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Abstract

This paper presents a model of Downsian political competition in which voters
are imperfectly informed about economic fundamentals. In this setting, parties’
choices of platforms influence voters’ behavior not only through voters’ prefer-
ences over policies, but also through formation of their expectation on the unknown
fundamentals. We show that there exist pure-strategy equilibria in this political
game with asymmetric information at which the two parties’ policies diverge with
positive probability. This result is in contrast with the well-known median voter
theorem in the classical model of Downsian competition. We also study refinement
of equilibria, and identify the perfect equilibria (Selten, 1975) and the strictly per-
fect equilibria (Okada, 1981). The Nash equilibria with the strongest asymmetry
in the parties’ strategies are proved to be strictly perfect.
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1 Introduction

The classical Downsian model of political competition has a well-known the-
oretical result called Median Voter Theorem (MVT), which states that under
some natural assumptions, two office-seeking parties will announce the same
platform: the median voter’s ideal policy. Whereas the model is widely ac-
cepted, an inconsistency between the conclusion of MVT and real phenomena
is often pointed out. In empirical studies, policy divergence, rather than con-
vergence, between parties seems to be dominant. Therefore, it is important to
construct an alternative model that can explain the real data.

With this basic motivation, this paper presents a Downsian electoral model
with two policy alternatives in which voters have only incomplete information
about the value of a “fundamentals” variable affecting the relative effectiveness
of these policies. Two parties observe a realized value of the variable, and then
simultaneously announce their platforms. Observing these platforms, voters
choose a party to vote for. In this setting, parties’ choices of platforms influence
voters’ behavior not only through voters’ preferences over policies, but also
through formation of their expectation on the fundamentals.

The assumption of incomplete information about the fundamentals on the
side of voters reflects the idea that, in actual elections, some data necessary for
evaluation of policies is often unfamiliar to voters, while parties have richer
knowledge obtained perhaps through research activities. In such cases, vot-
ers seem to attribute observed political positions of parties to particular infor-
mation of fundamentals which the parties have probably obtained prior to the
determination of platforms.

For example, when redistributive policy is at issue, the fundamentals vari-
able may summarize information about the extent to which taxation on income
deteriorates the macroeconomic performances by lowering labor incentives.
When there is a stable situation in which a party is “leftist”, i.e., when this
party is more likely to adopt a progressive tax policy than its opponent (the
“rightist”), voters would expect higher average income elasticity of labor from
observation of the leftist party’s choice of the progressive tax than from obser-
vation of the rightist party’s choice of the same policy. This paper is an attempt
to explain how such interactions between strategies and expectation formation
constitute an equilibrium in an election over the general issue.

In this political game with asymmetric information, we identify the pure-
strategy Nash equilibria. We show that there exist Nash equilibria at which
the two parties’ policies diverge with positive probability. We then study re-
finement of equilibria, and identify the perfect equilibria (Selten, 1975) and
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the strictly perfect equilibria (Okada, 1981). The perfect equilibrium excludes
Nash equilibria at which both parties are very likely to choose a policy that is
unpopular among voters with the prior informationabout fundamentals. The
Nash equilibria exhibiting the strongest asymmetry between parties’ strategies
are strictly perfect. The last result, in particular, is in marked contrast with the
conclusion of MVT.

There are several studies related to the present paper either in concern with
policy divergence or in focus on incomplete information of political games.
Roemer (2001) shows that in a unidimensional Wittmanian electoral model,
i.e., a political game with a unidimensional policy space in which parties are
motivated to realize their ideal policies, introduction of parties’ incomplete in-
formation on the side of parties about the distribution of voters’ types generates
an equilibrium with differentiated policies. Contrary to his hypothesis of vot-
ers’ informational advantage over parties, we assume parties’ advantage. The
previous example of elections over redistributive policy illustrates a typical sit-
uation where our assumption fits. Furthermore, whereas parties’ uncertainty in
Roemer’s model plays a subordinate role complementing the Wittmanian hy-
pothesis, in our Downsian model, incomplete information for voters is the sole
factor causing policy divergence.

Banks (1990, 1991) models voters’ incomplete information about the can-
didates’ true types, where a type of a candidate represents a policy that he will
implement if elected. He shows that, if there exists a cost for each candidate
which is increasing in the distance between his true type and his platform, then
an equilibrium possesses some interval of types where the strategy is separat-
ing. A more recent work by Kartik and McAfee (2007) constructs a model with
“character” of candidates. Each candidate either has the character or not; if he
does, he commits to a platform, and if not, he strategically chooses a policy.
A unique mixed equilibrium strategy of strategic candidates is explicitly con-
structed, and hence the equilibrium is symmetric, but different from that in the
conclusion of MVT. The models in these studies share with ours the basic in-
formation structure in which candidates are advantageous. However, they both
impose some additional assumption on candidates’ action ex post or after elec-
tion, while we have no such assumption. Also, an asymmetric equilibrium does
not arise, or at least is not proved to exist, in either model, whereas it exists in
our model and one such equilibrium is even strictly perfect.

The paper is organized as follows: in Section 2, we model political compe-
tition as a dynamic incomplete information game. Section 3 studies the weakly
perfect Bayesian equilibria of incomplete infomation political games describ-
ing the conditions required for voters’ beliefs which support the equilibria. Sec-
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tion 4 contrasts this equilibrium result with the complete information version
of our political games. In Section 5, we examine the Nash equilibrium in per-
turbed games discussing the dependence of existence of equilibria on parties’
error probability. Based on the observation obtained in Section 5, Sections
6 and 7 studies the perfect equilibrium and the strictly perfect equilibrium in
incomplete information political games. Section 8 concludes.

2 Model

In this section, we construct a model of political competition. The model is de-
fined as a dynamic game with incomplete information consisting of two parties
and a continuum of voters in which the parties have informational advantage
over voters.

We consider a society consisting of two political parties,I ∈ {A,B}, and
voters whose population is normalized to 1. There are two possible policies,
k∈K = {0,1}. We assume that there is a variablex∈X = [0,1] which describes
“fundamentals” affecting the relative effectiveness of these policies. After the
parties announce their policies, a majority voting determines one party as the
winner. The winning party then carries out its platform.

Each individual’s utility decreases (monotonically, in the weak sense) in the
variablex, and his threshold forx is represented by his type. Specifically, each
voter belongs to a typeδ ∈ ∆ = [0,1] distributed according to a distribution
function F with medianδ̄ . His utility depends on the executed policyk, the
variablex, and his typeδ . For each typeδ , we define the utility function
wδ : K×X → R of a typeδ voter by

wδ (k,x) = (δ −x)k.

According to this definition, if the value of economic fundamentals isx, a voter
of typeδ prefers policy 1 ifδ > x, prefers policy 0 ifδ < x. Before the election,
voters cannot observe the value ofx. We model this uncertainty by a random
variableθ with meanµ. Only the parties can observe the realized value ofθ .

Let us provide some examples for the fundamentals variablex and individ-
uals’ utility functions. Suppose that there are two different rates of uniform
income tax as the policy alternatives in a society: policy 1 represents the larger
rate and policy 0 the smaller. The tax revenue will be transfered among voters.
Suppose further that voters make decisions on their labor and consumption af-
ter the determination of tax policy. Thus adopting policy 1 will decrease the
aggregate product in the economy compared with when policy 0 is adopted.
Let x be an index of this decrease in the aggregate product which takes values
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in [0,1]. Each voter has a thresholdδ of the variablex so that he prefers policy
1 if and only if x < δ . 1 However, voters are unfamiliar with the information
aboutx and hence they only know the prior probability distribution, whereas
the partiesA andB know the extent to which levying the higher tax imposes a
loss in the economy, perhaps through their research activities.

As another example, consider a countryJ facing a diplomatic problem with
a foreign countryN. There is a suspicion against countryN of possessing
weapons of mass destruction (WMD). The probability thatN has WMD isx.
For citizens in countryJ, how likely this occurs is ambiguous, and thus they
only know the prior probability distribution ofx. Now, the country must take
either a “hard-line” stance (policy 0) or a “soft-line” stance (policy 1) against
countryN. Thus every voter has a pointδ such that as long asx< δ , he support
the soft-line policy.

We assume the following conditions on the distribution functions ofδ and
θ .

Assumption 1.

(i) Distribution functionP : X → [0,1] is continuous and strictly increasing.

(ii) Distribution functionF : ∆→ [0,1] is continuous and strictly increasing.

Under Assumption 1,0 < δ̄ ,µ < 1.
The timing of events is as follows: first, the parties observe the valuex

of economic fundamentals; second, the parties simultaneously announce their
platforms; third, voters observe the announced policy pair; fourth, voters vote
for the party with their preferred policy; and finally, the winning party carries
out its policy. The parties thus can condition their decisions on the observed
valuex of θ . Voters, on the other hand, can condition their choices on the pair
of announced platforms(kA,kB).

A party’s strategyis a functions : X → K̃, whereK̃ =
{
(q0,q1) ∈ R2

+|q0 +
q1 = 1

}
, which assigns for each possible valuexof θ a pairs(x)= (s0(x),s1(x)).

For each policyk, sk(x) represents the probability that party takes policyk con-
ditional on θ = x. We assume thatsk : X → [0,1] is Lebesgue measurable,
k = 0,1. Denote byS the set of all strategies of a party:

S=
{

s= (s0,s1) : X → K̃|sk is measurable,k = 0,1
}
.

1The typesδ of voters in this example should be derived from their primitive data such as their utility
functions or labor skills. This is true in general cases where we want to apply the model. However, through
this paper, we assume that the distribution ofδ in the population is given and known to the parties. We
can imagine, for example, that given a political issue, the quantitative data of public opinion on this issue is
provided by public or private surveys.
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A voter’s strategyis a functiont : K×K→ ˜{A,B}, where ˜{A,B}=
{
(qA,qB)

∈R2
+|qA+qB = 1

}
, which assigns to each policy pair(kA,kB), a pairtδ (kA,kB)=

(tA(kA,kB), tB(kA,kB)). For each partyI ∈ {A,B}, tI (kA,kB) represents the prob-
ability that the voter votes for partyI after observing the pair of policy an-
nouncements(kA,kB). We assume that if the two parties announce the same
policy, then he votes for each party with probability one half. Denote byT the
set of all strategies of a voter:

T =
{

t = (tA, tB) : K×K → ˜{A,B}|For everyk, t(k,k) = (1
2, 1

2)
}

A profile of voting probabilities of the citizens, i.e., a family(qδ )δ∈∆ ∈
∏δ∈∆

˜{A,B}, 2 completely determines the probability of electoral outcomes.
We thus writeπI

(
(qδ )δ∈∆

)
for the winning probability of partyI .

