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Abstract

This paper proposes a test of the rank of the sub-matrix of β, where β is a cointe-
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is useful in several situations. We construct the test statistic by using the eigenvalues of
the quadratic form of the sub-matrix. We show that the test statistic has a limiting chi-
squared distribution when the data is non-trending, and we propose a conservative test
when the data is trending. Finite sample simulations show that, although the simulation
settings are limited, the proposed test works well.
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1. Introduction

A vector autoregressive (VAR) process has often been used to model a multivariate economic

time series and, following the seminal work of Engle and Granger (1987), a cointegrating

relation has been incorporated into the VAR model. A typical n-dimensional VAR model

of order m is

xt = d + A1xt−1 + · · · + Amxt−m + εt, (1)

for t = 1, · · · , T , where {εt} is independently and identically distributed (i.i.d.) with mean

zero and a positive definite matrix Σ and In − A1z − · · · − Amzm = 0 has roots outside the

unit circle or equal to 1. The model (1) can be written in the error correction (EC) format,

�xt = d + αβ′xt−1 +
m−1∑
j=1

Γj�xt−j + εt, (2)

where α and β are n × r matrices with rank r, � = 1− L, and L denotes the lag operator.

We assume 0 < r < n and then there are r cointegrating relations. The exact condition

of the existence of cointegration is given by Johansen (1992). We also assume that the

cointegrating rank r is known or estimated by some testing procedure, such as the maximum

likelihood (ML) test proposed by Johansen (1988, 1991) or the Lagrange multiplier (LM)

test by Lütkepohl and Saikkonen (2000) and Saikkonen and Lütkepohl (2000). Other testing

procedures of the cointegrating rank are reviewed by Hubrich, Lütkepohl, and Saikkonen

(2001) and papers therein.

In this paper, we investigate the tests of the rank of β1, the sub-matrix of β, and

the rank of β⊥,1, the sub-matrix of β⊥, where β = [β′
1, β

′
2]
′ and β⊥ = [β′

⊥,1, β⊥,2]′, with

β⊥ being an orthogonal complement to β. In practical analysis, we sometimes encounter

cases where we need to know the rank of β1 and/or β⊥,1. For example, the cointegrating

matrix is sometimes normalized as β∗ = β(a′β)−1, as proposed by Johansen (1988, 1991)

and Paruolo (1997), where a is an n × r matrix with full column rank, and the prototype

normalization is represented by a = [Ir, 0]′. However, there is no guarantee that a′β has full

rank. In such a situation, we would like to know whether the first r rows of β have full rank.

Another example is the Granger non-causality test. As shown in Toda and Phillips (1993),

when there is a cointegrating relationship, in general the Wald statistic of the Granger non-
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causality test from the last n3 variables of xt to the first n1 variables has a non-standard

limiting distribution, depending on nuisance parameters. However, if the last n3 rows of

β have full row rank, the Wald statistic is asymptotically χ2 distributed. In Section 2, we

will illustrate these situations where information of the rank of β1 and/or β⊥,1 is useful in

practical application.

Tests of the rank of a matrix have been investigated in the literature and recent econo-

metric developments can be seen in works by Cragg and Donald (1996, 1997) and Robin and

Smith (2000), among others. Although these papers proposed tests of the rank of a matrix,

they assume that the estimator of the matrix is T 1/2 consistent and has a limiting normal

distribution with a non-stochastic variance matrix. However, the estimator of the cointe-

grating matrix is T (or T 3/2) consistent and has an asymptotic non-standard distribution.

As a result, we cannot apply existing testing procedures to the cointegrating matrix.

The paper is organized as follows. Section 2 illustrates situations in which we need to

know the rank of β1 and/or β⊥,1. It is these situations that motivated us to investigate the

test of the rank. In Section 3, we propose tests of the rank of β1 and β⊥,1 for non-trending

data. We will show that the proposed test statistics have limiting χ2 distributions. Section 4

considers the case of trending data. In this case, the test statistics do not necessarily converge

to χ2 distributions. To overcome this situation, we propose tests that are conservative.

Section 5 investigates the finite sample properties of the tests. Section 6 concludes the

paper.

In regard to notation, we use vec(A) to stack the rows of a matrix A into a column

vector, [x] to denote the largest integer ≤ x, ā = a(a′a)−1 for a full column rank matrix a.
p−→, d−→, and ⇒ signify convergence in probability, convergence in distribution, and weak

convergence of the associated probability measures. We denote the rank of A by rk(A) and

the column space of A by sp(A). We write integrals like
∫ 1
0 X(s)dY (s)′ simply as

∫
XdY ′ to

achieve notational economy, and all integrals are from 0 to 1 except where otherwise noted.

2. Examples of Situations where Information on the Rank is Useful

2.1. Identifying normalizations
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From the cointegrating matrix, β, we know directions that make the I(1) vector process

stationary, but, in general, β cannot be identified because any pair of αc and βc′−1 for a

non-singular matrix c is equivalent to the pair of α and β in the model (2). Johansen (1988,

1991) and Paruolo (1997) proposed the identifying normalization such that β∗ = β(a′β)−1

and β̂∗ = β̂(a′β̂)−1 for the ML estimator β̂, where a is an n × r matrix with full column

rank. This normalization is useful in practical analysis because the limiting distribution of

the normalized estimator has been derived by these authors and we can use it for statistical

inference. However, there is no guarantee that a′β has full rank. For example, the typical

normalization is represented by a = [Ir, 0]′ and then β is normalized as β(a′β)−1 = ββ−1
1

where β1 is the first r rows of β. Although β has full column rank r, there is no guarantee

that β1 has full rank, and then, as discussed in Paruolo (1997), we have to carefully chose

the normalizing matrix a. In this case, the test of the rank of β1 is useful to confirm that

β1 has full rank. If the rank of β1 is decided to be r by the statistical test, we will use the

normalizing matrix a. Otherwise, we have to choose another normalizing matrix. Since we

may encounter the same identifying problem for β⊥, we will also consider the test of the

rank of the sub-matrix of β⊥.

2.2. The Granger non-causality test

To test for Granger non-causality, we may use either the levels VAR model (1) or the EC

format (2). Suppose that we are interested in whether the last n3 variables in xt are Granger-

caused by the first n1 variables. We write xt = [x′
1t, x

′
2t, x

′
3t]

′ and partition α, β and Ai for

i = 1, · · · ,m conformably with xt. First, we consider the test with the levels VAR model

(1). Then, the null hypothesis of non-causality is formulated as

A31
1 = · · · = A31

m = 0,

where A31
i is the n3 × n1 lower-left sub-matrix of Ai for i = 1, · · · ,m. If we estimate the

model (1) by the least squares method and construct the Wald statistic in a usual form,

the test statistic is shown by Toda and Phillips (1993) to have a non-standard limiting

distribution and to depend on nuisance parameters in general. However, Toda and Phillips

also showed that, if rk(β1) = n1 where β1 is the first n1 rows of β, the Wald statistic
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converges in distribution to χ2
n1n3m. Then, if we pretest the rank of β1 and find that it has

full row rank n1, we can use the Wald statistic in a standard form.

On the other hand, if we estimate the model (2) by the ML method, the null hypothesis

of non-causality is formulated as

Γ31
1 = · · · = Γ31

m−1 = 0 and Ā31 = 0,

where Γ31
i and Ā31 are the n3 × n1 lower-left matrices of Γi and Ā for i = 1, · · · ,m − 1

with Ā = αβ′. As in the case of the levels VAR, the Wald statistic for non-causality has

a non-standard limiting distribution in general but Toda and Phillips (1993, Theorem 3)

showed that if rk(β1) = n1 or rk(α3) = n3, then the Wald statistic has a limiting χ2
n1n3m

distribution. Consequently, information on rk(β1) is useful in this case. Note that the

existing testing procedure may be available for the test of rk(α3) because the ML estimator

of α has a limiting normal distribution with a variance matrix being a Kronecker product

structure. See, for example, Corollary 3.1. of Robin and Smith (2000).

Although other testing procedures for Granger non-causality are proposed in the liter-

ature, such as the fully modified (FM) method by Phillips (1995) and Phillips and Hansen

(1990), and the lag-augmented (LA) method by Dolado and Lütkepohl (1996), Toda and

Yamamoto (1995) and Kurozumi and Yamamoto (2000), they have some deficiencies. For

example, Yamada and Toda (1997, 1998) showed that the Granger non-causality test based

on the FM method suffers from a large size distortion, while the LA method estimates the

model with an artificially augmented lag that causes loss of power because of inefficiency.

On the other hand, Yamamoto (2002) showed that the finite sample properties of the stan-

dard Wald statistic are fairly good when β1 has full row rank. As a result, before testing

for Granger non-causality, we recommend testing the rank of β1 and, if it has full row rank,

the standard Wald statistic should be used.

2.3. The test for long-run non-causality

A test for long-run non-causality was proposed in Bruneau and Jondeau (1999) and was

developed into the test for block long-run non-causality by Yamamoto and Kurozumi (2001,

2002). The long-run causality is defined by considering the h-step ahead forecast with
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h → ∞. Let us consider the companion form of the model (1).

