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Abstract

We show that when �rms have incomplete information about the market demand

and their costs, a (Bayesian) Cournot equilibrium in pure strategies may not exist, or

be unique. In fact, we are able to construct surprisingly simple and robust examples

of duopolies with these features. However, we also �nd some su¢ cient conditions for

existence, and for uniqueness, of Cournot equilibrium in a certain class of industries.

More general results arise when negative prices are possible.
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1 Introduction

The Cournot model is widely used in studies of imperfectly competitive industries.

Its standard version, which is concerned with the case of �rms producing a homoge-

neous good with complete information about demand and production costs, has been

extensively studied. However, in the past thirty years a fairly big amount of research

has been dedicated to questions that arise when the information is incomplete, i.e.,

when there is uncertainty about the market demand and/or the �rms�cost functions,

and �rms have asymmetric information about them. (See, e.g., Gal-Or (1985, 1986),

Raith (1996), Sakai (1985, 1986), Shapiro (1986), Vives (1984, 1988, 1999), and Einy

et al (2002, 2003).)

In oligopolies with incomplete information, some of the questions that have been

addressed concern the value of information to a �rm (that is, whether and by how

much a �rm can bene�t from receiving additional information), as well as �rms�

incentives to share information. Treating these questions involves comparisons of the

pure strategy Bayesian Cournot equilibrium outcomes in industries that di¤er with

respect to the information endowments of the �rms. The scope of these exercises is

thus limited to classes of industries for which an equilibrium exists.1 Moreover, sharp

and general conclusions are hard to obtain unless an equilibrium is also unique under

various information endowments of the �rms.

For a complete information oligopoly, the conditions for existence of a Cournot

equilibrium that are found following the topological approach guarantee that the best

response correspondences of the �rms are closed graphed and convex-valued. For

instance, if the inverse demand is a decreasing concave function, and �rms� cost

functions are convex, then a �rm�s payo¤ is a concave function of its own output,

and under standard continuity assumptions the Nash Theorem yields equilibrium

existence (see Szidarovszky and Yakowitz (1977)). In general, mere quasi-concavity

of each �rm�s payo¤ in its own output and continuity of �rms�payo¤ functions su¢ ce

to obtain existence.

An alternative approach to establishing existence of a Cournot equilibrium in the

1Throughout the paper we restrict attention to pure strategy equilibria. Existence of a mixed

strategy Cournot equilibrium in an oligopoly does not present a problem under either complete or

incomplete information (see remark 6 in Einy et al (2007)), and will not be taken as an issue here.
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complete information case is to study conditions under which �rms�output decisions

are strategic substitutes, i.e., the best response correspondence of a �rm is decreas-

ing in the output of the other �rms. This feature together with the aggregation

property of �rms�payo¤s (i.e., a �rm�s payo¤ depends only on its own output and

on the aggregate output of all other �rms) imply that the composite best response

correspondence has a �xed point. This approach was pioneered by Novshek (1985),

who establishes existence of equilibrium under a quite general condition on the in-

verse demand, and with minimal assumptions (monotonicity and continuity) on costs.

Novshek�s condition on the inverse demand requires that the marginal revenue of a

�rm be a decreasing function of the aggregate output of the other �rms, and this

indeed implies that �rms�outputs are strategic substitutes.

Novshek�s work spurred later developments (see Vives (1990), Kukushkin (1994),

Amir (1996)), which adopted the lattice-theoretic framework and tools to study con-

ditions for strategic substitutes and for existence of �xed points. (We may thus term

this method of establishing equilibrium existence the lattice approach.) Vives (1990)

noted that Novshek�s condition is equivalent to the (cardinal) submodularity of the

payo¤ function of each �rm in its own output and on the aggregate output of other

�rms. Amir (1996) shows that log-concavity of the inverse demand ensures by itself

that payo¤ functions are (ordinally) submodular2. Since both types of submodularity

imply strategic substitutes, existence of equilibrium in a duopoly can be established

using Tarski�s �xed point theorem.3 Existence of equilibrium in oligopolies with more

than two �rms can be established using a more sophisticated �xed-point theorem due

to Kukushkin (1994).