For each partyI , define a functionUI : S×S× (
∏δ∈∆ T

)×X → R by

UI (sA,sB,(tδ )δ∈∆,x) = ∑
kA∈K

∑
kB∈K

sA,kA(x)sB,kB(x)πI
(
(tδ (kA,kB))δ∈∆

)
.

UI (sA,sB,(tδ )δ∈∆,x) represents the expected utility of partyI given the strategy
profile (sA,sB,(tδ )δ∈∆) conditional onθ = x.

For eachδ ∈ ∆, define functionUδ : S×S×T×X → R by

Uδ (sA,sB, tδ ,x) = ∑
I∈{A,B}

∑
kA∈K

∑
kB∈K

sA,kA(x)sB,kB(x)tδ ,I (kA,kB)wδ (kI ,x).

Uδ (sA,sB, tδ ,x) then represents the expected utility of a typeδ citizen given the
strategy profile(sA,sB, tδ ) conditional onθ = x.

Political competition in this society can be modeled by a dynamic game
with incomplete information as follows.

Definition 1. An incomplete information political gameis a tuple

Γ =
(
(S,S,(T)δ∈∆),(UA,UB,(Uδ )δ∈∆),F,P,Λ

)
,

whereS is the set of strategies of a party,T is the set of strategies of a voter,
UI is the conditional payoff function of partyI , Uδ is the conditional payoff
function of a typeδ voter,F is the distribution function of citizens’ types,P
is the distribution function ofθ , andΛ denotes the specific order of play and
information structure: (i) the parties observes the value ofθ and then simulta-
neously announce policies, and (ii) every voter cannot observe the value ofθ ,
but observes the announced policies and then votes for a party.

2This notation implicitly assumes that all citizens of one type take the same action. Moreover, we will
denote a strategy profile as(tδ )δ ∈ ∆. In our setting, this causes no problem.
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3 Nash equilibrium and beliefs of voters

In this section, we define the Nash equilibrium and the weakly perfect Bayesian
equilibrium of an incomplete information political game. We then study the
weakly perfect Bayesian equilibrium, paying attention to the relation between
voters’ beliefs on fundamentals and the parties’ strategies. From the result
obtained from this analysis, we derive a corollary on the Nash equilibria in
terms of a newly-introduced functionQ, which is more explicit in the locations
of switching points of equilibrium strategies.

The Nash equilibrium in an incomplete information political game is de-
fined as follows.

Definition 2. Let Γ =
(
(S,S,(T)δ∈∆),(UA,UB,(Uδ )δ∈∆),F,P,Λ

)
be a political

game. A strategy profile of the parties and the voters,(s∗A,s∗B,(t∗δ )δ∈∆), is a
Nash equilibriumin Γ if

(i) E[UA(s∗A,s∗B,(t∗δ )δ∈∆,θ)] = max
sA∈S

E[UA(sA,s∗B,(t∗δ )δ∈∆,θ)],

(ii) E[UB(s∗A,s∗B,(t∗δ )δ∈∆,θ)] = max
sB∈S

E[UB(s∗A,sB,(t∗δ )δ∈∆,θ)], and

(iii) for every voter typeδ , E[Uδ (s∗A,s∗B, t∗δ ,θ)] = max
tδ∈T

E[Uδ (s∗A,s∗B, tδ ,θ)].

If (s∗A,s∗B,(t∗δ )δ∈∆) is a Nash equilibrium inΓ for some strategy profile of
the voters(t∗δ )δ∈∆, we often simply say that(s∗A,s∗B) is a Nash equilibrium.

Using the specific information structure,Λ, of our political games, the
above definition can be equivalently stated as follows.

Definition 3. Let Γ be a political game. A strategy profile of the parties and
the voters,(s∗A,s∗B,(t∗δ )δ∈∆), is aNash equilibriumin Γ if:

(i) For almost everyx∈X,UA(s∗A,s∗B,(t∗δ )δ∈∆,x)= max
sA∈S

UA(sA,s∗B,(t∗δ )δ∈∆,x),

(ii) for almost everyx∈X,UB(s∗A,s∗B,(t∗δ )δ∈∆,x) = max
sB∈S

UB(s∗A,sB,(t∗δ )δ∈∆,x),

and

(iii) for every voter typeδ and for every policy pair(kA,kB) such that
∫

s∗A,kA
(x)

s∗B,kB
(x)dP(x) > 0,

∫
Uδ (s∗A,s∗B,t∗δ ,x)s∗A,kA

(x)s∗B,kB
(x)dP(x)

∫
s∗A,kA

(x)s∗B,kB
(x)dP(x) = max

tδ∈T

∫
Uδ (s∗A,s∗B,tδ ,x)s∗A,kA

(x)s∗B,kB
(x)dP(x)

∫
s∗A,kA

(x)s∗B,kB
(x)dP(x) .
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The condition (iii) of Definition 3 clarifies that the notion of Nash equi-
librium imposes no requirement on actions of the voters in out-of-equilibrium
paths. Weakly perfect Bayesian equilibrium defined below requires that every
voter’s action at unreached moves be rational with respect to some “belief”
about the conditional distribution ofθ .

Definition 4. Let Γ be a political game.

(i) A belief of a voter is a family of probability measures onX, b =
(bkA,kB)(kA,kB)∈K×K .

(ii) A belief b is consistentwith a strategy pair(sA,sB) of the parties if for
every policy pair(kA,kB) such that

∫
sA,kA(x)sB,kB(x)dP(x) > 0 and for

every Borel setY ⊂ X,

bkA,kB(Y) =
∫
Y sA,kA(x)sB,kB(x)dP(x)∫

sA,kA(x)sB,kB(x)dP(x)
. (1)

The right hand side of (1) is exactly the conditional probability thatθ ∈Y
given that the announced policy pair is(kA,kB) derived from the strategy pair
(sA,sB). For any strategy pair(sA,sB) and any policy pair(kA,kB) reached
with positive probability by(sA,sB), write EsA,sB(θ |kA,kB) for the conditional
expectation ofθ given that(kA,kB) is announced, derived from(sA,sB):

EsA,sB(θ |kA,kB) =
∫

xsA,kA(x)sB,kB(x)dP(x)∫
sA,kA(x)sB,kB(x)dP(x)

. (2)

Definition 5. Let Γ be an incomplete information political game. A strategy
profile (s∗A,s∗B,(t∗δ )δ∈∆) is aweakly perfect Bayesian equilibriumin Γ if

(i) it satisfies the conditions (i) and (ii) of Definition 3, and

(ii) for every voter, there exists a beliefb = (bkA,kB)(kA,kB)∈K×K consistent
with (s∗A,s∗B), such that if he is of typeδ ∈ ∆, then for every policy pair
(kA,kB),

∫
Uδ (s∗A,s∗B, t∗δ ,x)bkA,kB(dx) = max

tδ∈T

∫
Uδ (s∗A,s∗B, tδ ,x)bkA,kB(dx).

The condition (ii) of Definition 5 requires that every voter’s strategy be opti-
mal conditional on any announced policy pair with some belief onθ consistent
with the parties’ strategies.

9



We proceed to derive the optimality condition of a voter’s strategy given the
parties’ strategies, based on a belief consistent with them. For ease of notation,
for any beliefb and policy pair(kA,kB), writeEb(kA,kB) for the mean ofbkA,kB:

Eb(kA,kB) =
∫

xbkA,kB(dx)

Given a strategy pair of the parties(sA,sB) and a beliefb consistent with
(sA,sB), if a typeδ citizen observes the pair of announced policies (1,0), then
he should vote for partyA, i.e., his strategy should givetδ (1,0) = (1,0), if
δ > Eb(1,0). More generally, the optimal strategy of a typeδ voter,t∗δ , given
the parties’ strategy pair(sA,sB) and the voter’s beliefb consistent with it, must
satisfy the following conditions.

t∗δ (1,0) =

{
(1,0) if Eb(1,0) < δ
(0,1) if Eb(1,0) > δ

, t∗δ (0,1) =

{
(1,0) if Eb(0,1) > δ
(0,1) if Eb(0,1) < δ

,

(3)
andt∗δ (0,0) = t∗δ (1,1) = 1

2 by our definition of the strategy setT.
We will concentrate on weakly perfect equilibria supported by an identical

belief among voters. This may be justified since if we require some trembling
hand stability of equilibria, then any stable equilibrium must be supported by
such acommon beiliefof the voters as we will see in later sections.

From (3), given a pair of the parties’ strategies(sA,sB) ∈ S×Sand a com-
mon beliefb of the voters consistent with(sA,sB), the fraction of citizens vot-
ing for partyA having observed the pair of announced policies (1,0) is equal
to 1−F(Eb(1,0)). Noting the strict monotonicity ofF in Assumption 1, the
fraction of citizens voting for partyA in this situation is therefore greater than
or equal to one half if and only ifEb(1,0) ≤ δ̄ . We assume that if the voting
results in a tie, each party’s winning probability is one half. Thus, the victory
probability of the parties in an election when(t∗δ )δ∈∆ is a profile of voters’
optimal strategies with a common beliefb is given by the following formula.

πA
(
(t∗δ (1,0))δ∈∆

)
=





1 if Eb(1,0) < δ̄
1
2 if Eb(1,0) = δ̄
0 if Eb(1,0) > δ̄

.

πA
(
(t∗δ (0,1))δ∈∆

)
=





1 if Eb(0,1) > δ̄
1
2 if Eb(0,1) = δ̄
0 if Eb(0,1) < δ̄

. (4)

πA
(
(t∗δ (0,0))δ∈∆

)
= πA

(
(t∗δ (1,1))δ∈∆

)
= 1

2.
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πR is defined byπR = 1−πL.
We will restrict our attention to those Nash equilibria in which each party

takes a “cut-off strategy” defined as follows.

