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Abstract

This paper considers two distinct procedures to lexicographically compose

two criteria for social or individual decision making. The first procedure com-

poses two binary relations into one, and then selects its maximal elements.

The second procedure first selects the set of maximal elements of the first

binary relation, and then within that set, chooses the maximal elements of

the second binary relation. We show several distinct sets of conditions for the

choice functions representing these two procedures to satisfy non-emptiness and

choice-consistency conditions such as contraction consistency (Chernoff, 1954)

and path independence (Arrow, 1963). We also examine the relationships be-

tween the outcomes of the two procedures. Then, we investigate under what

conditions the outcomes of each procedure is independent of the order of lexi-

cographic application of two criteria. Examples for applications of the results

in the economic environments are also presented.
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1 Introduction

In the process of social decision making, people often advocate multiple criteria on

which the desirability of alternatives should be judged. A typical example is the

equity-efficiency trade-off. People say that economic growth is desirable because

the welfare of most individuals increases, while at the same time they insist that

an equitable distribution is essential for social stability. As often argued, however,

economic growth may give rise to an inequitable distribution of income and wealth.

Even a single individual’s decision may be based upon multiple criteria. As Sen

(1985) argues, an individual has not only material preferences over his own consump-

tions but also has value judgments based on, for instance, the sense of obligation,

which may contradict his material preferences. A family’s decision also typically in-

volves multiple criteria. Parents’ interest often conflicts with children’s interest on,

for example, video games.

When two criteria, each regarded as reasonable for itself, are in contradiction with

each other, one resolution would be to give priority to one criterion over the other.

For such lexicographic applications of multiple criteria, however, we can consider

two distinct procedures of choice, which are described in the following. Let us first

postulate that each criterion is expressed by a binary relation on the set X of all

alternatives. In the first procedure, which we call procedure α, we first compose

lexicographically two binary relations R1 and R2 into one binary relation P (R1, R2)

in the following way: an alternative x is better than an alternative y for P (R1, R2)

if and only if (i) x is superior to y for R1 or (ii) y is not superior to x for R1 and

x is better than y for R2. Then, for each subset S of alternatives, we select the set

CP (R1,R2)(S) of maximal elements for P (R1, R2).

By contrast, in the second procedure, which we call procedure β, for each subset S

of alternatives, we first choose the set of maximal elements in S for the first criterion

R1, and then select within that set, its subset of maximal elements for the second

criterion R2.

Procedure α has been introduced and examined by Tadenuma (2002, 2005), while

procedure β has been introduced by Aizerman (1985) and Aizerman and Aleskerov
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(1995), and studied more recently by Manzini and Mariotti (2005), Tadenuma (2005)

and Houy (2007).

When a decision-maker has multiple criteria, his behavior becomes different from

a simple maximizer of a single binary relation. It is more difficult to have consis-

tent choices under multiple criteria than under a single criterion. In this paper, we

study under what conditions the choice correspondence derived from each procedure

to lexicographically compose two criteria satisfy non-emptiness and various proper-

ties of choice-consistency such as contraction consistency (Chernoff, 1954) and path

independence (Arrow, 1963). We also examine relationships between the outcomes of

procedures α and β.

Another interesting question would be whether the final outcome depends on the

order of application of the multiple criteria. When we evaluate allocations, which

criterion should we apply first, the efficiency criterion or the equity criterion? Such

a question is important if the order of application of the two criteria affects the final

outcome. But if it is irrelevant, then we do not have to be concerned about which cri-

terion we should take first. We investigate under what conditions the outcomes of the

choice correspondence of each procedure are independent of the order of lexicographic

application of the two criteria.

All the results in this paper are derived without specific restrictions on the set

of alternatives, but we present applications of the results in the classical division

problem of infinitely divisible commodities.

There are many examples in which two criteria, each of which seems reasonable for

itself, contradict each other. In economics and social choice theory, the social prefer-

ence relation that has been most widely accepted is the Pareto domination. However,

the Pareto criterion is silent about the distributional equity of allocations but con-

cerns only efficient use of resources. On the other hand, several interesting concepts

of distributional equity have been introduced and extensively studied in economics.

Two of them are central: no-envy and egalitarian-equivalence.1 It was Feldman and

1The concept of no-envy was introduced by Foley (1967) and Kolm (1972), and that of egalitarian-

equivalence by Pazner and Schmeidler (1978).
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Kirman (1974) and Kolm (1972) who pointed out that there is a fundamental conflict

between the Pareto criterion and the equity-as-no-envy criterion: there often exist

two allocations x and y such that x Pareto dominates y whereas x is not envy-free

but y is. The same kind of conflict also arises between the Pareto criterion and the

equity-as-egalitarian-equivalence criterion.

Social choice theory on abstract domains has also been extended to take account of

intersituational comparisons of individuals.2 In this “extended sympathy” approach,

Suzumura (1981a, b) studied choice-consistency of social choice functions satisfying

some conditions concerning Pareto efficiency and equity-as-no-envy in the framework

of abstract social choice. Tadenuma (2002, 2005) introduced various lexicographic

compositions of the Pareto criterion and the no-envy criterion, and of Pareto and

egalitarian-equivalence, respectively, in the classical division problem, and examined

rationality of the social preference relations. Tadenuma (2005) also showed that the

set of allocations selected by procedure α with the Pareto criterion and the egalitarian-

equivalence criterion from the set of all feasible allocations is independent of the

order of lexicographic application of the two criteria, and that the essential reason

for this independence is because the set of allocation selected by procedure β is also

independent of the order of application.

The present paper generalizes the results in these works by showing general con-

ditions for non-emptiness and path independence of choice functions representing

procedures α and β, clarifying their relationships, and deriving conditions for inde-

pendence of the order of application of multiple criteria.

2 Basic Definitions and Notation

Let X be a (finite or infinite) set of alternatives, and X the set of all finite subsets of X.

A binary relation on X is a set R ⊆ X×X. The set of all binary relations on X is de-

notedR. Given R ∈ R, define P (R) ∈ R by (x, y) ∈ P (R) ⇔ [(x, y) ∈ R and (y, x) /∈

2Notable earlier contributions in this line of research are Harsanyi (1955), Suppes (1966), Pat-

tanaik (1968), Sen (1970), Hammond (1976) and Arrow (1977).
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R], and I(R) ∈ R by (x, y) ∈ I(R) ⇔ [(x, y) ∈ R and (y, x) ∈ R]. Given R ∈ R, a se-

quence (x1, . . . , xK) ⊆ X is a cycle for R if (x1, x2), (x2, x3), . . . , (xK−1, xK), (xK , x1) ∈
R. A binary relation R ∈ R is

• complete if for all x, y ∈ X, (x, y) ∈ R or (y, x) ∈ R;

• transitive if for all x, y, z ∈ X, (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R;

• quasi-transitive if for all x, y, z ∈ X, (x, y) ∈ P (R) and (y, z) ∈ P (R) imply

(x, z) ∈ P (R);

• asymmetric if for all x, y ∈ X, (x, y) ∈ R implies (y, x) /∈ R;

• acyclic if there exist no cycle for R.

Note that acyclicity implies asymmetry by the above definitions.

A choice function is a function C : X → X such that C(S) ⊆ S for all S ∈ X .

Given R ∈ R, we define the choice function CP (R) as the one selecting the set of

maximal elements for every S ∈ X , that is,

∀S ∈ X , CP (R)(S) = {x ∈ X | ∀y ∈ X, (y, x) /∈ P (R)}.

We say that a choice function C is rationalizable by a binary relation R ∈ R if

C = CP (R).

