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1 Introduction

Bayesian games, or games with di¤erential information, describe situations in
which there is uncertainty about players�payo¤s, and di¤erent players have
(typically) di¤erent private information about the realized state of nature !
that a¤ects the payo¤s. Private information of player i is often represented
by a partition of the space 
 of all states of nature (in which case i knows
to which element of the partition the realized ! belongs), or more generally,
by a �-�eld zi of measurable sets (events) in 
 (in which case i knows,
given any event in zi; whether it has occurred). It was shown by Simon
(2003) that Bayesian Nash equilibrium (BNE) may fail to exist in games with
di¤erential information, as a result of discontinuity of the expected payo¤
function in Bayesian strategies of all players simultaneously. The situation
changes, however, when attention is con�ned to two-person zero-sum games
with di¤erential information. Indeed, under quite general conditions, the
expected payo¤ function is (weakly) continuous in Bayesian strategies of each
player separately, and Sion (1958) minimax theorem needs only this form of
continuity to guarantee existence of the value and of optimal strategies for
each player.
This work concerns the behavior of the value of a zero-sum game with dif-

ferential information when players�information endowments (�elds) undergo
small changes, and the distance between informations �elds is measured by
means of Boylan (1971) pseudo-metric. It turns out that the value has strong
continuity properties. We show that, when the payo¤ function is Lipschitz-
continuous in strategies at each state of nature,1 a mild integrability assump-
tion2 on the state-dependent Lipschitz constant guarantees that the value is a
uniformly continuous function of players�information �elds (see Theorem 1).
If, in addition, the state-dependent Lipschitz constant of the payo¤ function
is bounded, then the value is in fact Lipschitz-continuous in information �elds
(see Corollary 1). Moreover, the correspondence describing players�optimal
strategies as a function of information is upper semi-continuous, even with
respect to the weak convergence topology on each player�s set of strategies,
and is approximately lower semi-continuous (see Theorem 3).

1This requirement is satis�ed, for instance, by games which have a matrix-game form
in all states of nature (see the Example).

2The assumption is that the state-dependent Lipschitz constant is q-integrable for q > 1:
When this constant is merely integrable, the value is still continuous (see Theorem 2), but
possibly not uniformly.
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These continuity properties of the value (and optimal strategies) in zero-
sum games stand in contrast to discontinuity of the BNE correspondence in
general (non zero-sum) games with di¤erential information. The NE corre-
spondence is not lower semi-continuous �that is, BNE strategies/payo¤s may
not be approachable by BNE (or even "-BNE) strategies/payo¤s in games
with slightly modi�ed information endowments. This was shown by Mon-
derer and Samet (1996)3 in a setting similar to ours. The BNE are also
not upper semi-continuous as was shown by Milgrom and Weber (1985) and
Cotter (1991).
The continuity of the BNE correspondence has been investigated in two

di¤erent set-ups. In this paper, we use the basic set-up of Monderer and
Samet (1996), who work with information �elds to describe players�varying
private information, with �xed common prior belief about the distribution of
the states of nature. (This follows a certain tradition of modelling informa-
tion in economic theory; see, e.g., Allen (1983), Cotter (1986), Stinchcombe
(1990), and Van Zandt (1993, 2002)). In other words, the underlying uncer-
tainty in the game (represented by the common prior) is �xed, but informa-
tion endowments of players (represented by information �elds) are variable.
However, there is a di¤erent approach to continuity of NE correspondences,
which is with respect to the common prior belief (see, e.g., Milgrom and
Weber (1985), Kajii and Morris (1998)). In this approach, contrary to ours,
the underlying uncertainty (the common prior) is variable, but information
endowments are �xed (the space of states of nature is assumed to be the
cross product of �xed sets of players�types, and each player�s private infor-
mation is given by the knowledge of his type). Perturbing the underlying
uncertainty in�uences the expected payo¤s of all players, but does not a¤ect
their strategy sets. However, our setting emphasizes di¤erences in informa-
tion, allowing information endowments in the game to be perturbed in a
way that directly a¤ects only one individual player, or in a way that a¤ects
all players di¤erently. Indeed, a change in the private information of both
players induces (typically di¤erent) changes in players�strategy sets, due to
the constraint of measurability of each player�s strategies with respect to
his information �eld. While the impact of these information changes on the
structure of the game might appear to be signi�cant, our theorems show that