Definition 6. Thecut-off strategyof a party switching aroundx0 ∈ X, denoted
by [x0], is a strategy defined by

[x0](x) =

{
(1,0) if x≤ x0

(0,1) if x > x0.

The following proposition specifies the set of all cut-off weakly perfect
Bayesian equilibria of a political game in terms of the positions of switching
points of the parties’ strategies and the conditions on voters’ beliefs consistent
with those equilibria. The conditions are stated only for the strategy pairs with
x∗A≥ x∗B. This is a sufficient way of description due to our symmetric modeling
of the two parties: if([x∗A], [x∗B]) is an equilibrium for some equilibrium concept,
then([x∗B], [x∗A]) is also an equilibrium.

Proposition 1. Let Γ =
(
(S,S,(T)δ∈∆),(UA,UB,(Uδ )δ∈∆),F,P,Λ

)
be an in-

complete information political game, where the median of the distribution func-
tion F of voters’ types is̄δ . Then, a profile of the parties’ cut-off strategies
([x∗A], [x∗B]) with x∗A≥ x∗B is a weakly perfect Bayesian equilibrium supported by
a common beliefb of the voters consistent with([x∗A], [x∗B]) if and only if one of
the following conditions is satisfied.

(i) 0 < x∗B≤ x∗A < 1 andEb(1,0) = Eb(0,1) = δ̄ .

(ii) µ > δ̄ , 0 = x∗B < x∗A < 1, Eb(1,0) = δ̄ , andEb(0,1)≥ δ̄ .

(iii) µ = δ̄ , x∗B = 0, x∗A = 1, andEb(1,0) = δ̄ .

(iv) µ < δ̄ , 0 < x∗B < x∗A = 1, Eb(1,0) = δ̄ , andEb(0,1)≤ δ̄ .

(v) x∗A = x∗B = 0, Eb(1,0)≥ δ̄ , andEb(0,1)≥ δ̄ .

(vi) x∗A = x∗B = 1, Eb(1,0)≤ δ̄ , andEb(0,1)≤ δ̄ .

Proof. Condition (i). Suppose that0 < x∗B ≤ x∗A < 1. By the assumption of
monotonicity ofP (the condition (i) of Assumption 1), this occurs if and only
if both policy pairs(1,1) and(0,0) are announced with positive probability.
By the formula (3), partyA has no incentive to deviate from(1,1) if and only
if Eb(0,1) ≤ δ̄ . Similarly, partyB has no incentive to deviate from(1,1) if
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and only ifEb(1,0)≤ δ̄ . By the same reasoning, both parties cannot profitably
deviate from the policy pair(0,0) if and only if Eb(0,1)≥ δ̄ andEb(1,0)≥ δ̄ .
Thus,([x∗A], [x∗B]) is a weakly perfect Bayesian equilibrium with common belief
b if and only if Eb(1,0) = Eb(0,1) = δ̄ .

Conditions (ii) and (iii). Suppose that0= x∗B < x∗A < 1. This is equivalent to
that the policy pairs(1,0) and(0,0) are announced with positive probabilities.
Similar argument as in the preceding paragraph concludes that([x∗A], [x∗B]) is
a weakly perfect Bayesian equilibrium with common beliefb if and only if
Eb(1,0) = δ̄ andEb(0,1)≥ δ̄ . But, by consistency ofb,

Eb(1,0) = E(θ |0 < θ ≤ x∗A) < µ,

where the inequality follows again from (i) of Assumption 1. Hence,µ > δ̄ .
The part (ii)-(vii) can be similarly verified.

Conditions (v) and (vi). Supposex∗A = x∗B = 0. This is equivalent to that
only the policy pair(0,0) is announced with positive probability. Profitable
deviation from(0,0) by either party is impossible if and only ifEb(θ |1,0)≥ δ̄
andEb(θ |0,1)≥ δ̄ . The part (ix) can be similarly proved.

Since all possible locations of(x∗A,x∗B) have been checked, the proof is com-
plete.

Proposition 1 relates equilibrium strategy profiles of the parties to the con-
ditional “expectations” of the voters with respect to their beliefs which support
those strategy profiles. A remarkable feature is that any “interior” strategy pro-
file of the parties, i.e., a strategy pair with switching points in the interior of
X, is a weakly perfect Bayesian equilibrium if and only if it is supported by a
common belief of the voters such that both conditional expectations ofθ given
policy pairs(1,0) and(0,1) are equal to the median type, while for “corner”
strategy pairs, the corresponding conditions contain at most one equation for
the two expectations.

For an interior strategy pair of the parties to be a weakly perfect Bayesian
equilibrium, the winning probability conditional on distinct policies,
πI

(
(t∗δ (1,0))δ∈∆

)
andπI

(
(t∗δ (0,1))δ∈∆

)
, must be equal to one half because oth-

erwise, either party can improve its expected payoff by deviating from the pol-
icy pair (0,0) or (1,1). With any corner strategy profile, one of these two pairs
of convergent policy announcements does not occur, and hence the winning
probability given this policy pair does not have to be exactly one-half. The dif-
ference in the equilibrium conditions in Proposition 1 reflects these facts and
will be important in studying equilibrium refinement in later sections.

Proposition 1 can be restated in a form which is more explicit on the po-
sitions of equilibrium strategies by ignoring the constraints for the beliefs on

12



out-of-equilibrium actions. To do this, we first define a functionQ as follows.

Definition 7. Define a functionQ : X×∆→ R by

Q(x,δ ) =
∫ x

0
(u−δ )dP(u). (5)

The valueQ(x,δ ) represents the bias ofθ from the typeδ in terms of the
distribution functionP on the interval[0,x]. It serves as a measure of the dis-
tance between pointx and typeδ , but more detailed property ofQ as a function
depends on the property of distribution functionP.

The properties of functionQ described in the following lemma is derived
directly from its definition.

Lemma 1. For the functionQ defined in Definition 7, the following statements
hold under (i) of Assumption 1.

(i) For each voter typeδ , the functionQ(·,δ ) is continuous, decreasing on
[0,δ ], increasing on[δ ,1], and takes valuesQ(0,δ ) = 0, Q(1,δ ) = µ−δ .

(ii) If xI ,xJ ∈ X and xI < xJ, thenE(θ |xI < θ ≤ xJ) is greater than, equal
to, less thanδ as Q(xJ,δ ) is greater than, equal to, less thanQ(xI ,δ ),
respectively.

The graph ofQ(·, δ̄ ) in a typical incomplete information political game in
which µ > δ̄ is illustrated in Figure 1.

If the parties select different cut-off points, a pair of different policies are
announced with positive probability. The preference relation of a type-δ voter
between the two policies is then equivalently described by the relation between
the values of theQ(·,δ ) at these switching points: the policy of the party with
smallerQ value is preferred by him. Each of distinct policies thus yields one
half of the total votes if and only if the values of the functionQ(·, δ̄ ) at these
cut-off points are equal. Due to the strict concavity of the functionQ(·, δ̄ )
stated in (i) of Lemma 1, there are at most two distinct points at which the
values ofQ(·, δ̄ ) are equal such asx∗A andx∗B in Figure 1.

By (i) of Lemma 1 and the fact that0 < δ̄ < 1 implied by Assumption 1,
each of the two points defined in the following definition uniquely exists. These
points determine the intervals inX where a point can always find a different
point with equal value ofQ(·, δ̄ ).

Definition 8. Pointsx́ and x̀. Under Assumption 1, ifµ ≥ δ̄ , we denote býx
a unique point in the interval(0,1] such thatQ(x, δ̄ ) = 0. If µ ≤ δ̄ , we denote
by x̀ a unique point in the interval[0,1) such thatQ(x, δ̄ ) = µ− δ̄ .
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δ̄ x́
µ − δ̄
xO

x∗
B

x∗
A

Figure 1: The functionQ(·, δ̄ )

According to this definition, it is clear that the only strategy pair satisfying
the condition (ii) of Proposition 1 is([x́], [0]) and that the only strategy pair
satisfying (iv) of the proposition is([1], [x̀]).

With these observations in hand, we translate Proposition 1 on weakly per-
fect Bayesian equilibria into the following corollary in terms of functionQ on
Nash equilibria, which, as a set of the parties’ strategy profiles, coincide with
weakly perfect Bayesian equilibria.

Corollary 1. Let Γ be an incomplete information political game. Then, under
Assumption 1, a cut-off strategy pair([x∗A], [x∗B]) such thatx∗A ≥ x∗B is a Nash
equilibrium ofΓ if and only if one of the following condition is satisfied.

(i) µ ≥ δ̄ , 0 < x∗B < x∗A < x́, andQ(x∗A, δ̄ ) = Q(x∗B, δ̄ );

(ii) µ ≥ δ̄ , x∗B = 0 andx∗A = x́;

(iii) µ ≤ δ̄ , x̀ < x∗B < x∗A < 1, andQ(x∗A, δ̄ ) = Q(x∗B, δ̄ );

(iv) µ ≤ δ̄ , x∗B = x̀ andx∗A = 1;

(v) x∗A = x∗B.

More simply,([x∗A], [x∗B]) is a Nash equilibrium if and only if

Q(x∗A, δ̄ ) = Q(x∗B, δ̄ ). (6)

Corollary 1 suggests that the set of pairs of Nash equilibrium cut-off points,
(x∗A,x∗B), is geometrically expressed as the union of two crossing curves in the
unit square. Suppose, for example,µ > δ̄ . When Assumption 1 holds, by strict
concavity of functionQ(·, δ̄ ), the set of points(x∗A,x∗B) satisfying (i) or (ii) is
(if the point (δ̄ , δ̄ ) is added) represented by a curve in the unit square region
with negative gradient which is symmetric with respect to the 45-degree line,

14



2δ̄

2δ̄

0 1

1

Figure 2: The Nash equilibrium switching point pairs(x∗L,x
∗
R) in Example 1

has interceptions with the sides of the squarex́ or x̀, and passes through(δ̄ , δ̄ ).
The points satisfying (v) constitute the 45-degree line in the unit square. These
two parts constitute the set of pairs of Nash equilibrium cut-off points.

