m(ϕ)c(ϕ)1−σ −m(ϕ∗)c(ϕ∗)1−σh(ϕ∗)c(ϕ)1−σ

]
dh(ϕ)[∫∞

ϕ∗ c(ϕ)1−σdh(ϕ)
]2

=
c(ϕ∗)1−σh(ϕ∗)

∫∞
ϕ∗ [m(ϕ)−m(ϕ∗)] c(ϕ)1−σdh(ϕ)[∫∞
ϕ∗ c(ϕ)1−σdh(ϕ)

]2
=

h(ϕ∗) [m̃(ϕ∗)−m(ϕ∗)]
1−H(ϕ∗)

[
c(ϕ∗)
c̃(ϕ∗)

]1−σ

,

(A.1)

where we have suppressed arguments w, r, and θ from all the relevant functions to simplify
the exposition. Since m(ϕ, w, r, θ) is non-decreasing in ϕ, it follows that m(ϕ, w, r, θ) ≥
m(ϕ∗, w, r, θ) ≥ 0 on the support of h, and hence m̃(ϕ∗) > m(ϕ∗) in the case where firms
are heterogeneous in their technology adoption. Therefore, we obtain ∂m̃/∂ϕ∗ > 0.

The partial derivative of m̃(ϕ∗, w, r, θ) with respect to r is given by

∂m̃

∂r
(ϕ∗, w, r, θ) =

∫ ∞

0

∂m

∂r
(ϕ, w, r, θ)

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

dµϕ∗(ϕ)

+
1− σ

r

{∫ ∞

0
m(ϕ, w, r, θ)2

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

dµϕ∗(ϕ)− m̃(ϕ∗, w, r, θ)2
}

. (A.2)

It is straightforward to see that the first term on the right-hand side is non-positive since

∂m

∂r
(ϕ, w, r, θ) =

{
− λ(ϕ,m)

r[(∂λ/∂j)(ϕ,m)] < 0 if rk(0)/[wl(0)] < ϕ < rk(θ)/[wl(θ)],
0 if ϕ ≥ rk(θ)/[wl(θ)].

(A.3)

As for the second term, the expression in the curly brackets is positive as long as firms are
heterogeneous in their technology adoption. This is because it equals the weighted average
variance of m(ϕ, w, r, θ), which we call V ar(m), with the relative revenues as the weights:

Var(m) =
∫ ∞

0
[m(ϕ, w, r, θ)− m̃(ϕ, w, r, θ)]2

[
c(ϕ, w, r, θ)
c̃(ϕ, w, r, θ)

]1−σ

dµϕ∗(ϕ) > 0.

Thus, we have shown ∂m/∂r < 0.
The proof of ∂m̃/∂w > 0 is similar to that of ∂m̃/∂r < 0, and hence omitted.
To derive the sign of ∂m̃/∂θ, we define ι(j) by ι(j) = k(j)/l(j) and rewrite the average

adoption level m̃ as

m̃(ϕ∗, w, r, θ) =
∫ rι(θ)/w

0
m(ϕ, w, r, θ)

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

dµϕ∗(ϕ)

+
∫ ∞

rι(θ)/w
θ

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

dµϕ∗(ϕ).
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Now, we take the derivative of c(ϕ, w, r, θ) with respect to θ to obtain

∂c

∂θ
(ϕ, w, r, θ) = c(ϕ, w, r, θ) ln

rι(θ)
ϕw

.

Moreover, we have

∂c̃

∂θ
(ϕ∗, w, r, θ) = c̃(ϕ∗, w, r, θ)

∫ ∞

rι(θ)/w

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

ln
rι(θ)
ϕw

dµϕ∗(ϕ). (A.4)

Consequently, we obtain the derivative of [c(ϕ, w, r, θ)/c̃(ϕ∗, w, r, θ)]1−σ with respect to θ as

(1− σ)
[

c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ [
ln

rι(θ)
ϕw

−A

]
,

where

A ≡
∫ ∞

rι(θ)/w

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

ln
rι(θ)
ϕw

dµϕ∗(ϕ).