3In fact, Monderer and Samet (1996) (as well as Kajii and Morris (1998) in a �xed-
types model of di¤erential information), are concerned precisely with the question of what
topology on information endowments would lead to approximate lower semi-continuity of
BNE. It must be signi�cantly weaker than the Boylan topology.
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the value and the optimal strategies in zero-sum games are nevertheless well
behaved with respect to these changes.
In non-zero-sum games, upper semi-continuity of BNE is obtained at the

cost of imposing certain restrictions on information structure in the game.
Indeed, in the set-up of types, a su¢ cient spread of the common prior distri-
bution on the product of players�types is needed for upper semi-continuity
of BNE (see Milgrom and Weber (1985); the common prior is required to
be absolutely continuous with respect to the product of its marginal distri-
butions). And in the set-up of information �elds, an analogous condition
in Cotter (1991) also yields upper semi-continuity with respect to Boylan
topology on information endowments, but only under assumption that all
�elds are generated by at most countable partitions of the space of states of
nature. Our results show, however, that for the continuity of the value or
upper semi-continuity of optimal strategies in zero-sum games no restrictions
on information �elds are necessary.
Our paper is organized as follows. The set-up is described in Section 2.

Our results (Theorems 1, 2, 3 and Corollaries 1, 2) are stated and proved in
Section 3; Remarks 1 and 2 appear at the end of this section. The Appendix
contains the proof of a technical Lemma 2.

2 Preliminaries

We consider zero-sum games with two players, i = 1; 2: Games are played in
an uncertain environment, which a¤ects payo¤ functions of the players. The
underlying uncertainty is described by a probability space (
;z; �) ; where

 is a set of states of nature, z is a countably generated �-�eld of subsets
of 
; and � is a countably additive probability measure on (
;z) ; which
represents the common prior belief of the players about the distribution of
the realized state of nature: The initial information endowment of player i is
given by a �-sub�eld zi of z:
Each player i = 1; 2 has a set Si of strategies, which is a convex and

compact subset of a Euclidean space Rni. We will assume, without loss
of generality, that maxs2S1[S2 ksk � 1; where k�k stands for the Euclidean
norm in Rn1 or Rn2 : One simple example of such strategy set Si, to which
we return later, is the (ni � 1)-dimensional simplex of i�s mixed strategies,
provided player i has ni pure strategies.
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There is, in addition, a measurable4 real valued payo¤ function u : 
 �
S1�S2 ! R; such that u (�; s1; s2) is integrable for every (s1; s2) 2 S1�S2: At
every state of nature ! 2 
; u! (s1; s2) � u (!; s1; s2) represents the payo¤
received by player 1 (and the loss incurred by player 2) when each player
i chooses to play si: We assume that each u! is a Lipschitz function with
constant K(!); that is,��u! �s1; s2�� u!

�
t1; t2

��� � K(!)(
s1 � t1

+ s2 � t2
) (1)

for every (s1; s2) ; (t1; t2) 2 S1�S2:We also assume that the state-dependent
Lipschitz constant K(�) is z-measurable, and that there exists q � 1 such
that it is q-integrable (and, in particular, integrable):Z




(K(!))q d� (!) <1: (2)

The probability space (
;z; �) ; information endowments z1 and z2;
strategy sets S1 and S2; and the payo¤ function u fully describe a zero-
sum Bayesian game. To concentrate on the e¤ects of changes in information
endowments, we keep all the attributes of the game �xed, with the exception
of z1 and z2 that are variable. Thus, we denote the game by G(z1;z2); to
emphasize its changeable characteristics.
A Bayesian strategy of player i is an zi-measurable function xi : 
! Si:

The set of all Bayesian strategies of player i will be denoted by X i (zi) :
For 1 � p � 1; Lnp (
;z; �) denotes the Banach space of allz-measurable

functions5 x : 
! Rn such that

kxkp �
�Z




kx (!)kp d� (!)
� 1

p

<1 (3)

(recall that k�k stands for the Euclidean norm on Rn) if p <1, and kxk1 �
essential supremum of kx (�)k < 1 if p = 1: For 1 < p < 1; the weak
topology on Lnp (
;z; �) is the (weakest) one in which the linear functional6
'y (x) �

R


x (!) � y (!) d� (!) is continuous for any given y 2 Lnq (
;z; �),

4The measurability is in all coordinates jointly (with respect to the Borel �-�elds in
the second and third coordinates).

5Or, to be precise, their equivalence classes, where any two functions which are equal
�-almost everywhere are identi�ed. This identi�cation applies to Bayesian strategies as
well.

6The dot stands for the inner product in Rn:
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q = p
p�1 : Note that X

i (z) is a weakly closed subset of the unit ball in
Lnip (
;z; �) (which is metrizable in the weak topology, since its dual Lniq (
;z; �)
is separable due to our assumption on z; the unit ball is also compact in the
weak topology): The topology that this induces on X i (z) does not depend
on p > 1: This follows easily from the fact that fxkg1k=1 � X i (z) converges
to x in the Lnip (
;z; �)-weak topology if and only if limk!1 'y (xk) = 'y (x)
holds for all bounded z-measurable functions y (which is in turn implied by
the uniform boundedness of fxkg1k=1 and x as functions in X i (z))7.
In the sequel, this induced topology will be called the weak topology on

X i (z). The weakly closed subsetX i (zi) ofX i (z) thus also becomes metriz-
able and compact.
The expected payo¤ of player 1 (and the expected loss of player 2) when

xi 2 X i (zi) is chosen by i is

U(x1; x2) � E
�
u�
�
x1 (�) ; x2 (�)

��
=

Z



u!
�
x1(w); x2 (w)

�
d� (!)

(the integral is well de�ned, due to integrability of each u (�; s1; s2), assump-
tion (1), and integrability of K (�)). This also de�nes U for all (x1; x2) 2
X1 (z)�X2 (z).
Ifminx22X2(z2)maxx12X1(z1) U(x

1; x2) andmaxx12X1(z1)minx22X2(z2) U(x
1; x2)

are well de�ned, and

min
x22X2(z2)

max
x12X1(z1)

U(x1; x2) = max
x12X1(z1)

min
x22X2(z2)

U(x1; x2); (4)

then the common value v = v(z1;z2) of the two expressions in (4) is called
the value of the zero-sum Bayesian game G(z1;z2). Note that v is the
value of G(z1;z2) if and only if there exists a pair of Bayesian strategies
(x1; x2) 2 X1 (z1)�X2 (z2) such that for every (y1; y2) 2 X1 (z1)�X2 (z2)

U(x1; y2) � U(x1; x2) = v(z1;z2) � U(y1; x2): (5)

Strategy xi is called optimal for player i:8 Given " > 0; strategies (x1; x2) 2
7In fact, this shows that the topology induced on Xi (z) is the same as the weak

topology on it, viewed as a subset of Lni1 (
;z; �) : We chose to describe the topology by
using p > 1, however, in order to demonstrate metrizability and compactness of Xi (z) :
only when p > 1 is the unit ball in Lnip (
;z; �) metrizable and compact in the weak
topology, implying the same properties of its weakly closed subset Xi (z) :