In oligopolies with incomplete information, the issues of existence of a (pure strat-

egy) Bayesian Cournot equilibrium have been largely bypassed in the literature by

making strong assumptions. For instance, Gal-Or (1985), Vives (1984, 1988), and

Raith (1999) assume that the market demand is uncertain and linear, and allow the

possibility that negative prices may arise for large outputs, in order not to break the

linearity of the demand function. In other works (see, e.g., Sakai (1985)), incomplete

information is assumed only on �rms�linear costs, which again allows to avoid the

2More preceisely, each �rm�s payo¤ function satis�es the condition of reverse single crossing

property of Amir (1996) with respect to its own output and the aggregate output of the other �rms.
3See, theorems 1.1 and 1.2, and corollary 2.2, respectively, in Amir (1996).
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general problem of equilibrium existence. In a non-linear setting, Einy et al (2003)

derive conditions under which the value of public information in an oligopoly is either

positive or negative, but assume that the �rms are symmetrically informed, which

allows to reduce the equilibrium existence question to that in a complete informa-

tion oligopoly. The assumption of symmetry of information, and a reduction to the

complete information case that it allows, also stand behind the existence result of

Lagerlöf (2006). In Einy et al (2002) a categorical approach is used: it is assumed

that an equilibrium exists, and then its properties are investigated.

In this work we study conditions under which a Bayesian Cournot equilibrium

exists, and is unique, in an oligopoly with incomplete information. As noted, quasi-

concavity and ordinal submodularity are two very general properties of the payo¤

functions that are conducive to equilibrium existence in the complete information

case. In the incomplete information scenario, however, if these properties are assumed

to hold state-by-state, then they do not usually imply the corresponding properties

of the expected payo¤ function. We thus con�ne ourselves to conditions on the

primitives of the model that imply stronger properties of the payo¤ functions in each

state (convexity or cardinal submodularity), at least on a certain range of output

levels.

We will assume that prices are non-negative in every state of nature. (A model

in which prices may be negative in some states of nature is less appealing; in section

4, however, we consider this case as well.) Requiring that prices be always non-

negative is far from being just a modelling nuance. Rather, it may change the strategic

interaction in the oligopoly in a crucial way, and may lead to equilibrium non-existence

even in well-behaved industries.

We present examples of duopolies with di¤erential information without a Bayesian

Cournot equilibrium, where, notably, the market demand and cost functions in every

state of nature have properties that under complete information would have led to

equilibrium existence. In our examples 1 and 2 the inverse demand is a decreasing lin-

ear or concave function in each state of nature, which is truncated where it intercepts

the horizontal axis so as to preserve the non-negativity of prices; the costs are linear

too. In addition, the information structure is very simple: one �rm is better informed

than the other. Yet, these industries possess no Bayesian Cournot equilibrium.
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The reason for equilibrium non-existence in our examples is the following. Without

truncating the demand, we would have had concavity of the expected payo¤ function

of each �rm in its output, and existence of equilibrium could have been established by

standard arguments. However, with a truncated demand, the payo¤ functions in each

state of nature are only quasi-concave. This would have su¢ ced to obtain equilibrium

existence in the complete information case, but with incomplete information quasi-

concavity of the state-dependent payo¤ functions does not necessarily translate into

the same property of the expected payo¤ function, as was mentioned already. Indeed,

in our examples the expected payo¤ function of the least informed �rm is not quasi-

concave. In both examples the demands can be approximated by smooth curves that

do not intersect the horizontal axis, with the expected payo¤ function remaining

non-quasi-concave.