Example1. Let Γ be a political game in whichθ is uniformly distributed on
the unit interval, that is,P(x) = x for all x ∈ X. Moreover, assume thatF is
such thatδ̄ < 1

2 = µ. In this game, the functionQ(·, δ̄ ) is given by

Q(x, δ̄ ) = x2

2 − δ̄x

for eachx∈ X. Therefore, by Corollary 1, the set of pairs of Nash equilibrium
cut-off points inΓ is

{
(xA,xB)|x2

A
2 − δ̄xA = x2

B
2 − δ̄xB, 0≤ xA,xB≤ 1

}
.

This set is illustrated in Figure 2.

4 Comparison with complete information case

In this section, We briefly deviate from our main assumption of incomplete
information, and check the fact that if we instead suppose the complete infor-
mation, then the present model’s version of Median Voter Theorem holds true.

We first define the complete information version of a political game as fol-
lows.

Definition 9. A complete information political gameis a tuple

Γ′ =
(
(S,S,(T ′)δ∈∆),(UA,UB,(Uδ )δ∈∆),F,P,Λ′

)
,

whereΛ′ differs fromΛ only in that the voters, as well as the parties, now can
observe the value ofθ , and the set of strategies of a voter is

T ′ =
{

τ : K×K×X → ˜{A,B}|τ(1,1,x) = τ(0,0,x) = 1
2 for all x∈ X

}
.
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The Nash equilibrium and the subgame perfect equilibrium in a complete
information political game are defined in a standard way, and hence we omit
the formal definition of these concepts.

We obtain the following results on Nash equilibria and subgame perfect
equilibria in complete information political games.

Proposition 2. Let Γ′ be a complete information political game. Then,

(i) a profile (s∗A,s∗B) of pure strategies is a Nash equilibrium ofΓ′ if and only
if s∗A(x) = s∗B(x) for almost everyx with respect toP, and

(ii) a strategy profile(s∗A,s∗B) is a subgame perfect equilibrium inΓ′ if and
only if, for each partyI ,

s∗I (x) =

{
(1,0) if x < δ̄
(0,1) if x > δ̄

.

Proof. If s∗A(x) = s∗B(x) for almost everyx, then it is optimal for every voter to
set for everyx,

τ∗(1,0,x) = τ∗(0,1,x) = (1
2, 1

2)

since the policy pairs(1,0) and(0,1) are reached with probability zero. Such
(s∗A,s∗B) are thus all Nash equilibria ofΓ′. If s∗A(θ) 6= s∗B(θ) with positive
probability, then by our assumption thatP is strictly increasing, the event that
s∗A(θ) 6= s∗B(θ) andθ 6= δ̄ has positive probability, and hence a party loses with
positive probability. This proves the first part of the proposition.

A strategy profile of voters,(τ∗δ )δ∈∆, consists in a subgame perfect equilib-
rium of Γ′ if and only if for each voter typeδ ,

τ∗δ (1,0,x) =

{
(1,0) if x < δ
(0,1) if x > δ

, τ∗δ (0,1,x) =

{
(1,0) if x > δ
(0,1) if x < δ

.

This proves the last part of the proposition.

The statement (ii) of the proposition is the version of Median Voter Theo-
rem in our political game. It says that, given a valuex of fundamentals, both
parties will choose the ideal policy of voters who have the median type under
the statex: policy 1 if x < δ̄ , and policy 0 ifx > δ̄ . The subgame perfect equi-
librium corresponds to the notion of political equilibrium in standard electoral
models. The reason for the indeterminancy of Nash equilibria appearing in the
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statement (i) of the proposition is that, the definition of the Nash equilibrium in
the present model allows arbitrariness of voters’ actions off equilibrium.

Restricting these results to pairs of cut-off strategies, the following corol-
lary may be more appropriate in comparison with the results for incomplete
information games.

Corollary 2. Let Γ′ be a complete information political game.

(i) Then, a cut-off strategy profile of the parties([x∗A], [x∗B]) is a Nash equilib-
rium of Γ′ if and only ifx∗A = x∗B, and

(ii) the unique cut-off subgame perfect equilibrium is([δ̄ ], [δ̄ ]).

By the statement (i) of Corollary 1 and the statement (i) of Corollary 2, the
set of cut-off Nash equilibria in a complete information political gameΓ′ is
a proper subset of that in the corresponding incomplete information political
gameΓ. Specifically, in any cut-off Nash equilibrium ofΓ′, the policies of the
two parties coincide at every observed value ofθ . Moreover, by Proposition 2,
even if we allow the whole class of strategies of a party, the equilibrium policy
convergence essentially remains true. In contrast, in a complete information
gameΓ, there are Nash equilibria in which policy divergence occurs with pos-
itive probability, i.e., the strategy profiles satisfying the conditions (i) and (ii)
of Corollary 1.

By (ii) of Proposition 2, in a subgame perfect equilibrium of a complete
information political gameΓ′, policy divergence is possible only at the parties’
observationθ = δ̄ . This is because given thatθ = δ̄ , the voters are divided
into two groups prefering different policies. By looking at the conditions (i)-
(iv) of Corollary 1, we understand that unobservabability ofθ by the voters in
a political game expands the possibility of policy divergence from the pointδ̄
in X to the various intervals keeping the conditional expectations ofθ fixed at
δ̄ .

We recognize, however, that there is still a difficulty in interpreting this
result because of the considerable multiplicity: there is a continuum of Nash
equilibria in an incomplete information political game. Natural questions arise
at this point: Can we refine the equilibria by some stability criterion? If so,
which strategy pairs stated in Corollary 1 are stable? The following sections
will study these problems.
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5 Perturbed games

As the first step for equilibrium refinement, in this section we analyze perturbed
games of incomplete information political games. We show the existence and
important properties of the “critical type” of voters in a perturbed game, which
plays essentially the same role as the median type in a non-perturbed game.
Then we study the Nash equilibria in a perturbed game.

We define a perturbation in an incomplete information political game as
follows.

Definition 10. DefineG =
{

h : ∆ → (0, 1
2)|h is continuous

}
andE = (0, 1

2).
A perturbationof an incomplete information political game is a tripleρ =
(εA,εB,g) ∈ E×E×G .

Then a perturbed game is defined as follows.

Definition 11. Given an incomplete information political gameΓ =
(
(S,S,

(T)δ∈∆),(UA,UB,(Uδ )δ∈∆),F,P,Λ
)

and a perturbationρ = (εA,εB,g), a per-
turbed gameof Γ with ρ is a political game

Γ̂(ρ) =
(
Ŝ(εA), Ŝ(εB),(T̂(g(δ )))δ∈∆),(Ûρ

A ,Ûρ
B ,Ûρ

δ ),F,P,Λ
)
,

where for each partyI ,

Ŝ(εI ) =
{

sI ∈ S|sI (x) ∈ [εI ,1− εI ]× [εI ,1− εI ] for all x∈ X
}

;

for each voter typeδ ,

T̂(g(δ )) ={
t ∈ T|t(kA,kB) ∈ [g(δ ),1−g(δ )]× [g(δ ),1−g(δ )] for all (kA,kB) ∈ K×K

}
;

for each partyI , Ûρ
I is the restriction of functionUI to Ŝ(εA)× Ŝ(εB)×

∏δ∈∆ T̂(g(δ )); and for each voter typeδ , Ûρ
δ is the restriction ofUδ to Ŝ(εA)×

Ŝ(εB)× T̂(g(δ )).

The analogue of cut-off strategy in a political game in Definition 6 is defined
as follows.

Definition 12. A cut-off strategy switching aroundx0 ∈ X of a party I in a
perturbed gamêΓ(ρ) with perturbationρ = (εA,εB,g), denoted by[x0]εI , is a
strategy defined by

[x0]εI (x) =

{
(1− εI ,εI ) if x≤ x0

(εI ,1− εI ) if x > x0
.
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The Nash equilibrium of a perturbed game can be defined in the same way
as in Definition 2 except that the original strategy sets of players are now re-
placed by those defined in Definition 11.

Recall the notationEsA,sB(θ |kA,kB) in (2) for the conditional expectation of
θ given that the announced policy pair is(kA,kB) derived from strategy pair
(sA,sB). In any perturbed gamêΓ(ρ), this is defined for all policy pairs(kA,kB)
since they are reached with positive probability, i.e., the denominator of the
right-hand side of (2) is positive for all(kA,kB). Let (sA,sB) = ([xA]εA, [xB]εB)
and supposexB≤ xA. Then we have

EsA,sB(θ |1,0) =
(1−εA)εB

∫ xB
0 xdP(x)+(1−εA)(1−εB)

∫ xA
xB xdP(x)+εA(1−εB)

∫ 1
xA

xdP(x)
(1−εA)εBP(xB)+(1−εA)(1−εB)[P(xA)−P(xB)]+εA(1−εB)[1−P(xA)] ,

EsA,sB(θ |0,1) =
εA(1−εB)

∫ xB
0 xdP(x)+εAεB

∫ xA
xB xdP(x)+(1−εA)εB

∫ 1
xA

xdP(x)
εA(1−εB)P(xB)+εAεB[P(xA)−P(xB)]+(1−εA)εB[1−P(xA)] .

(7)

The formula (3) for a voter’s optimal strategies given a belief consistent with
the parties’ strategy pair is therefore completely connected to the strategies of
the parties in a perturbed gameΓ̂(ρ) as follows: In a perturbed gamêΓ(ρ),
given a strategy profile of the parties(sA,sB) ∈ Ŝ(εA)× Ŝ(εB), a strategyt∗δ ∈
T̂(g(δ )) is optimal for a type-δ voter if and only if

t∗δ (1,0) =

{
(1,0) if EsA,sB(θ |1,0) < δ
(0,1) if EsL,sR(θ |1,0) > δ

,

t∗δ (0,1) =

{
(1,0) if EsA,sB(θ |0,1) > δ
(0,1) if EsA,sB(θ |0,1) < δ

,

(8)

andt∗δ (0,0) = t∗δ (1,1) = 1
2.