Xt = FXt−1 + Et,

where Xt = [x′
t, x

′
t−1, · · · , x′

t−m+1]
′, Et = [ε′t, 0′, · · · , 0′]′ and F is defined consistently with

the expression (1). The h-step ahead prediction of xt+h, given Xt, is expressed as xt+h|t =

MF hXt, where M = [In, 0, · · · , 0], and the coefficient matrix of the long-run prediction is

defined as

B̄ ≡ lim
h→∞

(MF h).

Let us partition xt in the same way as in the previous section. The hypothesis of the long-run

non-causality of x3t to x1t is given by

RLBRR = 0,

where RL = [In1, 0] and RR = Im⊗R∗
R with R∗

R = [0, In3 ]
′. Yamamoto and Kurozumi (2001,

2002) derived the limiting distribution of the ML estimator of B̄, B̂, which is asymptotically

normal. The natural way to test the above hypothesis seems to be to construct the Wald

statistic. However, the asymptotic variance matrix of B̂ is singular and consequently the

Wald statistic might also have a singular variance matrix. If a variance matrix has full rank,

the usual Wald statistic is used to test the hypothesis, while we may construct the test

statistic using a generalized inverse of the matrix if it is singular and we know the rank of

the variance matrix. The important point is that singularity of the variance matrix depends

only on rk(β3) and rk(β⊥,1). In other words, we can identify the rank of the variance matrix

if we know the rank of β3 and β⊥,1. Then, the tests of rk(β3) and rk(β⊥,1) play an important

role in the long-run non-causality test.

3. Test of the Rank of the Sub-Matrix for Non-Trending Data

3.1. The model with d = 0

In this section we consider a test of rank for non-trending data with d = 0. The model

considered in this section is

�xt = αβ′xt−1 +
m−1∑
j=1

Γj�xt−j + εt. (3)
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We estimate the model (3) by the ML method assuming that {εt} is Gaussian, although

asymptotic properties are preserved under more general assumptions. We denote the ML

estimator with “̂ ”. For example, the ML estimator of β is denoted by β̂. Using the result

that T−1/2 ∑[Tr]
t=1 εt ⇒ W (r) for 0 ≤ r ≤ 1 by the functional central limit theorem, where

W (·) is an n-dimensional Brownian motion with a variance matrix Σ, Johansen (1988, 1996)

showed that

β̃ = β̂(β̄′β̂)−1 d−→
(∫

G0G
′
0ds

)−1 ∫
G0dV ′, (4)

where G0(·) = β̄′
⊥CW (·) with C = β⊥(α′

⊥Γβ⊥)−1α′
⊥, Γ = In−∑m−1

i=1 Γi, V (·) = (α′Σ−1α)−1

α′Σ−1W (·) and G0(·) and V (·) are independent. He also showed that α̃ = α̂β̂′β̄, Σ̂ and Γ̂i

(i = 1, · · · ,m − 1) are consistent estimators of α, Σ and Γi, respectively.

Let us partition β as β′ = [β′
1, β

′
2] where β1 and β2 are n1 × r and (n−n1)× r matrices,

respectively. Similarly, we partition β′
⊥ = [β′

⊥,1, β
′
⊥,2] conformably. Our interest lies in

finding the rank of β1 and thus, we consider the following testing problem.

H0 : rk(β1) = f v.s. H1 : rk(β1) > f. (5)

Note that the rank of β1 is at most p ≡ min(n1, r).

To test the rank of β1, we follow the same strategy as Robin and Smith (2000), who test

the rank of a matrix and investigate its quadratic form. In our situation, we construct a

quadratic form of β1. The advantage of considering a quadratic form is that the eigenvalues

are non-negative real values, even if those of β1 are complex values. Then, the null hypothesis

H0 becomes equivalent to the existence of f positive real and n1 − f zero eigenvalues.

Let Ψ and Φ be r × r and n1 × n1 possibly stochastic matrices that are symmetric and

positive definite almost surely (a.s.). Since they are full rank matrices (a.s.), the rank of β1

is equal to the rank of Φ−1β1Ψβ′
1 (a.s.). Therefore, the test of the rank of β1 is equivalent to

that of Φ−1β1Ψβ′
1, and then we consider the rank of the latter matrix. Note that, although

this strategy is basically the same as that followed by Robin and Smith (2000), we cannot

directly use their result because they assume that the estimated matrix is asymptotically

normally distributed with a convergence rate T 1/2, while β̂1 is shown to be T consistent and

the limiting distribution is mixed Gaussian.
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For the test of the rank of β1, we define Ψ = α′Σ−1α and

Φ =
[
β1, β⊥,1(β′

⊥β⊥)−1
] [

(β′β)−1 0
0 (

∫
G0G

′
0ds)−1

] [
β′

1

(β′
⊥β⊥)−1β′

⊥,1

]
. (6)

Let λ1 ≥ λ2 ≥ · · · ≥ λn1 be the ordered eigenvalues of Φ−1β1Ψβ′
1, which are the solution

of the determinant equation

|β1Ψβ′
1 − λΦ| = 0. (7)

Then, under H0, λ1 ≥ · · · ≥ λf > 0 and λf+1 = · · · = λn1 = 0 (a.s.).

We construct a sample analogue of (7) using the LM estimator and investigate the

limiting distributions of the eigenvalues. The sample analogue of (7) is given by

|β̂1Ψ̂β̂′
1 − λ̂Φ̂| = 0, (8)

where β̂1 is the first n1 rows of β̂, Ψ̂ = α̂′Σ̂−1α̂ and

Φ̂ =
[
β̂1, β̂⊥,1(β̂′

⊥β̂⊥)−1
] 
 (β̂′β̂)−1 0

0
(

1
T

¯̂
β
′
⊥S11

¯̂
β⊥

)−1




[
β̂′

1

(β̂′
⊥β̂⊥)−1β̂′

⊥,1

]
(9)

= β̂1(β̂′β̂)−1β̂′
1 + β̂⊥,1

(
1
T

β̂′
⊥S11β̂⊥

)−1

β̂′
⊥,1, (10)

where S11 = T−1 ∑T
t=1 R1tR

′
1t, with R1t being the regression residual of Xt−1 on �xt−1, · · ·,

�xt−m+1, and we denote the ordered eigenvalues of (9) as λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n1 . Note that

when n1 > r, the smallest n1 − r eigenvalues are obviously equal to 0, that is, λ̂r+1 = · · · =

λ̂n1 = 0. We can easily see from the expressions (6) and (9) that Φ and Φ̂ are positive definite

(a.s.), while the expression (10) is simpler and may be used to construct Φ̂ in practice.

To test the rank of β1, we consider the following test statistic.

LT = T 2
p∑

i=f+1

λ̂i = T 2
n1∑

i=f+1

λ̂i,

which rejects the null hypothesis when LT takes large values. The second equality is estab-

lished because p = min(n1, r) and λ̂p+1 = · · · = λ̂n1 = 0 when n1 > r.

Theorem 1 Let Ψ̂ = α̂′Σ̂−1α̂ and Φ̂ be given by (10). If f < p, under H0, LT
d−→

χ2
(n1−f)(r−f).
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Remark 1: Since the determinant equation (8) converges to (7) in distribution, the esti-

mated ordered eigenvalues of (8) also converge in distribution to those of (7). Then, under

the alternative, λ̂f+1
d−→ λf+1 > 0 (a.s.), so that T 2λ̂f+1 goes to infinity. Therefore, the

test statistic LT is consistent.

Next, we consider a test of the rank of the sub-matrix of β⊥. The testing problem is

H0⊥ : rk(β⊥,1) = g v.s. H1⊥ : rk(β⊥,1) > g.

For the same reason as in the test of β1, we investigate the rank of Φ̈−1β⊥,1Ψ̈β′
⊥,1, where Φ̈

and Ψ̈ are (n− r)× (n− r) and n1 ×n1 full rank matrices (a.s.). Similar to (7), we consider

the following determinant equation.

|β⊥,1Ψ̈β′
⊥,1 − µΦ̈| = 0, (11)

where Ψ̈ =
∫

G0G
′
0ds and

Φ̈ = [β⊥,1, β1(β′β)−1]

[
(β′

⊥β⊥)−1 0
0 (α′Σ−1α)−1

] [
β′
⊥,1

(β′β)−1β′
1

]
,

and the sample analogue of (11) is given by

|β̂⊥,1
ˆ̈Ψβ̂′

⊥,1 − µ̂ ˆ̈Φ| = 0, (12)

where ˆ̈Ψ = T−1 ¯̂
β
′
⊥S11

¯̂
β⊥ and

ˆ̈Φ =
[
β̂⊥,1, β̂1(β̂′β̂)−1

] [
(β̂′

⊥β̂⊥)−1 0
0 (α̂′Σ̂−1α̂)−1

] [
β̂′
⊥,1

(β̂′β̂)−1β̂′
1

]

= β̂⊥,1(β̂′
⊥β̂⊥)−1β̂′

⊥,1 + β̂1(β̂′β̂)−1(α̂′Σ̂−1α̂)−1(β̂′β̂)−1β̂′
1. (13)

Let µ1 ≥ · · · ≥ µn1 and µ̂1 ≥ · · · ≥ µ̂n1 be ordered eigenvalues of (11) and (12), respectively.