In the industries de�ned in examples 1 and 2 a Bayesian Cournot equilibrium

exists if the demand is not truncated (and thus negative prices are possible)4. In

terms of �rms�incentives, the reason why these equilibria cease to be such when the

demand is truncated is simple: whereas deviations from equilibrium to large outputs

are deterred by the possibility of negative prices, when the demand is truncated such

deviations may become pro�table. Indeed, if a �rm has high-demand and low-demand

states in a certain information set, and the possibility of negative prices is ruled out, it

is sometimes pro�table to increase output in that information set. This deviation will

increase revenue in high-demand states, but lead only to limited losses in low-demand

states, where the revenue cannot fall below zero.

The simplicity and robustness of examples 1 and 2 indicate that Bayesian Cournot

equilibrium existence with always non-negative prices is a much scarcer phenomenon

than existence when negative prices are allowed to arise (and thus also scarcer than

the existence in the complete information case)5. When negative prices are possible

4Despite this possibility, prices in an equilibrium are positive in every state of nature.
5Note that in the complete information scenario, truncation of the inverse demand does not

a¤ect equilibrium existence, since the �rms know where prices are positive and hence their best

responses only lead to aggregate outputs corresponding to positive prices, or are zero (assuming

positive marginal costs). Thus, only the positive, untruncated, part of the inverse demand function

is relevant, and the �rms�best responses are the same with or without truncation. All results on

existence in the complete information case therefore apply equaly to truncated or non-truncated

inverse demand.
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(which is admittedly somewhat less interesting), equilibrium exists quite often. In

this case, linearity or concavity of the inverse demand, or more generally Novshek

(1985) condition or concavity of the monopoly revenue, can be assumed to hold for all

possible aggregate ouputs at every state of nature, which guarantees a good behavior

of the expected payo¤ functions as well (e.g., concavity in each �rm�s strategy, or

cardinal submodularity6). This can be used to establish equilibrium existence in the

possibly negative prices scenario by arguments similar to those of the topological and

lattice approaches in the complete information case, as we do in our theorems 1A and

1B.

If one insists on always non-negative prices, then, typically, linearity or concavity

of the inverse demand or Novshek�s condition cannot hold on the entire R+. Impos-

ing these conditions only until the state-dependent inverse demand reaches zero, and

then truncating it, is but one way to guarantee always non-negative prices. Other

adjustments to the above conditions that would leave the prices always non-negative

are of course conceivable, but in all cases the expected payo¤ functions are likely to

lose properties conducive to equilibrium existence, compared to the scenario of possi-

bly negative prices (just as it occurs in oligopolies in examples 1 and 2). Nonetheless,

we characterize a certain class of oligopolies with incomplete information in which

a Bayesian Cournot equilibrium does exist �see theorems 2A, 2B and Corollary 1.

The key feature of this class is the existence of certain thresholds of output which no

�rm will ever desire to exceed, and which guarantee positive prices in every state of

nature if �rms adhere to them. (Existence of such thresholds is guaranteed if �rms�

marginal costs increase su¢ ciently fast.)

On the front of uniqueness, it turns out that even a simple duopoly may have

multiple Bayesian Cournot equilibria � see example 4. However, we show that in

an oligopoly with two types of �rms in which one type has superior information,

whenever a Bayesian Cournot equilibrium exists, it must be unique �see theorems

6These cardinal properties, if satis�ed in every state by the state-dependent payo¤ function,

are preserved by the expectation operator, and thus the expected payo¤ functions inherit them.

As we noted above, this is not the case with quasi-concavity. Similarly, we do not consider Amir

(1996) condition of log-concavity of the inverse demand at each state of nature as a possible replace-

ment/generalization of the Novshek (1986) condition, since ordinal submodularity of the payo¤

function in each state that it implies is not necessarily preserved by the expectation operator.
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1C and 2C.

The rest of the paper is organized as follows. Section 2 describes the set-up. Sec-

tion 3 contains examples of oligopolies with incomplete information that possess no

Bayesian Cournot equilibrium. Section 4 presents equilibrium existence and unique-

ness results when possibly negative prices are allowed in the oligopolies, while Section

5 is dedicated to general results in oligopolies with always non-negative prices. Proofs

of all results are given in the appendix.

