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Abstract

This paper studies a two-player machine (finite automaton) game
in which an extensive game with perfect information is infinitely re-
peated. We introduce a new measure of strategic complexity named
“multiple complexity”, which considers the responsiveness of a strat-
egy to information as well as the number of states of machines. In
contrast to Piccione and Rubinstein (1993), we prove that a machine
game may include non-trivial Nash equilibria. In the sequential-move
prisoners’ dilemma, cooperation can be sustained in an equilibrium of
the machine game.

1 Introduction

Strategic complexity is an important concept in the theory of bounded ratio-
nality. This is based on the idea that people prefer less “complex” strategies.
It is, however, not necessarily obvious which strategies are considered to be
less complex. In the repeated game context, Aumann (1981) first proposed
a measure of strategic complexity using finite automata (Moore machines),
followed by the seminal works of Neyman (1985) and Rubinstein (1986). A
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Table 1: Two-player prisoners’ dilemma game

finite automaton outputs a player’s action at every “state” of it. In the lit-
erature, the complexity of a finite automaton is considered to be the number
of states that it contains. We call it the counting-states complexity.

The notion of a strategic complexity reduces the outcomes of Nash equi-
libria in a repeated game. Let us consider an example of the infintely repeated
game of a two-player prisoners’ dilemma. The payoff matrix is given by Ta-
ble 1. Abreu and Rubinstein (1988) showed that the set of outcomes on the
equilibrium path is {(C, C), (D, D)} or {(C, D), (D,C)}.!

Piccione and Rubinstein (1993) extended the analysis of the strategic
complexity to the case of a two-player repeated game of an extensive-form
stage game I'. When I is a game with perfect information, they proved that
any Nash equilibrium of the machine game consists of an infinite repetition
of a Nash equilibrium of T'.

However, this result critically depends on the counting-states complex-
ity. Piccione and Rubinstein (1993) formulated an output function of an
automaton as a mapping from the set of states in the automaton to the set
of stage-game strategies. In this framework, the counting-states complexity
of an automaton can not take into account a “complexity” of a stage-game
strategy itself with respect to its responsiveness to information in the stage-
game. For example, let us consider the sequential-move prisoners’ dilemma
described in Figure 1. Consider the following two machines for player 2. One
is a one-state machine which outputs a stage-game strategy s, : A; — A,
such that so(C) = so(D) = C. The other is also a one-state machine which
outputs s, such that s,(C) = C and s4,(D) = D. Because both machines
have only one state, they are considered to have the same complexity, one.
In our opinion, it is natural to consider that the second machine is more
complex than the first one.

This paper provides a new complexity measure, which we call the multi-
ple complexity (M-comlexity). The multiple complexity takes into account a

!See Piccione (1992) for the improved version of the proof.



Figure 1: Sequential-move prisoners’ dilemma game

complexity of a behavior rule in a period as well as the number of states of the
automaton. We derive a necessary and sufficient condition for a Nash equi-
librium of the machine game under the multiple complexity. The condition
implies that in any equilibrium of the machine game the number of states in
the automata is smaller than or equal to the number of every player’s actions.
In an example of the sequential-move prisoner’s dilemma, cooperation can
be sustained in an equilibrium of the machine game.

This paper proceeds as follows. In section 2, we present necessary defi-
nitions. In section 3, we prove the main result. In section 4, we discuss our
result.

2 Definitions

Let G = (Ay, Ay;uq, uz) be a two-player strategic game, A; be a finite set of
pure actions for player i (= 1,2), and u; be player i’s payoff function defined
on A; X Ay, Let A = Ay X As. Let G*™ be the infinitely repeated game of G.
If player i’s stage-game payoff at period ¢ is u!, player ¢’s payoff m; in G* is
Yoo, 0 tul for a discount factor 0 < 4 < 1.

In G, player ¢’s finite automaton is represented by a four-tuple M; =
(Qi, ¢}, i, ;) in which Q; is a finite set of states, ¢/ € Q; is the initial state,
Ai 0 Qi — A; is the output function, and p; : Q; X A — @); is the transition
function. Let M; be the set of all automata of player i, and M = M; x M,.
The number of states in an automaton M; € M;, i.e. #Q);, is called the



counting-states (CS-) complexity and denoted by comp,,(M;).?

A machine game is a game in which each player chooses her automaton
and obtains the sum of discounted payoffs in G*°. In the machine game for
G, players consider complexity of their automata as well as their payoffs.
We assume the following class of preferences in a machine game, introduced
by Abreu and Rubinstein (1988).