Under the null hypothesis, the smallest (n1 − g) eigenvalues, µg+1, · · · , µn1 , are all zeros

(a.s.) and we then construct the following test statistic.

L⊥T = T 2
q∑

i=g+1

µ̂i = T 2
n1∑

i=g+1

µ̂i,

which rejects the null hypothesis when it takes large values, where q = min(n1, n − r). The

second equality is established because µ̂n−r+1 = · · · µ̂n1 = 0 are obvious solutions when

n1 > (n − r). The following theorem gives the limiting distribution of L⊥T .
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Theorem 2 Let ˆ̈Ψ = T−1 ¯̂
β
′
⊥S11

¯̂
β⊥ and ˆ̈Φ be given by (13). If g < q, under H0⊥, L⊥T

d−→
χ2

(n1−g)(n−r−g).

Note that the consistency of the test is shown in a similar way as in Remark 1.

Given the above two theorems, we can test the rank of β1 and β⊥,1. In addition, we

may consider the procedure to decide the rank of the sub-matrix, as the cointegrating rank

is selected sequentially using the test of the cointegrating rank. For example, to decide the

rank of β1, we firstly test the null of f = 0. If the null hypothesis is accepted, the rank of

β1 is decided to be zero. Otherwise, we then test the hypothesis of f = 1. We sequentially

continue to test the rank of β1 until the null hypothesis is accepted. When the null of

f = p − 1 is rejected, we consider that β1 has full rank. Similarly, the rank of β⊥,1 can be

decided by the same procedure.

3.2. The model with d 	= 0

In the previous section, we considered the model with d = 0 for non-trending data. However,

in practice, we sometimes consider the model (2) with d 	= 0 but the level of data has no

linear trend. In this case, the constant term can be expressed as d = αρ0 where ρ0 is a r× 1

coefficient vector, so that the model (2) becomes

�xt = αβ+′x+
t−1 +

m−1∑
j=1

Γj�xt−j + εt, (14)

where β+ = [β′, ρ0]′ and x+
t−1 = [x′

t−1, 1]′. See Johansen (1991, 1996). The maximum

likelihood estimator of β+ can be obtained by the reduced rank regression of �xt on x+
t−1

corrected for �xt−1, · · · ,�xt−m+1, and the estimator of the cointegrating matrix is the first

n rows of β̂+.

To test the rank of the sub-matrix of β for the model (14), we construct the test statistic

LT with Φ̂ defined by

Φ̂ = β̂1(β̂′β̂)−1β̂′
1 + β̂⊥,1(β̂′

⊥β̂⊥)−1L′(Υ′
T S+

11ΥT )−1L(β̂′
⊥β̂⊥)−1β̂′

⊥,1, (15)

where L and ΥT are (n − r + 1) × (n − r) and (n + 1) × (n − r + 1) matrices defined by

L =

[
In−r

0

]
, ΥT =

[
T−1/2 ¯̂

β⊥ 0
0 1

]
,
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and S+
11 = T−1 ∑T

t=1 R+
1tR

+′
1t , with R+

1t being the regression residual of x+
t−1 on �xt−1, · · · ,�xt−m+1.

Theorem 3 Consider the model (14) and let Ψ̂ = α̂′Σ̂−1α̂ and Φ̂ be given by (15). If f < p,

under H0, LT
d−→ χ2

(n1−f)(r−f).

For the test of the sub-matrix of β⊥, we construct the test statistic L⊥T using ˆ̈Ψ =

{L′(Υ′
T S+

11ΥT )−1L}−1.

Theorem 4 Consider the model (14) and let ˆ̈Ψ = {L′(Υ′
T S+

11ΥT )−1L}−1 and ˆ̈Φ be given

by (13). If g < q, under H0⊥, L⊥T
d−→ χ2

(n1−g)(n−r−g).

In practical analysis, we will obtain β̂ by the reduced rank regression and we have to

calculate β̂⊥ from β̂. If d = 0, β̂⊥ can be easily obtained as explained in Johansen (1996,

p.95). When d = αρ0, one of the methods to calculate β̂⊥ is as follows: first we calculate

the orthogonal projection matrix of β̂, M = In − β̂(β̂′β̂)−1β̂′. Then, by the singular value

decomposition, M is expressed as MlMλM ′
r where Ml and Mr are n × (n − r) orthogonal

matrices and Mλ is an (n − r) × (n − r) diagonal matrix with positive diagonal elements.

Since sp(M) = sp(Ml) and they are orthogonal to β̂, we can use Ml as β̂⊥.

4. The Test of the Rank of the Sub-Matrix for Trending Data

When the data is trending, xt can be expressed as the sum of the stochastic trend, the

deterministic trend, and the I(0) component such that

xt = C
t∑

i=1

εi + τt + C1(L)(εt + d) + x∗
0, (16)

where τ = Cd, C1(L) = (C(L) − C(1))/(1 − L) with C(L) being a lag polynomial when

�xt is represented as the vector moving-average process like �xt = C(L)(d + εt), and x∗
0

is a stochastic component such that β′x∗
0 = 0. See Johansen (1991, 1996) for more details.

In this case, β⊥ is decomposed to τ , the coefficient of a linear trend in (16), and γ, an

n× (n−r−1) matrix that is orthogonal to τ . As shown in Chapter 13.2 of Johansen (1996),

β̃ can be expressed as

β̃ = β + γ(γ′γ)−1U1T +
1

T 1/2
τ(τ ′τ)−1U2T , (17)

10



where

T

[
U1T

U2T

]
d−→

(∫
GG′ds

)−1 ∫
GdV ′ =

[
U1

U2

]
, say,

where G(r) = [G′
1(r),G

′
2(r)]

′ with G1(r) = G0(r)−
∫

G0ds and G2(r) = r− 1/2. We denote

Ω =
∫

GG′ds and partition it into 2 × 2 blocks conformably with [U ′
1, U

′
2]
′. We express the

(i, j) block element of (
∫

GG′ds)−1 as Ωij for i, j = 1 and 2. In this section, we need the

estimator of Ω11, which is given by

Ω̂11 = T γ̂′S−1
11 γ̂,

and S11 is defined in the same way as in the previous section, with R1t being the regression

residual of Xt−1 on a constant and �xt−1, · · · ,�xt−m+1. Convergence of Ω̂11 to Ω11 is

proved in Lemma 2 (iii) in the appendix, while the consistency of other ML estimators, such

as α̃, Σ̂, and Γ̂i, is shown by Johansen (1991, 1996).

Let us consider the testing problem (5). Under the null hypothesis, we can find the

f linearly independent column vectors in β1 and we define β∗
1 as an n1 × f matrix whose

columns consist of those f vectors. We also define an n1×(n1−f) matrix δ∗ whose columns

span the space orthogonal to the columns of β∗
1 so that δ∗′β∗

1 = 0. In the following, we

show that the direction of δ∗ is important in deciding the convergence rate of β̃1 and it also

affects the limiting property of the test statistic.

Since β̃1 is the first n1 rows of β̃, it is expressed from (17) as

β̃1 = β1 + γ1(γ′γ)−1U1T +
1

T 1/2
τ1(τ ′τ)−1U2T .

Suppose that an n1 × 1 vector τ∗
1 exists that is orthogonal to γ1 (τ∗′

1 γ1 = 0) and belongs

to the column space of δ∗. Here, note that, since the n × n matrix [β, γ, τ ] has full rank,

the first n1 rows of this matrix, [β1, γ1, τ1], must have full row rank, which implies that

a′[β1, γ1, τ1] 	= 0 for any non-zero vector a. Then, because τ∗
1 is orthogonal to both β1 and

γ1 by the assumption, we have τ∗′
1 [β1, γ1, τ1] = [0, 0, τ∗′

1 τ1] 	= 0, so that τ∗′
1 τ1 	= 0. This

implies that

T 3/2τ∗′
1 β̃1 = τ∗′

1 τ1(τ ′τ)−1(TU2T ) d−→ τ∗′
1 τ1(τ ′τ)−1U2 = X ′

2, say, (18)
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while for an n1 × (n − r − 1) matrix δ∗0 whose columns span the orthogonal complement to

τ∗
1 in sp(δ∗),

Tδ∗′0 β̃1 = δ∗′0 γ1(γ′γ)−1(TU1T ) d−→ δ∗′0 γ1(γ′γ)−1U1 = X ′
1, say. (19)

On the other hand, if there exists no vector in sp(δ∗) that is orthogonal to γ1, we have

Tδ∗′β̃1 = δ∗′γ1(γ′γ)−1(TU1T ) + δ∗′τ1(τ ′τ)−1(T 1/2U2T ) d−→ δ∗′γ1(γ′γ)−1U1 = X ′, say. (20)

Therefore, the convergence rate of β̃1 depends on whether a vector τ∗
1 orthogonal to γ1 exists

in sp(δ∗).

The existence of τ∗
1 indicates that the column space of [β1, γ1] does not include τ∗

1 because

τ∗′
1 β1 = 0 and τ∗′

1 γ1 = 0. We also note that the rank of [β1, γ1] must be n1 − 1 or n1 because

[β1, γ1, τ1] has full rank n1. Then, from another point of view, we can say that the rank

of [β1, γ1] is n1 − 1 if a vector τ∗
1 exists, while the non-existence of τ∗

1 is equivalent to

rk([β1, γ1]) = n1. Thus, we have to consider the asymptotic property separately according

to the two cases where the rank of [β1, γ1] is n1 and n1 − 1.

