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Abstract: This study aims to quantify the contribution of social networks, i.e., guanxi, 
to income inequality in rural households in China. One purpose is to understand how 
this influence varies across regions with different levels of marketization and economic 
development. Employing household survey data in rural China, we find that social 
networks contribute 12.1%–13.4% to income inequality among households in rural 
China, ranking fourth after village identifiers, nonfarm employment, and education. We 
also find that social networks exert a greater impact on income and a greater 
contribution to income inequality in Eastern China, compared with Middle–Western 
China where economic development is relatively slower. Our findings challenge the 
conventional understanding that social capital is the capital of the poor. In other words, 
the rich get richer in richer regions through social networks. 
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1. Introduction 

Social networks play an important role in the organization of societal life, especially in 

guanxi in China; i.e., social networks.1  Empirical studies have found guanxi in Chinese 

society can bring about economic well-being through reductions in poverty (Zhang et al., 2007) 

and higher income levels (Knight and Yueh, 2002), as well as facilitating the development of 

rural industry owing to the kinship network in rural China (Peng, 2004). This body of research, 

however, focuses on the benefits of an individual’s social network without taking into 

consideration the influence of the distribution of social networks upon income inequality. 

Thus, it gives rise to the question whether inequality in social networks among households 

influences income inequality among households, and to what extent. Further, does this impact 

vary with economic development and marketization? 

These questions are pertinent to the argument that “… social capital is the capital of the 

poor”, as social capital, particularly social networks, facilitate credit access and contribute 

significantly to the welfare of the poor (Grootaert, 1999, 2001). Nevertheless, this argument 

could be somewhat ill-formed if the rich benefit more from their social capital, if the 

distribution of social capital favors the rich, or if the rich in richer regions receive relatively 

more than their peers in less-developed regions. All of these possibilities could undermine the 

argument that social capital is indeed the capital of the poor. 

In an effort to clarify these questions, our paper studies the contribution of the inequality of 

social networks to income inequality in rural China using a newly developed method; namely, 

regression-based decomposition (Shorrocks, 1999). Our findings are as follows. First, social 

networks contribute some 12.1%–13.4% to total income inequality in our sample, following 

village identifiers, nonfarm employment, and education. This means that the rich benefit more 

 
 

1 In Chinese society, guanxi generally refers to one’s own social network. This concept is widely used in 
academia; see, for instance, Li and Zhang (2003). 
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from social networks than the poor. Second, the contribution of social networks to income 

inequality in the East of China is greater than that in Middle and Western regions of China 

where the level of development and marketization lags behind. These findings imply that 

social networks, the foremost category of social capital, are more likely to be the capital of the 

rich. Moreover, the second finding may also question Stiglitz’s (2000) argument that formal 

institutions, given the ongoing development of marketization, will increasingly displace the 

role of social capital as an informal institution. This cross-regional comparison likely predicts 

that social networks could play an even more significant role in the organization of societal life 

at more advanced stages of development. These findings then provide a better understanding 

of the nexus between social networks and marketization, as well as trends in and the 

transformation of the Chinese economy. 

The structure of the remainder of the paper is as follows. Section 2 reviews the research 

literature with respect to social capital, income inequality, and the methods of analysis. 

Section 3 provides a description of the data and the variable selection. Section 4 undertakes an 

empirical study of household income determination and the regression results, followed by the 

regression-based decomposition of income inequality in Section 5. In Section 6, we group the 

data by geographical region and decompose the contribution of social networks to income 

inequality for each region. Section 7 provides some concluding remarks. 

 

2. Literature Review 

Since the late 1970s, with the implementation of the household responsibility system in 

rural areas of China, a multitude of income sources has arisen among villagers freed from 

collective agricultural production. It follows that the income inequality in rural areas has risen 

in the last 30 years. According to the World Bank,2  the Gini coefficient in rural China 

increased by more than 60% from 1980 to 2005: from 0.25 in 1980 to 0.38 in 2005, almost at 

 
 

2 See the World Bank survey at http://iresearch.worldbank.org/PovcalNet/povcalSvy.html 
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the ‘warning line’ of inequality of 0.4. This increase in income inequality could jeopardize 

some aspects of economic development, including aggravating poverty (Wan and Zhang, 2006) 

and hamper income gains in rural households (Jalan and Ravallion, 2001). Hence, 

investigating the sources of the rising income inequality in rural China is not only significant 

but also imperative. 

Research into income inequality in rural China has been the subject of increasing attention 

in academia and the source of many important findings. Existing research mainly focuses on 

the sources and determination of income, including the role of physical, human, and political 

capital. For example, Xu et al. (2008) show that the disaggregation of collective lands in the 

late 1970s led to land inequalities, which in turn was responsible for the rising income 

inequality among rural households. Likewise, Wang (2006) suggests that education plays a 

significant role in income inequality in rural China. Meanwhile, there are an increasing 

number of studies concerning the role of political capital, mainly represented by party 

members and village/town cadres. Analyzing data on rural households in Shandong Province, 

Morduch and Sicular (2000, 2002) concluded that being a party member or cadre exerts a 

positive impact on income (Morduch and Sicular, 2000) and contributes to a certain level of 

income inequality (Morduch and Sicular, 2002). Walder (2002) reveals similar results. 

Nevertheless, there has been lack of concern about the contribution of social networks to 

income inequality, especially on the contribution of the kinship networks that are an 

indispensable part of Chinese daily life. 

The role of social capital, as initially proposed by Jane Jacobos (1961),3 has increasingly 

drawn the attention of economists, sociologists, and political scientists. Although there is still 

some controversy about the exact definition of social capital, the seminal concept proposed by 

Putnam (1993) is that social capital refers to the collective value of all ‘social networks’ and 

 
 

3 Jacobos initially proposed the concept of social capital in her seminal text The Death and Life of Great 
American Cities, where she referred to the networks among the New Yorkers as an indispensable part of the 
flourishing of the city, although she did not explicitly define social network or social capital. 
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the inclinations arising from these networks to ‘do things for each other’. Most recently, there 

is an emerging consensus about the definition of social capital advanced by the World Bank 

(2000) that social capital refers to “… norms and networks that enable collective actions”. One 

can think of social capital, particularly social networks, as an asset people boast about and 

invest in to assist each other. In turn, studies have linked social networks to improvements in 

income (Narayan and Pritchett, 1997), the facilitation of employment (Montgomery, 1991; 

Munshi, 2003, 2006), especially for the alleviation of poverty (Grootaert, 1999, 2001) and 

better access to credit through the role of informal insurance (Grootaert, 1999; Bastelaer, 

2000). 