Given two choice function CA and CB, the choice function CBCA is defined by

CBCA(S) = CB(CA(S))

for every S ∈ X .

In the following, we often consider the classical division problem with n agents and

m infinitely divisible commodities defined as follows. Let N = {1, . . . , n} be the set

of agents. The consumption set of each agent is Rm
+ . Let RE be the set of complete,

transitive and strictly monotonic3 relations on Rm
+ . Each agent i ∈ N is endowed

3A preference relation % is strictly monotonic if for all a, b ∈ Rm
+ , a > b implies a Â b, where

a > b is defined as a ≥ b and a 6= b.
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with a preference relation %i ∈ RE. The associated strict preference relation and the

indifference relation are defined as above, and denoted Âi and ∼i, respectively. An

allocation is a vector x = (x1, . . . , xn) ∈ Rmn
+ where each xi = (xi1, . . . , xim) ∈ Rm

+

is the consumption bundle of agent i ∈ N . The set of alternatives in this division

problem is defined as X = Rmn
+ .

3 Choice-Consistency Properties

In this section, we introduce some desirable properties of choice functions. A very

basic requirement is that at least one alternative should be chosen from any set.

Non-Emptiness: For every S ∈ X , C(S) 6= ∅.
Our next three properties require “consistency” of choices in related situations.

The first choice-consistency property means that if the set of available alternatives

“shrinks” but previously chosen alternatives are still available, then those alternatives

should remain chosen. This is a fundamental requirement of choice-consistency, and

it is satisfied by any choice function that is rationalizable by some binary relation.

Contraction Consistency (Chernoff, 1954): For all S, T ∈ X with T ⊆ S, T ∩
C(S) ⊆ C(T ).

The second property requires “the independence of the final choice from the path

to it” (Arrow, 1951, p.120). In real choice situations, we often divide the set of

alternatives into several parts in the first round, and make final choices from the

alternatives that have survived in the first round. This property requires that the

final choices should not depend on the way we divide the set of alternatives in the

first round.

Path Independence: For all S, T ∈ X , C(C(S) ∪ C(T )) = C(S ∪ T ).

The third choice-consistency property says that if an alternative is chosen from

every pair containing it in the set S, then it should be chosen from S.

Condorcet Consistency: For every S ∈ X and every x ∈ S, if x ∈ C({x, y}) for

every y ∈ S, then x ∈ C(S).
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The choice-consistency properties are related with rationalizability of the choice

functions. The following results are well-known.4

Proposition 1 (Blair et al., 1976) A choice function C satisfies Non-Emptiness,

Contraction Consistency and Condorcet Consistency if and only if it is rationalizable

by a binary relation R such that P (R) is acyclic.

Given a binary relation R ∈ R, CP (R) satisfies Condorcet Consistency by defini-

tion. As we have noted, any choice function that is rationalizable by a binary relation

satisfies Contraction Consistency. Hence, we have the following corollary.

Corollary 1 Let R ∈ R be given. The choice function CP (R) satisfies Non-Emptiness

if and only if P (R) is acyclic.

Similar relations hold for Path Independence and rationalizability by a quasi-

transitive binary relation.

Proposition 2 (Plott, 1973) A choice function C satisfies Non-Emptiness, Path In-

dependence and Condorcet Consistency if and only if it is rationalizable by a quasi-

transitive binary relation.

Corollary 2 Let R ∈ R be given. The choice function CP (R) satisfies Non-Emptiness

and Path Independence if and only if R is quasi-transitive.

4 Lexicographic Composition of Two Binary Re-

lations

As we have mentioned in the introduction, we consider two distinct procedures to

compose two criteria for decision making. This section focuses on procedure α in

which we first compose two binary relations R1 and R2 into one, and then choose its

maximal elements. Formally, for all R1, R2 ∈ R, we define P (R1, R2) ∈ R by

P (R1, R2) = {(x, y) ∈ X×X | (x, y) ∈ P (R1) or [(y, x) 6∈ P (R1) and (x, y) ∈ P (R2)]}.
4A good reference for these results is Suzumura (1983, Ch.2).
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We call P (R1, R2) the lexicographic composition of R1 and R2. Notice that P (R1, R2)

is asymmetric and hence P (P (R1, R2)) = P (R1, R2).

We examine under what conditions the choice function CP (R1,R2) satisfies Non-

Emptiness and Path Independence. By Corollaries 1 and 2, our examination reduces

to checking acyclicity and quasi-transitivity of P (R1, R2). We also present examples

for applications of the results in economic environments.

Our first result gives a necessary and sufficient condition for P (R1, R2) to be

acyclic, and equivalently, for CP (R1,R2) to be non-empty.

Proposition 3 Let R1, R2 ∈ R. The lexicographic composition P (R1, R2) is acyclic

if and only if for every cycle (x1, . . . , xK) ⊆ X for P (R1) ∪ P (R2),there exists k ∈
{1, . . . , K − 1} such that (xk+1, xk) ∈ P (R1) or (x1, xK) ∈ P (R1).

Proof. The “only if” part: Suppose that there exists a cycle (x1, . . . , xK) ⊆
X for P (R1) ∪ P (R2) such that for every k ∈ {1, . . . , K − 1}, (xk+1, xk) /∈ P (R1)

and (x1, xK) /∈ P (R1). We will show that P (R1, R2) has a cycle. For every k ∈
{1, . . . , K − 1}, since (xk, xk+1) ∈ P (R1) ∪ P (R2) and (xk+1, xk) /∈ P (R1) it follows

that either (xk, xk+1) ∈ P (R1) or [(xk, xk+1) ∈ P (R2) and (xk+1, xk) /∈ P (R1)]. By

definition, (xk, xk+1) ∈ P (R1, R2) for every k ∈ {1, . . . , K − 1}. Similarly, we have

(xK , x1) ∈ P (R1, R2). Thus, (x1, . . . , xK) ⊆ X is a cycle for P (R1, R2).

The “if” part: Suppose that P (R1, R2) has a cycle (x1, . . . , xK) ⊆ X. If

(xk+1, xk) ∈ P (R1) for some k ∈ {1, . . . , K − 1}, then by definition, (xk, xk+1) /∈
P (R1, R2), which is a contradiction. Thus, for every k ∈ {1, . . . , K − 1}, (xk+1, xk) /∈
P (R1), and hence either (xk, xk+1) ∈ P (R1) or (xk, xk+1) /∈ P (R1). In the lat-

ter case, since (xk, xk+1) ∈ P (R1, R2), we have (xk, xk+1) ∈ P (R2). Therefore,

(xk, xk+1) ∈ P (R1) ∪ P (R2) for every k ∈ {1, . . . , K − 1}. Similarly, we have

(x1, xK) /∈ P (R1) and (xK , x1) ∈ P (R1) ∪ P (R2). Thus, (x1, . . . , xK) ⊆ X is a

cycle for P (R1) ∪ P (R2) and (xk+1, xk) /∈ P (R1) for every k ∈ {1, . . . , K − 1}, and

(x1, xK) /∈ P (R1).

Notice that Proposition 3 implies that acyclicity of P (R1) is a necessary condition

for P (R1, R2) to be acyclic.
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Although Proposition 3 gives a necessary and sufficient condition for P (R1, R2) to

be acyclic, it does not tell what properties of the primitive binary relations, R1 and

R2, guarantee acyclicity of P (R1, R2). Next we provide several sufficient conditions

for P (R1, R2) to be acyclic or quasi-transitive, which may be useful in many contexts.

Proposition 4 Let R1, R2 ∈ R. If R1 is complete and transitive, and R2 is quasi-

transitive, then P (R1, R2) is quasi-transitive.