Now, noting that c(ϕ, w, r, θ) and m(ϕ, w, r, θ) are constant with respect to θ for any
ϕ < rι(θ)/w and letting ϕ̄θ ≡ rι(θ)/w, we have

∂m̃

∂θ
(ϕ∗, w, r, θ) =

rι′(θ)
w

[m(ϕ̄θ, w, r, θ)− θ]
[

c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

+
∫ ϕ̄θ

0
m(ϕ, w, r, θ)

1− σ

c̃(ϕ∗, w, r, θ)

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ ∂c̃

∂θ
(ϕ, w, r, θ)dµϕ∗(ϕ)

+
∫ ∞

ϕ̄θ

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

dµϕ∗(ϕ)

+θ(1− σ)
∫ ∞

ϕ̄θ

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ [
ln

rι(θ)
ϕw

−A

]
dµϕ∗(ϕ). (A.5)

The first term on the right-hand side equals zero as m(ϕ̄θ, w, r, θ) = θ. Since rι(θ)/(ϕw) < 1
for ϕ > ϕ̄θ, we find ∂c̃/∂θ < 0 (see (A.4) so that the second term is positive. The third
term is obviously positive. As for the last term, we have∫ ∞

ϕ̄θ

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ [
ln

rι(θ)
ϕw

−A

]
dµϕ∗(ϕ)

= A

{
1−

∫ ∞

ϕ̄θ

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

dµϕ∗(ϕ)

}
. (A.6)

It follows again from rι(θ)/(ϕw) < 1 for ϕ > ϕ̄θ that A < 0. Moreover, since∫ ∞

0

[
c(ϕ, w, r, θ)
c̃(ϕ∗, w, r, θ)

]1−σ

dµϕ∗(ϕ) = 1,

and the integrand is positive, the expression inside the curly brackets is positive. Thus, the
expression in (A.6) is negative, which makes the last term positive. Since all terms on the
right-hand side of (A.5) are positive, we have shown ∂m̃/∂θ¿0.
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A.2 Proof of Lemma 2

Let w(r) define the wage rate that satisfies (2) for a given r. For later purposes, we define
the elasticity of w with respect to r by η ≡ −w′(r)r/w = mz/(1−mz) > 0. Now the total
derivative of c(ϕ, w(r), r, θ) with respect to r is given by

dc(ϕ, w(r), r, θ)
dr

=
c(ϕ, w(r), r, θ)

r
[(1 + η)m(ϕ, w(r), r, θ)− η] , (A.7)

where we use dc(ϕ, w(r), r, θ)/dr to denote the total derivative to make a clear distinction
from the partial derivative of c with respect to r, and hence

dc̃(ϕ∗, w(r), r, θ)
dr

=
c̃(ϕ∗, w(r), r, θ)

r
[(1 + η)m̃(ϕ∗, w(r), r, θ)− η] . (A.8)

We first show that the free-entry (FE) schedule is downward-sloping. It follows directly
from (14) that

∂ϕ∗

∂r

∣∣∣∣
FE

= − ∂Φ(ϕ∗, w(r), r, θ)/∂r

∂Φ(ϕ∗, w(r), r, θ)/∂ϕ∗ .