Using quantile regression, Grootaert (1999, 2001) draws the conclusion that ‘social capital 

is the capital of the poor’ on the basis that the return to social capital for people at the 10th 

percentile of income is higher than that at the 90th percentile. This proposition, however, is 

perhaps rather too hasty in aggrandizing the positive effect of social capital for the poor, 

mainly because Grootaert focused on comparing the return to social capital between the top 

and the bottom percentiles without taking into consideration the distribution of networks 

between these groups, and did not consider income decomposition for further study. In 

Grootaert’s paper, the rich enjoy relatively more social capital: this suggests that social capital 

is more likely the capital of the rich. In an effort to address these puzzles, our paper focuses on 

social networks, the most vital measurable category of social capital at an individual level, to 

see whether social capital is indeed the capital of the poor. Moreover, the data used in the 

existing literature either is collected in developed countries (like the US) or in countries at 

very low levels of development (e.g., rural areas in Tanzania). However, China, a country 

experiencing breathtaking development and transformation with great disparity across 

different areas, can serve as an ideal research object for comparative study of the contributing 

factors to income inequality. This is because there is no need to be concerned about the 

availability and comparability of data in, say, an international comparative study. 
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The significance of guanxi or social networks is appreciable in the daily life of the Chinese 

people and thus attracts considerable interest from academia. Guanxi has been seen to promote 

employment, not only for migrants (Li and Zhang, 2003), but also urban residents (Bian, 

2001). Moreover, there is already some work concerning the influence of guanxi upon income 

inequality between groups. For instance, Lin (2001) considers the influence of social network 

inequality from the perspective of capital. Lin (2001) argues there are two channels through 

which social network inequality affects income inequality: capital deficits and return deficits. 

Capital deficits are the extent to which different social groups, for reasons of investment or 

opportunities, possess a different quality or quantity of capital, while return deficits are the 

extent to which a given quality or quantity of capital generates differential returns for different 

social groups. Using labor market data for urban China, Lin (2001) finds one reason for the 

higher income of male workers is not only that they have greater access to social capital than 

female workers, but even for the same quantity of social capital the return to social capital is 

higher among male workers. The most severe drawback of Lin’s (2001) method is that it is 

limited to a certain extent by the grouping of the sample. Lin (2001) also failed to check other 

sources or factors that may contribute to income inequality. 

In contrast with the static analysis of social networks, revealing how they influence social 

network changes in the process of development and marketization is a particularly exciting 

and challenging aspect of development economics. According to Stiglitz (2000), formal 

institutions will displace social capital, as an informal institution, during the development 

process. Several scholars have thus given attention to the role of traditional social networks in 

the process of development, transformation, and globalization. Munshi and Rosenzweig 

(2006), using survey data on school enrolment and income in Mumbai, found that the 

traditional caste-based social network channelled lower-caste boys into local language schools 

followed by traditional occupations, whereas lower-caste girls, who did not benefit from 

caste-based social networks, could exploit opportunities provided by globalization to switch to 
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English language schools. 

Through study of the labor market in urban China, Knight and Yueh (2002) and Li, Lu and 

Sato (2008) find that social networks not only can exert a positive influence on income, but 

that this influence is larger in private sector firms than in state-owned enterprises. Based on the 

premise that the private sector represents the trend in marketization and development, they 

draw the conclusion that social networks become even more significant with the 

transformation of the economy. Conversely, some studies have found that the social network 

function decreases with the development of formal institutions. Zhang et al. (2007) suggest 

that household level social networks have less effect on poverty reduction in areas with a high 

level of marketization. In addition, Lu et al. (2008) conclude that with the growing 

opportunities to work outside villages, social capital is losing its ability to cushion natural 

shocks for rural households in China. Following this literature, our paper attempts to discover 

how the influence of social networks on income inequality is evolving in response to the 

processes of marketization and economic development. 

In the empirical analysis of income distribution, there are three main approaches: 

semiparametric and nonparametric methods, decomposition by grouping, and decomposition 

by regression. The semiparametric or nonparametric techniques, first proposed by Deaton 

(1997) and Dinardo et al. (1996), attempt to analyze income inequality through the 

distribution of the income density function. These approaches, however, are less than 

persuasive because they lack restrictions on the model of income determination. The second 

method is to group data in accordance with the sample characteristics, such as education, 

gender, etc. As pointed out by Morduch and Sicular (2001), the drawbacks of this method lie 

in three key areas. First, this method cannot apply to continuous variables (such as age) that 

are often quite important and necessary in the analysis of income inequality. Second, there are 

limitations in the number of variables that can be included because the number of groups will 

multiply with the number of categories for each factor. Finally, it is impossible to control for 
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the endogeneity of the variable used to group data, presumably because the researcher groups 

data with an exogenous variable. 

Accordingly, the most popular method used in researching income inequality is the 

decomposition of inequality with regression. Oaxaca (1973) and Blinder (1973) originally 

proposed this line of research to decompose between-group differences in the mean of income. 

In more recent times, Field and Yoo (2000) and Morduch and Sicular (2003) have greatly 

developed this line of analysis by developing their own methods of decomposition. However, 

there are several limitations in their work. First, they confine their regression models to only a 

few specific forms: Field and Yoo (2000) use a semilog model, while Morduch and Sicular 

(2003) assume a linear model. Second, these studies are also restricted in adopting a specific 

measure of income inequality. Finally, the contribution of the residual term to income 

inequality remains unexplained. However, the regression-based Shapley value decomposition 

proposed by Shorrocks (1999) addresses these limitations, later refined by Wan (2004), to 

tackle the contribution of the residual term.4 

In sum, the main contributions of our paper are twofold. First, we quantify the contribution 

of social networks to income inequality using the regression-based decomposition method. 

Second, by utilizing the stunning disparity between the Eastern and Middle–Western regions 

in rural China, our paper examines how the contribution of social network to income 

inequality varies with different stages of economic development. 