Now, let Γ̂(ρ) be a perturbed game with perturbationρ = (εA,εB,g), and
define a functionG : ∆→ R by

G(δ ) =
∫ δ

0
g(u)du. (9)

Define also a functionl : ∆→ [0,1] by

lg(δ ) = [1−F(δ )]− [G(1)−G(δ )]+G(δ ). (10)

Suppose for a moment that the voters observed the valueθ = δ . By (8), the
first term in the right-hand side of (10) is then equal to the fraction of voters
voting for the party announcing policy 1 over the party announcing policy 0
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as in the original gameΓ. The second term is the fraction of voters voting for
the party with policy 0, though belonging to types prefering policy 1, which
arises as the accumulated mistakes in the population due to the perturbation.
The last term is the fraction of voters voting for the party with policy 1, though
belonging to types prefering policy 0. Therefore,lg(δ ) is the fraction of the
voters who vote for the party with policy 1 against the party with policy 0,
given thatθ = δ .

Using this function, we define the notion of critical type in a perturbed
game, which plays the same role as the median typeδ̄ in a non-perturbed game.

Definition 13. Let Γ̂(ρ) be a perturbed game with perturbationρ = (εA,εB,g).
A voter typeδ̂ (g) is called thecritical typeof Γ̂(ρ) if

(i) the functionlg is strictly decreasing on∆, and

(ii) lg(δ̂ (g)) = 1
2.

We then have the following lemma for the properties of the critical type of
a perturbed game.

Lemma 2. Let Γ be an incomplete information political game.

(i) Let Γ̂(ρ) be a perturbed game ofΓ with perturbationρ = (εA,εB,g).
Then, there exists the critical typêδ (g) of Γ̂(ρ) if g(δ ) is sufficiently
small for all δ .

(ii) If (gn)∞
n=1 is a sequence of the voters’ perturbations converging to the

constantly 0-valued function such thatδ̂ (gn) exists for everyn, then
limn→∞ δ̂ (gn) = δ̄ .

(iii) There exist sequences(gn
i )

∞
n=1, i = 1,2,3, of the voters’ perturbations,

each of which converges to0 asn→ ∞, such thatδ̂ (gn
1) < δ̄ = δ̂ (gn

2) <

δ̂ (gn
3) for everyn.

Proof. See Appendix.

The statement (i) in Lemma 2 guarantees the existence of the critical types
in perturbed games in which voters’ perturbations are small enough. This fact
allows us to study stability of Nash equilibria in non-perturbed games by com-
paring the conditional expectations ofθ and the critical types in slightly per-
turbed games. Moreover, by the statement (ii), the critical type in a perturbed
game converges to the median type in the original game as voters’ perturba-
tions go to zero. The statement (iii) says that the direction of the convergence

20



of critical types to the median type depends on the manner of convergence of
voters’ perturbations. This fact will be important particularly in considering
the strictly perfect equilibrium where we have to take into account all types of
perturbations which converge to zero.

Let Γ(ρ) be a perturbed game withρ = (εA,εB,g), where the voters’ per-
turbationg is close enough to0 so that the critical typêδ (g) exists by Lemma
2. By Definition 13 of the critical type and the condition (8) for the vot-
ers’ optimal strategies, we then obtain the following formula for the winning
probability of the parties in the perturbed game, which is analogous to (3):
If (t∗δ )δ∈∆ ∈ ∏δ∈∆ T̂(g(δ )) is a profile of voters’ optimal strategies in the per-
turbed gameΓ(ρ) given a pair of the parties’ strategies(sA,sB)∈ Ŝ(εA)×Ŝ(εB),
then

πA
(
(t∗δ (1,0))δ∈∆

)
=





1 if EsA,sB(θ |1,0) < δ̂ (g)
1
2 if EsA,sB(θ |1,0) = δ̂ (g)

0 if EsA,sB(θ |1,0) > δ̂ (g)

,

πA
(
(t∗δ (0,1))δ∈∆

)
=





1 if EsA,sB(θ |0,1) > δ̂ (g)
1
2 if EsA,sB(θ |0,1) = δ̂ (g)

0 if EsA,sB(θ |0,1) < δ̂ (g)

, (11)

πA
(
(t∗δ (0,0))δ∈∆

)
= πA

(
(t∗δ (1,1))δ∈∆

)
= 1

2.

As the following proposition will show, the necessary and sufficient con-
ditions for Nash equilibrium in a perturbed game is almost the same as the
conditions of the weakly perfect Bayesian equilibria described in Proposition
1. However, since all policy pairs are reached with positive probability in a
perturbed game, the conditions are now completely based on the strategies of
the parties.

Proposition 3. Let Γ̂(ρ) be a perturbed game with perturbationρ = (εA,εB,g)
and assume thatg is close enough to0 so that the critical typeδ̂ (g) exists.
Then, a pair of the parties’ cut-off strategies(sA,sB) = ([xA]εA, [xB]εB) in Γ(ρ)
such thatxA≥ xB is a Nash equilibrium ofΓ(ρ) if and only if one of the follow-
ing conditions is satisfied.

(i) 0 < xB≤ xA < 1 andEsA,sB(θ |1,0) = EsA,sB(θ |0,1) = δ̂ (g).

(ii) µ > δ̂ (g), 0 = xB < xA < 1,

EsA,sB(θ |1,0) = δ̂ (g), andEsA,sB(θ |0,1)≥ δ̂ (g).

(iii) µ = δ̂ (g), and(xA,xB) = (0,0) or (xA,xB) = (1,0) or (xA,xB) = (1,1).
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(iv) µ < δ̂ (g), 0 < xB < xA = 1,

EsA,sB(θ |1,0) = δ̂ (g), andEsA,sB(θ |0,1)≤ δ̂ (g).

The conditional expectationsEsA,sB(θ |1,0) andEsA,sB(θ |0,1) is given by (7).

Proof. Conditions (i), (ii), and (iv). The gain or the loss for a partyI from
deviating from an equilibrium probability pair(sA(x),sB(x)) to the “opposite”
strategy, for example, partyA deviating from(εA,εB) to (1− εA,εB), is always
εI less than the corresponding deviation without error in the original gameΓ.
Thus, this does not alter the essential argument for possibility of a party’s devi-
ation in the proof of Proposition 1, except that now the median typeδ̄ must be
replaced with the critical typêδ (g) and a belief-based expectationEb(kA,kB)
with the strategy-based expectationEsA,sB(θ |kA,kB), by (11).

Condition (iii). With any of the three strategy pairs in the condition (iii) of
the proposition, the conditional expectations given policy pairs (1,0) and (0,1)
are equal toµ. Thus, it is a Nash equilibrium if and only ifµ = δ̂ (g).

Proposition 3 can be restated as the following corollary in terms of the func-
tion Q which is more explicit in the locations of equilibrium cut-off points, as
in Section 3 where Proposition 1 on the weakly perfect Bayesian equilibria in
non-perturbed games was translated into Corollary 1.

We preliminarily define functionsϕ andψ from
[
(E×E)\{

(εA,εB)|εA =
εB

}]×∆ toR and functionsϕ̃ andψ̃ from E×∆ toR by, given meanµ of θ ,

ϕ(εA,εB,δ ) = [(εA)2(1−εB)+(1−εA)2εB](µ−δ )
(εB−εA)(1−2εA) , ψ(εA,εB,δ ) = εB(1−εB)(µ−δ )

(εB−εA)(1−2εB) ,

ϕ̃(ε,δ ) =− ε(µ−δ )
1−2ε , ψ̃(ε,δ ) = (1−ε)(µ−δ )

1−2ε .

(12)

Corollary 3. Let Γ̂(ρ) be a perturbed game with perturbationρ = (εA,εB,g)
and assume thatg is close enough to0 so that the critical typeδ̂ (g) exists.
Then, a pair of the parties’ cut-off strategies(sA,sB) = ([xA]εA, [xB]εB) in Γ(ρ)
such thatxA≥ xB is a Nash equilibrium ofΓ(ρ) if and only if one of the follow-
ing conditions is satisfied.

(i) µ > δ̂ (g), εB < εA, 0 < xB < xA < 1, xB < δ̂ (g),

Q(xA, δ̂ (g)) = ϕ(εA,εB, δ̂ (g)), andQ(xB, δ̂ (g)) = ψ(εA,εB, δ̂ (g)).

(ii) µ > δ̂ (g), 0 = xB < xA < 1, andQ(xA, δ̂ (g)) = ϕ̃(εA, δ̂ (g)).

(iii) µ = δ̂ (g), and(xA,xB) = (0,0) or (xA,xB) = (1,0) or (xA,xB) = (1,1).

(iv) µ = δ̂ (g), εA = εB, 0 < xB≤ xA < 1, andQ(xA, δ̂ (g)) = Q(xB, δ̂ (g)).
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Figure 3: Nash equilibria in perturbed games

(v) µ < δ̂ (g), εA < εB, 0 < xB < xA < 1, xA > δ̂ (g),

Q(xA, δ̂ (g)) = ϕ(εA,εB, δ̂ (g)), andQ(xB, δ̂ (g)) = ψ(εA,εB, δ̂ (g)).

(vi) µ < δ̂ (g), 0 < xB < xA = 1, andQ(xB, δ̂ (g)) = ψ̃(εB, δ̂ (g)).

Proof. See Appendix.

Based on Corollary 3, we can outline the set of Nash equilibria of a per-
turbed game in terms of cut-off point pairs as in Figure 3 in which the graphs are
illustrated for cases of a uniformθ , where the dashed lines represent the set of
Nash equilibria in the original game. For example, consider a perturbed game
in which µ > δ̂ (g) andεA > εB. There are at most two pairs of cut-off points
satisfying the condition (i) of the corollary such as(xA,xB) and(x′A,xB) in the
left-hand graph of Figure 6 in Appendix. Note that, by symmetry between the
parties, the corollary implies that there exists no interior Nash equilibrium at
which partyB’s switching point is greater than or equal to partyA’s. Also,
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there are at most two pairs of cut-off points satisfying the condition (ii) such as
(yA,0) and(y′A,0) in the left-hand graph of Figure 7. But, since this condition
imposes no requirement on the relation betweenεA andεB, cut-off pairs such as
(0,zB) and(0,z′B), wherezB andz′B are the two points whose values of function
Q(·, δ̂ (g)) are equal tõϕ(εB, δ̂ (g)), are also equilibrium pairs of cut-off points.
Therefore, there exist at most six Nash equilibria in this perturbed game, whose
cut-off point pairs are illustrated asx1, · · · ,x6 in the left-top square of Figure
3. The relation between the rest of Figure 3 and Corollary 3 can be similarly
explained.