8The de�nition of the value used here presupposes existence of optimal strategies,
instead of merely requiring inf sup = sup inf in (4). However, conditions stated in the next
paragraph will guarantee existence of the value in this more strict sense.
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X1 (z1) � X2 (z2) are called "-optimal in G(z1;z2) if U(x1; y2) + " �
v(z1;z2) � U(y1; x2)� " for every (y1; y2) 2 X1 (z1)�X2 (z2) :
We shall assume that the state-dependent payo¤ function u! is concave

in s1 2 S1 for a �xed s2 2 S2, and convex in s2 2 S2 for a �xed s1 2 S1: This
will guarantee the existence of the value in G(z1;z2) :

Proposition. Under the above assumption,

(a) the expected payo¤ function U is weakly upper semi-continuous and
concave in x1 2 X1 (z) for a �xed x2 2 X2 (z) ; and weakly lower semi-
continuous and convex in x2 2 X2 (z) for a �xed x1 2 X1 (z) ;

and

(b) the game G(z1;z2) possesses a value.

Proof. (a) Since u! (�; s2) is a continuous and concave function of s1,
and its maximum  (!; s2) � maxs12S1 u (!; s1; s2) is integrable in ! due to
the integrability of the Lipschitz constant K(!); Theorem 2.8 of Balder and
Yannelis (1993) can be applied9 to deduce weak upper semi-continuity of U
in x1 2 X1 (z) : The concavity of U in x1 2 X1 (z) is obvious. A mirror
argument shows lower semi-continuity and convexity of U in x2 2 X2 (z) :
(b) Properties of U shown in (a) guarantee existence of the value in

G(z1;z2) by Sion (1958) minimax theorem, since X1 (z1) � X2 (z2) is
weakly compact. �

Example. The most prevalent payo¤ function that gives rise to such
U comes from the usual matrix game. In a matrix game, each player i has
ni pure strategies, and Si is the (ni � 1)-dimensional simplex of i�s mixed
strategies. In each ! 2 
; the payo¤ function is

u!
�
s1; s2

�
= s1A(!)s2; (6)

where strategy s1 2 S1 is regarded as a row vector, s2 2 S2 �as a column
vector, and A(!) is an n1�n2-matrix, with A(!)j;k being the payo¤ of player

9Theorem 2.8 of Balder and Yannelis (1993) is a little too heavy for our purpose (it
aims to show weaker upper semi-continuity of U by assuming u! to be only upper semi-
continuous), but it is a convenient reference.
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1 when he chooses pure strategy j and 2 �pure strategy k. Conditions (1)
and (2) are guaranteed if a(!) = maxj;k jAj;k(!)j is integrable. �

Finally, we de�ne convergence of players� information endowments by
means of the following pseudo-metric (introduced in Boylan (1971)) on the
family z� of �-sub�elds of z:10

d (z1;z2) = sup
A2z1

inf
B2z2

� (A4B) + sup
B2z2

inf
A2z1

� (A4B) ;

where A4B = (AnB) [ (BnA) is the �symmetric di¤erence�of A and B:
If xi 2 X i (z) and z0 2 z�; denote by E(xi j z0) 2 X i (z0) the condi-

tional expectation of xi with respect to the �eld z0: The conditional expec-
tation E(xi j z0) is well-behaved with respect to small changes in z0:

Lemma 1. If xi 2 X i (z) and z1;z2 2 z�; thenE(xi j z1)� E(xi j z2)

1
� 16nid (z1;z2) : (7)

Proof. If ni = 1 (that is, if Si � [�1; 1]); (7) is well known. (See, e.g.,
Rogge (1974) and Landers and Rogge (1986), who show that kE(f j z1)� E(f j z2)k1
� 8d (z1;z2) for all z-measurable functions f with values in [0; 1]:) When
ni > 1;E(xi j z1)� E(xi j z2)


1
=

Z



E(xi j z1)� E(xi j z2)
 d� (!)

�
Z



niX
j=1

��E(xij j z1)� E(xij j z2)
�� d� (!)