 

3. Description of the Data and Variables 

The main data source in our paper is the China Rural Survey 2004 conducted by the China 

Center for Economic Studies at Fudan University. The sample includes information on 927 

households in 48 villages across 22 provinces in 2003, comprising approximately 20 

 
 

4 For a review of income inequality analysis methods, especially income inequality decomposition, see Morduch 
and Sicular (2002) and Wan (2004). 
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households in each village and two villages in each province. The most striking advantage of 

this dataset is its rich information about social capital in rural China, particularly social 

networks. 

We group the data according to the level of marketization from the Report on China 

Marketization Index 2002 (Fan and Wang, 2004). This report builds an evaluation system for 

the relative level of marketization of provinces in China using several characteristics, 

including the relationship between government and the market, the development of the private 

sector, the development of the product and factor markets, and the development of formal 

institutions and the legal system. The relative marketization indices grade continuously from 

one to 10 so that the higher the index, the deeper the process of marketization. We use the 

marketization index from 2002 to avoid any potential simultaneity with the other variables. 

Figure 1 depicts the marketization level by province in China. It is clear that the development 

of markets in different regions is unbalanced, as shown by the variance in the level of 

marketization. The numbers in parenthesis for each province show (from left to right) the 

respective number of villages, the number of households, and the level of marketization. 

 

[Figure 1: Here] 

 

Table 1 lists the variables and their definitions. The dependent variable is the natural 

logarithm of household income per capita from summing “income from land, forest, stock, 

fruit, and fishing”, “income from nonagricultural occupation in local areas”, “income from 

employment outside county”, and “income from property”. The independent variables are 

categorized into family characteristics, household physical capital, human capital, political 

capital and village dummy variables, all of which are generally found in existing research (e.g., 

Morduch and Sicular, 1999, 2002; Walder, 2002; Wan, 2004; Wan et al., 2006). More 

importantly, as social networks are the focus of our paper, we explain its measurement as 
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follows. 

 

[Table 1: Here] 

 

Because the most vital social network formations in China are the kinship network and the 

close friendship relationship (Knight and Yueh, 2002), we mainly focus on two social network 

measures. First, two questions in our survey are “How many relatives and close friends in the 

city do your family have?” and “How many relatives and friends do your family have in the 

local government area?” We add the responses to these two questions to measure the social 

network of a family. Second, we employ the ratio of “the amount you spend in purchasing gifts 

for your relatives or close friends at Chinese New Year” and “the money you spend on 

weddings, birthdays and funerals of your relatives or close friends”5  to obtain the total 

expenditure on daily life. 6  We exclude occasional expenditures, such as expenditure on 

durable commodities or housing construction, to avoid measurement error. 

The rationale for the second measure is from Yan (1996) who finds that rural households in 

northern China use more than 20% of their total expenditure in exchanging gifts to maintain 

guanxi. However, this may exaggerate the cost of social networks because it does not exclude 

situations when people invest in guanxi only for short-term interests, such as finding a job, 

which could sharply increase the expenditure on gifts. Hence, it is more reasonable and 

justifiable to take into consideration only holiday or ceremony expenditure as this expenditure 

is more smooth and continuous. Further, the ratio of gift expenditure to daily expenditure in 

place of its absolute value can help mitigate the simultaneity problem in guanxi as the rich will 

have higher daily expenditure so they may spend more on gifts, and vice versa. To check for 

any potential problems with multicollinearity between the social network variables, we 
 

 
5 According to Chinese tradition, people should send gifts to relatives and friends on Chinese New Year, as well 
as on other occasions, such as weddings, birthdays, and funerals. 
6 For daily expenditure, we add the expenditures on food, cigarettes and alcohol, transportation fees, phone fees, 
utility fees, and other daily expenditure. 
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checked the covariances between them. The correlations are 0.11, 0.17, and 0.09 for the total, 

Eastern, and Middle–Western samples, respectively. This removes the possibility of severe 

multicollinearity in the regression. 

In Table 2, we provide a description of the data; first the total sample, and then after 

categorizing them into Eastern and Middle–Western regions. It is evident that the values of 

some variables vary across these regions. In terms of the dependent variable, the natural log of 

household income per capita, the mean is higher in the East than in the Middle–West: this is 

consistent with our intuition. However, the standard deviation is the reverse, meaning that 

income inequality is higher in the East than in the Middle–West. For the two guanxi variables, 

the number of “relatives and close friends in the city and local government area” in Eastern 

households is no higher than in Middle–Western households, and the lower ratio of gift 

expenditure to daily expenditure in the East indicates we have mitigated the endogeneity of the 

guanxi variables. In an effort to guarantee the exogeneity of the variable for land, we exclude 

rented land.7 The land per capita in the East is a little higher than in the Middle–West because 

some villages in eastern provinces, such as Hebei, have a larger land endowment. As for the 

household characteristics, the number of people in the Eastern sample is much less than that in 

the Middle–Western sample. This is perhaps the result of tighter enforcement of the “one child 

policy”. In addition, the nonagricultural employment rate in the East is much higher than that 

in the Middle–West: this is because the East is generally more industrialized. More 

interestingly, the average years of education for Eastern workers is greater than for their peers 

in the Middle–Western areas. However, the converse holds for standard deviation, which 

could be the result of a higher dropout rate or an earlier employment age for students in 

Middle–Western areas. 

 
 

 
7 Under the household responsibility system, land is distributed to households based on the number of heads. 
Farmers do not own their land but they can rent it from or to others. However, given the possibility that 
households can rent more land from or to others, we simply include the lands allocated by village. This is 
completely exogenous with respect to income. 



[Table 2: Here] 
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4. Empirical Model and Regression Results 

The regression-based decomposition developed by Shorrocks (1999) comprises two steps: 

(i) setting up a regression model and estimating the coefficients; and (ii) decomposing the 

income inequality indices based on the regression estimates. First, we estimate the empirical 

model as follows: 

 

0 1 2 3 4 5ij ij ij ij ij ij jnLn a SN FC OC HC PC FEy β β β β β β= + + + + + + +  

 

where LnYij denotes the natural log of the income per capita of household i in village j, SN 

is the measure of social network, FC is a set of family characteristic variables, OC denotes the 

set of physical variables—mainly land per capita, HC is the abbreviation of human 

capital—including the education and age of workers, and PC is household political capital 

(measured by membership of the Communist Party). Meanwhile, given the myriad 

uncontrollable village characteristics that may influence household income, it is reasonable to 

control for these using village dummies. We use a semilog regression as this can render the 

dependent variable closer to a normal distribution, as is common in income determination 

models. 