As shown in Figure 3, Corollary 3 suggests that, for any interior Nash equi-
librium (s∗A,s∗B) in a non-perturbed game, in which parties are more likely to
announce the ex ante popular policy in this game (i.e., policy 0 ifµ > δ̄ , and
policy 1 if µ < δ̄ ), there existssomeslight perturbation that possesses an in-
terior Nash equilibrium near(s∗A,s∗B) like the strategy pair with cut-off point
pair x1 or x2 in Figure 3. It also suggests that near each of the corner Nash
equilibria in the original game, there always exists a corner Nash equilibrium
in any slightly perturbed game like the strategy pairs with cut-off point pairs
x3, · · · ,x6. We derive these conjectural claims from the fact that, by (iii) of
Lemma 2, the relation between the prior mean of fundamentalsµ and the me-
dian typeδ̄ in a political game implies the same relation betweenµ and the
critical typeδ̂ (g) in any slightly perturbed game, while either relation between
εA andεB can happen given only that the perturbations are small.

In particular, there exists no interior Nash equilibrium in a perturbed game
in which the party with smaller perturbation is more likely to choose the ex
ante unpopular policy in the perturbed game. This simply reflects that a pary
can be less populist in an equilibrium as long as it is publicly believed to make
more mistakes.

6 Perfect equilibrium

In the preceding section, we have analyzed the Nash equilibria of perturbed
games. Using those results, we now proceed to examine the stability of Nash
equilibria of incomplete information political games. In this section, we study
the perfect equilibrium of Selten (1975).

We define the perfect equilibrium of a political game as follows.

Definition 14. A strategy profile([x∗A], [x∗B],(t∗δ )δ∈∆), where[x∗I ] is a cut-off
strategy for each partyI , is aperfect equilibriumin a political gameΓ if there
exists a sequence of perturbations(ρn)∞

n=1 = (εn
A,εn

B,gn)∞
n=1 with lim

n→∞
ρn =
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(0,0,0), 3 and a numberN such that there exists a sequence of strategy pro-
files in the perturbed gameŝΓ(ρn) in which the parties take cut-off strategies,
([xn

A]εn
A
, [xn

B]εn
B
,(tn

δ )δ∈∆)n≥N, satisfying the following conditions:

(i) For everyn≥ N, ([xn
A]εn

A
, [xn

B]εn
B
,(tn

δ )δ∈∆) is a Nash equilibrium of̂Γ(ρn),
and

(ii) lim
n→∞

(xn
A,xn

B,(tn
δ )δ∈∆) = (x∗A,x∗B,(t∗δ )δ∈∆).

Remark .A perfect equilibrium by this definition is always a perfect equilib-
rium by the original definition of Selten (1975), except that our political games
are not finite, but the converse may not hold because our definition involves the
requirement that Nash equilibrium strategies of parties in perturbed games be
cut-off strategies.

As the following proposition will state, ifµ > δ̄ (µ < δ̄ ), the perfect equi-
librium only excludes Nash equilibria such that both parties choose the same
cut-off point larger (smaller) than the median type. Proving that these Nash
equilibria are not perfect equilibria is easy: recall that in the previous section
we have seen that there is no Nash equilibrium with both parties switching at
points larger (smaller) than the critical type in a perturbed game withµ > δ̂ (g)
(µ < δ̂ (g)). Note also that the critical typêδ (g) converges to the median type
δ̄ . For any of the above-mentioned Nash equilibria of the original political
game and for any slight perturbation, therefore, there is no Nash equilibrium
in the perturbed game near that Nash equilibrium of the original game. Those
Nash equilibria are therefore not perfect equilibria.

For any of the remaining Nash equilibria, on the other hand,somepropor-
tion between the two parties’ perturbations exists so that keeping this propor-
tion, the values of functionsϕ andψ in (12) converge to the level ofQ-distance
of the Nash equilibrium strategies from the median type as perturbations go to
zero. This fact, together with the continuity ofQ and the convergence of the
critical type to the median type, implies that those Nash equilibria are perfect
equilibria. This part of the claim is proved more formally below.

Proposition 4. Let Γ =
(
(S,S,(T)δ∈∆),(UA,UB,(Uδ )δ∈∆),F,P,Λ

)
be a politi-

cal game with median typēδ . Then, a cut-off strategy of the parties([x∗A], [x∗B])
with x∗A ≥ x∗B is a perfect equilibrium if and only if one of the following condi-
tions is satisfied:

(i) µ > δ̄ , 0≤ x∗B < x∗A≤ x́, andQ(x∗A, δ̄ ) = Q(x∗B, δ̄ );
3Here the convergence of the sequence of functions(gn) to 0 is in the sense that it converges to the

constantly0-valued function from∆.
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(ii) µ > δ̄ andx∗A = x∗B≤ δ̄ ;

(iii) µ = δ̄ andQ(x∗A, δ̄ ) = Q(x∗B, δ̄ );

(iv) µ < δ̄ , x̀≤ x∗B < x∗A≤ 1, andQ(x∗A, δ̄ ) = Q(x∗B, δ̄ ); and

(v) µ < δ̄ andx∗A = x∗B≥ δ̄ .

Proof. The proof for the excluded Nash equilibria has been already done in the
above text. It only remains to show that there is a proportion of the parties’
perturbation against which any of remaining Nash equilibria is stable. Suppose
µ > δ̄ . Note that for anyβ ∈ (0,1)∪ (1,∞),

lim
(ε,g)→(0,0)

ϕ(βε ,ε, δ̂ (g)) = lim
(ε,g)→(0,0)

ψ(βε ,ε, δ̂ (g)) = µ−δ̄
1−β . (13)

The right-hand side has range(−∞,0) for β > 1. Recall that the perturbed
game has a Nash equilibrium such that1 > xA > xB > 0 only if β > 1. But
the range ofQ(·, δ̄ ) for the remaining Nash equilibria is contained in(−∞,0].
By continuity ofQ, therefore, Nash equilibria([x∗A], [x∗B]) in (i) and (ii) of the
proposition except([0], [0]), whoseQ(·, δ̄ )-value is 0, are perfect equilibria sta-
ble against the perturbation with proportionβ such thatQ(x∗A, δ̄ ) = Q(x∗B, δ̄ ) =
(µ− δ̄ )/(1−β ). Finally,

lim
(ε,g)→(0,0)

ϕ(ε2,ε, δ̂ (g)) = lim
(ε,g)→(0,0)

ψ(ε2,ε, δ̂ (g)) = 0.

This proves that([0], [0]) is a perfect equilibrium. The caseµ < δ̄ is similar. If
µ = δ̄ , by (iii) and (iv) of Corollary 3, if we can choose a sequence(ρn)∞

n=1 =
(εn

A,εn
B,gn)∞

n=1 converging to(0,0,0) such that for alln, δ̂ (gn) = µ andεn
A = εn

B,
the statement of the proposition is proved. This is indeed possible by (iii) of
Lemma 1.

The set of cut-off point pairs of perfect equilibria in a political game with a
uniform θ is illustrated in Figure 4, where the dashed line represent the set of
non-perfect Nash equilibria.

Proposition 4 states that if the distribution of random variableθ is biased
toward the right (left) relative to the median type, Nash equilibria in which
both parties switch around points greater (less) than the median type are not
perfect equilibria. This is a direct consequence of Corollary 3 describing the
relation between the relative ex ante popularity of policies in the original polit-
ical game and the Nash equilibria in a perturbed game. Thus these non-perfect
Nash equilibria rely on the condition that one of policy pairs cannot occur with
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Figure 4: Perfect equilibria

positive probability. In the proof of the proposition, however, we argued that
there existssomeproportion of the parties’ error probabilities against which a
Nash equilibrium is stable. This suggests that we must further examine whether
there are perfect equilibria that are stable againstanydirection of perturbation.

7 Strictly perfect equilibrium

In this section, we study the problem of complete stability raised at the end
of the previous seciton through analysis of the strictly perfect equilibrium of
Okada (1982). After defining an appropriate notion of strictly perfect equilib-
rium in our setting, we will show that the only strictly perfect only the corner
perfect equilibria are strictly perfect.

We define the strictly perfect equilibrium in a political game as follows.

Definition 15. A strategy profile([x∗A], [x∗B],(t∗δ )δ∈∆) ∈ S×S×∏δ∈∆ T, where
[x∗I ] is a two-step strategy for eachI ∈ {A,B}, is a strictly perfect equilib-
rium in a political gameΓ if for every sequence of perturbations(ρn)∞

n=1 =
(εn

A,εn
B,gn)∞

n=1 with limn→∞ ρn = (0,0,0), and for some numberN, there is a
sequence of strategy profiles in the perturbed gamesΓ̂(ρn) in which the par-
ties take cut-off strategies,([xn

A]εn
A
, [xn

B]εn
B
,(tn

δ )δ∈∆)n≥N ∈∏n≥N

[
Ŝ(εn

A)× Ŝ(εn
B)×

∏δ∈∆ T̂(gn(δ ))
]
, satisfying the following conditions:

(i) For everyn≥ N, ([xn
L]εn

A
, [xn

B]εn
B
,(tn

δ )δ∈∆) is a Nash equilibrium of̂Γ(ρn),
and

(ii) lim
n→∞

(xn
A,xn

B,(tn
δ )δ∈∆) = (x∗A,x∗B,(t∗δ )δ∈∆).
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Remark .If we seek to follow the original definition of strictly perfect equilib-
rium rigorously, even if we put aside that our political games are not finite, we
have to let the set of perturbations for partyI include allfunctionsεI : X→ [0,1]
whose valueεI (x) represents the error probability ofI at x∈ X. We thus have
made a restriction on the set of possible perturbations , which may bring about
some weakening on the requirement of strict perfectness. Similarly, continu-
ity assumption ofg may be some weakening. It thus remains open whether a
strictly perfect equilibrium by Definition 15 satisfies the same conditions in the
definition if we allow for a more general set of perturbations. On the other hand,
since we restricted equilibrium strategies in perturbed games to the class of cut-
off strategies, the existence of a sequence of Nash equilibria in perturbed games
in Definition 15 is a stronger condition than allowing all strategies to consist
in Nash equilibria of perturbed games. It is therefore still unclear whether the
above definition is a necessary or it is a sufficient condition for a strategy profile
to be a strictly perfect equilibrium according to the original definition.