Proof. Let x, y, z ∈ X. Assume that (x, y) ∈ P (R1, R2) and (y, z) ∈ P (R1, R2).

From (x, y) ∈ P (R1, R2), we have (1) (x, y) ∈ P (R1) or (2) (x, y) /∈ P (R1), (y, x) /∈
P (R1) and (x, y) ∈ P (R2). By completeness of R1, (x, y) /∈ P (R1) and (y, x) /∈ P (R1)

if and only if (x, y) ∈ I(R1). Similarly, it follows from (y, z) ∈ P (R1, R2) that (3)

(y, z) ∈ P (R1) or (4) (y, z) ∈ I(R1) and (y, z) ∈ P (R2). If (1) and [(3) or (4)] hold

true, then by transitivity of R1, we have (x, z) ∈ P (R1), and hence (x, z) ∈ P (R1, R2).

Similarly, (2) and (3) together imply (x, z) ∈ P (R1) and (x, z) ∈ P (R1, R2). Finally,

if (2) and (4) hold, then (x, z) ∈ I(R1) follows from transitivity of R1, and (x, z) ∈
P (R2) from quasi-transitivity of R2. Hence, we have (x, z) ∈ P (R1, R2).

Example 1 Envy-free allocations. An allocation x ∈ Rmn
+ is envy-free if for all

i, j ∈ N , (xi, xj) ∈%i. Let F ⊂ Rmn
+ be the set of envy-free allocations. Define

RF ∈ R as follows: for all x, y ∈ Rmn
+ , (x, y) ∈ RF if and only if x ∈ F or y /∈ F .

Define RP ∈ R as follows: for all x, y ∈ Rmn
+ , (x, y) ∈ RP if and only if for

all i ∈ N , (xi, yi) ∈%i. The social preference relation RP is called the weak Pareto

domination, and the associated strict social preference relation P (RP ) the Pareto

domination.

Since RF is complete and transitive, and RP is quasi-transitive, it follows

from Proposition 4 that P (RF , RP ) is quasi-transitive. Hence, the choice function

CP (RF ,RP ) is not empty and satisfies the Path Independence condition.

Example 2 Ranking by the number of envy instances. For each x ∈ Rmn
+ ,

define the set H(x) ⊂ N ×N by

H(x) = {(i, j) ∈ N ×N | (xj, xi) ∈Âi}.
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The set H(x) is the set of all instances of envy at x. Following Feldman and Kirman

(1974), define RH ∈ R as follows: for all x, y ∈ Rmn
+ , (x, y) ∈ RH if and only if

#H(x) ≤ #H(y).

Then, RH is complete and transitive. By Proposition 4, P (RH , RP ) is quasi-

transitive (Tadenuma, 2002).

Example 3 Egalitarian-equivalent allocations. An allocation x ∈ Rmn
+ is

egalitarian-equivalent if there exists a ∈ Rm
+ such that for all i ∈ N , (xi, a) ∈∼i.

Let E ⊂ Rmn
+ be the set of egalitarian-equivalent allocations. Define RE ∈ R as

follows: for all x, y ∈ Rmn
+ , (x, y) ∈ RE if and only if x ∈ E or y /∈ E.

Then, RE is complete and transitive. By Proposition 4, P (RE, RP ) is quasi-

transitive (Tadenuma, 2005).

Proposition 5 Let R1, R2 ∈ R. If R1 is complete and transitive, and P (R2) is

acyclic, then P (R1, R2) is acyclic.

Proof. Assume that R1 is complete and transitive, and P (R2) is acyclic. Suppose, on

the contrary, that there exists a cycle (x1, . . . , xK) ∈ X for P (R1, R2). Because R1 is

complete, for all x, y ∈ X, (x, y) ∈ P (R1, R2) implies that (x, y) ∈ R1. Hence, we have

(xk, xk+1) ∈ R1 for all k ∈ {1, . . . , K−1} and (xK , x1) ∈ R1. Therefore, by transitivity

of R1, for all k, k′ ∈ {1, . . . , K}, (xk, xk′) ∈ I(R1). Then, since (x1, . . . , xK) ∈ X is a

cycle for P (R1, R2), we must have (xk, xk+1) ∈ P (R2) for all k ∈ {1, . . . , K − 1} and

(xK , x1) ∈ P (R2). This contradicts acyclicity of P (R2).

If R1 ∈ R is only quasi-transitive, then even if R1 is complete and R2 ∈ R is

complete and transitive, P (R1, R2) may have a cycle.

Example 4 Define RP̂ ∈ R as follows: for all x, y ∈ Rmn
+ , (x, y) ∈ RP̂ if and only

if (y, x) /∈ P (RP ). Sen (1970) called RP̂ the Pareto extension rule. Notice that

P (RP̂ ) = P (RP ), and RP̂ is complete and quasi-transitive. As we noted, RF , RH ,

and RE are all complete and transitive. However, none of P (RP̂ , RF ), P (RP̂ , RH) and

P (RP̂ , RE) is acyclic (Tadenuma, 2002, 2005). Notice that, since P (RP̂ ) = P (RP ),

none of P (RP , RF ), P (RP , RH) and P (RP , RE) is acyclic either.
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However, some cases where R1 ∈ R is only quasi-transitive, R2 ∈ R is complete

and transitive and still P (R1, R2) shows no cycle, will be of special interest. For

simplicity of expression, we define the following binary relation: for all x, y ∈ X,

(x, y) ∈ Γ ⇔ [(x, y) /∈ P (R1), (y, x) /∈ P (R1) and (x, y) ∈ P (R2)].

Proposition 6 Let R1, R2 ∈ R. Suppose that R1 is quasi-transitive, and that R2 is

complete and transitive. Suppose further that the following two conditions hold:

(A) for all x, y, z ∈ X, if (x, y) ∈ Γ, (y, z) ∈ P (R1) and (z, y) ∈ P (R2), then

(x, z) ∈ P (R1).

(B) for all x, y, z ∈ X, if (x, y) ∈ Γ and (y, z) ∈ Γ, then (z, x) /∈ P (R1).

Then, the lexicographic composition P (R1, R2) is acyclic.

Proof. Assume that R1 is quasi-transitive, that R2 is complete and transitive,

and that conditions (A) and (B) are satisfied. Suppose, on the contrary, that that

P (R1, R2) has a cycle. Let (x1, ..., xk) be a cycle of the smallest cardinality for

P (R1, R2). Since P (R1, R2) is asymmetric, k ≥ 3.

Assume that (x1, x2), (x2, x3) ∈ P (R1). Then, by quasi-transitivity of R1,

(x1, x3) ∈ P (R1) and then (x1, x3, ..., xk) is a cycle for P (R1, R2) which contradicts

the fact that (x1, ..., xk) is a cycle of the smallest cardinality for P (R1, R2).

Assume that (x1, x2), (x2, x3) ∈ Γ. Then, by definition, (x1, x2), (x2, x3) ∈ P (R2)

and by transitivity of R2, (x1, x3) ∈ P (R2). Moreover, by condition (B), (x3, x1) /∈
P (R1) which implies that (x1, x3) ∈ P (R1, R2). Then (x1, x3, ..., xk) is a cycle for

P (R1, R2) which contradicts the fact that (x1, ..., xk) is a cycle of the smallest cardi-

nality for P (R1, R2).

Let (x1, ..., xk) be one of the smallest cycles for P (R1, R2) with k ≥ 3. From

what we have shown above, with no loss of generality, we can set (x1, x2) ∈ Γ and

(x2, x3) ∈ P (R1). We distinguish two cases.