2 Cournot Competition with Incomplete Informa-

tion

Consider an industry where a set of �rms, N = f1; 2; :::; ng ; compete in the produc-
tion of a homogeneous good. There is uncertainty about the market demand and the

production costs. This uncertainty is described by a �nite set 
 of states of nature,

together with a probability measure � on 
; which represents the common prior belief

of the �rms about the distribution of the realized state.7 The information of the �rms

about the state of nature may be incomplete: the private information of �rm i 2 N
is given by a partition �i of 
 into disjoint sets. For any ! 2 
; �i (!) denotes the
information set of i given !; that is, the element of �i that contains !: W.l.o.g., we

assume that � has full support on 
; that is, � (�i (!)) > 0 for every i 2 N and

! 2 
:
If qi (!) denotes the quantity of the good produced by �rm i in state ! 2 
; and

Q (!) �
Pn

i=1 q
i (!) is the aggregate output in !; then the pro�t of �rm i in ! is

given by

ui
�
!;
�
q1 (!) ; :::; qn (!)

��
= qi (!)P (!;Q (!))� ci

�
!; qi (!)

�
;

where P (!; �) is the inverse demand function in !, and ci (!; �) is the cost function
of �rm i in !.

We assume throughout that:

7The assumption that 
 is �nite is not necessary, and is made only to simplify the presentation

�see Remark 2.
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(i) For every ! 2 
 and i 2 N; ci (!; �) is continuous, and satis�es ci (!; 0) = 0

(i.e., there are no �xed costs).

(ii) For every ! 2 
; P (!; �) is non-increasing, and for every ! 2 
 there exists a
level of aggregate output Q (!) 2 [0;1] such that for every Q < Q (!)

P (!;Q) > 0;

and

P
�
!;Q (!)

�
= 0

if Q (!) <1:When Q (!) is �nite, it is referred to as the horizontal demand intercept
in !:8

(iii) There exists a level of output Z < 1 such that for every i 2 N; q � Z and
! 2 


qP (!; q)� ci (!; q) � 0; (1)

i.e., in every state of nature each �rm�smonopoly pro�t is non-positive when its output

exceeds Z: If Q (!) <1 for every ! 2 
, and cost functions are non-decreasing, one
may take Z � max!2
Q (!) : Also, if the monopoly revenue function qP (!; q) has a
maximum and the cost functions are strictly increasing and convex, such a Z exists.

A (pure) strategy for �rm i is a function qi : 
! R+ that speci�es its output in

every state of nature, subject to measurability with respect to i�s private information

(i.e., qi is constant on every information set of �rm i). The set of strategies of �rm i

will be denoted byB (
;�i) :Given a strategy pro�le q = (q1; :::; qn) 2
Qn
j=1 B (
;�

j)

the expected pro�t of �rm i is

U i (q) = E
�
ui
�
�;
�
q1 (�) ; :::; q1 (�)

���
:

A strategy pro�le q� 2
Qn
j=1 B (
;�

j) a (pure strategy Bayesian) Cournot equi-

librium, if no �rm �nds it pro�table to unilaterally deviate to another strategy, i.e.,

if for every i 2 N and qi 2 B (
;�i)

U i (q�) � U i
�
q� j qi

�
; (2)

8A demand intercept arises in standard complete information models with a linear or concave

inverse demand function. Existence of a demand intercept is consistent with (and usually implied

by) Novshek�s condition �see Remark 5.1 in Novshek (1985).
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where (q� j qi) stands for the pro�le of strategies which is identical to q� in all but the
ith strategy, which is replaced by qi: This is equivalent to requiring

E
�
ui (�; q� (�)) j �i (!)

�
� E

�
ui
�
�;
�
q� j qi

�
(�)
�
j �i (!)