Definition 1. A preference relation =; of player i in the machine game
satisfies all of the following criteria.
For Ml,M{ S Ml and MQ,Mé S MQ,

1. ]f 71-i(]\417 M2) = ﬂ-i(M{) Mé) and Compcs(Mi) = Compcs(Mi,)y
then (Ml, Mg) ~; (M{, Mé)

2. If my(My, My) > m;(M], M}) and comp,,(M;) = comp,, (M),
then (My, My) >=; (M, M3).

3. ]f 71-i(]\417 M2) = ﬂ-i(M{) Mé) and Compcs(Mi) < Compcs(Mi,)f
then (Ml, Mg) i (M{, Mé)

Various preference relations satisfy the conditions in Definition 1. For
instance, the lexicographic preference in which the second criteria is sub-
stituted by “if m;(My, My) > m; (M, M), then (M, My) =; (M], M;)” is a
special case of Definition 1.

In the machine game, the following result is fundamental.

Proposition 1 (Abreu and Rubinstein, 1988). Suppose that a pair of
automata (My, My) € M is a Nash equilibrium of the machine game. Let q!
be player i’s state at period t, and al be player i’s output at period t. Then
the following three statements are true.

1. comp,,(M;) = comp,,(M,).
2. ¢t = ¢ if and only if g5 = ¢ for any two periods t,t'.
3. at = d if and only if a} = ab for any two periods t,t'.

Let [ be a two-player extensive game with perfect information in which
player 1 first chooses an action a; € A; and player 2 chooses an action ay € Ay

2For a finite set S, #S5 denotes the cardinality of S.
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after observing a;. Let S; (i = 1,2) be the set of player i’s strategies in T
Since player 1 is the first-mover and player 2 is the second-mover, we have
S1 = Ay and Sy = {sa|s2: Ay — As}. Let I'™ be the infinitely repeated
game of I'. Automata in ['* will be defined as follows. Since player 1, who
moves first, chooses an action in I' in the same way as in G, automata for
player 1 in I'*® and G*° are identical. An automaton for player 2 in ['* is
defined by My = (Q2, g3, Ao, pt2) € ML The output function ), is a function
from @) to S5. The range of A, is the set of stage-game strategies of player
2 in . The set of automata for player i in I'™ is denoted by M}, and
let MY = MT x ML, Under the CS-complexity, Piccione and Rubinstein
(1993) showed that there are only trivial equilibria of the machine game for
['* which consist of an infinite repetition of a Nash equilibrium of T'.

We are now ready to introduce a new measure of complexity for automata
in '™,

Definition 2. For player i’s automaton M; = (Qi,q}, \i, ;) € M, the
multiple (M-) complexity of M; is defined by

comp,,(M;) = Y #{ai(Ni(@), s)|s; € S} (1 #1)

G €Q;

where a;(s;,s;) € A; is player i’s action induced by the pair of strategies
(siys5) in L.

Note that a1(A1(q1), s2) = Ai1(q1) for any s € Sy, and that as(a, Aa(qe)) =
(A2(q2))(ay) for every a; € A;. Thus comp,,(M;) = comp,,(M;) for any
player 1’s automaton M; € M. For a stage-game strategy sy : A; — Ao,
let ¢(s2) = #{s2(a1) € Ay |a; € A}, namely the cardinality of the range of
s9. Then note that comp,,(Ms) = > c(A2(g2)) for player 2’s automaton
M, € MY,

The multiple complexity considers a “complexity” of outputs as well as
the counting-states complexity.®> In other words, c(ss) is considered to be
a measure of a complexity of s;. The intuition is that when player 2 has
more opportunities to change her actions according to player 1’s actions, her
automaton is considered to be more complex. The simplest output of player

q2€Q>2

3The multiple complexity does not consider complexity of transition functions. When
the stage game is in a strategic form, Banks and Sundaram (1990) showed that a stage-
game Nash equilibrium is played at every period on any equilibrium of the repeated game
with a measure of complexity which considers transition functions.



2’s automata is a stage-game strategy which always takes the same action.
In I'*°, we will assume the preference relation in Definition 1 with respect to
the M-complexity instead of the CS-complexity.