(1) If (x3, x2) ∈ P (R2), then by condition (A), (x3, x1) ∈ P (R1). By quasi-transitivity

of R1, (x2, x3), (x3, x1) ∈ P (R1) implies (x2, x1) ∈ P (R1) which contradicts (x1, x2) ∈
Γ.

(2) If (x3, x2) /∈ P (R2), then by completeness of R2, (x2, x3) ∈ R2. Together with
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(x1, x2) ∈ Γ and transitivity of R2, we have (x1, x3) ∈ P (R2). If (x3, x1) ∈ P (R1),

then by quasi-transitivity of R1, (x2, x1) ∈ P (R1), which contradicts (x1, x2) ∈ Γ.

Hence, (x3, x1) /∈ P (R1). But then, (x1, x3) ∈ P (R1, R2), and (x1, x3, ..., xk) is a cycle

for P (R1, R2), which contradicts the fact that (x1, ..., xk) is a cycle of the smallest

cardinality for P (R1, R2).

Example 5 For each i ∈ N , let ai ∈ Rm
+ be the reference bundle for agent i. (Exam-

ples of reference bundles are (i) the equal division bundle for all agents under a social

resource constraint, (ii) initial endowment bundles in a private ownership economy,

(iii) minimum bundles to meet some basic functionings.) Define RB ∈ R as follows:

for all x, y ∈ Rmn
+ , (x, y) ∈ RB if and only if #{i ∈ N | (xi, ai) ∈%i} ≥ #{i ∈ N |

(yi, ai) ∈%i}. Clearly, RB is complete and transitive. Notice that if (x, y) ∈ P (RP )

where RP is the weak Pareto domination defined above, then it never occurs that

(y, x) ∈ P (RB). Hence, condition (A) in Proposition 6 is vacuously satisfied. Fur-

thermore, if (x, y) ∈ Γ and (y, z) ∈ Γ, then (x, z) ∈ P (RB) by transitivity of RB, and

hence (z, x) /∈ P (RP ). Therefore, condition (B) in Proposition 6 is also met. We can

conclude that the the lexicographic composition P (RP , RB) is acyclic. Of course, the

same result holds for P (RP̂ , RB)

Often an equity criterion dichotomizes allocations into equitable and non-equitable

ones. In such a case, we can define a complete and transitive binary relation R2 as

follows: for all x, y ∈ Rmn
+ , (x, y) ∈ R2 if and only if x is equitable or y is not equitable.

Note that from this definition, (x, y) ∈ P (R2) if and only if x is equitable and y is not

equitable. Moreover, in this case, R2 has at most two indifference classes. Hence, the

condition (B) in Proposition 6 is irrelevant because for all x, y, z ∈ Rmn
+ , (x, y) ∈ Γ

and (y, z) ∈ Γ cannot occur together. Therefore, we have the following corollary.

Corollary 3 Let R1, R2 ∈ R. Suppose that R1 is quasi-transitive, and that R2 is

complete and transitive, and has at most two indifference classes. Suppose further

that for all x, y, z ∈ X, if (x, y) ∈ Γ, (y, z) ∈ P (R1) and (z, y) ∈ P (R2), then

(x, z) ∈ P (R1). Then, the lexicographic composition P (R1, R2) is acyclic.
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Let A ⊂ Rmn
+ be such that for all a, b ∈ A, a ≥ b or b ≥ a. An allocation

x ∈ Rmn
+ is A-egalitarian-equivalent if there exists a ∈ A such that (xi, a) ∈∼i for all

i ∈ N . Let EA ⊂ Rmn
+ be the set of A-egalitarian-equivalent allocations. Define REA

as follows: for all x, y ∈ Rmn
+ , (x, y) ∈ REA if and only if x ∈ EA or y /∈ EA. Notice

that (x, y) ∈ P (REA) if and only if x ∈ EA and y /∈ EA. One can check that REA is

complete and transitive.

Proposition 7 Let REA be defined as above. Let RP be the weak Pareto domination.

Then, the lexicographic composition P (RP , REA) is acyclic.

Proof. As noted above, REA is complete and transitive, and RP is quasi-transitive.

In view of Corollary 3, it is enough to show that for all x, y, z ∈ Rmn
+ , if (x, y) ∈ Γ,

(y, z) ∈ P (RP ) and (z, y) ∈ P (REA
), then (x, z) ∈ P (RP ).

Suppose that (x, y) ∈ Γ, (y, z) ∈ P (RP ) and (z, y) ∈ P (REA
). Because (x, y) ∈

P (REA), we have x ∈ EA and y /∈ EA. Thus, there exists a ∈ A such that (xi, a) ∈∼i

for all i ∈ N . Since (z, y) ∈ P (REA
), we have z ∈ EA and y /∈ EA. Hence, there

exists b ∈ A such that (zi, b) ∈∼i for all i ∈ N . If (yi, xi) ∈∼i for all i ∈ N , then

(yi, a) ∈∼i for all i ∈ N , which contradicts y /∈ EA. Therefore, (y, x) /∈ P (RP ) holds

only if there exists i∗ ∈ N such that (xi∗ , yi∗) ∈Âi∗ . Since (y, z) ∈ P (RP ), we have

(yi, zi) ∈%i for all i ∈ N , and in particular, for agent i∗. Hence, (xi∗ , zi∗) ∈Âi∗ . We

also have (a, xi∗) ∈∼i∗ and (zi∗ , b) ∈∼i∗ . By transitivity of %i∗ , (a, b) ∈Âi∗ . Since

a, b ∈ S, either a > b or b > a. By strict monotonicity of %i∗ , we have a > b. Then,

for all i ∈ N , (xi, a) ∈∼i, (a, b) ∈Âi and (b, zi) ∈∼i. It follows from transitivity of %i

that (xi, zi) ∈Âi. Thus, we have (x, z) ∈ P (RP ).

5 Lexicographic Composition of Two Choice Func-

tions

In this section, we study the procedure β to compose two criteria, namely, we first

choose the set of maximal elements for the first binary relation R1, and then from
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this set we select its subset of maximal elements for the second binary relation R2.

Formally, the procedure is represented by the choice function CP (R2)CP (R1).

It is clear from the definition that CP (R2)CP (R1)(S) = CP (R2)(CP (R1)(S)) 6= ∅ for

every S ∈ X if both R1 and R2 are acyclic. However, even if there exists a cycle S

for P (R2), CP (R2)CP (R1)(S) 6= ∅ holds as long as P (R1) is acyclic and P (R1) ranks at

least one pair in S. Our next result provides a necessary and sufficient condition for

CP (R2)CP (R1) to satisfy non-emptiness.

Proposition 8 Let R1, R2 ∈ R. The choice function CP (R2)CP (R1) satisfies non-

emptiness if and only if P (R1) is acyclic and for every cycle (x1, . . . , xK) ⊆ X for

P (R2), there exist k, ` ∈ {1, . . . , K} such that (xk, x`) ∈ P (R1).

Proof. The “only if” part: It is clear that if P (R1) has a cycle T = (x1, . . . , xK) ⊆
X, then CP (R1)(T ) = ∅ and CP (R2)CP (R1)(T ) = CP (R2)(CP (R1)(T )) = CP (R2)(∅) = ∅.
Thus, CP (R2)CP (R1) does not satisfy non-emptiness. Suppose that there exists a cycle

T = (x1, . . . , xK) ⊆ X for P (R2) such that for all k, ` ∈ {1, . . . , K}, (xk, x`) /∈
P (R1). Then, by definition of CP (R1), CP (R1)(T ) = T . Then, CP (R2)CP (R1)(T ) =

CP (R2)(CP (R1)(T )) = CP (R2)(T ) = ∅. Therefore, CP (R2)CP (R1) violates non-emptiness.