�
(3)

for every ! 2 
: Here E(g(�) j A) stands for the expectation of a random variable g

conditional on event A.

3 A Cournot Equilibrium May Not Exist: Exam-

ples

In this section we present two simple examples of duopolies with incomplete informa-

tion for which a Cournot equilibrium does not exist. Example 1 concerns a duopoly

where, in each state of nature, the �rms�cost functions are linear, and the inverse

market demand is a decreasing linear function which is truncated where it reaches

zero, to ensure always non-negative prices. Surprisingly, when �rms�have incomplete

information, existence of a Bayesian Cournot equilibrium cannot be guaranteed even

in this simple setting. (Note that in such a setting a Cournot equilibrium exists when

�rms have complete information.)

Equilibrium non-existence in example 1 is driven by the asymmetry in �rms�

information about the demand intercept �Q:9 The linear inverse demand of example

1 is modi�ed in example 2 (where it is piecewise linear and concave) to show that a

Cournot equilibrium may fail to exist even if the intercept �Q is known to both �rms

(in fact, in this example �Q is the same in all states of nature).

Example 1. Consider the following duopoly with incomplete information. The

set of states of nature 
 consists of just two states, !1 and !2: The probability of

!1 is 1
4
; and the probability of !2 is 3

4
: Firm 1 is informed about the realized state

of nature, while �rm 2 has no information about it; i.e., �1 = ff!1g ; f!2gg and
�2 = f
g : The inverse demand function is

P (!i; Q) = maxf1� b(!i)Q; 0g; (4)

9In fact, example 3 in section 5 shows that a linear duopoly where the demand intercept is known

to both �rms does possess a Cournot equilibrium.
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where b(!1) = 1
4
and b(!2) = 1: Thus, both P (!1; �) and P (!2; �) are linear till

they reach zero, at which point they are truncated and set to be equal to zero. This

ensures that the prices are always non-negative: in the state !i the inverse demand

function P is positive on [0; �Q(!i)); and is zero for Q � �Q(!i); where �Q(!1) = 4 and

�Q(!2) = 1: The marginal costs of �rm 1 are c1 (!1) = 2 and c1 (!2) = 1
100
. Firm 2

has a constant marginal cost c2 = 1
100
in both states of nature.

Since the marginal revenue of �rm 1 in !1 is always below its marginal cost,

maximizing pro�ts entails that �rm 1 produces zero in this state. Thus, in looking for

an equilibrium we restrict attention to those strategies of �rm 1, q1 2 B(
;�1); that
prescribe producing zero in !1; i.e., q1 can be identi�ed with a scalar x � q1 (!2) 2 R+:
Also, since �rm 2 does not know the realized state, a strategy of �rm 2, q2 2 B(
;�2);
must specify the same output in both states of nature; i.e., q2 can be identi�ed with

a scalar y � q2 (!1) = q2 (!2) 2 R+. Accordingly, the strategies of �rms 1 and 2
will be regarded as scalars x,y 2 R+: By identifying �rms� strategies with scalars
x; y we have in e¤ect converted the incomplete information duopoly into a complete

information game where the payo¤s are the �rms�expected pro�ts.

In order to understand the source of the existence problem in this example, we

begin by showing that if the demand functions are not truncated, and hence prices

may be negative, then the industry has a Cournot equilibrium. We proceed then to

modify the analysis to account for the impact of truncating the demand, and we show

then that no Cournot equilibrium exists in the industry. Therefore, assume for the

moment that the inverse demand is

P� (!i; Q) = 1� b(!i)Q; (5)

and for (x; y) 2 R2+ denote by U i�(x; y) the corresponding payo¤ of �rm i 2 f1; 2g:
Since �rm 1 only produces in !2; we have

U1�(x; y) =
3

4

�
P� (!2; x+ y)x�

x

100

�
:

The payo¤ of �rm 2 is

U2�(x; y) =
�P x� (y) y �

y

100
;

where

�P x� (y) =
1

4
P� (!1; y) +

3

4
P� (!2; x+ y)
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is �rm 2�s �expected residual inverse demand.�

Firms�reaction functions are

R1�(y) = maxf
1

2

�
99

100
� y
�
; 0g;

and

R2�(x) = max

�
198

325
� 6

13
x; 0

�
;

and therefore (x�; y�) =
�
99
400
; 99
200

�
is the unique Cournot equilibrium. Figure 1a shows

the state-dependent residual inverse demand functions, and the expected residual

inverse demand function, faced by �rm 2. Figure 1b shows the payo¤ of �rm 2 given

that �rm 1 produces the equilibrium output x� = 99
400
. Figure 1c shows �rms�reaction

functions.

Figure 1 goes here.

We modify now the analysis to account for the demand truncation, i.e., we revert

from (5) to (4). Figure 2a below shows a graph of the residual inverse demand

functions faced by �rm 2. The expected residual demand faced by �rm 2 is now

�P x (y) =
1

4
P (!1; y) +

3

4
P (!2; x+ y) ;

i.e.,

�P x (y) =

8>><>>:
�P x�(y); if x+ y < 1;

P̂ (y); if 1 � x+ y and y � 4;
0; if y > 4;

where

P̂ (y) =
1

4
(1� y

4
):

Note that �P x (y) is not a concave function. Firms�payo¤s are given for (x; y) 2 R2+
by

U1(x; y) =
3

4

�
P (!2; x+ y)x�

x

100

�
: (6)

and

U2(x; y) = �P x (y) y � y

100
: (7)

Figure 2b below shows the graph of U2(x; �) for x = 99=100: (The graph of U2(x; �)
has a similar form for every x:) Note that U2(x; �) is non-quasi-concave, despite the

12



fact that the state-dependent payo¤ functions are quasi-concave; and that it has two

local maxima. The local maximum of U2(x; �) on the left is given by

max
y
fP x�(y)y �

y

100
g = max

y
fU2� (x; y)g = U2�

�
x;R2�(x)

�
:

The local maximum of U2(x; �) on the right is �rm 2�s maximum payo¤ when the

price in state !2 is zero, given by

max
y
fP̂ (y)y � y

100
g = 144

625
:

The smallest solution to the equation

U2�
�
x;R2�(x)

�
=
144

625
;

is �x = 33
25
� 8

25

p
13 � 0:16622: It is easy to see that for x < �x the local maximum

of U2(x; �) on the left (i.e., y = R2�(x)) is the global maximum of U2. For x > �x

the local maximum of U2(x; �) on the right (i.e., y = 48
25
) is the global maximum of

U2(x; �) �that is, in this case �rm 2 is better o¤ choosing the output that maximizes
its pro�t in !1, letting the price be zero in !2:

Firm 1�s reaction functions is R1(y) = R1�(y); and �rm 2�s reaction correspondence

is given by

R2(x) =

8>><>>:
R2�(x); if x � �x;

fR2�(�x); 4825g; if x = �x;
48
25

if x � �x:

A graph of �rms�reaction functions is given in Figure 2c below. The jump of

R2 at �x is caused by the change of the global maximizer of U2(x; �) from y = R2�(x)

to y = 48
25
: Thus, the best response correspondence R2 is not convex-valued. As the

graphs of R1 and R2 show, these functions do not cross, and therefore a Cournot

equilibrium does not exist. �

Figure 2 goes here.

In example 1, �rm 2�s lack of information about the demand intercept �Q leads to

a non-concave expected residual inverse demand function, as shown in �gure 2a. As a

result, the expected revenue of �rm 2 is not quasi-concave in its own output, and its

reaction correspondence is not convex-valued. This causes equilibrium non-existence.
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However, as we shall see in section 5, example 3, a linear duopoly where �Q is known

to both �rms does possess a Cournot equilibrium.