It follows from (A.7) and (A.8) that

dφ(ϕ∗, w(r), r, θ)
dr

= (1− σ)
[
c̃(ϕ∗, w(r), r, θ)
c(ϕ∗, w(r), r, θ)

]−σ

×
dc̃(ϕ∗,w(r),r,θ)

dr c(ϕ∗, w(r), r, θ)− c̃(ϕ∗, w(r), r, θ)dc(ϕ∗,w(r),r,θ)
dr

c(ϕ∗, w(r), r, θ)2

=
(1− σ)(1 + η)

r

[
c̃(ϕ∗, w(r), r, θ)
c(ϕ∗, w(r), r, θ)

]−σ

[m̃(ϕ∗, w(r), r, θ)−m(ϕ∗, w(r), r, θ)]

< 0,

and hence

dΦ(ϕ∗, w(r), r, θ)
dr

= [1−H(ϕ∗)]
dφ(ϕ∗, w(r), r, θ)

dr
< 0. (A.9)

Similarly, we have

dΦ(ϕ∗, w(r), r, θ)
dϕ∗ = [1−H(ϕ∗)]

(1− σ)
ϕ∗

[
c̃(ϕ∗, w(r), r, θ)
c(ϕ∗, w(r), r, θ)

]1−σ

m(ϕ∗, w(r), r, θ) < 0.

(A.10)
Thus, the slope of the FE schedule is

dϕ∗

dr
= −(1 + η)ϕ∗

r

[
m̃(ϕ∗, w(r), r, θ)
m(ϕ∗, w(r), r, θ)

− 1
]

< 0.

Next, we show that the factor-market clearing (FM) schedule is upward-sloping. Defin-
ing κ ≡ K/L and

g(ϕ∗, r, θ) ≡ m̂(ϕ∗, w(r), r, θ)w(r)− [1− m̂(ϕ∗, w(r), r, θ)]rκ, (A.11)
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we see that (18) is equivalent to g(ϕ∗, r, θ) = 0. We have

∂g

∂r
(ϕ∗, r, θ) =

dm̂(ϕ∗, w(r), r, θ)
dr

[w(r) + rκ] + m̂(ϕ∗, w(r), r, θ)w′(r)

−[1− m̂(ϕ∗, w(r), r, θ)]κ, (A.12)
∂g

∂ϕ∗ (ϕ∗, r, θ) =
∂m̂

∂ϕ∗ (ϕ∗, w(r), r, θ)[w(r) + rκ]. (A.13)

Now, it follows directly from the definition of m̂ that

dm̂(ϕ∗, w(r), r, θ)
dr

= αγ

[
∂m̃

∂w
(ϕ∗, w(r), r, θ)w′(r) +

∂m̂

∂r
(ϕ∗, w(r), r, θ)

]
,

which is negative as ∂m̃/∂w > 0 and ∂m̃/∂r < 0 (Lemma 1), together with w′(r) < 0.
Moreover, we have

∂m̂

∂ϕ∗ (ϕ∗, w(r), r, θ) = αγ
∂m̃

∂ϕ∗ (ϕ∗, w(r), r, θ),

which is positive as ∂m̃/∂ϕ∗ > 0 (Lemma 1). Therefore, we have ∂g/∂r < 0 and ∂g/∂ϕ∗ >
0, and hence

∂ϕ∗

∂r

∣∣∣∣
FM

= − ∂g/∂r

∂g/∂ϕ∗ > 0.

A.3 Proof of Proposition 3

Using the free-entry condition (14) and the factor-market clearing condition (18), we define
the vector-valued function G as

G(ϕ∗, r, θ, κ, f) ≡
(

G1(ϕ∗, r, θ, f)
G2(ϕ∗r, θ, κ)

)
≡

(
Φ(ϕ∗, w(r), r, θ)− (fe/f)

g(ϕ∗r, θ, κ)

)
, (A.14)

(A.15)

where g is defined by (A.11). In equilibrium, we have G(ϕ∗, r, θ, κ, f) = 0, where 0 is the
two-dimensional vector with 0 in each element. The Jacobian derivative of G is given by

J ≡

(
∂G1
∂ϕ∗

∂G1
∂r

∂G2
∂ϕ∗

∂G2
∂r

)
.