The “if” part: Suppose that P (R1) is acyclic and for every cycle (x1, . . . , xK) ⊆
X for P (R2), there exist k, ` ∈ {1, . . . , K} such that (xk, x`) ∈ P (R1). Let S ∈ X .

Since R1 is acyclic, CP (R1)(S) 6= ∅. Moreover, if P (R2) has a cycle (x1, . . . , xK) ⊆
CP (R1)(S), then there exist k, ` ∈ {1, ..., K} such that (xk, x`) ∈ P (R1). Then, x` /∈
CP (R1)(S), which is a contradiction. Thus, P (R2) does not have a cycle in CP (R1)(S),

and hence CP (R2)CP (R1)(S) 6= ∅. Since this holds true for every S ∈ X , CP (R2)CP (R1)

satisfies non-emptiness.

Comparing Propositions 3 and 8, one can see that if CP (R1,R2) satisfies non-

emptiness (or equivalently, P (R1, R2) is acyclic), then CP (R2)CP (R1) satisfies non-

emptiness as well. Then, if one has to compose lexicographically two criteria for

decision making, non-emptiness of the composition of the choice functions is more

easily obtained than the non-emptiness of the composition of the binary relations.
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Corollary 4 Let R1, R2 ∈ R. If the choice function CP (R1,R2) satisfies non-

emptiness, then CP (R2)CP (R1) also satisfies non-emptiness.

The following example shows that the converse of Corollary 4 does not hold true.

Example 6 Let RP be the weak Pareto domination, and let RF be defined as in

Example 1. As noted above, RP is quasi-transitive and RF is transitive. Hence,

for every finite set S ∈ Rm
+ , CP (RP )(S) 6= ∅, and CP (RF )(CP (RP )(S)) 6= ∅. However,

there exists a cycle for P (RP , RF ) (Tadenuma, 2002), and hence CP (RP ,RF ) does not

satisfy non-emptiness. The same result holds for the other criteria given in Example

4, namely CP (RH)CP (RP ) and CP (RE)CP (RP ) satisfy non-emptiness whereas CP (RH ,RP )

and CP (RE ,RP ) do not.

Corollary 4 also follows from the next proposition.

Proposition 9 For every S ∈ X , CP (R1)(S) ∩ CP (R2)(S) ⊆ CP (R1,R2)(S) ⊆
CP (R2)CP (R1)(S).

Proof. To show CP (R1)(S)∩CP (R2)(S) ⊆ CP (R1,R2)(S), let S ∈ X and x ∈ CP (R1)(S)∩
CP (R2)(S). Then, there exists no y ∈ S with (y, x) ∈ P (R1), nor does y ∈ S with

(y, x) ∈ P (R2). By definition of P (R1, R2), there exists no y ∈ S such that (y, x) ∈
P (R1, R2). Hence, x ∈ CP (R1,R2)(S).

To prove CP (R1,R2)(S) ⊆ CP (R2)CP (R1)(S), let S ∈ X and S 3 x /∈
CP (R2)CP (R1)(S). By definition, x /∈ CP (R2)CP (R1)(S) implies 1) ∃y ∈ S with

(y, x) ∈ P (R1) or 2) ∃y ∈ S such that ∀z ∈ S, (z, y) /∈ P (R1) and (y, x) ∈ P (R2).

If 1) is satisfied, then (y, x) ∈ P (R1) which implies that (y, x) ∈ P (R1, R2). Hence,

x /∈ CP (R1,R2)(S). If 2) is satisfied, then, (x, y) /∈ P (R1) and (y, x) ∈ P (R2). Then,

by definition, (y, x) ∈ P (R1, R2). Hence, x /∈ CP (R1,R2)(S).

We now examine the choice consistency properties of the lexicographic composi-

tion of choice functions.

Proposition 10 Assume that CP (R2)CP (R1) satisfies Non-Emptiness. Then,

CP (R2)CP (R1) satisfies Contraction Consistency if and only if ∀x, y, z ∈ X, [(x, y) ∈
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P (R1) and (y, z) ∈ Γ] implies (x, z) ∈ P (R1, R2). Moreover, if CP (R2)CP (R1) satisfies

Non-Emptiness and Contraction Consistency, then, CP (R2)CP (R1) = CP (R1,R2).

Proof. The “if” part: Assume that ∀x, y, z ∈ X, [(x, y) ∈ P (R1) and (y, z) ∈ Γ]

implies (x, z) ∈ P (R1, R2), and that CP (R2)CP (R1) does not satisfy Non-Emptiness.

First, let us show that P (R1, R2) is acyclic. Suppose, on the contrary, that P (R1, R2)

has a cycle. Let B = (x1, ..., xn) be one of the cycles with the smallest cardinality.

Since P (R1, R2) is asymmetric, the cardinality of B is strictly greater than 2. By

Proposition 8, it cannot be the case that B is a cycle for P (R1) or for Γ. Then, we

necessarily have one of the following three cases:

(1) exists i ∈ {1, ..., n− 2} such that (xi, xi+1) ∈ P (R1) and (xi+1, xi+2) ∈ Γ.

(2) (xn−1, xn) ∈ P (R1) and (xn, x1) ∈ Γ.

(3) (xn, x1) ∈ P (R1) and (x1, x2) ∈ Γ.

In case (1), by assumption, we have, (xi, xi+2) ∈ P (R1, R2) and then

(x1, ..., xi, xi+2, ..., xn) is a cycle for P (R1, R2) which contradicts the fact that B is one

of the cycles with the smallest cardinality. In case (2), we have, (xn−1, x1) ∈ P (R1, R2)

and then (x1, ..., xn−1) is a cycle for P (R1, R2) which contradicts the fact that B is one

of the cycles with the smallest cardinality. In case (3), we have, (xn, x2) ∈ P (R1, R2)

and then (x2, ..., xn) is a cycle for P (R1, R2) which contradicts the fact that B is one

of the cycles with the smallest cardinality. Hence, P (R1, R2) is acyclic.

Assume now that ∀x, y, z ∈ X, [(x, y) ∈ P (R1) and (y, z) ∈ Γ] implies (x, z) ∈
P (R1, R2). Let x ∈ S ∈ X be such that x /∈ CP (R2)CP (R1)(S). Let T ∈ X be

such that S ⊆ T . Let us show that x /∈ CP (R2)CP (R1)(T ). If ∃y ∈ S, (y, x) ∈
P (R1), then by definition, x /∈ CP (R2)CP (R1)(T ) which completes the proof. If @y ∈
S, (y, x) ∈ P (R1, R2), then x ∈ CP (R2)CP (R1)(S) which is a contradiction with the

assumptions. Then, ∃y ∈ S, (y, x) ∈ Γ. If y ∈ CP (R1)(T ), then, by definition,

x /∈ CP (R2)CP (R1)(T ), which completes the proof. Assume ∃z ∈ T, (z, y) ∈ P (R1).

By acyclicity of P (R1, R2) shown above, ∃n ∈ N,∃(z0, ..., zn) ∈ T mutually different

and different from x and y such that ∀i ∈ {1, ..., n}, (zi, zi−1) ∈ P (R1), z0 = z and

∀z′ ∈ T, (z′, zn) /∈ P (R1). By definition, zn ∈ CP (R1)(T ). Moreover, we have, (z, y) ∈
P (R1) and (y, x) ∈ Γ, then by assumption, (z, x) ∈ P (R1, R2). If (z, x) ∈ P (R1),
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then, by definition, x /∈ CP (R2)CP (R1)(T ), which completes the proof. If (z, x) ∈ Γ,

then, (z1, z) ∈ P (R1) and (z, x) ∈ Γ, therefore, by assumption, (z1, x) ∈ P (R1, R2).