Suppose that My = (Qa, 3, Mo, 2) € M5 satisfies ¢(A2(g2)) = 1 for all
g2 € Q2. Then, at every state, player 2 chooses an action independent of
an action of player 1. This may be interpreted that player 2 moves without
observing player 1’s output. Thus player 2 moves as if she played the corre-
sponding simultaneous-move game G. In other words, an automaton in the
simultaneous-move game is regarded as an automaton in the sequential-move
game. More formally, for a given automaton My = (Q, g3, A2, j12) € My, de-
fine an output function Ay : Qs — {s9: Ay — Ay} tobe (5\2 (qg)) (a1) = A2(q2)
for every a; € A;. Then the mapping (Qs, g3, Ao, p12) — (Q2, ¢3, A, j12) is an
injection from My to MJ. In this way, M, is regarded as a subset of M.

3 Results

Lemma 1. Every automaton My = (Qy, qs, A2, p12) € MY for player 2 satis-
fies the following properties:

1. comp,,(My) > comp, (M),
2. comp,,(Ms) = comp,,(Ms) if and only if c(X2(q2)) = 1 for all go € Qs.
Proof. Both properties are obvious since ¢(A2(g2)) > 1. O

For a pair of automata (M, M) € MF, let o' = (a},al) € A; x Ay and
¢ = (¢}, ) € Q1 X Qo be the pair of outputs and states, respectively, at
period t induced by (M, Ms).

Lemma 2. For (M, M) € M, suppose that o = a! implies ¢! = ¢' for
all periods t and t'. Then, there exists an automaton My, € M,y for player
2 such that comp,,(My) = comp,, (M) and (M, M) and (My, My) generate
the same action profiles.

Proof. Let My = (Qu,q1, A1, 1) € My and My = (Q2,q3, Ao, f1z) € M.
Define M, = (Q2, Gs, Mo, Jia) € My as follows:



Q= U {(g2,a2) € Q2 x As|as = A2(g2)(ay) for some a; € A},

2E€Q2
 G=(gha),
A2(q2, a2) = ag,

f( t'+1 t’+1)

0" ay") i (g2, 02),0) = ((g5,03), o) for some ¢

and thereis ¢/ <t —1

with (g3, a}),a") = ((¢5,a%), a"),
if ((q2,a2),a) = ((¢,ad), a") for some ¢
and the above does not hold,

arbitrary otherwise.

T 7a 7a =
el 2 07 g g

\

comp,, (M) = comp,(My) is easily verified from the definition of Q5.
Let (a!,ab) be the pair of actions at period ¢ induced by (M, Ms). We will

prove (af,ay) = (af,ay) for all ¢+ by induction. For ¢ = 1, a; = aj and
al = Xo(qi,ad) = al. Next fix ¢ and assume that (a},a%) = (a¥,db) for all
k=1,...,t. @ = al™ directly follows from the assumption. If there does

not exist 1 < ' <t — 1 such that ((¢4, at),a') = ((¢4,a’),a’), then
ay" = f\z(ﬂz((q; ay),a'))

_ i1
— a2 .

If there exists 1 < t' < t — 1 such that ((¢},a}),at) = ((¢4,a),a’), then

the assumption of lemma implies ¢! = ¢!". Therefore ¢/ = ¢/ ! and a!*! =

a’*'. This yields
a5 = Ay (p2(g5, a')) (af*h)
= Xa(pa(qh, a")) (af +)
_ gl
On the other hand,
a5t = Ay(j2((g5, ay), a'))
= Xo(g5 ™ a5 ™)

1
=ay .



Thus a5t = abt is proved. (M, My) and (M, M) generate the same action
profiles. O

In the following Lemma we use an analogous argument to the lemma in
Piccione and Rubinstein (1993).

Lemma 3. Suppose that (M, Ms) € MF is an equilibrium in I'*° under the
M-complexity. Then

comp,, (M) = comp,,(Ms) = comp,, (M,).

Particularly, the second equality implies that player 2 moves without observ-
ing player 1°s action at any state of M.

Proof. Let My = (Q1,qi, A1, 1) and My = (Q2,¢3, A2, pi2). For given M;,
consider player 2’s payoff maximization problem of the repeated game. This
Markovian decision problem has a stationary solution oy : ()1 — As. Then,
define player 2’s automaton My = (Q1,qi, Ny, i) with My(q1) (") = oo(q1)
and 115(q1,-) = (g1, (Ai@r), 02(q1))). Since ¢(Ay(q1)) = 1 for any ¢ € Q1
comp,, (Mj}) is equal to comp,,(Mj), and to comp,(M;) by the definition
of M}. Since M, is a best reply to My, (M, My) 7o (M, M}). On the
other hand, by the definition of M}, mo(My, My) < mo(My, M}). There-
fore by Definition 1, it must hold that comp,,(M,) < comp,,(M}). Hence,
Compm(MQ) S Compcs(Ml)'

Considering player 1's Markovian decision problem for given M> shows
comp,,(M;) < comp,,(Ms). By combining all the inequalities above and in
Lemma 1, the lemma is proved. U

Recall that we regard My as a subset of ML. When (M;, My) € M" is
an equilibrium in I'** under the multiple complexity, this lemma implies that
M, € M. Therefore (M, M) is an equilibrium also in G*°. By this fact,
Proposition 1 can be applied to ['*°, and the following result is obtained.