Next we present an example of a duopoly in which the demand intercept �Q is

the same in all states of nature (and hence known to both �rms), but nonetheless

a Cournot equilibrium does not exist. This duopoly is a variation of that described

in example 1: here the inverse demand function in !1; P (!1; �) ; is piecewise linear
and concave on [0; �Q]. Unlike in example 1, here the expected demand faced by �rm

2 is concave on [0; �Q] when the �rm is a monopoly, i.e., when the output of �rm 1

is zero. However, this does not extend to the expected residual demand in general.

Despite the good properties of the inverse demand function, the expected residual

inverse demand of �rm 2 is not concave on [0; �Q] for a considerable range of positive

outputs of �rm 1 �see �gure 3a. As a result, the expected payo¤ function of �rm

2 is not quasi-concave, see �gure 3b, in its own output, which ultimately leads to

non-existence of a Cournot equilibrium, see �gure 3c.

Example 2. Consider an industry identical to that of example 1 except for the

demand in !1; which is given here by

P (!1; Q) =

8>><>>:
1; if Q � 99

100
;

100(1�Q); if 99
100
< Q � 1;

0; if Q > 1.

The demand intercept is now constant, �Q(!1) = �Q(!2) = 1; and thus known to both

�rms.

The expected residual inverse demand faced by �rm 2, �P x(y); is given by

�P x(y) =

8>>>>>>>><>>>>>>>>:

1
4
+ 3

4
(1� x� y) ; if x+ y � 1 and y � 99

100
;

1
4
100(1� y) + 3

4
(1� x� y) ; if x+ y � 1 and 1 � y > 99

100
;

1
4
; if x+ y > 1 and y � 99

100
;

1
4
100(1� y); if x+ y > 1 and 1 � y > 99

100
;

0; otherwise,

Note that for 1
100

< x < 1 the function �P x (y) is not concave on [0; 1], even though

the demand intercept is the same in both states. Figure 3a shows the graphs of

the state-dependent residual inverse demands in that case, and the expected residual

inverse demand.
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Let (x; y) 2 R2+: As in example 1, since �rm 1 produces zero in !1 its payo¤ is

U1(x; y) =
3

4

�
P (!2; x+ y)x�

x

100

�
: (8)

Firm 2�s payo¤ is

U2(x; y) = �P x (y) y � y

100
:

Figure 3b show graphs of �rm 2�s expected payo¤ U2(x; �) for x = 22=100. Note that
U2( 22

100
; �) is not quasi-concave. (This stands in contrast to the case of �rm 2 being a

monopoly: U2(0; �) is a quasi-concave function, which is, moreover, concave on [0; 1] :)
The reaction function of �rm 1 is also as in example 1, whereas �rm 2�s reaction

function is now

R2(x) =

8>><>>:
33
50
� 1

2
x; if x � �x;

f33
50
� 1

2
�x; 99

100
g; if x = �x;

99
100
; if x � �x:

for x 2 R+: Here x = 33
25
� 6

25

p
22 � 0:194 3 is the smallest solution of the equation

max
y
f
�
1

4
+
3

4
(1� x� y)

�
y � y

100
g = max

y2[0; 99100 ]
f1
4
y � y

100
g:

Figure 3c shows the graphs of �rms�reaction functions. Since �rms�reaction functions

do not cross, a Cournot equilibrium does not exists in this industry. �

Figure 3 goes here

In both examples 1 and 2, the demand functions can be made smooth, and such

that they do not intersect the horizontal axis in either state, while preserving the form

of �rm 2 expected pro�t function. These examples are suggestive of the di¢ culty in

�nding natural conditions on the primitives of the model, analogous to those found

for the complete information case, that guarantee existence of a Cournot equilibrium

when information is incomplete.