=

niX
j=1

E(xij j z1)� E(xij j z2)

1

� 16nid (z1;z2) :
�
10If z1;z2 2 z� contain the same sets of positive measure, then d (z1;z2) = 0: For this

reason d is indeed a pseudo-metric rather than a metric. It would have become a metric if
we passed to work with equivalence sets of �-sub�elds, dropping the distinction between
any such z1;z2:
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3 Results

Given two pairs of �elds in z�, (z11;z21) and (z12;z22) (where zij is the infor-
mation endowment of player i = 1; 2 in pair j = 1; 2), the distance between
them will be measured by the following pseudo-metric:

d
�
(z11;z21); (z12;z22)

�
� max[d(z11;z12); d(z21;z22)]:

Theorem 1. If the state-dependent Lipschitz constantK (�) of the payo¤
function is q-integrable for some q > 1; the value v(z1;z2) is a uniformly
continuous (in fact, Hölder-continuous) function of (z1;z2) 2 z� �z� with
respect to the pseudo-metric d: Speci�cally, for any two (z11;z21); (z12;z22) 2
z� �z�; ��v(z11;z21)� v(z12;z22)

�� � C
�
d
�
(z11;z21); (z12;z22)

�� q�1
q ; (8)

where C > 0 is a constant given by

C � 4 (8max (n1; n2))
q�1
q kKkq : (9)

Proof. For any two given (z11;z21); (z12;z22) 2 z��z�; let x1 2 X1 (z11)
be an optimal strategy of player 1 in the game G(z11;z21); and pick y2 2
X2 (z22) : Now denote x12 � E(x1 j z12) 2 X1 (z12) and y21 � E(y2 j z21) 2
X2 (z21) : The optimality of x1 in G(z11;z21) implies

U(x1; y21) � v(z11;z21): (10)

Note that ��U(x1; y21)� U
�
x12; y

2
���

(by (1))

�
Z



K(!)
x1 (!)� x12 (!)

 d� (!) + Z



K(!)
y21 (!)� y2 (!)

 d� (!)
9



(by the Hölder inequality, for p = q
q�1)

� kKkq
�x1 � x12


p
+
y21 � y2


p

�
(since kx1 (!)� x12 (!)k ; ky21 (!)� y2 (!)k � 2 for �-almost every ! 2 
)

� 2
p�1
p kKkq

 �Z



x1 (!)� x12 (!)
 d� (!)� 1

p

+

�Z



y21 (!)� y2 (!)
 d� (!)� 1

p

!

= 2
p�1
p kKkq

�x1 � x12
 1p
1
+
y21 � y2

 1p
1

�
= 2

p�1
p kKkq

�E(x1 j z11)� E(x1 j z12)
 1p
1
+
E(y2 j z21)� E(y2 j z22)

 1p
1

�
(by (7) in Lemma 1)

� 2
p�1
p (16max (n1; n2))

1
p kKkq

��
d(z11;z12)

� 1
p +

�
d(z21;z22)

� 1
p

�
:

� 4 (8max (n1; n2))
1
p kKkq

�
d
�
(z11;z21); (z12;z22)

�� 1
p :

To summarize, we have shown that��U(x1; y21)� U
�
x12; y

2
��� � C

�
d
�
(z11;z21); (z12;z22)

�� q�1
q : (11)

Together with (10), (11) implies that

U
�
x12; y

2
�
� v(z11;z21)� C

�
d
�
(z11;z21); (z12;z22)

�� q�1
q :

This holds for every y2 2 X2 (z22) ; and hence it follows that

v(z12;z22) = max
y12X1(z12)

min
y22X2(z22)

U(y1; y2) (12)

� min
y22X2(z22)

U(x12; y
2) � v(z11;z21)� C

�
d
�
(z11;z21); (z12;z22)

�� q�1
q : (13)

Using similar arguments (when we start from an optimal strategy x2 2
X2 (z21) of player 2 in the game G(z11;z21)) we can show that, for x22 = E(x2 j
z22) 2 X2 (z22) ; the following inequality