Table 3 reports the results of the estimation. In Model I, we exclude the guanxi variables. 

In Model II, the network measurements are included. After comparing the results of these 

models, we note that the variables that are significant in Model I are also significant in Model 

II and with the exception of party membership, their coefficients do not change substantially, 

though the R2 increases by 0.03. 

 

[Table 3: Here] 



 

With respect to the social network variables, the results show the estimated coefficients are 

all significantly positive, indicating they are positively correlated with the level of household 

income. Moreover, we find that if a household has one more relative or close friend in the city 

or local government area, then household income per capita increases by 6%.8 In addition, if 

the ratio of expenditure on gifts to daily expenditure grows by 10%, there will be a 4.5% 

increase in household income per capita.9 These results illustrate that the influence of guanxi 

on income determination is considerable, although omitting these variables does not 

substantially bias the estimation of the remaining coefficients. However, with income 

decomposition analysis, omitted variables will exaggerate the contribution of the other 

independent variables and the error term. 

In terms of family characteristics, workers per capita play a positive role in income 

determination. The ratio of male workers is statistically significant; that is, in rural households, 

male income per worker is higher than female income per worker. The coefficient for the 

nonagricultural employment ratio is not only significant but also large: a 10% increase leads to 

an 8.8% growth in household income per capita. Per capita land has a significantly positive 

coefficient, consistent with previous research in this area (e.g., Morduch and Sicular, 2000, 

2002; Wan and Zhou, 2005). As for the human capital variables, while the coefficient of 

workers’ average age is statistically insignificant, the average education of workers exerts a 

significant inverse U-shaped influence on the level of income. With the political capital, the 

coefficient for the average party member is significantly positive in Model I but insignificant 

in Model II, perhaps because there is a correlation between political capital and the number of 

relatives or close friends in the city or local government area (the covariance between these 

 
 

13

                                                 
 

8 We calculate the partial influence using 100( 1)ˆ% bey = − . For details, see Wooldridge (2003). 
9 Given that the return to the ratio of gift expenditure could be an inverted U-shape, we check this by adding 
its square to the regression model. The results show that the square term is not significant and therefore we 
exclude it from the final regression model. 
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variables is 0.18). Hence, the omitted variable bias in Model I indicates that the party member 

variable may actually exercise no significant influence on income as it partly represents other 

unobservable factors that could also affect household income. This argument, to some extent, 

is consistent with Li et al. (2007) who study samples of twins and find party membership has 

no significant effect on income. Moreover, the covariance between party membership and the 

ratio of gift expenditure to total daily expenditure is only 0.09, suggesting a low probability of 

increasing gift expenditure for party members. 

 

5. Regression-Based Decomposition of Income Inequality 

In the shaping of income inequality, there are two main channels deciding the contribution 

of a certain factor to the inequality index. First, the coefficient of this variable could have a 

positive influence on the income inequality given its distribution. The greater this influence, 

the more unequal the income distribution. Second, if the returns to this variable are the same, 

its distribution decides the total income inequality index. That is, the more uneven the 

distribution of the variable, the greater its contribution to income inequality. If the distribution 

of the factor is equally distributed or its coefficient is zero, then its contribution to income 

inequality is zero. This is the core conceptualization of regression-based decomposition.10 

Our paper employs the Shapley value decomposition framework proposed by Shorrocks 

(1999) to calculate the contribution of each variable to total income inequality. The method 

involves intensive computing requirements. 11  Suppose Y = f(X1, . . . , XK) is a general 

income-generation function. Usually X is different for different individuals. Replacing the real 

value of Xk with its sample mean would eliminate any differences in Xk among individuals. It is 

easy to recompute Y after this replacement. The resulting income, denoted by Yk, differs from 

 
 

10 Regression-based decomposition first appeared in Oaxaca (1973), in which he argues that gender income 
inequality is due not only to different salaries for the same position for male and female workers, but that the 
distribution of working opportunities is uneven for males and females. 
11  The World Institute for Development Economics Research of the United Nations University 
(UNU-WIDER) developed a Java program in light of this problem. 
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individual to individual because X, other than Xk, differ with different individuals. However, 

the differences can no longer be attributed to Xk; i.e., inequality in Yk, denoted by I(Yk), is 

brought about by variances in X except Xk. According to the most natural rule in Shorrocks 

(1999), the contribution of Xk to total inequality, Ck, can be obtained as I(Y) – I(Yk) for k = 

1, . . . , K. Shorrocks (1999) terms these contributions the “first-round effect” which is 

obtained when only one independent variable, Xk, is replaced by its sample mean. One can 

obtain a second-round Ck by replacing two variables, Xk and Xj, with their sample means in 

computing Ykj. The second-round contribution can be written as Ck = I(Yj) – I(Yjk) for k, j = 

1, . . . , K (k≠j). Similarly, the third-round contribution can be obtained as Ck = I(Yij) – I(Yijk) for 

k, j, i = 1, . . . , K (k ≠ j ≠ i). This process continues until all X are replaced by their sample 

means. In each round, it is possible to have multiple Ck that are first averaged and then 

averaged across all rounds.12 

Because we employ a semilog model in the income determination procedure, in an attempt 

to avoid the distortion of inequality index, it is necessary to transform it back to a linear model 

to acquire the real value of Y, as follows: 

 

0 1 2 3 4 5ˆ ˆexp( ) exp( ) exp( )ij ij ij ij ij ij jna SN FC OC HC PC FEy β β β β β β= • + + + + + •  

 

where  denotes the constant term, which is ruled out in the decomposition of income 

inequality because it is equal for all samples. As for the residual term, because we are unable 

to analyze its distribution, it is prudent for us to examine its contribution to total income 

inequality. Following Wan (2004), we obtain this contribution by comparing the original 

income inequality with the predicted value. The ratio of the former to the latter is the extent to 

which the variables in our regression model can explain total income inequality. Strictly 

0ˆexp( )a

                                                 
 

12 A further explanation of the Shapley value is offered in Appendix I. For more details about the approach, 
refer to Shorrocks (1999). 



speaking, if the contribution of the residual term to total inequality is nil (i.e., the variables in 

the regression model can entirely interpret the inequality), the ratio will be 100%. Moreover, 

in an attempt to check the robustness of our results, we employ three commonly used income 

inequality indices: the Gini coefficient, the Atkinson, and the generalized entropy (GE) 

indexes.13 Table 4 tabulates the calculated results of the explained contribution of the variables 

in the regression model in the form of a percentage for all three indices and all samples. It is 

evident that all of the income inequality measures used explain more than 50% of the variation 

in household income, especially the Gini coefficient, which explains more than 80%. 