If (z1, x) ∈ P (R1), then, by definition, x /∈ CP (R2)CP (R1)(T ), which completes the

proof. If (z1, x) ∈ Γ, then, (z2, z1) ∈ P (R1) and (z1, x) ∈ Γ, therefore, by assumption,

(z2, z1) ∈ P (R1, R2). Iterating until (zn, x) ∈ Γ completes the proof since, we have

shown that zn ∈ CP (R1)(T ) and then, x /∈ CP (R2)CP (R1)(T ).

The “only if”part: Assume that CP (R2)CP (R1) satisfies Non-Emptiness and Con-

traction Consistency. Suppose, on the contrary, that ∃x, y, z ∈ X such that

(x, y) ∈ P (R1), (y, z) ∈ Γ and (x, z) /∈ P (R1, R2). Then, by definition, z ∈
CP (R2)CP (R1)({x, y, z}). However, {y} = CP (R2)CP (R1)({y, z}), which is a contra-

diction with Contraction Consistency of CP (R2)CP (R1).

Now, let us show that if CP (R2)CP (R1) satisfies Non-Emptiness and Contrac-

tion Consistency, then, CP (R2)CP (R1) = CP (R1,R2). Let x ∈ S ∈ X . If ∃y ∈ S

such that (y, x) ∈ P (R1, R2), then by definition, x /∈ CP (R2)CP (R1)({x, y}), and

by Contraction Consistency of CP (R2)CP (R1), we have x /∈ CP (R2)CP (R1)(S). If

∀y ∈ S, (y, x) /∈ P (R1, R2), then by definition, x ∈ CP (R2)CP (R1)(S).

The following example shows that even if CP (R1,R2) satisfies Non-Emptiness and

Contraction Consistency (or equivalently, P (R1, R2) is acyclic), it is possible that

CP (R2)CP (R1) 6= CP (R1,R2) and CP (R2)CP (R1) violates Contraction Consistency.

Example 7 Let S = {x, y, z}. Assume that P (R1) = {(y, x)} and P (R2) = {(z, y)}.
Then, P (R1, R2) is acyclic and CP (R1,R2) satisfies Non-Emptiness and Contraction

Consistency. However, CP (R2)CP (R1)(S) = CP (R2)({x, z}) = {x, z} and CP (R1,R2)(S) =

{z}. Hence, CP (R2)CP (R1) 6= CP (R1,R2).

Let T = {x, y} ⊂ S. Then, although x ∈ T ∩CP (R2)CP (R1)(S), CP (R2)CP (R1)(T ) =

{y}. This is a violation of Contraction Consistency.

Corollary 5 Let R1, R2 ∈ R be given. If CP (R2)CP (R1) satisfies Non-Emptiness and

Contraction Consistency, then CP (R1,R2) satisfies Non-Emptiness and Contraction

Consistency. However, the converse does not hold true.
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In contrast to the above result, requiring Non-Emptiness and Path Independence

for CP (R2)CP (R1) is equivalent to requiring the same conditions for CP (R1,R2) as the

following proposition shows.

Proposition 11 The following three statements are equivalent.

1. P (R1, R2) is quasi-transitive.

2. CP (R1,R2) satisfies Non-Emptiness and Path Independence.

3. CP (R2)CP (R1) satisfies Non-Emptiness and Path Independence.

Proof. The equivalence of 1 with 2 is already shown in Corollary 2. We prove the

equivalence of 1 with 3.

1 ⇒ 3: First, let us prove that if P (R1, R2) is quasi-transitive, then

CP (R2)CP (R1) = CP (R1,R2). Let S ∈ X . From Proposition 9, CP (R1,R2)(S) ⊆
CP (R2)CP (R1)(S). To show that CP (R2)CP (R1)(S) ⊆ CP (R1,R2)(S), let x /∈ CP (R1,R2)(S)

and x ∈ S. Then, by definition, ∃y ∈ S such that (y, x) ∈ P (R1, R2). Since P (R1, R2)

is quasi-transitive and asymmetric, it is acyclic. Then, there exists an integer n

such that there exists a sequence (y0, ..., yn) such that ∀k ∈ {1, ..., n}, (yk, yk−1) ∈
P (R1, R2), y0 = x and ∀z ∈ S, (z, yn) /∈ P (R1, R2). Then, yn ∈ CP (R1)(S).

By quasi-transitivity of P (R1, R2), (yn, x) ∈ P (R1, R2). If (yn, x) ∈ P (R1),

x /∈ CP (R2)CP (R1)(S) follows by definition. If (yn, x) /∈ P (R1) and (yn, x) ∈ P (R2),

x /∈ CP (R2)CP (R1)(S) follows by yn ∈ CP (R1)(S).

Thus, CP (R2)CP (R1) = CP (R1,R2). However, CP (R1,R2) satisfies Path Independence

since P (R1, R2) is quasi-transitive. Hence, CP (R2)CP (R1) also satisfies Path Indepen-

dence.

3 ⇒ 1: Assume that CP (R2)CP (R1) satisfies Non-Emptiness and Path Indepen-

dence. Since Path Independence implies Contraction Consistency, it follows from

Proposition 10 that CP (R2)CP (R1) = CP (R1,R2). Then, by Corollary 2, P (R1, R2) is

quasi-transitive.

To illustrate this result, let us go back to Examples 1, 2 and 3. We have shown that

CP (RF ,RP ), CP (RH ,RP ) and CP (RE ,RP ) are non-empty and path independent. Then, by
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Proposition 11, we can conclude that CP (RP )CP (RF ), CP (RP )CP (RH) and CP (RP )CP (RE)

are also non-empty and path independent.

6 Order Independence of Lexicographic Composi-

tions

In this section, we investigate under what conditions the outcomes of each choice

procedure are independent of the order of lexicographic applications of two criteria.

The next result, which is based on Proposition 9, shows that if procedure α satisfies

order independence, then it always chooses the intersection of the set of maximal

elements of the first criterion with that of the second criterion, irrespective of the

order of application of the two criteria.

Proposition 12 For every S ∈ X , if CP (R1,R2)(S) = CP (R2,R1)(S), then

CP (R1,R2)(S) = CP (R2,R1)(S) = CP (R1)(S) ∩ CP (R2)(S).

Proof. Let S ∈ X . Let x ∈ CP (R1,R2)(S). By Proposition 9, x ∈ CP (R1)(S).

Hence, CP (R1,R2)(S) ⊆ CP (R1)(S). Similarly, CP (R2,R1)(S) ⊆ CP (R2)(S). Then,

CP (R1,R2)(S) = CP (R2,R1)(S) ⊆ CP (R1)(S) ∩ CP (R2)(S). On the other hand, by Propo-

sition 9, CP (R1)(S) ∩ CP (R2)(S) ⊆ CP (R1,R2)(S) = CP (R2,R1)(S). Thus, CP (R1,R2)(S) =

CP (R2,R1)(S) = CP (R1)(S) ∩ CP (R2)(S).

The following results suggest that order independence is quite a strong require-

ment.

Lemma 1 If P (R1) ∪ P (R2) is asymmetric, then CP (R1,R2) = CP (R2,R1) =

CP (R1)∪P (R2) = CP (R1) ∩ CP (R2).