U
�
y1; x22

�
� v(z11;z21) + C

�
d
�
(z11;z21); (z12;z22)

�� q�1
q
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holds for every y1 2 X1 (z12) : This leads to

v(z12;z22) = min
y22X2(z22)

max
y12X1(z12)

U(y1; y2) (14)

� max
y12X1(z12)

U(y1; x22) � v(z11;z21) + C
�
d
�
(z11;z21); (z12;z22)

�� q�1
q : (15)

The combination of (12)-(13) and (14)-(15) now implies (8). �

The continuity of the value as a function of (z1;z2) is, of course, an
immediate implication of Theorem 1:

Corollary 1. Suppose that fzikg
1
k=1 � F � is a sequence such that

limk!1zik = zi in the Boylan pseudo-metric; for i = 1; 2; and that the
condition of Theorem 1 holds. Then limk!1 v(z1k;z2k) = v(z1;z2):

If K(�) is a bounded function, it is obvious that (2) holds for every q > 1;
and thus q can be chosen to be arbitrarily high. The constant C = C(q);
de�ned in (9), converges to the limit

32max (n1; n2) kKk1

when q approaches in�nity. Inequality (8) of Theorem 1 thus provides us
with the following corollary:

Corollary 2. If K(�) is a bounded function, the value v(z1;z2) is a
Lipschitz function of (z1;z2) 2 z� �z�; with respect to the pseudo-metric
d:

It is natural to ask whether the value is continuous when K(�) is merely
integrable. Our next theorem shows that the continuity still obtains under
this more general assumption. However, it does not follow from Theorem 1
(since we do not have uniform continuity in this case) and has to be estab-
lished directly (using similar techniques).
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Theorem 2. If the state-dependent Lipschitz constantK(�) is integrable,
and if fzikg

1
k=1 � F � is a sequence such that limk!1zik = zi in the Boylan

pseudo-metric; for i = 1; 2; then limk!1 v(z1k;z2k) = v(z1;z2):

Proof. We will show that the limit v0 of any convergent subsequence
of fv(z1k;z2k)g

1
k=1 (which we assume, w.l.o.g., to be the sequence itself) is

equal to v(z1;z2). Let x1k be an optimal strategy of player 1 in the game
G(z1k;z2k); for every k � 1: As was mentioned, X1 (z) is metrizable and
compact; and therefore there is a subsequence of fx1kg

1
k=1 (which we again

let, w.l.o.g., to be the sequence itself) that converges weakly to some x1 2
X1 (z) : By Lemma 2 in the Appendix x1 is z1-measurable, which implies
that x1 2 X1 (z1) :
Now �x y2 2 X2 (z2) ; and, for every k � 1; let y2k � E(y2 j z2k) 2

X2 (z2k) : Since x1k is an optimal strategy of 1 in G(z1k;z2k);

U(x1k; y
2
k) � v(z1k;z2k): (16)

Since limk!1 y
2
k = y2 in Ln21 (
;z; �) by (7), there is a subsequence of

fy2kg
1
k=1 that converges pointwise to y

2 �-almost everywhere; w.l.o.g., the
sequence itself converges pointwise. Note that��U(x1k; y2k)� U

�
x1; y2

�
)
�� � ��U(x1k; y2k)� U

�
x1k; y

2
�
)
��+��U(x1k; y2)� U

�
x1; y2

�
)
��

(by (1))

�
Z



K(!)
y2k (!)� y2 (!)

 d� (!) + ��U(x1k; y2)� U
�
x1; y2

�
)
�� :

The �rst term in the above expression converges to zero as k ! 1 by the
bounded convergence theorem, and the second term also converges to zero
since U is weakly continuous in each variable separately. Thus,

lim
k!1

U(x1k; y
2
k) = U

�
x1; y2

�
; (17)

and together with (16) this implies

U(x1; y2) � lim
k!1

v(z1k;z2k) = v0; (18)

this inequality holds for every y2 2 X2 (z2) : Thus,

v(z1;z2) = max
y12X1(z1)

min
y22X2(z2)