In the following theorem, the test statistic is constructed from the eigenvalues of (8)

using the same Ψ̂ as in the previous section and either

Φ̂ =
[
β̂1, γ̂1(γ̂′γ̂)−1

] [
(β̂′β̂)−1 0

0 Ω̂11

] [
β̂′

1

(γ̂′γ̂)−1γ̂′
1

]
(21)

= β̂1(β̂′β̂)−1β̂′
1 + γ̂1(γ̂′γ̂)−1(T γ̂′S−1

11 γ̂)(γ̂′γ̂)−1γ̂′
1,

or

Φ̂ =
[
β̂1, γ̂1(γ̂′γ̂)−1, τ̂1

] 
 (β̂′β̂)−1 0 0

0 Ω̂11 0
0 0 1





 β̂′

1

(γ̂′γ̂)−1γ̂′
1

τ̂ ′
1


 (22)

= β̂1(β̂′β̂)−1β̂′
1 + γ̂1(γ̂′γ̂)−1(T γ̂′S−1

11 γ̂)(γ̂′γ̂)−1γ̂′
1 + τ̂1τ̂

′
1.

Theorem 5 (i-a) Let Ψ̂ = α̂′Σ̂−1α̂ and Φ̂ be given by (21). If rk([β1, γ1]) = n1 and f < p,

under H0, LT
d−→ χ2

(n1−f)(r−f).

(i-b) Let Ψ̂ = α̂′Σ̂−1α̂ and Φ̂ be given by (22). If rk([β1, γ1]) = n1 and f < p, under H0,

LT converges in distribution to a random variable that is bounded above by χ2
(n1−f)(r−f).

(ii) Let Ψ̂ = α̂′Σ̂−1α̂ and Φ̂ be given by (22). If rk([β1, γ1]) = n1 − 1 and f < p, under H0,

LT
d−→ χ2

(n1−f−1)(r−f).

12



Remark 2: In the case of (i-b), the test statistic converges in distribution to χ2
(n1−f)(r−f)

if and only if δ∗′τ1 = 0, which is equivalent to the case where τ1 ∈ sp(β∗
1) = sp(β1).

See the proof in the appendix. In general, the test using (22) is a conservative test if

rk([β1, γ1]) = n1.

From Theorem 5, if we know the rank of [β1, γ1], we can construct the test statistic that

converges to a χ2 distribution by appropriately using (21) or (22). However, such information

is not available in practice. Notice that if rk[β1, γ1] = n1−1, Φ̂ given by (21) may violate the

condition that it is a full rank matrix, and in that case, the test statistic converges, not to

the same χ2 distribution as given by Theorem 5 (ii), but to a random variable that depends

on a nuisance parameter. Then, the test using (21) is not available in practice. On the other

hand, if we use Φ̂ given by (22), we can test the hypothesis by referring to a χ2 distribution

irrespective of the rank of [β1, γ1], although the test may be conservative and the degree of

freedom changes depending on the rank of [β1, γ]. Then, noting that the critical value of

χ2
(n1−f)(r−f) in Theorem 5 (i-b) is larger than that of χ2

(n1−f−1)(r−f) in Theorem 5 (ii), we

propose to test the null of rk(β1) = f as follows:

1. We construct the test statistic LT using (22).

2. If LT is larger than the critical value of χ2
(n1−f)(r−f), we reject the null hypothesis.

3. If LT is smaller than the critical value of χ2
(n1−f−1)(r−f), we accept the null hypothesis.

In this procedure, we may encounter a case where the test statistic is larger than the crit-

ical value of χ2
(n1−f−1)(r−f) but smaller than that of χ2

(n1−f)(r−f), that is, the case where

c(n1−f−1)(r−f) ≤ LT ≤ c(n1−f)(r−f), where c(n1−f−1)(r−f) and c(n1−f−1)(r−f) are correspond-

ing critical values. To cope with such a case, the following corollary is useful.

Corollary 1 Let Ψ̂ = α̂′Σ̂−1α̂ and Φ̂ be given by (22). Suppose that the rank of β1 is f

(< p).

(i) If rk([β1, γ1]) = n1, T 2λ̂p converges in distribution to a random variable that is bounded

above by λ∗
min, where λ∗

min is the smallest non-zero eigenvalue of

∣∣X∗X∗′ − λ∗In1−f

∣∣ = 0,

13



where X∗ is a (r − f) × (n1 − f) matrix with vec(X∗) ∼ N(0, I(r−f)(n1−f)).

(ii) If rk([β1, γ1]) = n1 − 1, T 2λ̂p converges in probability to zero.

Table 1 shows the percentage points of λ∗
min for the case when (n1 − f) ≥ (r − f). Since

the non-zero eigenvalues of X∗X∗′ are the same as those of X∗′X∗, we can refer to the

percentage points of (r − f, n1 − f) when (n1 − f) ≤ (r − f).

Using the above corollary, we can cope with the situation where c(n1−f−1)(r−f) ≤ LT ≤
c(n1−f)(r−f). If T 2λ̂p is smaller than the (10, 5 or 1%) percentage point of λ∗

min, we reject

the hypothesis of rk([β1, γ1]) = n1. In that case, c(n1−f−1)(r−f) is an appropriate critical

value for LT , so that the null of rk(β1) = f is rejected. On the other hand, if T 2λ̂p is larger

than the critical point of λ∗
min, we accept the hypothesis of rk([β1, γ1]) = n1, so that the

rank of β1 is decided to be f .

Next, we investigate a test of the rank of β⊥,1. When the data is trending, β⊥,1 can

be decomposed into [γ1, τ1] where γ1 and τ1 are the first n1 rows of γ and τ , respectively.

Then, testing the rank of β⊥,1 is equivalent to testing the rank of [γ1, τ1] and, therefore, we

construct a test statistic from [γ̂1, τ̂1]. Note that β̂⊥,1 is the first n1 rows of β̂⊥ and is not

necessarily numerically equal to [γ̂1, τ̂1], although they span the same column space.

Let us consider the same determinant equation as (12) with β̂⊥,1 replaced by [γ̂1, τ̂1] and

ˆ̈Ψ =

[
(Ω̂11)−1 0

0 1

]
, (23)

ˆ̈Φ = [γ̂1, τ̂1, β̂1(β̂′β̂)−1]


 (γ̂′γ̂)−1 0 0

0 (τ̂ ′τ̂)−2 0
0 0 (α̂′Σ̂−1α̂)−1





 γ̂′

1

τ̂ ′
1

(β̂′β̂)−1β̂′
1




= γ̂1(γ̂′γ̂)−1γ̂′
1 + τ̂1(τ̂ ′τ̂)−2τ̂ ′

1 + β̂1(β̂′β̂)−1(α̂′Σ̂−1α̂)−1(β̂′β̂)−1β̂′
1.

We construct the test statistic L⊥T in the same way as in the previous section.

Theorem 6 Let Ψ̂ and Φ̂ be given by (23) and (24). If g < q, under H0⊥, L⊥T converges

in distribution to a random variable that is bounded above by χ2
(n1−g)(n−g−r).

In a similar way to the non-trending data case, we can use the results of Theorems 5

and 6 to decide the ranks of β1 and β⊥,1 sequentially.
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5. Simulation Results

In this section, we investigate the finite sample properties of the tests proposed in the

previous sections. We consider the following four-dimensional error-correction model as a

data generating process (DGP).

�xt = d0 + αβ′xt−1 + εt,

where {εt} ∼ i.i.d.N(0, I4). The following three DGPs are considered.

DGP1: α =




−0.5 0.3
0.0 −0.3

−0.3 −0.8
−0.5 0.8


 , β =




1.0 0.0
−1.0 0.0

1.0 1.0
0.0 −0.5


 , β⊥ =




1.0 0.0
1.0 1.0
0.0 1.0
0.0 2.0


 , d0 =




−0.5
1.0
0.5

−1.0


 ,

DGP2: α =




−0.5 0.3
0.0 −0.3

−0.3 −0.8
−0.5 0.8


 , β =




1.0 0.0
−1.0 0.0

0.0 1.0
0.0 −0.5


 , β⊥ =




1.0 0.0
1.0 0.0
0.0 0.5
0.0 1.0


 , d0 =




−0.5
1.0
0.5

−1.0


 ,

DGP3: α =




0.23 0.60
0.34 0.40
0.29 0.82
0.30 0.50


 , β =




1.0 0.0
0.0 1.0
0.5 −0.5

−1.5 −1.0


 , β⊥ =




0 5
5 0
6 −4
2 2


 , d0 =




0.0
−0.1

0.7
−0.2


 ,

where DGP3 is the same as the simulation example in Reinsel and Ahn (1992). We test the

rank of the first 2 × 2 matrices of β and β⊥. Then, for DGP1, DGP2, and DGP3, the true

rank of β1 is 1, 1, and 2 respectively, while that of β⊥,1 is 2, 1, and 2, respectively. We set

x0 = 0 and discard the first 100 observations in all experiments. The number of replication

is 1,000, and the level of significance is set equal to 0.05.