 

[Table 4: Here] 

 

As previously discussed, the calculation of the Shapley value decomposition involves an 

enormous volume of computing power, which makes it difficult to calculate the 

decomposition process for more than about 10 explanatory variables. To simplify the 

computation, we combine variables belonging to the same category: (1) all village dummies 

with their coefficients sum to a single factor; (2) the number of family members and workers 

per capita comprise one factor; and (3) a single variable is used to represent education and its 

square in the decomposition procedure. In doing so, we can acquire the decomposition results 

with little concern for the absence of the contribution of the principal variables to income 

inequality. 

Table 5 tabulates the decomposition results based on the regression model. The left 

column is the percentage contribution of a given variable to total income inequality, while the 
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right column is the ranking of this variable among all variables. Additionally, we note that the 

contribution of a given variable may vary across the different income inequality indices. This 

is because different indices are associated with different social welfare functions that assume 

different aversions to inequality. In addition, they place different weights on different 

segments of the underlying Lorenz curve. Therefore, different indices of inequality often 

produce different measurement results, and these may carry over to the inequality 

decomposition. Nevertheless, the top five variables are identical for each index and their 

ranking is unchanged, suggesting that the contribution of these variables to income inequality 

is rather robust. Though the ranking of the other five variables are inconsistent across the 

inequality indices, they are the same for the last two indices. Allowing that the contribution of 

the final four variables is considerably smaller than the first five factors, it is no exaggeration 

to draw the conclusion that our decomposition is rather robust and convincing. 

 

[Table 5: Here] 

 

To begin, the results shows the aggregate contribution of the two network variables are 

more than 12%, even up to 13.4% for the Gini coefficient, suggesting inequality in guanxi 

actually exerts a significant effect in the shaping of income inequality. More specifically, the 

number of relatives and close friends in the city or local government area contribute more than 

9% across the three inequality indices, higher than any other variable ranking below fifth. 

Additionally, another guanxi variable—the ratio of gift expenditure to total daily 

expenditure—contributes more than 2% to the Atkinson index and GE0, and up to 3.8% to the 

Gini coefficient. 

In light of the great differences in the contribution to income inequality across the guanxi 

variables, it is necessary and even interesting to analyze the possible reasons. We have already 

discussed that there are mainly two reasons determining the contribution of a certain factor to 
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income inequality: the coefficient and the distribution of the variable. That is, the bigger the 

coefficient, the greater the contribution and the more uneven the distribution, the more 

significant the contribution. Hence, we deduce that the main reason for the great contribution 

of the number of relatives or close friends in the city or local government area lies in its highly 

uneven distribution, because the estimated coefficient is only 0.057 while its standard 

deviation is as high as 3.08 (bearing in mind the mean value is only 2.21). On the other hand, 

the other guanxi variable—the ratio of gift expenditure to total daily expenditure—contributes 

to inequality largely because of its great influence over income determination, whereas its 

distribution is relatively equal when compared with its mean value. These two contrasting 

scenarios are interesting when allowing for the following possibilities. The distribution of the 

former variable is quite exogenous for rural households. For the ratio of gift expenditure, 

however, households can invest more on their guanxi as long as they realize the profits of their 

investment. Thus, its relatively smaller contribution is most probably due to the equal 

distribution of this variable, even though the coefficient is rather large. 

The village dummies rank first across all factors contributing to income inequality in all 

indices, consistent with our intuition that there are myriad of unobservable disparities between 

villages in China that will unquestionably influence household income, including location, 

natural endowment and infrastructure. This finding is consistent with the previous literature. 

The contribution of the space factor in overall income inequality in China has been 

emphasized by most previous studies, including Wan (2004), Gustafsson et al. (2008), and 

Yue et al. (2008). Moreover, some recent studies on Chinese regional income disparities pay 

attention to economic variance at the lower regional level (counties, townships, and villages). 

For example, Morduch and Sicular (2002) illustrated the importance of the location factor 

among different counties in the same region. Using a village survey conducted in the Handan 

district, Knight and Li (1997) found a ‘cumulative causation’ that resulted in economic 

disparities among villages in the same district. Likewise, Perkins (2003) employed filed 
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research and data collection in suburban Tianjin to demonstrate that large economic variations 

existed among villages in the same township, including substantial differences in economic 

structure and the level of well-being. Sato (2003), based on field research, proposed a typology 

of  villages and examined the relationship between village characteristics and peasant income. 

Using data on 961 villages distributed across 22 provinces, Sato (2008) also demonstrated that 

village-specific socioeconomic factors, including social, physical and human capital, strongly 

influenced household income. 

As for the nonagricultural employment rate, it ranks second in all inequality indices and its 

contribution is more than 20%. This is quite appreciable given that the returns in 

nonagricultural occupations are higher than in agricultural work, especially in those areas with 

barren land or a lack of natural endowments. The contribution of the education factor is 

surprisingly high, ranking third across all indices with a higher than 18% contribution. This 

partly accords with Morduch and Sicular (2002), where they find that education contributes 

more than 16.9% to the Gini coefficient of total income inequality in rural China. For this 

reason, our results once again prove the significance of education in rural China and provide 

evidence for the justification of compulsory education to narrow income inequality. 

The ratio of male workers in the work force is also quite important, ranking fifth across all 

indices with a contribution greater than 5%, suggesting that there is still great income 

unevenness between male and female workers in rural households. For the combined variable 

of the number of people and workers per capita, they are only positive in the Gini coefficient 

but negative elsewhere, and this probably arises from the convergence in family size and 

workers per capita brought about by the strict “one child policy”. Wan (2004) also finds that 

the disparity in the number of people and worker ratio is narrowing in rural China. 