U(y1; y2) (19)
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� min
y22X2(z2)

U(x1; y2) � v0: (20)

Using similar arguments (when we start from �nding a limit point x2 of
a sequence fx2kg

1
k=1 of optimal strategies of player 2 in games G(z1k;z2k)) we

can show that
U(y1; x2) � lim

k!1
v(z1k;z2k) = v0 (21)

for every y1 2 X1 (z1) : This leads to

v(z1;z2) = min
y22X2(z2)

max
y12X1(z1)

U(y1; y2) (22)

� max
y12X1(z1)

U(y1; x2) � v0: (23)

The combination of (19)-(20) and (22)-(23) now implies v0 = v(z1;z2): This
establishes limk!1 v(z1k;z2k) = v(z1;z2): �

Remark 1 (Monotonic Convergence of Information Fields). The-
orem 2 also applies in the important case when information �elds of players
converge monotonically (i.e., for each player i; fzikg

1
k=1 � F � is a sequence

of �elds such that either zi1 � zi2 � ::: � zi and zi is generated by
1[
k=1

zik;

or zi1 � zi2 � ::: � zi and zi =
1\
k=1

zik). Although monotonic conver-

gence of information �elds does not necessarily imply convergence in the
Boylan pseudo-metric (as remarked in Boylan (1971)), the proof of Theorem
2 remains valid for the monotonic convergence. The only change is in the
argument showing Ln21 (
;z; �)-convergence of y2k � E(y2 j z2k) 2 X2 (z2k)
to y2: instead of appealing to (7), one has to use the martingale convergence
theorem (for increasing or decreasing martingales; see, e.g., Theorems 2 and
3 in Section 2 of Parry (2004)). Similarly, our next Theorem 3 also applies
to monotonically converging information �elds. �

The following theorem follows quite easily from the proof of Theorem 2.

Theorem 3. Suppose that fzikg
1
k=1 � F � is a sequence such that

limk!1zik = zi in the Boylan pseudo-metric; for i = 1; 2:
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1. The optimal strategy correspondence is upper semi-continuous for
each player. That is, if i 2 f1; 2g ; and fxikg

1
k=1 2

Q1
k=1X

i (zik) is a sequence
that converges to xi in the weak topology and in which, for every k, xik is an
optimal strategy of i in the game G(z1k;z2k), then xi is an optimal strategy
of i in G(z1;z2):
2. The optimal strategy correspondence is approximately lower semi-

continuous for each player. That is, if i 2 f1; 2g and xi is an optimal strategy
of i in G(z1;z2); then there exist sequences f"kg1k=1 � [0;1) and fxikg

1
k=1 2Q1

k=1X
i (zik) such that, for every k; xik is an "k-optimal strategy of i in

G(z1k;z2k); limk!1 "k = 0; and limk!1 x
i
k = xi in Lni1 (
;z; �).

Proof. We will establish both assertions of the theorem for i = 1 only;
since the case of i = 2 requires entirely analogous arguments. We therefore
�x i = 1 for the rest of the proof.
1. Since limk!1 x

1
k = x1 weakly, the entire �rst part of the proof

of Theorem 2 (leading to (18)) can be utilized to show that U(x1; y2) �
limk!1 v(z1k;z2k) for every y2 2 X2 (z2) :However, by Theorem 2, limk!1 v(z1k;z2k) =
v(z1;z2); and so x1 is indeed an optimal strategy of 1 in G(z1;z2):
2. Denote

x1k � E(x1 j z1k) 2 X1
�
z1k
�
and "k � sup

y22X2(z2k)

�
v(z1k;z2k)� U(x1k; y

2)
�
� 0

for every k: Thus, x1k is an "k-optimal strategy of 1 in G(z1k;z2k): By (7),
limk!1 x