Table 2 reports the simulation results of the tests for non-trending data with d = 0 and

d = αρ0, and the tests for trending data. For non-trending data, we set d0 = 0. Notice

that the rank of β1 equals 1 for DGP1 and DGP2, and then the corresponding entries in the

table are rejection frequencies under the null hypothesis. For the test of non-trending data

with d = 0, although the null hypothesis is rejected slightly more often than the nominal

level, 0.05, the test seems to work well. On the other hand, the other entries for the test of

rk(β1) correspond to the power, which is close to 1. Similarly, the test of rk(β⊥,1) seems

to have good finite sample properties both under the null and the alternative hypotheses.
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It can be seen in the middle of Table 2 that the tests for non-trending data with d = αρ0

performs similarly to the case with d = 0.

The results of the tests for trending data are reported in the bottom of Table 2. We can

see that the test works well both under the null and the alternative hypotheses, although

the empirical size of LT is slightly lower than the nominal level, 0.05. The reason may be

that the test is conservative in these cases.

To further investigate power properties of the tests, we use DGP2 with the (2, 2) element

of β replaced by c1 > 0 for the test of rk(β1) and DGP2 with the (2, 2) element of β⊥

replaced by c2 > 0 for the tests of rk(β⊥,1). We test for the null hypothesis of rk(β1) = 1 or

rk(β⊥,1) = 1 for each specification of a constant term d. The simulation results are reported

in Table 3. From the table, it seems difficult to detect the correct rank for c1 < 0.01, even

when the sample size is 200. However, when c1 becomes larger than 0.01, the power of the

test increases and it attains almost 1 when c1 is 0.1 and T = 200.

For the test of rk(β⊥,1), we have to use different β depending on β⊥ to generate a process.

In our simulation, we normalized β so that the (1, 1) and (3, 2) elements of β become 1.

From the table, we can see that the power tends to increase when c2 becomes larger than

0.01. We also note that the power of the test for trending data is lower compared with other

tests.

We also conducted the simulation using DGP2 with the (1, 2) element of β or β⊥ replaced

by non-zero value, but the relative performances of the tests are very similar to the results

in Table 3 and we do not report to save the space.

6. Conclusion

In this paper, we proposed a test of the rank of the sub-matrix of cointegration. The test

statistic is constructed by using the eigenvalues of the quadratic form of the sub-matrix.

For non-trending data, the test statistic converges in distribution to a χ2 distribution under

the null hypothesis, while for trending data, the test is conservative in general. Finite

sample simulations reveal that, although the simulation settings are limited, the proposed

test works well both under the null and the alternative hypotheses with a moderate sample
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size, T = 100 and 200.
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Appendix

In this appendix, we use the notation H and J alternately for different definitions if there

is no confusion.

Proof of Theorem 1: First, note that we can replace β̂1 and β̂ by β̃1 and β̃ in (8), where

β̃1 is the first n1 rows of β̃, because β̂α̂′ = β̃α̃′ and β̂1(β̂′β̂)−1β̂′
1 = β̃1(β̃′β̃)−1β̃′

1. The

latter relation is established because β̃ is obtained by the non-singular transformation of the

columns of β̂ (see (4)) and β̂1(β̂′β̂)−1β̂′
1 does not depend on the normalization of β̂ and β̂1.

We also define

β̃⊥ = β⊥ − β(β̃′β)−1β̃′β⊥. (24)

Since β̃′β̃⊥ = 0 and β̃⊥ has full column rank, the columns of β̃⊥ span the orthogonal

complement to sp(β̃), so that β̃⊥ and β̂⊥ span the same column space. This implies that

β̃⊥ can be obtained by the non-singular transformation of the columns of β̂⊥. Then, we can

also replace β̂⊥ by β̃⊥ in (8).

Under the null hypothesis, rk(β1) is f and then an n1 × f matrix β∗
1 exists with rank f

such that sp(β1) = sp(β∗
1). We denote the orthogonal complement to β∗

1 by δ∗. That is, δ∗

is an n1 × (n1 − f) matrix with rank (n1 − f) such that δ∗′β∗
1 = 0. Note that the n1 × n1

square matrix [β∗
1 , δ∗] has full rank n1.

Lemma 1 : (i) β̃
p−→ β, α̃

p−→ α, Σ̃ p−→ Σ.

(ii) Tδ∗′β̃1 = Tδ∗′(β̃1 − β1)
d−→ δ∗′β⊥,1(β′

⊥β⊥)−1(
∫

G0G
′
0ds)−1

∫
G0dV ′ = X ′

0, say.

(iii) T (β̃⊥ − β⊥) d−→ −β(β′β)−1
∫

dV G′
0(

∫
G0G

′
0ds)−1.

(iv) T−1 ¯̃β
′
⊥S11

¯̃β⊥
d−→ ∫

G0G
′
0ds.

Proof: (i) is proved by Johansen (1988, 1996).

(ii) As shown in Chapter 13.2 of Johansen (1996), β̃ can be expressed as β̃ = β+β⊥(β′
⊥β⊥)−1UT

for non-trending data, where TUT converges in distribution to (
∫

G0G
′
0ds)−1

∫
G0dV ′. Since

β̃1 is the first n1 rows of β̃, we have β̃1 = β1 + β⊥,1(β′
⊥β⊥)−1UT , so that

Tδ∗′β̃1 = Tδ∗′(β̃1 − β1)

= δ∗′β⊥,1(β′
⊥β⊥)−1(TUT )
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d−→ δ∗′β⊥,1(β′
⊥β⊥)−1

(∫
G0G

′
0ds

)−1 ∫
G0dV ′,

where the first equation holds because δ∗′β1 = 0.

(iii) This convergence holds because T (β̃⊥−β⊥) = −β(β̃′β)−1(β̃−β)′β⊥T = −β(β̃′β)−1(TUT )′

from (24).

(iv) Note that

1
T

¯̃β
′
⊥S11

¯̃β⊥ =
1
T

β̄′
⊥S11β̄⊥ +

1
T

(¯̃β⊥ − β̄⊥)′S11
¯̃β⊥

+
1
T

¯̃
β
′
⊥S11(

¯̃
β⊥ − β̄⊥) +

1
T

(¯̃β⊥ − β̄⊥)′S11(
¯̃
β⊥ − β̄⊥).

The first term converges in distribution to
∫

G0G
′
0ds from Johansen (1988, 1996), while the

remaining terms converge in probability to zero because (¯̃β⊥− β̄⊥) and S11 are of order T−1

and T , respectively.�

Now, let us consider the determinant equation (8). Since (8) is equivalent to

|H ′||β̃1Ψ̃β̃′
1 − λ̂Φ̃||H| = 0, (25)

where H is any n×n non-singular matrix, we consider (25) with H = [β∗
1 , T δ∗]. Then, using

Lemma 1, we have

H ′β̃1Ψ̃β̃′
1H =

[
β∗′

1 β̃1Ψ̃β̃′
1β

∗
1 β∗′

1 β̃1Ψ̃(β̃′
1δ

∗T )
(T δ̃∗′β̃1)Ψ̃β̃′

1β
∗
1 (T δ̃∗′β̃1)Ψ̃(β̃′

1δ
∗T )

]

d−→
[

β∗′
1 β1Ψβ′

1β
∗
1 β∗′

1 β1ΨX0

X ′
0Ψβ′

1β
∗
1 X ′

0ΨX0

]
. (26)

To investigate the asymptotic behavior of H ′Φ̃H , we consider Φ̃ with the same expression

as (9). Note that

H ′ [β̃1, β̃⊥,1(β̃′
⊥β̃⊥)−1

]
=

[
β∗′

1 β̃1 β∗′
1 β̃⊥,1(β̃′

⊥β̃⊥)−1

Tδ∗′β̃1 Tδ∗′β̃⊥,1(β̃′
⊥β̃⊥)−1

]

=

[
Op(1) Op(1)
Op(1) Tδ∗′β⊥,1(β′

⊥β⊥)−1 + op(T )

]

because β∗′
1 β̃1

p−→ β∗′
1 β1, β∗′

1 β̃⊥,1
p−→ β∗′

1 β⊥,1, Tδ∗′β̃1 = Op(1) and Tδ∗′β̃⊥,1 = Tδ∗′β⊥,1 +

op(T ) by Lemma 1. Then, λH ′Φ̃H is asymptotically equivalent to

T 2λ̂

[
0 0
0 δ∗′β⊥,1(β′

⊥β⊥)−1(
∫

G0G
′
0ds)−1(β′

⊥β⊥)−1β′
⊥,1δ

∗

]
.
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Then, the equation (25) is asymptotically equal to∣∣∣∣∣
[

β∗′
1 β1Ψβ′

1β
∗
1 β∗′

1 β1ΨX0

X ′
0Ψβ′

1β
∗
1 X ′

0ΨX0

]
− T 2λ̂

[
0 0
0 δ∗′β⊥,1(β′

⊥β⊥)−1(
∫

G0G
′
0ds)−1(β′

⊥β⊥)−1β′
⊥,1δ

∗

]∣∣∣∣∣
=

∣∣β∗′
1 β1Ψβ′

1β
∗
1

∣∣
×

∣∣∣X ′
0

{
Ψ − Ψβ′

1β
∗
1(β∗′

1 β1Ψβ′
1β

∗
1)−1β∗′

1 β1Ψ
}

X0

−T 2λ̂δ∗′β⊥,1(β′
⊥β⊥)−1

(∫
G0G

′
0ds

)−1

(β′
⊥β⊥)−1β′

⊥,1δ
∗
∣∣∣∣∣ = 0. (27)

Therefore, the eigenvalues λ̂f+1 · · · λ̂p converge in probability to zeros and are of order T 2.