By Corollary 3 and several facts used in the proof for Proposition 4, we first
obtain the following result.

Corollary 4. In any incomplete information political gameΓ, there is no strictly
perfect equilibrium([x∗A], [x∗B]) such that0 < x∗A,x∗B < 1.

Proof. Suppose thatµ 6= δ̄ . Then, by (i) and (v) of Corollary 3, the equations
(13), and continuity ofQ, for any interior Nash equilibrium([x∗A], [x∗B]) of a
political game, there exists a particular proportionβ of parties’ perturbations
such that the value ofQ(·, δ̂ (g)) of any Nash equilibrium in any perturbed
game with this proportionβ converges to the value ofQ(·, δ̄ ) of x∗I , I = A,B, as
perturbations goes to zero. (Recall that([x∗A], [x∗B]) is a Nash equilibrium if and
only if Q(x∗A, δ̄ ) = Q(x∗B, δ̄ )) as shown in Corollary 1.) Thus by continuity of
Q, for any interior perfect equilibrium in the original game, there exists some
β such that any sequence of Nash equilibria of perturbed games with thisβ
converges to another Nash equilibrium of the original game. Therefore, no
interior perfect equilibrium is strictly perfect.

The following proposition shows that only (part of, whenµ = δ̄ ) the corner
perfect equilibria are strictly perfect. As we have stated before, in perturbed
games, the corner Nash equilibria always exist. Moreover, as Figure 7 suggests,
these equilibria converge to the corner perfect equilibria as perturbation goes
to zero. This is the main idea of the proof.

Proposition 5. Let Γ =
(
(S,S,(T)δ∈∆),(UA,UB,(Uδ )δ∈∆),F,P,Λ

)
be a politi-

cal game, where the mean ofθ is µ and the median type with respect toF is δ̄ .
Then, under Assumption 1, the strictly perfect equilibria ofΓ are
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Figure 5: Strictly perfect equilibria

(i) ([0], [0]), ([x́], [0]), and([0], [x́]) if µ > δ̄ ;

(ii) ([1], [0]) and([0], [1]) if µ = δ̄ ;

(iii) ([1], [1]), ([x̀], [1]), and([1], [x̀]) if µ < δ̄ .

Proof. See Appendix.

Figure 5 illustrates the set of strictly perfect equilibria of incomplete infor-
mation political games in whichθ is a uniform random variable, andµ 6= δ̄ ,
where the dashed lines represent the set of Nash equilibria.

When a corner strategy pair is chosen by the parties, at least one party sticks
to announcing one particular policy independent of what value ofθ it has ob-
served. Proposition 5 states that such strategy pairs are strictly perfect, and
which policy is constantly chosen by a party depends on the relative ex ante
popularity of policies in the political game. As noted earlier, the main reason
for the robustness of such a corner Nash equilibrium is that for any slight per-
turbation, there exists acorner Nash equilibrium of the perturbed game near
that equilibrium. This implies that an inelastic party in the original Nash equi-
librium keeps on choosing one policy with probability as large as possible even
after perturbation is introduced. Thus the notion of strictly perfect equilibrium
in our model requires at least one party not only to take a constant strategy in
the original political game but also to do so even if small imperfection in its
rationality is introduced.

There is also a remarkable feature in the voters’ beliefs aboutθ consis-
tent with strictly perfect equilibria. Consider, for example, a political game
with µ > δ̄ and a strictly perfect equilibrium(sA,sB) = ([x́], [0]) in this game.
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For this strategy pair,EsA,sB(θ |1,0) = δ̄ , while EsA,sB(θ |0,1) is not defined
since the policy pair(0,1) is out of equilibrium in this case. If, however,
(sn

A,sn
B)∞

n=1 = ([xn
A]εA, [0]εB)

∞
n=1 is a sequence of Nash equilibria in perturbed

games converging to(sA,sB) as perturbation goes to zero, then

lim
n→∞

Esn
A,sn

B
(θ |0,1) = E(θ |θ > x́) > δ̄ .

That is, any belief of voters consistent with(sA,sB) would expect, on average,
θ to be higher than̄δ if (0,1) were observed, whileEsA,sB(θ |1,0) = δ̄ . Since
a larger level ofθ implies that the policy 1 is unpopular among the voters, it
then prevents partyB to deviate from taking policy 0. Such public image on
the policy pair (0,1) is derived only from the equilibrium strategy of partyA,
due to the stubbornness of partyB. Having observed announcement (0,1), the
voters consider that even partyA takes policy 0 and therefore it is probable that
the value ofθ is considerably large.

8 Concluding remarks

We have constructed incomplete information political games with Downs type
parties in which the parties have informational advantage over voters. We have
shown the existence of multiple Nash equilibria and perfect equilibria, and
proved that Nash equilibria with strongest asymmetry in the parties’ strate-
gies are strictly perfect. Possibility of policy divergence in Nash equilibrium
depends on the effect of voters’ beliefs on fundamentals that is consistent with
the strategies of the parties. A policy that is unpopular among citizens ac-
cording to the prior information about fundamentals is relatively unlikely to be
chosen in perfect equilibria. We have also shown that in any strictly perfect
equilibrium, at least one party adopts the sticky strategy selecting an ex ante
popular policy independent of observed fundamentals.

The results concerning the Nash equilibrium can be extended to more stan-
dard settings where policy spaces have uncountable cardinality. Indeed, if for
any level of fundamentals variable, there are two policies with supporters of
equal masses, then multiple Nash equilibria including policy divergence ex-
ist. In such a model, however, equilibrium refinement would be much more
difficult than the present model.

We may also generalize the uncertainty environment to include incomplete
information of parties as well as voters, where both parties and voters receive
private signals of fundamentals prior to elections. In such a case, on one hand,
voters have two sources of information about fundamentals variable: their sig-
nals and parties’ policy announcements. Each party, on the other hand, in-
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fers from its private signal what signals its opponent and voters have received.
Bernhardt et al. (2007) develop, somewhat relatedly, a model of political
parties with private information about the distribution of voters’ preferences,
where the set of signals for each party is finite, while assuming complete in-
formation on the side of voters. These extensions and generalizations are left
open for future research.

9 Appendix: Proofs of Propositions

Proof of Lemma 2 . Statement (i). The statement is easily verified by noting
that the functionlg is strictly decreasing with

lg(0) = 1−G(1) > 1
2 andlg(1) = G(1) < 1

2, (14)

if g is close enough to the constantly zero-valued function so that at anyδ , the
marginal change inG does not dominate the increase inF .

Statement (ii). To prove this, first note that the convergence of a sequence
of continuous functions from a closed interval intoR to a continuous function
is uniform. Thus, if(gn)∞

n=1 converges to the constantly0-valued function, then
the convergence is uniform. Therefore, if we define a functionHn : ∆→ R by
Hn(δ ) = F(δ )−2Gn(δ ) for everyδ ∈ ∆, then the sequence(Hn)∞

n=1 uniformly
converges toF . Also, sinceHn is strictly increasing by (i), we have the inverse
function (Hn)−1 : [0,1− 2Gn(1)] → ∆ for everyn. Also, by (14), there is a
closed intervalD ⊂ ∆ such that12 ∈ D and for everyn, the domain of(Hn)−1

containsD. Thus by what we have noted above, the sequence((Hn)−1|D)∞
n=1

uniformly converges toF−1|D. Now, letdn = 1
2−Gn(1). Then lim

n→∞
dn = 1

2, and

for all n large enough,dn ∈ D and(Hn)−1(dn) = δ̂ (gn).
Hence, by continuity ofF−1, for anyε > 0, there is a numberN such that

for all n > N,
∣∣δ̂ (gn)− δ̄

∣∣≤ ∣∣(Hn)−1(dn)−F−1(dn)
∣∣+ ∣∣F−1(dn)−F−1(1

2)
∣∣≤ ε.

Thereforelim
n→∞

δ̂ (gn) = δ̄ .