Proof. Suppose that P (R1) ∪ P (R2) is asymmetric. Then, if (x, y) ∈ P (R1),

then (y, x) /∈ P (R2), and if (x, y) ∈ P (R2), then (y, x) /∈ P (R1). Hence, we

have P (R1, R2) = P (R1) ∪ P (R2) = P (R2, R1) and thus CP (R1,R2) = CP (R2,R1) =

CP (R1)∪P (R2).
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To prove CP (R1)∪P (R2) ⊆ CP (R1) ∩ CP (R2), let us consider S ∈ X and S 3 x /∈
CP (R1)∩CP (R2)(S). Then, ∃y ∈ S such that (y, x) ∈ P (R2) or (y, x) ∈ P (R1). Hence,

(y, x) ∈ P (R1)∪P (R2) and by asymmetry of P (R1)∪P (R2), (x, y) /∈ P (R1)∪P (R2).

Then (y, x) ∈ P (P (R1) ∪ P (R2)). Hence, x /∈ CP (R1)∪P (R2)(S).

To prove CP (R1) ∩ CP (R2) ⊆ CP (R1)∪P (R2), let us consider S ∈ X and S 3 x /∈
CP (R1)∪P (R2). Then, by definition, ∃y ∈ S such that (y, x) ∈ P (R1) ∪ P (R2). Then,

x /∈ CP (R1) or x /∈ CP (R2).

We now give a necessary and sufficient condition for the lexicographic composition

of two binary relations to be non-empty and order independent.

Corollary 6 CP (R1,R2) = CP (R2,R1) and CP (R1,R2) satisfies non-emptiness if and only

if P (R1) ∪ P (R2) is acyclic.

Proof. The ”if” part follows directly from Lemma 1 and Corollary 1.

To prove the ”only if” part, let CP (R1,R2) = CP (R2,R1), CP (R1,R2) satisfy non-

emptiness and (x1, ..., xK) be a cycle for P (R1) ∪ P (R2). By Proposition 3, ∃k ∈
{1, ..., K − 1} such that (xk+1, xk) ∈ P (R1) or (x1, xK) ∈ P (R1). Let us consider

(x1, xK) ∈ P (R1) (the proof is similar in the other cases). Then, (xK , x1) ∈ P (R2) and

(x1, xK) ∈ P (R1). Then, CP (R1,R2)({x1, xK}) = {x1} 6= {xK} = CP (R2,R1)({x1, xK}).
This is a contradiction.

Obviously, for two criteria, the acyclicity of P (R1) ∪ P (R2) is very demanding.

Indeed, it implies that P (R1) ∪ P (R2) is asymmetric, i.e. that the two criteria are

never in contradiction. This requirement is rarely met when we are concerned with

the efficiency and equity criteria.

As we show next, the acyclicity of P (R1) ∪ P (R2) is also necessary for procedure

β to be order independent. In fact, requiring order independence of procedure β is

even more demanding than procedure α.

Proposition 13 If CP (R2)CP (R1) = CP (R1)CP (R2), then CP (R2)CP (R1) =

CP (R1)CP (R2) = CP (R1) ∩ CP (R1).

Proof. Let S ∈ X . Let x ∈ CP (R2)CP (R1)(S) = CP (R1)CP (R2)(S). By definition,

x ∈ CP (R1)(S) and x ∈ CP (R2)(S).
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Let x ∈ CP (R1) ∩ CP (R1). Then, by definition, ∀y ∈ S, (y, x) /∈ P (R1) ∪ P (R2).

Then, by definition, x ∈ CP (R2)CP (R1)(S) = CP (R1)CP (R2)(S).

A necessary and sufficient condition for CP (R2)CP (R1) to coincide with CP (R1)CP (R2)

and satisfy non-empty was given in Houy (2007).

Proposition 14 CP (R2)CP (R1) = CP (R1)CP (R2) and CP (R2)CP (R1) satisfies non-

emptiness if and only if (i) P (R1) ∪ P (R2) is acyclic, and (ii) for all x, y, z ∈ X,

if (x, y), (y, z) ∈ P (R1) ∪ P (R2) and for some i ∈ {1, 2}, (x, y) ∈ P (Ri) and

(y, z) /∈ P (Ri), then (x, z) ∈ P (R1) ∪ P (R2).

From Proposition 13 and Lemma 1, we have the following corollary.

Corollary 7 If CP (R2)CP (R1) = CP (R1)CP (R2) and CP (R2)CP (R1) satisfies non-

emptiness, then CP (R1,R2) = CP (R2,R1) = CP (R2)CP (R1) = CP (R1)CP (R2) =

CP (R1)∪P (R2) = CP (R2) ∩ CP (R1).

Let us give an example to show that order independence and non-emptiness of

procedure β is strictly more demanding that order independence and non-emptiness

of procedure α. Let us have X = {x, y, z}, R1 = {(x, y)} and R2 = {(y, z)}. Then,

P (R1, R2) = P (R2, R1) = {(x, y), (y, z)}. However, CP (R2)CP (R1)({x, y, z}) = {x, z}
whereas CP (R1)CP (R2)({x, y, z}) = {x}.

7 Maximal Elements in the Set of All Alternatives

In the previous sections, we have studied non-emptiness and order independence of

lexicographic compositions of multiple criteria for every finite subset of X. Such

analyzes are important for decision making when not all alternatives are available in

each social or individual problem due to, for instance, technological, political, social,

or time constraints. However, if all alternatives are attainable, we may need only to

know the “optimal” alternatives in the whole set of alternatives. In this section, we

focus on the maximal elements of the choice functions in the set X of all alternatives.
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The next result provides a necessary and sufficient condition for the outcomes

of the choice functions representing procedure α to be independent of the order of

lexicographic applications of two criteria.

Proposition 15 Let R1, R2 ∈ R. CP (R1,R2)(X) = CP (R2,R1)(X) if and only if for

every x ∈ X, (i) x ∈ CP (R1)(X) and x /∈ CP (R2)(X) imply that there exists y ∈ X

with (y, x) ∈ P (R2) and (x, y) /∈ P (R1); and (ii) x ∈ CP (R2)(X) and x /∈ CP (R1)(X)

imply that there exists y ∈ X with (y, x) ∈ P (R1) and (x, y) /∈ P (R2). Furthermore,

if CP (R1,R2)(X) = CP (R2,R1)(X), then CP (R1,R2)(X) = CP (R1)(X) ∩ CP (R2)(X).

Proof. The “if” part: Assume that the condition in the proposition holds.

(1) Let x ∈ CP (R1)(X) ∩ CP (R2)(X). Then, for every y ∈ X, (y, x) /∈ P (R1) and

(y, x) /∈ P (R2). Notice that for every y ∈ X, (y, x) ∈ P (R1, R2) ∪ P (R2, R1) holds

only if (y, x) ∈ P (R1)∪P (R2). Hence, for every y ∈ X, (y, x) /∈ P (R1, R2)∪P (R2, R1).

Thus, x ∈ CP (R1,R2)(X)∩CP (R2,R1)(X). We have shown that CP (R1)(X)∩CP (R2)(X) ⊆
CP (R1,R2)(X) ∩ CP (R2,R1)(X).

(2) Let x ∈ X \ [CP (R1)(X)∪CP (R2)(X)]. Then, there exist y ∈ X with (y, x) ∈ P (R1)

and z ∈ X with (z, x) ∈ P (R2). Therefore, x /∈ CP (R1,R2)(X) ∪ CP (R2,R1)(X). Thus,

CP (R1,R2)(X) ∪ CP (R2,R1)(X) ⊆ CP (R1)(X) ∪ CP (R2)(X).

(3) Let x ∈ CP (R1)(X) and x /∈ CP (R2)(X). Then, x /∈ CP (R2,R1)(X). By the condition

in the proposition, there exists y ∈ X with (y, x) ∈ P (R2) and (x, y) /∈ P (R1). Then,

(y, x) ∈ P (R1, R2). Hence, x /∈ CP (R1,R2)(X). Thus, x /∈ CP (R1,R2)(X)∪CP (R2,R1)(X).