Here, notice that, in the same way as Johansen (1988, p.246), we can find a r × (r − f)

matrix with rank (r − f) such that

JJ ′ = Ψ − Ψβ′
1β

∗
1(β∗′

1 β1Ψβ′
1β

∗
1)−1β∗′

1 β1Ψ, (28)

with J ′(β′
1β

∗
1) = 0 and J ′Ψ−1J = Ir−f , implying that J ′(α′Σ−1α)−1J = Ir−f because

Ψ = α′Σ−1α. Then, since |β∗′
1 β1Ψβ′

1β
∗
1 | 	= 0, (27) becomes∣∣∣∣∣X ′

0JJ ′X0 − T 2λ̂δ∗′β⊥,1(β′
⊥β⊥)−1

(∫
G0G

′
0ds

)−1

(β′
⊥β⊥)−1β′

⊥,1δ
∗
∣∣∣∣∣ = 0. (29)

Since the variance matrix of X ′
0J conditioned on G0(·) is

δ∗′β⊥,1(β′
⊥β⊥)−1

(∫
G0G

′
0ds

)−1

(β′
⊥β⊥)−1β′

⊥,1δ
∗ ⊗ Ir−f ,

we can see that T 2λ̂ converges in distribution to λ∗, which is a solution of

∣∣X∗′
0 X∗

0 − λ∗In1−f

∣∣ = 0, (30)

where X∗′
0 is an (n1 − f) × (r − f) matrix with vec(X∗′

0 ) ∼ N(0, In1−f ⊗ Ir−f ). Then, LT

converges in distribution to the trace of X∗′
0 X∗

0 , which proves Theorem 1.�

Proof of Theorem 2: In the same way as the proof of Theorem 1, we replace β̂, β̂⊥ and

β̂⊥,1 by β̃, β̃⊥ and β̃⊥,1.

Under the null hypothesis, an n1 × g matrix β∗
⊥,1 exists such that sp(β∗

⊥,1) = sp(β⊥,1)

and rk(β∗
⊥,1) = g. We can also find an n1 × (n1 − g) matrix η∗ with rank (n1 − g) that is

orthogonal to β∗
⊥,1. Here, we consider the following determinant equation.

|H ′||β̂⊥,1
ˆ̈Ψβ̂′

⊥,1 − µ̂ ˆ̈Φ||H| = 0, (31)
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where H = [β∗
⊥,1, T η∗]. Since β̃⊥,1 is the first n1 rows of β̃⊥, we obtain, using Lemma 1 (iii),

Tη∗′β̃⊥,1 = Tη∗′(β̃⊥,1 − β⊥,1)
d−→ −η∗′β1(β′β)−1

∫
dV G′

0

(∫
G0G

′
0ds

)−1

= Y ′
0 , say,

and β∗′
⊥,1β̃⊥,1

p−→ β∗′
⊥,1β⊥,1. Then,

H ′β̃⊥,1
˜̈Ψβ̃′

⊥,1H
d−→

[
β∗′
⊥,1β⊥,1Ψ̈β′

⊥,1β
∗
⊥,1 β∗′

⊥,1β⊥,1Ψ̈Y0

Y ′
0Ψ̈β′

⊥,1β
∗
⊥,1 Y ′

0Ψ̈Y0

]
.

In addition, we can see that β∗′
⊥,1β̃1

p−→ β∗′
⊥,1β1, Tη∗′β̃⊥,1 = Op(1) and Tη∗′β̃1 = Tη∗′β1+

op(T ). Then, similar to the previous proof, the determinant equation (31) is asymptotically

equivalent to∣∣∣∣∣
[

β∗′
⊥,1β⊥,1Ψ̈β′

⊥,1β
∗
⊥,1 β∗′

⊥,1β⊥,1Ψ̈Y0

Y ′
0Ψ̈β′

⊥,1β
∗
⊥,1 Y ′

0Ψ̈Y0

]
− T 2µ̂

[
0 0
0 η∗′β1(β′β)−1(α′Σ−1α)−1(β′β)−1β′

1η
∗

]∣∣∣∣∣

= |β∗′
⊥,1β⊥,1Ψ̈β′

⊥,1β
∗
⊥,1|

×
∣∣∣Y ′

0(Ψ̈ − Ψ̈β′
⊥,1β

∗
⊥,1(β

∗′
⊥,1β⊥,1Ψ̈β′

⊥,1β
∗
⊥,1)

−1β∗′
⊥,1β⊥,1Ψ̈)Y0

−T 2µ̂η∗′β1(β′β)−1(α′Σ−1α)−1(β′β)−1β′
1η

∗
∣∣∣ = 0. (32)

Then, µ̂g+1, · · · , µ̂q are of order T−2. For a given G0(·), we can find an (n− r)× (n− r − g)

matrix with rank (n − r − g) such that

JJ ′ = Ψ̈ − Ψ̈β′
⊥,1β

∗
⊥,1(β

∗′
⊥,1β⊥,1Ψ̈β′

⊥,1β
∗
⊥,1)

−1β∗′
⊥,1β⊥,1Ψ̈

with J ′(β′
⊥,1β

∗
⊥,1) = 0 and J ′(

∫
G0G

′
0ds)−1J = In−r−g because Ψ̈ =

∫
G0G

′
0ds. Then, (32)

becomes ∣∣∣Y ′
0JJ ′Y0 − T 2µ̂η∗′β1(β′β)−1(α′Σ−1α)−1(β′β)−1β′

1η
∗
∣∣∣ = 0. (33)

Since the variance matrix of Y ′
0J conditioned on G0(·) is given by

η∗′β1(β′β)−1(α′Σ−1α)−1(β′β)−1β′
1η

∗ ⊗ In−r−g,

we can see that T 2µ̂ converges in distribution to µ∗, which is a solution of

∣∣Y ∗′
0 Y ∗

0 − µ∗In1−g

∣∣ = 0,
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where Y ∗′
0 is an (n1 − g) × (n − r − g) matrix with vec(Y ∗′

0 ) ∼ N(0, In1−g ⊗ In−r−g). This

proves Theorem 2.�

Proof of Theorems 3 and 4: Let β̂+ = [β̂′, ρ̂]′ and β̃+ = [β̃′, ρ̂]′. Exactly in the same

way as the proof of Lemma 13.2 in Johansen (1996), we can show that[
Tβ′

⊥ 0
0 T 1/2

]
(β̃+ − β+) d−→

(∫
G+

0 G+′
0 ds

)−1 ∫
G+

0 dV ′,

where G+
0 = [G′

0, 1]′. Then, since β̃ is the first n rows of β̃+, we have

Tβ′
⊥(β̃ − β) d−→ L′

(∫
G+

0 G+′
0 ds

)−1 ∫
G+

0 dV ′, (34)

whose conditional variance is given by L′
(∫

G+
0 G+′

0 ds
)−1

L. Since β̃ = β+β⊥(β′
⊥β⊥)−1β′

⊥β̃

as expressed in Johansen (1996, p. 179), we have

Tδ∗′β̃1 = δ∗′β⊥,1(β′
⊥β⊥)−1Tβ′

⊥(β̃ − β)

d−→ δ∗′β⊥,1(β′
⊥β⊥)−1L′

(∫
G+

0 G+′
0 ds

)−1 ∫
G+

0 dV ′.

We also have

Υ̃′
T S+

11Υ̃T
d−→

∫
G+

0 G+′
0 ds,

which is proved as Lemma 1(iv), where Υ̃T is ΥT with β̂⊥ replaced by β̃⊥. Then, Theorems

3 and 4 is proved in the same way as Theorems 1 and 2.�

Proof of Theorem 5: First, we give the following lemma.

Lemma 2 (i) γ̃
p−→ γ and γ̃1

p−→ γ1, where

γ̃ = γ − γ⊥(γ̃′
⊥γ⊥)−1γ̃′

⊥γ,

and γ̃1 is the first n1 rows of γ̃ with γ⊥ = [β, τ ] and γ̃⊥ = [β̃, τ̂ ].

(ii) T 1/2(τ̂ − τ) d−→ CW (1).

(iii) Ω̃11 d−→ Ω11, where Ω̃11 is defined as Ω̂11 with γ̂ replaced by γ̃.

Proof: (i) Since γ̃⊥
p−→ γ⊥ and γ′

⊥γ = 0, γ̃ converges in probability to γ.

(ii) This is proved by Johansen (1991, 1996).
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(iii) Letting K = [β̄, T−1/2γ̄, T−1τ̄ ], we can see that

T γ̃′S−1
11 γ̃ = (T 1/2γ̃′K)(K ′S11K)−1(T 1/2K ′γ̃).