Statement (iii). The statement is proved using the fact that for any voters’
perturbation functiong which has the critical type,̂δ (g) is less than, or equal
to, or greater than̄δ if and only if G(δ̄ ) is less than, or equal to, or greater than
1
2G(1), respectively. It is clear that, for example, there is a sequence(gn

1)
∞
n=1

converging to0 such that for everyn, Gn(δ̄ ) < 1
2Gn(1).
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Proof of Corollary 3 . Conditions (i) and (v). Supposeµ 6= δ̂ (g), εA 6= εB, and
0 < xB≤ xA < 1. Then, substituting (7) into the equation system

EsA,sB(θ |1,0) = EsA,sB(θ |1,0) = δ̂ (g) (15)

in (i) of Proposition 3, where(sA,sB)= ([xA]εA, [xB]εB), and solving forQ(xI , δ̂ (g)),
I = A,B, yield the two equations

Q(xA, δ̂ (g)) = ϕ(εA,εB, δ̂ (g)),Q(xB, δ̂ (g)) = ψ(εA,εB, δ̂ (g)) (16)

in the conditions (i) and (v) of Corollary 3. (16) has no solution such that
xA = xB under the above assumptions. Note that

µ > δ̂ (g), εA < εB =⇒ ϕ(εA,εB, δ̂ (g)) > µ− δ̂ (g) = max
x∈X

Q(x, δ̂ (g)),

µ < δ̂ (g), εA > εB =⇒ ϕ(εA,εB, δ̂ (g)) > 0 = max
x∈X

Q(x, δ̂ (g)).
(17)

Thus, ifµ > δ̂ (g),εA < εB, or if µ < δ̂ (g),εA > εB, then there exists no solution
to (16) such thatxB≤ xA. Also, note that

εA > εB =⇒ ϕ(εA,εB, δ̂ (g)) > ψ(εA,εB, δ̂ (g)),

εA < εB =⇒ ϕ(εA,εB, δ̂ (g)) < ψ(εA,εB, δ̂ (g)).
(18)

Since, by the property (i) in Lemma 1, functionQ(·, δ̂ (g)) is decreasing on
[0, δ̂ (g)] and increasing on[δ̂ (g),1], there are at most two solutions to (16)
such that0 < xB ≤ xA < 1 in each possible case: ifµ > δ̂ (g) and εA > εB,
strategy pairs with pairs of cut-off points such as(xA,xB) and(x′A,xB) in the
left-hand graph of Figure 6; ifµ < δ̂ (g) andεA < εB, strategy pairs with pairs
of cut-off points such as(x′A,xB) and(x′A,x′B) in the right-hand graph of Figure
6. Therefore, in particular, ifµ > δ̂ (g), there exists no Nash equilibrium such
that δ̂ (g) ≤ xB ≤ xA; if µ < δ̂ (g), there exists no Nash equilibrium such that
xB≤ xA≤ δ̂ (g).

Conditions (ii) and (vi). Substituting (7) andxB = 0 into the equation
EsA,sB(θ |1,0) = δ̂ (g) in (ii) of Proposition 3 and solving forQ(xA, δ̂ (g)) yield
the equation in (ii) of Corollary 3. If this equation is satisfied, then the inequal-
ity in (ii) of Proposition 3 is necessarily satisfied. Thus, the condition (ii) in
Corollary 3 is equivalent to the condition (ii) in Proposition 3. The equivalence
result between the condition (vi) in the corollary and the condition (iv) can be
similarly proved.

Condition (iv). If εA = εB, the two equations in (i) of Proposition 3, when
seen as equations for two unknownsQ(xI , δ̂ (g)), I = A,B, are linearly depen-
dent, and have a solution if and only ifµ = δ̂ (g). Also, the solutions in this
case are all(Q(xA, δ̂ (g)),Q(xB, δ̂ (g))) such thatQ(xA, δ̂ (g)) = Q(xB, δ̂ (g)). ¤

32



δ̂(g) µ− δ̂(g)
xO

ϕ

ψ

xB xA
x′

A

µ > δ̂(g)

δ̂(g)

µ− δ̂(g)

xO

ϕ

ψ

xB
x′

B
x′

A

µ < δ̂(g)
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Figure 7: FunctionQ and corner NE in perturbed games withεA > εB

Proof of Proposition 5 .By Corollary 4, the possible strictly perfect equilib-
ria of Γ are the eight strategy pairs which appear in the conditions (i)-(iii) of
Proposition 5.

We preliminarily define a functioñQ : X× (∆\{µ})→ R by

Q̃(x,δ ) = Q(x,δ )
µ−δ (19)

for each(x,δ ) ∈ X× (∆\{µ}).
Then, properties that correspond to the properties (i) and (ii) of functionQ

stated in Lemma 1 follows:

(i) For each typeδ ∈ [0,µ), the functionQ̃(·,δ ) is continuous, decreasing
on [0,δ ], increasing on[δ ,1], and takes values̃Q(0,δ ) = 0, Q̃(1,δ ) = 1.

(ii) For eachδ ∈ (µ,1], Q̃(·,δ ) is continuous, decreasing on[0,δ ], increasing
on [δ ,1], and takes values̃Q(0,δ ) = 0, Q̃(1,δ ) = 1.

Statement (i). Suppose thatµ > δ̄ . Let Γ̂(ρ) be a perturbed game withg
close enough to0so thatδ̂ (g)< µ. Then, by Corollary 4,(sA,sB)= ([xA]εA, [xB]εB)
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can be a Nash equilibrium ofΓ̂(ρ) for all (εA,εB)∈ (E×E)∩V for some neigh-
borhoodV of (0,0) in R2, only if (sA,sB) satisfies the condition (ii) or (iv) of
Proposition 3.

Consider the condition (ii) of Proposition 3. The constraints for the condi-
tional expectations in (ii) are rewritten as

Q̃(xA, δ̂ (g)) =− εA
1−2εA

andQ̃(xA, δ̂ (g))≤ 1−εA
1−2εA

. (20)

If µ > δ̂ (g), the inequality in (20) is satisfied for anyεA ∈ E.
Note that the convergencelim

δ<µ,δ→δ̄
Q̃(·,δ )= Q̃(·, δ̄ ) is uniform sinceQ̃(·,δ ),

δ ∈ ∆, andQ̃(·, δ̄ ) are continuous and their domainX is compact. Hence, by
the statement about the functioñQ(·,δ ) with δ < µ in (ii) of Lemma 1, there
existα,β > 0 such that for allδ ∈ (δ̄ −α, δ̄ + α), the functionQ̃(·,δ ) is de-
creasing on[0, δ̄−β ] and increasing on[δ̄ +β ,1]. Thus, for suchα, there exist
γ > 0 such that for allδ ∈ (δ̄ −α, δ̄ +α) =: Bα(δ̄ ), functionsξδ : [−γ,0]→R
andηδ : [−γ,1]→ R given by

for eachz∈ [−γ,0], Q̃(ξδ (z),δ ) = z, and for eachz∈ [−γ,1], Q̃(ηδ (z),δ ) = z
(21)

are well-defined. If we define two other functionsξ : [−γ,0] → R and η :
[−γ,1]→ R by

for eachz∈ [−γ,0], Q̃(ξ (z), δ̄ ) = z, and for eachz∈ [−γ,1], Q̃(η(z), δ̄ ) = z,
(22)

the families of functions(ξδ )δ∈Bα (δ̄ ) and(ηδ )δ∈Bα (δ̄ ) uniformly converge toξ
andη asδ → δ̄ again by continuity of the functions and compactness of their
domains. Note thatξ (0) = 0 andη(0) = x́. Therefore, by the same reasoning
as in the proof for the statement (ii) of Lemma 2,

lim
(ε,δ )→(0,δ̄ )

ξδ
(− ε

1−2ε
)

= 0, and lim
(ε,δ )→(0,δ̄ )

ηδ
(− ε

1−2ε
)

= x́.

Since
(
[ξδ̂ (g)

(− ε
1−2ε

)
]εA, [0]εB

)
and

(
[ηδ̂ (g)

(− ε
1−2ε

)
]εA, [0]εB

)
are Nash equi-

libria in Γ̂(ρ) and δ̂ (g)→ δ̄ asg goes to the constantly 0-valued function by
the statement (ii) of Lemma 2, it has been verified that([0], [0]) and([x́], [0])
are strictly perfect equilibria ofΓ. By symmetry between the parties,([0], [x́]).
is also a strictly perfect equilibrium.

Statement (iii).Similarly, using the condition (vi) of Proposition 3 and the
statement (ii) of Lemma 1, (iii) of Proposition 5 can be proved.

Statement (ii).Suppose thatµ = δ̄ . In this case,́x = 1 andx̀ = 0 by defini-
tion. By the condition (iii) of Lemma 2, there exists two sequences(gn

1)
∞
n=1 and
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(gn
3)

∞
n=1 of the voters’ perturbations, each converging to0, such thatδ̂ (gn

1) <

δ̄ = µ and δ̂ (gn
3) > δ̄ = µ for all n. Thus, from the proofs of the statements

(i) and (iii), the possible strictly perfect equilibria are([1], [0]) and ([0], [1]).
Moreover, for any sequences(gn

1)
∞
n=1 and (gn

3)
∞
n=1 with the above properties,

and for any sequence of the parties’ perturbations(εn
A,εn

B)∞
n=1 converging to

(0,0), there exist sequences([an
A]εn

A
, [an

B]εn
B
)∞
n=1 and([bn

A]εn
A
, [bn

B]εn
B
)∞
n=1 of Nash

equilibria in perturbed gameŝΓ(εn
A,εn

B,gn
1),n = 1,2, · · · , such that

lim
n→∞

(an
A,an

B) = (1,0) and lim
n→∞

(bn
A,bn

B) = (0,1) (23)

and sequences([cn
A]εn

A
, [cn

B]εn
B
)∞
n=1 and([dn

A]εn
A
, [dn

B]εn
B
)∞
n=1 of Nash equilibria in

perturbed gameŝΓ(εn
A,εn

B,gn
3),n = 1,2, · · · , such that

lim
n→∞

(cn
A,cn

B) = (1,0) and lim
n→∞

(dn
A,dn

B) = (0,1) (24)

Furthermore, by the condition (iii) of Corollary 3, ifµ = δ̂ (g2), ([1]εA, [0]εB)
and([0]εA, [1]εB) are Nash equilibria of any perturbed gameΓ̂(ρ) with the vot-
ers’ perturbationg2.

Thus, if µ = δ̄ , for any sequence of perturbation(ρn)∞
n=1 = (εn

A,εn
B,gn)∞

n=1
converging to(0,0,0), construct two sequences(xn

A,xn
B)∞

n=1 and(yn
A,yn

B)∞
n=1 as

follows: if µ > δ̂ (gn), let (xn
A,xn

B) = (an
A,an

B) and(yn
A,yn

B) = (bn
A,bn

B); if µ <

δ̂ (gn), let (xn
A,xn

B) = (cn
A,cn

B) and (yn
A,yn

B) = (dn
A,dn

B); and if µ = δ̂ (gn), let
(xn

A,xn
B) = (1,0) and(yn

A,yn
B) = (0,1). Then, by (23) and (24),lim

n→∞
(xn

A,xn
B) =

(1,0) and lim
n→∞

(yn
A,yn

B) = (0,1). Therefore,([1], [0]) and ([0], [1]) are indeed

strictly perfect equilibria. This completes the proof for the statement (ii).¤
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