(4) Similarly to (3), if x ∈ CP (R2)(X) and x /∈ CP (R1)(X), then x /∈ CP (R1,R2)(X) ∪
CP (R2,R1)(X).

It follows from (1), (2), (3) and (4) that CP (R1,R2)(X) = CP (R2,R1)(X) =

CP (R1)(X) ∩ CP (R2)(X).

The “only if” part: Assume that condition (i) in the proposition does not hold.

That is, there exists x ∈ X such that x ∈ CP (R1)(X), x /∈ CP (R2)(X) and for every

y ∈ X, (y, x) ∈ P (R2) implies (x, y) ∈ P (R1). Since x /∈ CP (R2)(X), we have

x /∈ CP (R2,R1)(X). Because x ∈ CP (R1)(X) and for every y ∈ X, (x, y) /∈ P (R1) implies

(y, x) /∈ P (R2), it follows that x ∈ CP (R1,R2)(X). Thus, CP (R1,R2)(X) 6= CP (R2,R1)(X).
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Similarly, if the condition (ii) does not hold, then CP (R1,R2)(X) 6= CP (R2,R1)(X).

Notice that CP (R1,R2)(X) = CP (R1)(X) ∩ CP (R2)(X) does not imply that

CP (R1,R2)(X) = CP (R2,R1)(X). As shown by Tadenuma (2002), in the classical division

problem, CP (RP ,RF )(X) 6= CP (RF ,RP )(X), where RP is the weak Pareto domination,

and RF is the no-envy relation defined in Example 1.

For procedure β, an analogous result to Proposition 15 is given in the next propo-

sition.

Proposition 16 Let R1, R2 ∈ R. CP (R1)CP (R2)(X) = CP (R2)CP (R1)(X) if and only

if for every x ∈ X, (i) x ∈ CP (R1)(X) and x /∈ CP (R2)(X) imply that there exists y ∈
CP (R1)(X) with (y, x) ∈ P (R2); and (ii) x ∈ CP (R2)(X) and x /∈ CP (R1)(X) imply that

there exists y ∈ CP (R2)(X) with (y, x) ∈ P (R1). Furthermore, if CP (R1)CP (R2)(X) =

CP (R2)CP (R1)(X), then CP (R1)CP (R2)(X) = CP (R1)(X) ∩ CP (R2)(X).

Proof. The “if” part: Assume that the condition in the proposition holds.

(1) Let x ∈ CP (R1)(X) ∩ CP (R2)(X). Then, x ∈ CP (R1)CP (R2)(X) ∩ CP (R2)CP (R1)(X).

Thus, CP (R1)(X) ∩ CP (R2)(X) ⊆ CP (R1)CP (R2)(X) ∩ CP (R2)CP (R1)(X).

(2) Let x ∈ X \ [CP (R1)(X) ∪ CP (R2)(X)]. Then, x /∈ CP (R1)CP (R2)(X) ∪
CP (R2)CP (R1)(X). Therefore, CP (R1)CP (R2)(X) ∪ CP (R2)CP (R1)(X) ⊆ CP (R1)(X) ∪
CP (R2)(X).

(3) Let x ∈ CP (R1)(X) and x /∈ CP (R2)(X). Since x /∈ CP (R2)(X), we have

x /∈ CP (R1)CP (R2)(X). By the condition given in the proposition, there exists

y ∈ CP (R1)(X) with (y, x) ∈ P (R2). Hence, x /∈ CP (R2)CP (R1)(X). Thus,

x /∈ CP (R1)CP (R2)(X) ∪ CP (R2)CP (R1)(X).

(4) Similarly to (3), if x ∈ CP (R2)(X) and x /∈ CP (R1)(X), then x /∈ CP (R1)CP (R2)(X)∪
CP (R2)CP (R1)(X).

From (1), (2), (3) and (4), we obtain CP (R1)CP (R2)(X) = CP (R2)CP (R1)(X) =

CP (R1)(X) ∩ CP (R2)(X).

The “only if” part: Assume that condition (i) in the proposition does not hold.

Then, there exists x ∈ X such that x ∈ CP (R1)(X), x /∈ CP (R2)(X) and for every

y ∈ CP (R1)(X), (y, x) /∈ P (R2). By x /∈ CP (R2)(X), we have x /∈ CP (R1)CP (R2)(X).
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Since x ∈ CP (R1)(X) and there exists no y ∈ CP (R1)(X) with (y, x) ∈ P (R2), x ∈
CP (R2)CP (R1)(X). Hence, CP (R1)CP (R2)(X) 6= CP (R2)CP (R1)(X).

Similarly, if condition (ii) in the proposition does not hold, then

CP (R1)CP (R2)(X) 6= CP (R2)CP (R1)(X).

Note that CP (R1)CP (R2)(X) = CP (R1)(X) ∩ CP (R2)(X) does not imply

CP (R1)CP (R2)(X) = CP (R2)CP (R1)(X). In an example of the classical division problem

in Tadenuma (2002, p.465), let RP be the weak Pareto domination and RF the no-envy

relation as defined in Example 1. Then, it can be shown that CP (RF )CP (RP )(X) =

CP (RF )(X) ∩ CP (RP )(X), but CP (RF )CP (RP )(X) 6= CP (RP )CP (RF )(X).

It is clear that the condition in Proposition 16 implies the condition in Propo-

sition 15. Hence, if CP (R1)CP (R2)(X) = CP (R2)CP (R1)(X), then CP (R1,R2)(X) =

CP (R2,R1)(X), and hence, by Propositions 15 and 16, CP (R1)CP (R2)(X) =

CP (R2)CP (R1)(X) = CP (R1,R2)(X) = CP (R2,R1)(X) = CP (R1)(X) ∩ CP (R2)(X).

Corollary 8 If CP (R1)CP (R2)(X) = CP (R2)CP (R1)(X), then CP (R1)CP (R2)(X) =

CP (R2)CP (R1)(X) = CP (R1,R2)(X) = CP (R2,R1)(X) = CP (R1)(X) ∩ CP (R2)(X).

8 Conclusion

In this paper we have formalized two distinct procedures to lexicographically apply

multiple criteria. We have shown conditions for these procedures to be non-empty,

path independent and order independent.

The results suggest that to guarantee non-empty outcomes from procedure α, in

which we first construct the lexicographic composition of two binary relations, and

then select its maximal elements, is more difficult than from procedure β, in which

we first select the set of maximal elements for the first binary relation, and then

chooses from that set its maximal elements for the second binary relation. However, to

guarantee path independent outcomes from procedure α is equivalent to guaranteeing

path independent outcomes from procedure β.

For order independence of procedures α and β, the conditions are rather strong.

However, contrary to non-emptiness, guaranteeing order independent outcomes from
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procedure β is more difficult than from procedure α. In particular, acyclicity of the

union of two binary relations implies that there is no conflict between the two criteria

such that x is better than y according to the first criterion whereas y is better than

x for the second criterion. In many cases such as the efficiency-equity trade-off, this

condition cannot be met. This suggests that in most cases we have to be concerned

about the order of application of multiple criteria. However, if we are only interested

in maximal elements in the set of all alternatives, then it is less difficult to obtain

order independence.

Social or individual decision making often involves multiple criteria. The lexico-

graphic applications of the criteria considered in this paper seem natural and rea-

sonable ways to make decisions in such contexts. Other useful conditions for these

choice procedures to be non-empty, path independent, or order independent should

be worth investigating. It would also be interesting to examine how the choice pro-

cedures with multiple criteria can explain seemingly irrational social or individual

choices in concrete problems.
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