1
k = x1 in the Ln11 (
;z; �)-topology. We will now show that limk!1 "k =

0. Indeed, suppose by the way of contradiction that this is not so. Then there
exists an increasing subsequence fklg1l=1 of indices such that

lim inf
l!1

U(x1kl ; y
2
kl
) < lim

l!1
v(z1k;z2k) = v(z1;z2) (24)

for some
�
y2kl
	1
l=1

�
Q1
l=1X

i
�
z2kl
�
: By metrizability and compactness of

X2 (z) there is a subsequence of
�
y2kl
	1
l=1

which converges weakly to some
y2 2 X2 (z) (w.l.o.g., the sequence itself converges to y2): By Lemma 2
in the Appendix, y2 2 X2 (z2) : Since liml!1 x

1
kl
= x1 in Ln11 (
;z; �)

and liml!1 y
2
kl
= y2 weakly, it can be shown as in the proof of (17) that

liml!1 U(x
1
kl
; y2kl) = U(x1; y2): But U(x1; y2) � v(z1;z2); and therefore (24)

is contradicted. We conclude that limk!1 "k = 0. �
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Remark 2 (Optimal Strategies are not Lower Semi-Continuous).
Part 2 of Theorem 3 cannot be strengthened because the optimal strategy

correspondence is not lower semi-continuous in general. That is, it may be
the case that limk!1zik = zi in the Boylan pseudo-metric for i = 1; 2; and
xi is an optimal strategy of i in G(z1;z2); but there is no sequence fxikg

1
k=1

of optimal strategies of i in G(z1k;z2k) that converges to xi in L
ni
1 (
;z; �) or

even in the weak topology. Indeed, consider the example where 
 = [�1; 1] ;
z is the �-�eld of Borel sets in 
; � is the normalized Lebesgue measure on

; S1 = [0; 1] ; S2 = f0g ; and u (!; s1; s2) = !s1: Now, for each k = 1; 2; 3; :::;
let z1k = z2k be the �nite �-�eld generated by the intervals

�
�1;�1 + 1

k

�
and

(�1 + 1
k
; 1]; and let z1 = z2 = f;;
g : Then clearly limk!1zik = zi for

i = 1; 2. However, consider a pair (x1; x2) � (0; 0) of optimal strategies
in the game G(z1;z2). Since the optimal strategy x1k of 1 in the game
G(z1k;z2k) satis�es x1k (!) = 1 for every ! 2 (�1 + 1

k
; 1]; there exists no

sequence of optimal strategies of 1 in fG(z1k;z2k)g
1
k=1 that converges to x

1

in either Ln11 (
;z; �) or in the weak topology. �

4 Appendix

Lemma 2. Let fzkg1k=0 � z� be a sequence such that limk!1zk = z0
in the Boylan pseudo-metric. If fxkg1k=1 �

Q1
k=1X

i (zk) is a sequence of
functions that converges weakly to x 2 X i (z) ; then x is z0-measurable
(that is, x 2 X i (z0)).

Proof. Without loss of generality, assume that
1X
k=1

d (zk;z0) <1 (25)

(otherwise consider instead some subsequence fzklg
1
l=1 with

P1
l=1 d (zkl ;z0) <

1). For every k denote by Gk the �-�eld
W1
n=kzk, that is, the minimal �-

sub�eld of z which contains each one of fzng1n=k : It follows from (25) by
Corollary 2 of Van Zandt (1993) that limk!1 Gk = z0:
By applying the Banach-Saks theorem for the sequence fxng1n=k that

converges weakly to x; for every k � 1; one can �nd a sequence fxkg1k=1 such

15



that: (a) xk is a convex combination of fxng1n=k and therefore xk 2 X i (Gk) ;
and (b) fxkg1k=1 converges to x strongly (that is, in the k:kp norm for some
p � 1): By Lemma 1 in Einy et al (2005), the strong limit of fxkg1k=1 is
measurable with respect to limk!1 Gk = z0: We conclude that x 2 X i (z0).
�
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