From Lemma 10.3 in Johansen (1996), T−1[γ̄, T−1/2τ̄ ]′S11[γ̄, T−1/2τ̄ ] converges in distri-

bution to Ω while β′S11β converges in probability to a positive definite matrix, Σβ, and

[γ̄, T−1/2τ̄ ]′S11β = Op(1). Then,

K ′S11K
d−→

[
(β′β)−1Σβ(β′β)−1 0

0 Ω

]
. (35)

In addition, we can see that

Tβ′γ̃ = −Tβ′γ⊥(γ̃⊥γ⊥)−1γ̃′
⊥γ

= −[β′β, 0](γ̃′
⊥γ⊥)−1

[
(β̃ − β)′γT
(τ̂ − τ)′γT

]

d−→ −U ′
1

because β′τ = 0 and τ̂ ′γ = Op(T 1/2). Using this result, we have

T 1/2K ′γ̃ =


 T 1/2(β′β)−1β′γ̃

(γ′γ)−1γ′γ̃
T−1/2(τ ′τ)−1τ ′γ̃


 p−→


 0

Im−r−1

0


 . (36)

From (35) and (36), Ω̃11 converges in distribution to Ω11. �

For the same reason as the previous proofs, we replace β̂, β̂1, γ̂ and γ̂1 by β̃, β̃1, γ̃ and

γ̃1.

(i-a) We consider the same determinant equation as (25) with H = [β∗
1 , T δ∗]. Using (20), we

can see that H ′β̃1Ψ̃β̃′
1H converges to the same limit as (26), replacing X0 by X. On the other

hand, because β∗′
1 β̃1

p−→ β∗′
1 β1, β∗′

1 γ̃1
p−→ β∗′

1 γ1, Tδ∗′β̃1 = Op(1), Tδ∗′γ̃1 = Tδ∗′γ1 + op(T )

and Ω̃11 d−→ Ω11 by Lemma 2, λ̂H ′Φ̃H is asymptotically equivalent to

T 2λ̂

[
0 0
0 δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′

1δ
∗

]
.

Then, similar to (27), as far as the limiting distribution is concerned, it is sufficient to

consider, ∣∣β∗′
1 β1Ψβ′

1β
∗
1

∣∣ ∣∣∣X ′JJ ′X − T 2λ̂δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′
1δ

∗
∣∣∣ = 0,
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where J is the same r × (r − f) matrix as in (28). Since vec(X′J) conditioned on G(·) is

normally distributed with a variance matrix δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′
1δ

∗⊗Ir−f , LT converges

in distribution to χ2
(n1−f)(r−f).

(i-b) We consider the same determinant equation as in the proof of (i-a). We can easily

see that H ′β̃1Ψ̃β̃′
1H converges to the same limit as (i-a), while λ̂H ′Φ̃H is asymptotically

equivalent to

T 2λ̂

[
0 0
0 δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′

1δ
∗ + δ∗′τ1τ

′
1δ

∗

]
.

because β∗′
1 τ̂1

p−→ β∗′
1 τ1 and Tδ∗′τ̂1 = Tδ∗′τ1 + op(T ) by Lemma 2. Then, similar to (27), as

far as the limiting distribution is concerned, it is sufficient to consider,

∣∣β∗′
1 β1Ψβ′

1β
∗
1

∣∣ ∣∣∣X ′JJ ′X − T 2λ̂
{
δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′

1δ
∗ + δ∗′τ1τ

′
1δ

∗}∣∣∣ = 0,

where J is the same r × (r − f) matrix as (28). Here, note that, in general, for a given

symmetric and positive definite matrix A and a vector b,

(A + bb′)−1 = A−1 − A−1bb′A−1/(1 + b′A−1b), (37)

and then,

c′(A + bb′)−1c ≤ c′A−1c

for any non-zero vector c. By substituting δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′
1δ

∗ and δ∗′τ1 for A and

b, we obtain, for a given G(·),

tr
(
J ′X{δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′

1δ
∗ + δ∗′τ1τ

′
1δ

∗}−1X ′J
)

(38)

≤ tr
(
J ′X{δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′

1δ
∗}−1X ′J

)
= tr(X∗X∗′) = χ2

(r−f)(n1−f),

where X∗ is a (r − f)× (n1 − f) matrix with vec(X∗) ∼ N(0, I(r−f)(n1−f)). The equality is

established if and only if δ∗′τ1 = 0.

(ii) Let us consider the determinant equation (25) with H = [β∗
1 , T δ∗0 , T τ∗

1 ]. Using (18) and

(19), we have

H ′β̃1Ψ̃β̃′
1H

d−→

 β∗′

1 β1Ψβ′
1β

∗
1 β∗′

1 β1ΨX1 0
X ′

1Ψβ′
1β

∗
1 X ′

1ΨX1 0
0 0 0


 . (39)
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On the other hand, because β∗′
1 β̃1

p−→ β∗′
1 β1, β∗′

1 γ̃1
p−→ β∗′

1 γ1, β∗′
1 τ̂1

p−→ β∗′
1 τ1, Tδ∗′0 β̃1 =

Op(1), Tδ∗′0 γ̃1 = Tδ∗′0 γ1 + op(T ), Tδ∗′0 τ̂1 = Tδ∗′τ1 + op(T ), Tτ∗′
1 β̃1 = Op(T−1/2), Tτ∗′

1 γ̃1 =

Op(T 1/2), Tτ∗′
1 τ̂1 = Tτ∗′

1 τ1 + op(T ) and Ω̃11 d−→ Ω11 by Lemma 2, λ̂H ′Φ̃H is asymptotically

equivalent to

T 2λ̂


 0 0 0

0 δ∗′0 γ1(γ′γ)−1Ω11(γ′γ)−1γ′
1δ

∗
0 + δ∗′0 τ1τ

′
1δ

∗
0 δ∗′0 τ1τ

′
1τ

∗
1

0 τ∗′
1 τ1τ

′
1δ

∗
0 τ∗′

1 τ1τ
′
1τ

∗
1


 .

Then, after some algebra, we can see that (25) is asymptotically equal to

∣∣β∗′
1 β1Ψβ′

1β
∗
1

∣∣ ∣∣∣−T 2λ̂(τ∗′
1 τ1)2

∣∣∣ ∣∣∣X ′
1JJ ′X1 − T 2λ̂δ∗′0 γ1(γ′γ)−1Ω11(γ′γ)−1γ′

1δ
∗
0

∣∣∣ = 0,

where J is the same r × (r − f) matrix as (28). This determinant equation implies that

there are f non-zero eigenvalues, p − f − 1 eigenvalues of order T−2, and one eigenvalue of

order smaller than T−2. In the same way as in the previous proofs of the theorems, we can

see that

T 2
p−1∑

i=f+1

λ̂i
d−→ χ2

(n1−f−1)(r−f).

Since T 2λ̂p
p−→ 0, we have

LT = T 2
p∑

i=f+1

λ̂i = T 2
p−1∑

i=f+1

λ̂i + op(1) d−→ χ2
(n1−f−1)(r−f).

We can also see that λ̂p is of order T 3 if we choose H = [β∗
1 , T δ∗0 , T 3/2τ∗

1 ].�

Proof of Corollary 1: (i) When rk[β1, γ1] = n1, from (38) in the proof of Theorem 5,

T 2λ̂p converges in distribution to the p− f -th eigenvalue (the smallest non-zero eigenvalue)

of

J ′X
{
δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′

1δ
∗ + δ∗′τ1τ

′
1δ

∗}−1
X ′J.

Here, note that, in general, for a given positive definite matrix A, a vector b and a matrix

D,

D′A−1D = D′(A + bb′)−1D + D′A−1bb′A−1D/(1 + b′A−1b),

where we used the relation (37). By Theorem 9 of Magnus and Neudecker (1988, p.208), we

can see that the p−f -th eigenvalue of D′A−1D is larger than that of D′(A+bb′)−1D. Then,
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by substituting δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′
1δ

∗, δ∗′τ1 and X ′J for A, b and D, respectively,

we can see that the limiting distribution of T 2λ̂p is bounded above by λ∗
min, the smallest

non-zero eigenvalue of

J ′X
{
δ∗′γ1(γ′γ)−1Ω11(γ′γ)−1γ′

1δ
∗}−1

X ′J = X∗X∗′,

where X∗ is an (r − f) × (n1 − f) matrix with vec(X∗) ∼ N(0, I(n−r)(n1−f)). Note that

T 2λ̂p
d−→ λ∗

min if and only if δ∗′τ1 = 0.

(ii) This is proved in Theorem 5 (ii).�

Proof of Theorem 6: Similar to the proof of Theorem 2, under the null hypothesis there

exists an n1 × g matrix β∗
⊥,1 with rank g whose columns span the same space as sp(β⊥,1),

and an n1 × (n1 − g) matrix η∗ with rank (n1 − g) that is orthogonal to β∗
⊥,1. For the same

reason as before, we replace β̂, γ̂ and γ̂1 by β̃, γ̃ and γ̃1.

First, we give the convergence result of γ̃1 and τ̂1, where

γ̃1 = γ1 − γ⊥,1(γ̃′
⊥γ⊥)−1γ̃′

⊥γ, (40)

with γ⊥,1 = [β1, τ1].