The contribution of land per capita is rather small across all three indices, less than 1%, 

and even negative in the Atkinson index, suggesting land only partially narrows income 

inequality in rural Chinese households. This is also consistent with the high contribution of the 
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nonagricultural employment ratio to income inequality, as families with less land would 

choose to work outside in nonagricultural occupations that will actually compensate for the 

loss of land, and thus bridge the gap between themselves and people with more land. 

Additionally, with the adoption of the household responsibility system in rural China, all lands 

are allocated per capita, and this can also explain the low contribution of inequality in land to 

income inequality. 

The role of party membership is rather trivial in our results with a contribution of less than 

0.6% to each index. This finding is consistent with Morduch and Sicular (2002), who find that 

the number of party members has little influence on income inequality (for example, only 

0.42% to the Gini coefficient). The average age of the workforce, used to estimate the 

sophistication of workers, is also weak. This suggests that while the increase in age would 

probably imply greater experience, it also decreases the physical condition for rural 

households. 

 

6. A Cross-Regional Comparison of the Role of Guanxi 

In this section, we test how the contribution of guanxi to income inequality varies across 

areas at different stages of development by grouping the data into Eastern and 

Middle–Western areas by the level of marketization. We define Eastern areas as those with a 

level of marketizaton above 6.0, including Hebei, Liaoning, Beijing, Shandong, Jiangsu, 

Zhejiang, Fujian, Guangdong, and Hainan, all of which have benefited from their location and 

policy priorities in the process of reform and opening-up. The remaining data are categorized 

as Middle–Western, including Henan, Hubei, Guangxi, Gansu, Inner Mongolia, Shanxi, 

Jiangxi, Shaanxi, Hunan, Jilin, Ningxia, and Heilongjiang. Among these, all marketization 

indices are less than 6.0, except for 6.03 in Sichuan. However, allowing for the fact that 

Sichuan has a large ratio of agricultural workers and geographically belongs to the Western 

area, we still categorize it as a Middle–Western area. 
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(1) The income determination model and regression result 

The income determination model is identical with the former one and we acquire the 

regression result in Table 6.14 

 

[Table 6: Here] 

 

The coefficients for both guanxi variables are higher in the East than the Middle–West. An 

increase in one relative or close friend in the city or local government area could bring about as 

much as 6.5% growth in income per capita in Eastern areas, but only 5.3% in Middle–Western 

areas. Likewise, a 10% increase in the ratio of gift expenditure to total daily expenditure 

causes per capita income to rise by 8.9% for households in the East and only 3.1% for their 

peers in the Middle–West. These findings are consistent with Lin’s (2001) argument for a 

‘return deficit’: that is, one source of social capital inequality is that a given quality or quantity 

of social capital brings about differential returns for different individuals or groups. 

(2) The inequality decomposition results 

The disparity in returns to guanxi across different areas is not enough to judge how its 

contribution to income inequality changes at different stages of development. Hence, we 

decompose income inequality using the regression model and rank the contribution of all 

factors for both areas, as tabulated in Table 7. 

 

[Table 7: Here] 

 

As shown, though the contribution of each factor varies across the inequality indices, the 

 
 

14 To test the necessity for grouping, we conduct an F-test of the Eastern and Middle–Western areas; the 
results show there is a systematic difference between these groups. The appendix includes details. 
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top five factors are identical and their rankings remain unchanged. In addition, despite the fact 

that the rankings of the final four variables change across the three indices, it is safe to say the 

decomposition results are robust and persuasive as the contribution of the final four factors is 

quite small when compared with the top five factors. However, the total contribution of the 

guanxi variables remains fourth in each index for both categories of data; their contribution in 

Eastern areas amounts to 17.8%, substantially more than the 12.9% in the Middle–Western 

areas. Likewise, for the Atkinson index and GE0, the gap in the total contribution of guanxi 

between the East and Middle–West is large, some 3.9% and 5.1%, respectively. 

The contribution of relatives or friends in a city or local government area in the East is a 

little smaller than in the Middle–West. This is mostly because the distribution of this factor is 

much more uneven in Middle–Western households: the standard deviation in Middle–Western 

households is 3.34 and only 2.67 in Eastern households. While the coefficient is larger for 

Eastern households, this does not mitigate the effects of the uneven distribution of relatives or 

friends in Middle–Western areas. Nevertheless, this does not mean the role of relatives or 

friends in shaping income inequality in more developed areas is less significant than in less 

developed areas. In fact, it is the reverse. We should not neglect the possibility that with further 

economic development and marketization, the contribution of relatives or close friends in a 

city or local government area could be higher with a larger coefficient; i.e., more considerable 

benefits. 

The contribution of the guanxi variable—the ratio of gift expenditure to total daily 

expenditure—for Eastern households is as high as 8.1%, much greater than the contribution of 

only 2.7% in Middle–Western families. This is most likely because the coefficient for this 

variable is much greater in the East, as the distribution of this factor is relatively equal with a 

low standard deviation. We conjecture the main reason for this result lies in that guanxi could 

bring about benefits in the form of sharing information or mutual help in Eastern areas where 

there are greater economic opportunities. 
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The village dummies unsurprisingly remain the factor that contributes most to income 

inequality. We know household income inequality can be divided into two parts: inequality 

between villages and inequality within villages. The contribution of the village dummies 

indicating the inequality between villages is much higher in Middle–Western areas, suggesting 

the disparities between villages are much smaller in the East. The contribution of 

nonagricultural employment is more significant for Middle–Western households, up to 23.7% 

higher than the 18.4% for Eastern households. The main reason for this, as shown in Table 2, is 

that the coefficient for Middle–Western households is much higher as the standard deviation is 

not very different between the two areas. 

The contribution of education to income inequality is not only much higher in the East, but 

rises faster in its ranking, especially for the Atkinson index and GE0, where it jumps to the 

number-one factor. Combined with Table 2 and Table 6, we can deduce that it is because the 

coefficient of education for Eastern workers is much higher than for their counterparts in the 

Middle–West, as the standard deviation is much lower in the East than in the Middle–West. 

This suggests the consequences of education are more striking with economic development, 

even for the rural households who are traditionally a group with lower returns to education. 