Lemma 4. Suppose that (M, My) € MY is an equilibrium in T° under the
multiple complexity. Let (al,ab) € Ay x Ay be the pair of outputs at period
t, and (¢¢,qh) € Q1 x Qo be the pair of states at period t. At any period t,t',

1. ¢t = q! if and only if ¢§ = g5,

! . . !
2. at = al if and only if ab = db.



From Lemma 4, we now obtain a necessary and sufficient condition of
Nash equilibria in the machine game of ['*°.

Theorem 1. For a pair of automata (M, My) € M} x MY, let (al,ab) €
A x Ay and (¢, ¢b) € Q1 X Qg be the pair of outputs and states, respectively,
at period t induced by (My, My). (M, M) is an equilibrium in T under the
multiple complezity if and only if My € My, (M, M) is an equilibrium in
G, and furthermore a' = a! implies gt = q' for all t and t' (i =1,2).

Proof. First suppose that (M;, M5) is an equilibrium in I'* under the mul-
tiple complexity. By Lemma 3, (M;, M) is an equilibrium in G*°. Let
My = (Qa,q3, Ao, 12) € My. Note that comp,, (M) = #{¢}|t = 1,2,...}.
Define an automaton M = (Q%, g5, Ny, 11h) € MY such that comp,,(Mj) = 1
as follows:

o @ ={g},

o \y(g3)(ah) = aj,

o i5(da, ") = .

Note that this definition is well-defined by the second condition of Lemma
4, and that (M, Mj) and (M, My) generate the same action profiles. Sup-
pose that a) = a} but ¢ # ¢& at some t,#. Then #{at} < #{¢'}. By
the definition of the multiple complexity, comp,,(M}) = #{ak}. Therefore
comp,, (M}) < comp,,(Ms), which implies that M, is not a best reply to M;.
By contradiction, if a} = a! then ¢4 = ¢}. With this fact, Lemma 4 implies
that if a! = a! then ¢! = ¢!

Second suppose that (M, Ms) is an equilibrium in G*, and that a! = af
implies ¢! = qf’ at any t,t'. Since all the states of M; is used on the equi-
librium path of (M, M,), the second supposition means that the automaton
M has the property that different states output different actions. Therefore
for any M, € MY, the condition in Lemma 2 holds true with respect to
(My, M}). Assume that there is M} € MY such that (M, M}) = (M, My).
Then there is My € My as in Lemma 2 such that (M, M}) =y (M, My),

contradicting the assumption that (M7, M>) is an equilibrium in G*°. Hence
(M, M) is an equilibrium in I'* under M-complexity. a

Corollary 1. If (M, My) is an equilibrium in T'>° under the M-complezity.
Then
comp,,(M;) = comp,,(Ms) < min(#A;, #As).



Figure 2: The Tat-for-Tit automaton
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Figure 3: An automaton pair which induces the repetition of (C, D) and
(D,C)

Proof. Because (M, M>) is an equilibrium in I'*°, comp,,(M;) = comp,,(M>)
by Lemma 3. By Theorem 1, comp,,(M;) < #A; for i =1,2. O

Example 1. Let [' be a sequential-move prisoners’ dilemma described by Fig-
ure 1. Assume that the preferences are lexicographic, and that the discount
factor ¢ is sufficiently close to one. By Corollary 1, automata with at most
two states must appear in an equilibrium in I'* under the M-complexity,
because there are only two possible actions C, D in the game. When the
number of state is one, it is obvious that an equilibrium must be such that
both players infinitely repeat D.

Suppose that the number of states is two. By Lemma 4, the actions
and states have to be cyclic with period 2 or cyclic with period 1 after the
second period. First consider the case of period 1. Since we have already
considered the repetition of D, consider the repetition of C. One example
is when both players implement a well-known automaton called Tat-for-Tit

10
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Figure 4: The equilibrium payoffs in the sequential-move prisoners’ dilemma

shown in Figure 2.* It can be an equilibrium in G*.5 By Theorem 1, it is
also an equilibrium of I'*°. In this equilibrium (C,C) is played repeatedly
after period 2. When the CS-complexity is adopted, player 2 can deviate
to an automaton with only one state which outputs the stage-game strategy
describing C'; D when player 1 chooses C, D, respectively. Under the M-
complexity, the complexity of this automaton is 2. Hence player 2 has no
incentive of deviation, and the equilibrium survives.