Lemma 3 (i) Tη∗′γ̃1
d−→ −η∗′β1(β′β)−1U ′

1 = Y ′, say.

(ii) Tη∗′τ̂1
p−→ 0.

Proof: (i) Since η∗′γ1 = 0 and η∗′τ1 = 0, we have, using (40),

Tη∗′γ̃1 = Tη∗′(γ̃1 − γ1)

= −[η∗′β1, 0](γ̃⊥γ⊥)−1

[
(β̃ − β)′γT
(τ̂ − τ)′γT

]

d−→ −η∗′β1(β′β)−1U ′
1,

where the last convergence is established because (τ̂ −τ) is Op(T−1/2) and β̃′τ is Op(T−3/2).

(ii) First, note that, because τ̂1 = β̂⊥,1(α̂′
⊥Γ̂β̂⊥)−1α̂′

⊥µ̂, τ̂1 is invariant to each normalization

of α̂⊥ and β̂⊥. Then, we can express τ̂1 as

τ̂1 = β̃⊥,1(α̃′
⊥Γ̂β̃⊥)−1α̃′

⊥µ̂.
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From the expression (24), we can see that

Tη∗′β̃⊥,1 = Tη∗′(β̃⊥,1 − β⊥,1)

= −η∗′β1(β̃′β)−1
[
(β̃ − β)′γT, (β̃ − β)′τT

]
d−→ −η∗′β1(β′β)−1U ′

1[In−r−1, 0]. (41)

Next, from the definition of τ , we can see that

γ̄′τ = [In−r−1, 0](α′
⊥Γβ⊥)−1α′

⊥µ.

Since the left-hand side is zero from the orthogonality between γ and τ , the first n − r − 1

rows of (α′
⊥Γβ⊥)−1α′

⊥µ are zero. Then, because each estimator is consistent, we have

[In−r−1, 0](α̃′
⊥Γ̂β̃⊥)−1α̃′

⊥µ̂
p−→ 0. (42)

Combining (41) and (42), we obtain

Tη∗′τ̂1 = (Tη∗′β̃⊥,1)(α̃′
⊥Γ̂β̃⊥)−1α̃′

⊥µ̂
p−→ 0. �

Similar to the proof of Theorem 2, we consider the same determinant equation as (31)

with H = [β∗
⊥,1, T η∗]. Using Lemma 3, we have

Tη∗′[γ̃1, τ̂1]
d−→ [Y ′, 0] = Y ′S1,

where S1 = [In−r−1, 0], and then, using [γ̃1, τ̂1]
p−→ [γ1, τ1] = β⊥,1,

H ′[γ̃1, τ̂1]
˜̈Ψ[γ̃1, τ̂1]′H

d−→
[

β∗′
⊥,1β⊥,1Ψ̈β′

⊥,1β
∗
⊥,1 β∗′

⊥,1β⊥,1Ψ̈S′
1Y

Y ′S1Ψ̈β′
⊥,1β

∗
⊥,1 Y ′S1Ψ̈S′

1Y

]
.

On the other hand, because β∗′
⊥,1γ̃1

p−→ β∗′
⊥,1γ1, β∗′

⊥,1τ̂1
p−→ β∗′

⊥,1τ1, β∗′
⊥,1β̃1

p−→ β∗′
⊥,1β1,

Tη∗′γ̃1 = Op(1), Tη∗′τ̂1 = op(1), and Tη∗′β̃1 = Tη∗′β1 + op(T ) by Lemma 3, µ̂H ′ ˆ̈ΦH is

asymptotically equivalent to

T 2µ̂


 0 0 0

0 0 0
0 0 η∗′β1(β′β)−1(α′Σ−1α)−1(β′β)−1β′

1η
∗


 .
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Then, for large values of T , the determinant equation (31) can be seen as

∣∣∣β∗′
⊥,1β⊥,1Ψ̈β′

⊥,1β
∗
⊥,1

∣∣∣
×

∣∣∣Y ′S1{Ψ̈ − Ψ̈β′
⊥,1β

∗
⊥,1(β

∗′
⊥,1β⊥,1Ψ̈β′

⊥,1β
∗
⊥,1)

−1β∗′
⊥,1β⊥,1Ψ̈}S′

1Y

−T 2µ̂η∗′β1(β′β)−1(α′Σ−1α)−1(β′β)−1β′
1η

∗
∣∣∣

∝
∣∣∣Y ′S1JJ ′S′

1Y − T 2µ̂η∗′β1(β′β)−1(α′Σ−1α)−1(β′β)−1β′
1η

∗
∣∣∣

= 0, (43)

where an (n−r)×(n−r−g) matrix J satisfies J ′Ψ̈−1J = In−r−g. Noting that the conditional

variance of Y ′S1J is given by

η∗′β1(β′β)−1(α′Σ−1α)−1(β′β)−1β′
1η

∗ ⊗ J ′S′
1Ω

11S1J,

the test statistic conditioned on G(·) converges in distribution to

tr(Y ∗′J ′S′
1Ω

11S1JY ∗) = tr(Y ∗′J ′
1Ω

11J1Y
∗), (44)

where vec(Y ∗) ∼ N(0, In1−g ⊗ In−r−g) and J = [J ′
1, J

′
2]
′. Since

J ′Ψ̈−1J = J ′
1Ω

11J1 + J ′
2J2 = In−r−g,

the limiting distribution (44) is bounded above by

tr(Y ∗′J ′
1Ω

11J1Y
∗) ≤ tr(Y ∗′(J ′

1Ω
11J1 + J ′

2J2)Y ∗)

= tr(Y ∗′Y ∗) ∼ χ2
(n1−g)(n−r−g).

This proves the statement of Theorem 6.�
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Table 1. Critical values of the T 2λ̂p statistic

r − f
n1 − f 1 2 3 4 5

1.54 × 10−4

1 0.00381
0.0156
0.0197 6.27 × 10−5

2 0.103 0.00157
0.210 0.00638
0.114 0.0100 3.97 × 10−5

3 0.348 0.0510 9.81 × 10−4

0.581 0.105 0.00396
0.294 0.0644 0.00669 2.81 × 10−5

4 0.708 0.197 0.0342 7.09 × 10−4

1.06 0.325 0.0704 0.00286
0.553 0.182 0.0455 0.00504 2.16 × 10−5

5 1.14 0.431 0.138 0.0254 5.47 × 10−4

1.60 0.641 0.230 0.0523 0.00222
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Table 2. Rejection frequencies of the tests

rk(β1) = 0 rk(β1) = 1 rk(β⊥,1) = 0 rk(β⊥, 1) = 1
Non-trending data with d = 0

DGP1 T = 100 1.000 0.088 1.000 1.000
T = 200 1.000 0.068 1.000 1.000

DGP2 T = 100 1.000 0.092 1.000 0.077
T = 200 1.000 0.072 1.000 0.056

DGP3 T = 100 1.000 0.998 1.000 0.994
T = 200 1.000 1.000 1.000 1.000

Non-trending data with d = αρ0

DGP1 T = 100 1.000 0.098 1.000 1.000
T = 200 1.000 0.074 1.000 1.000

DGP2 T = 100 1.000 0.097 1.000 0.083
T = 200 1.000 0.074 1.000 0.071

DGP3 T = 100 1.000 0.983 1.000 0.981
T = 200 1.000 0.999 1.000 1.000

Trending data
DGP1 T = 100 1.000 0.065 1.000 1.000

T = 200 1.000 0.047 1.000 1.000
DGP2 T = 100 1.000 0.063 1.000 0.084

T = 200 1.000 0.041 1.000 0.061
GDP3 T = 100 1.000 0.998 1.000 0.995

T = 200 1.000 1.000 1.000 1.000
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Table 3. Powers of the tests

rk(β1) = 1 rk(β⊥,1) = 1
T = 100 200 100 200

c1 or c2 Non-trending data with d = 0
0.001 0.090 0.071 0.077 0.055
0.0025 0.095 0.084 0.074 0.068
0.005 0.107 0.122 0.084 0.103
0.0075 0.130 0.186 0.110 0.163
0.01 0.151 0.253 0.145 0.241
0.025 0.333 0.626 0.351 0.631
0.05 0.615 0.885 0.672 0.916
0.075 0.798 0.973 0.849 0.986
0.1 0.898 0.994 0.927 1.000

c1 or c2 Non-trending data with d = αρ0

0.001 0.099 0.067 0.086 0.069
0.0025 0.109 0.074 0.085 0.067
0.005 0.111 0.088 0.093 0.073
0.0075 0.114 0.100 0.097 0.093
0.01 0.115 0.121 0.100 0.111
0.025 0.182 0.348 0.167 0.352
0.05 0.361 0.728 0.383 0.743
0.075 0.558 0.912 0.588 0.926
0.1 0.747 0.975 0.765 0.980

c1 or c2 Trending data
0.001 0.058 0.043 0.082 0.061
0.0025 0.061 0.044 0.082 0.060
0.005 0.062 0.053 0.087 0.058
0.0075 0.070 0.083 0.085 0.064
0.01 0.077 0.101 0.082 0.078
0.025 0.185 0.473 0.124 0.248
0.05 0.488 0.888 0.254 0.630
0.075 0.749 0.980 0.452 0.886
0.1 0.888 0.997 0.647 0.961
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