An interesting finding is the contribution of the ratio of party members, which is negative 

in Middle–Western areas but positive in Eastern areas. We argue that party membership stands 

for political capital, which can only bring about benefits when there are economic resources in 

the village. Therefore, for villages in Middle–Western areas, it is not only that there are fewer 

economic resources, but also because party members should spend their personal time on 

village affairs or not working outside the village, both of which could handicap income growth. 

In Eastern villages, however, there are more economic resources or even rents that will make it 

easier for party members to acquire access to income, leading to considerable returns to their 

political capital. 

The ratio of male workers contributes more in Middle–Western areas than in Eastern areas 
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because it is more unevenly distributed in the former, as indicated in Table 2, though the return 

is lower. 

 

7. Conclusion 

Our paper quantifies the contribution of guanxi or social networks to income inequality in 

rural China and shows how this contribution varies among areas at different stages of 

development and marketization. Our main findings are as follows. 

(1) For rural households, Guanxi can significantly improve their household income, and 

inequality in its distribution will contribute to total income inequality as much as 

12.1%–13.4%, ranking fourth behind village dummy variables, nonagricultural employment, 

and education. Hence, it is reasonable for us to defend social capital as perhaps not simply ‘the 

capital of the poor’, since at least social networks, the foremost category of social capital, 

widens the income gap between the poor and rich. 

(2) Guanxi, as an informal institution, receives more benefits and is much more important 

in the shaping of income inequality for households in areas with greater development and level 

of marketization. 

Because the data we employ in this paper are collected from rural China, we are not sure 

whether the same conclusion could still be drawn in Chinese cities. Moreover, guanxi in our 

paper mostly refers to ‘strong ties’,15 so whether the results still hold for ‘weak ties’ remains 

unknown. Whether or not weak ties that are important in developed countries are also 

significant in contemporary Chinese society deserves further study. The more tantalizing 

question is whether the fact that guanxi are more important to households in Eastern areas will 

change if formal institutions develop, and if they will become increasingly mature in the future. 

These questions represent the scope of our future study. 

 
 

15 According to Lin’s (2001) definition, we should categorize relatives or strong close friendships as strong 
ties. 
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Comprehending the evolution of the social network function could provide a better 

understanding of the trends and formation of future reforms. It will determine whether China 

will build a fully-fledged free-market economic system or a market embedded with nonmarket 

forces.16 The undeniable reality is, however, that family-based guanxi is unevenly distributed, 

which could engender that ‘not all men are created equal’. If there is nothing we can do about 

this inherited inequality, we should take measures to avoid it evolving into a further 

disadvantage for people later in their lives. After all, most of us are more willing to live in a 

society with equal opportunities, transparent regulations, and fair competition. Thus, how 

nonmarket forces evolve in the ongoing transformation and economic development of China 

is a topic deserving of further study. 

 
 

16 Stiglitz (2000) holds the view that the successful development of the Chinese economy in the past is 
partly owing to well-preserved and well-developed social capital. 
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Appendix 
In an effort to test the necessity of grouping our data into Eastern areas and 

Middle–Western areas, we use an F-test for these groups. 
First, we construct a restricted model; i.e., simply including the area dummy and other 

income determination variables. The model follows: 

1 20 3 4 5 6ij ij ij ij ij ij jnLn a AR SN FC OC HC PC FE uy β β β β β β β= + + + + + + + +  

where AR is the dummy variable and takes a value of 1 for Eastern areas and 0 for 
Middle–Western areas. Then we acquire the SSRr, which is about 493.3. We then construct the 
unrestricted model, meaning that there is an extra interaction term between area and the other 
variables, as follows: 

1 2 3 4 5 70 6*ij ij ij ij ij ij jnLn a AR SN AR Var FC OC HC PC FE uy β β β β β β β β= + + + + + + + + + w

here Var includes SN, FC, OC, HC and PC, and AR*Var denotes the interaction term between 
area and the other variables. The SSRur in this model is about 484.1. 

We define the F-statistic as: 

( )
/( 1)

r ur
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SSR SSR qF
SSR n k

/−
≡

− −
 

whereq is the incremental number of variables involved in moving from the restricted model 
to the unrestricted model (11 here) and 1n k− −  is the degrees of freedom of the unrestricted 
model (856). We then calculate the F-statistic, which is about 1.64, suggesting there is a 
systematic difference between the coefficients of the two groups. 
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Figure 1: Sample Distribution and Marketization Level by Province in China 

 

 

Notes: [1] Our sample includes 22 provinces with parentheses below. 
[2] In each parenthesis following the name of a province, the first figure is the 
number of villages, the second is the number of households, and the third is the 
marketization level. 
[3] Darker shading reflects higher levels of marketization. The classification used 
for the marketization level is in the box at the bottom-left side of the figure. 
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Table 1: Variable Explanation 
Categories Variables Explanation 

SN 
(social network) 

sumrelat 
 

ratiosne 

the number of relatives and close friends in city 
or local government 
the ratio of gift expenditure to total daily 
expenditures 

FC 
(family 

characteristics) 

numbpeop 
workerave 

ratmale 
ratnonaw 

the number of family members 
workers per capita 
the ratio of male workers 
the ratio of nonagricultural workers 

OC 
(physical capital) 

landpercap land per capita 

HC 
(human capital) 

worage 
workeduav
workeduas

the average age of workers 
the average years of education of workers 
the square of average education 

PC 
(political capital) 

partmave the ratio of party members 

FE 
(fixed effect) 

FE village dummy variables 

Dependent 
variable 

lny the logarithm of income per capita 



Table 2: The Statistical Description of Variables 

Variables Statistical Descriptions 

 
Categories

 
Variables 

Total 
N = 927 

Mean   S.E. 

Middle–Western 
N = 567 

Mean   S.E. 