Second consider the case of period 2. By Theorem 1, the equilibrium
in I'™ is regarded as that in G*. Therefore without loss of generality, we
assume that player 1 plays C at the first period. Then the action profiles are
{(C,C),(D,D),(C,C),(D,D),...} or {(C,D),(D,C),(C,D),(D,C),...}.
In the former case, either player deviates to an automaton which always
outputs D, gaining more payoffs. The latter case is realized by the pair of
automata shown in Figure 3.

Therefore the set of equilibrium payoffs are described in Figure 4 when
the discount factor ¢ is almost equal to one.

Example 2. Next consider the battle of the sexes game G with a payoff
matrix shown in Table 2. The pure-strategy Nash equilibria of this game are

“The terminology “Tat-for-Tit” is adopted from Binmore and Samuelson (1992).
°See Abreu and Rubinstein (1988) for the proof of sufficiency of equilibria in the
simultaneous-move games.
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| B O
B 3,1 0,0
00,0 1,3

Table 2: The battle of the sexes

(B, B) and (0, 0). In the equilibria in G*, if (B, O) or (O, B) is played at
some period, then only {(B,0), (O, B)} appears on the path. Therefore the
player can deviate to an automaton always playing the same action, in which
she gains strictly positive payoff. Thus either (B, B) or (O, O) is played in
equilibria.

Let I' be the sequential-move game corresponding to G. By Theorem 1,
automata with one or two states must be used in the equilibria in I'*° under
the M-complexity. When the number of state is one, the equilibrium outcome
is repetition of the same action profile at every period. When the number of
states is two, there is an equilibrium in which (B, B) and (O, O) are played
alternately. These are all the outcomes on the equilibria.

4 Discussion

If we introduce the multiple complexity in the machine game of a repeated
sequential-move game, there exists a Nash equilibrium of the machine game
which has more than one state. This result is different from that of Piccione
and Rubinstein (1993) in which the counting-states complexity is considered.
An intuition for this result is that player 2 can reduce the number of states
of her automaton by employing a stage-game strategy depending on player
1’s actions, keeping the multiple complexity unchanged.

In this paper, we have formulated the output function of an automaton as
a mapping from the set of states to the set of stage-game strategies, based on
the reduction of an extensive game to its normal from. Let us discuss how the
multiple complexity is related to an alternative formulation in an automaton
of an extensive game introduced in Piccione and Rubinstein (1993).

Let I' be a two-player extensive game with perfect recall. Let U; be the
set of player i’s information sets in ', A(u;) be the set of actions available at
u; € Uy, and A(U;) = U,,cp, A(ui). Let E be the set of end-nodes in T'. A

player 7’s automata in ' is defined by (Q;, q;, i, fi;) with output function

12



N Qi x U — A(U;) and transition function fi; : Q; X (U; U E) — Q.
Transition occurs at the time an information set is reached and before the
action is taken.

When I is a sequential-move game with perfect information, U; consists
of a single information set and U can be identified with A;. Moreover, A(Us)
is identified with A,. Thus we can have )\; : Q1 — Aq, Ao Q2 X A — Ay
in the above definition. For an output function Ay and Sy = {A; = As}, let
us define )\2 : Q2 — SQ to be )\2((]2)(@1) = S\Q(QQ, al). Then 5\2 and )\2 assign
the actions for a pair (g2, a1). In this formulation, the multiple complexity is
given by

comp,, (M) = Z #{ 2(q2,a1) € Ag|ay € Ar}.
72€Q2
In this representation, the multiple complexity is complementary to the no-
tion of the response complexity introduced by Chatterjee and Sabourian
(2000). While their response complexity counts the cardinality of the range
of the mapping 5\2(-, a1), our multiple complexity counts the cardinality of
the range of the mapping 5\2(q2, ).

Finally, it would be a challenging problem to characterize a Nash equilib-
rium of the machine game for a general extensive game. The identification
above can be applied to a repeated game of an extensive stage game [ with
perfect recall, that is, \; : Q; — S; with S; = {s; : U; — A(U;)}. Thus the
definition of the M-complexity is possible in T'® if \; is defined everywhere
on (); X U;. However, when players move more than once in a stage game,
one has to be careful in formulating transition functions. A further analysis
is left to future research.
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