It follows from (A.9), (A.10), (A.12), and (A.13) that ∂G1/∂ϕ∗ < 0, ∂G1/∂r < 0, ∂G2/∂ϕ∗ >
0, ∂G2/∂r < 0. Thus, the Jacobian determinant is positive, i.e., |J | > 0.

Applying the implicit function theorem with the use of Cramer’s rule, we then have

∂ϕ∗

∂κ
=

1
|J |

∣∣∣∣ −∂G1
∂κ

∂G1
∂r

−∂G2
∂κ

∂G2
∂r

∣∣∣∣ = − 1
|J |

[1− m̂(ϕ∗, w(r), r, θ)]r
∂G1

∂r
> 0,

∂r

∂κ
=

1
|J |

∣∣∣∣∣ ∂G1
∂ϕ∗ −∂G1

∂κ
∂G2
∂ϕ∗ −∂G2

∂κ

∣∣∣∣∣ = 1
|J |

[1− m̂(ϕ∗, w(r), r, θ)]r
∂G1

∂ϕ∗ < 0.
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A.4 Proof of Proposition 3

Similarly to the proof of Proposition 2, we obtain

∂ϕ∗

∂f
=

1
|J |

∣∣∣∣∣ −∂G1
∂f

∂G1
∂r

−∂G2
∂f

∂G2
∂r

∣∣∣∣∣ = − 1
|J |

fe

f2

∂G2

∂r
> 0,

∂r

∂f
=

1
|J |

∣∣∣∣∣ ∂G1
∂ϕ∗ −∂G1

∂f
∂G2
∂ϕ∗ −∂G2

∂f

∣∣∣∣∣ = 1
|J |

fe

f2

∂G2

∂ϕ∗ > 0.

A.5 Proof of Proposition 4

To use the implicit function theorem, we first obtain

∂G1

∂θ
=

∂Φ
∂θ

(ϕ∗, w(r), r, θ)

= [1−H(ϕ∗)]
∂φ

∂θ
(ϕ∗, w(r), r, θ).

Since ∂c̃/∂θ < 0 and c(ϕ∗, w(r), r, θ) is constant with respect to θ as the least productive
operating firms do not adopt the new technology for the frontier input θ, we have ∂φ/∂θ > 0.
Therefore, we have ∂G1/∂θ > 0. As for the sign of ∂G2/∂θ, we have

∂G2

∂θ
=

∂g

∂θ

=
∂m̂

∂θ
(ϕ∗, w(r), r, θ)[w(r) + rκ]

= αγ
∂m̃

∂θ
(ϕ∗, w(r), r, θ)[w(r) + rκ],

which is positive as Lemma 1 shows.
Now, we have

∂ϕ∗

∂θ
=

1
|J |

∣∣∣∣ −∂G1
∂θ

∂G1
∂r

−∂G2
∂θ

∂G2
∂r

∣∣∣∣ = 1
|J |

(
∂G1

∂r

∂G2

∂θ
− ∂G1

∂θ

∂G2

∂r

)
.

Since ∂G1/∂r < 0, ∂G2/∂θ > 0, ∂G1/∂θ > 0, and ∂G2/∂r < 0, the sign of ∂ϕ∗/∂θ is
ambiguous. On the other hand, we have

∂r

∂θ
=

1
|J |

∣∣∣∣∣ ∂G1
∂ϕ∗ −∂G1

∂θ
∂G2
∂ϕ∗ −∂G2

∂θ

∣∣∣∣∣ = 1
|J |

(
∂G1

∂θ

∂G2

∂ϕ∗ −
∂G1

∂ϕ∗
∂G2

∂θ

)
.

Since ∂G1/∂θ > 0, ∂G2/∂ϕ∗ > 0, ∂G1/∂ϕ∗ < 0, and ∂G2/∂θ > 0, we obtain ∂r/∂θ > 0.
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Figure 1: Technology Adoption and the Unit Variable Costs
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Figure 2: The Equilibrium Cutoff Productivity Level and Rental Rate 
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