Eastern 
N = 360 

Mean  S.E. 
SN sumrelat 

ratiosne 
2.21
0.48

3.05
0.27

2.20
0.52

3.34
0.26

2.26
0.43

2.53
0.27

FC numbpeop 
workerave 
ratmale 
ratnonaw 

3.98
0.81
0.74
0.35

1.32
0.20
0.42
0.43

4.10
0.79
0.78
0.32

1.31
0.19
0.48
0.41

3.79
0.82
0.68
0.39

1.32
0.20
0.32
0.44

OC landpercap  1.60 2.65 1.48 2.51 1.80 2.83
HC worage 

workeduav 
workeduas 

50.02
7.22

75.47

89.59
4.83

121.06

50.65
6.93

72.98

100.71
4.99

128.99

49.03
7.69

79.38

68.62
4.51

107.45
PC partmave 0.06 0.14 0.06 0.14 0.06 0.15

Dependent
Variable

Ln y 7.86 1.06 7.61 0.99 8.26 1.46
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Table 3: The Regression Results for the Total Sample 

Variables Regression Results 

 
Category 

 
Variables 

Model (1) 
Coefficient S.E. 

Model (2) 
Coefficient S.E. 

SN sumrelat 
ratiosne 

  0.057*** 
0.372*** 

0.01 
0.144 

 
FC 

numbpeop 
workerave 
ratmale 
ratnonaw 

0.039 
0.821*** 
0.285*** 
0.618*** 

0.025 
0.159 
0.085 
0.078 

0.043* 
0.756*** 
0.297*** 
0.573*** 

0.024 
0.156 
0.082 
0.078 

OC landpercap 0.029** 0.014 0.032*** 0.014 
HC worage 

workeduav 
workeduas 

0.0001 
0.127*** 
–0.003*** 

0.0003 
0.015 
0.0005 

0.0001 
0.118*** 
–0.003*** 

0.0003 
0.014 
0.0005 

PC partmave 0.363* 0.192 0.155 0.190 
Constant 0a  6.315*** 0.286 6.159*** 0.286 

FE village dummies YES 

Adjusted R2  0.47 0.50 
No. of Obs.  927 927 

Notes: [1] Model (1) and (2) are all regressed on village dummies, whose coefficients 
and standard errors are omitted. 

 [2] *** denotes significance at the 1 percent level, ** at the 5 percent level, and * 
at the 10 percent level. 
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Table 4: The Percentage of Explained Income Inequality 

 Value  
Data Group 

 
Index 

Total Value Explanation

Percentage 
of Explained 
Inequality 

Gini 
coefficient 

0.55 0.44 80% 

Atkinson index 0.44 0.28 64% 

 
 

Total 

GE0 0.58 0.33 57% 

Gini 
coefficient 

0.48 0.40 83% 

Atkinson index 0.36 0.23 64% 

 
 

Middle–Western

GE0 0.49 0.27 55% 

Gini 
coefficient 

0.57 0.43 75% 

Atkinson index 0.45 0.26 58% 

 
 

Eastern 

GE0 0.60 0.31 52% 



 
 

36

Table 5: The Decomposition Results for the Total Sample 

Contribution (%) Ranking Variables 
Gini Atkinson GE0 Gini Atkinson GE0 

village 
dummies 

38.5 43.2 42.9 1 1 1 

ratnonaw 20.5 22.5 22.9 2 2 2 

education 18.4 18.3 18.5 3 3 3 

SN: total 
sumrelat 
ratiosne 

13.4 
9.6 
3.8 

12.1 
9.6 
2.5 

12.1 
9.6 
2.5 

4 4 4 

ratmale 5.8 5.2 5.3 5 5 5 

numbpeop and 
workerave 

1.8 –1.3 –1.7 6 9 9 

landpercap 0.8 –0.7 –0.8 7 8 8 

partmave 0.6 0.6 0.6 8 6 6 

worage 0.2 0.2 0.2 9 7 7 

Total 100 100 100    
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Table 6: The Regression Results after Grouping 

Variables Regression Results 

 
Category 

 
Variables 

Middle–Western 
Coefficient S.E. 

Eastern 
Coefficient S.E. 

SN sumrelat 
ratiosne 

0.052*** 
0.268 

0.012 
0.171 

0.063*** 
0.636** 

0.020 
0.275 

 
FC 

numbpeop 
workerave 
ratmale  
ratnonaw 

–0.020 
0.522*** 
0.247*** 
0.630*** 

0.030 
0.197 
0.095 
0.094 

0.130*** 
1.161*** 
0.368** 
0.492*** 

0.040 
0.256 
0.178 
0.133 

OC landpercap 0.033** 0.016 0.037** 0.030 
HC worage 

workeduav 
workeduas 

0.0003 
0.096*** 
–0.003*** 

0.0003 
0.017 
0.0006 

–0.0005 
0.140*** 
–0.003*** 

0.0006 
0.027 
0.0001 

PC partmave –0.18 0.245 0.397 0.304 
Constant cons 6.794*** 0.333 5.02*** 0.404 
FE village dummies Yes 
Adjusted R2  0.45 0.48 
No. of Obs.  360 567 
Notes: [1] Models (1) and (2) are all regressed on the village dummies, whose 

coefficients 
and standard errors are omitted. 

[2] *** denotes significance at the 1 percent level, ** at the 5 percent level, and 
* at the 10 percent level. 

 



Table 7: The Decomposition Results after Grouping 
Contribution (%) Ranking 

Gini Atkinson GE0 Gini Atkinson GE0 
Variables 

M–E E M–E E M–E E M–E E M–E E M–E E 
village dummies 37.5 26.4 40.4 28.0 40.1 28.0 1 1 1 2 1 2 

ratnonaw 23.7 18.4 26.1 21.2 26.4 21.7 2 3 2 3 2 3 
education 13.5 25.7 11.6 29.8 11.6 29.9 3 2 4 1 4 1 
SN: total 

sumrelat 
ratiosne 

12.9 
10.2 
2.7 

17.8 
9.3 
8.5 

12.8 
11.0 
1.8 

16.7 
8.8 
7.9 

12.8 
11.0 
1.8 

17.9 
8.9 
8.0 

4 4 3 4 3 4 

ratmale 7.5 5.5 7.5 5.4 7.7 5.6 5 5 5 5 5 5 

numbpeop and 
workerave 

2.9 4.5 1.2 0.03 1.1 –0.8 6 6 6 7 6 8 

landpercap 1.2 0.2 –0.05 –2.0 –0.2 –2.3 7 8 8 9 9 9 
partmave –0.04 1.6 –0.09 1.3 –0.09 1.4 9 7 9 6 8 6 
worage 0.8 –0.02 0.7 –0.34 0.7 –0.38 8 9 7 8 7 7 

Total 100 100 100 100 100 100     
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