4 Cournot Equilibrium when Negative Prices are

Possible

In this section we show existence of Cournot equilibrium under two assumptions

which are standard in the complete information framework (see Theorems 1A and
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1B below). These assumptions do not rule out the possibility of negative prices in

some states of nature for su¢ ciently large aggregate outputs, and this possibility can

play an important role in guaranteeing equilibrium existence. Indeed, as was pointed

out in example 1, a Cournot equilibrium exists in the linear oligopoly described there

if the inverse demand is not truncated at zero and thus allowed to receive negative

values. Similarly, not truncating the concave inverse demand function in example 2

would also lead to equilibrium existence.

Although the possibility of negative prices might not be very meaningful in most

contexts, this section is still valuable because its results can also be applied to certain

classes of strictly positive inverse demand functions �see remark 1. Furthermore, the

results presented here (and their proofs) will be instrumental in the next Section 5,

where conditions of this section are combined with an explicit requirement of always

non-negative prices.

The following condition on the inverse demand is akin to the collation of (2) and

(3) in theorem 3 in Novshek (1985):

(A) For every ! 2 
; P (!; �) is twice continuously di¤erentiable and satis�es

QP 00 (!;Q) + P 0 (!;Q) � 0 (9)

for every Q 2 R+: (At Q = 0 we have in mind the right-side derivatives of P and P 0:)

Inequality (9) in condition A is equivalent to the requirement that the marginal

revenue of a �rm be decreasing in the aggregate output of the other �rms. It is

satis�ed, e.g., by all decreasing, concave, and twice continuously di¤erentiable inverse

demand functions.

Theorem 1A. A duopoly that satis�es (i)�(iii) and A has a Cournot equilibrium.

When the �rms�cost functions have additional standard properties, we can con-

sider condition B below, which is weaker than A (since the inverse demand is a

non-increasing function).

(B) For every ! 2 
; P (!; �) is twice continuously di¤erentiable and the monopoly
revenue function QP (!;Q) is concave, i.e.,

QP 00 (!;Q) + 2P 0 (!;Q) � 0 (10)
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for every Q 2 R+:

Theorem 1B. An oligopoly that satis�es (i)�(iii) and B, and in which ci (!; �) is
convex for every i 2 N and ! 2 
; has a Cournot equilibrium.

Theorems 1A and 1B are natural counterparts of results on existence of Cournot

equilibrium that have been obtained in the literature in the complete information

case (see, e.g., Novshek (1985) and Szidarovszky and Yakowitz (1977)). It is the nice

behavior of the expected payo¤ functions that stands behind equilibrium existence in

our theorems. Indeed, the proofs reveal that under condition A the pro�t function

of each �rm is cardinally submodular in its output and the aggregate output of the

other �rms, and if the �rms�cost functions are convex (as in theorem 1B), then the

expected pro�t function of each �rm is concave in its strategy �see section 6.1 in the

appendix. Both concavity and cardinal submodularity imply existence of a Cournot

equilibrium via known methods (that we dubbed the "lattice" and the "topological"

approaches in the Introduction).

Theorem 1A considers only duopolies. This is because it is not known whether

cardinal submodularity of the expected payo¤ functions implies equilibrium exis-

tence when there are more than two �rms (except when the strategy sets are one-

dimensional, see Kukushkin (1994)). However, when convexity of cost functions is

assumed, as in theorem 1B, existence of a Cournot equilibrium is guaranteed for any

number of �rms.

As was already mentioned, any non-increasing, twice continuously di¤erentiable

and concave P (!; �) satis�es condition A, and thus satis�es condition B too. It might
be tempting to contemplate an alternative to A or B that would require that each

P (!; �) be log-concave. Such condition is used by Amir (1996) to prove existence of
Cournot equilibrium in a duopoly when information is complete. However, this does

not appear to be a viable alternative, since the log-concavity of P (!; �) only implies
the reverse single crossing property of the state-dependent revenue function, and this

property would not typically be passed to the expected revenue function.

With a decreasing and concave P (!; �), prices are negative for aggregate outputs
exceeding Q (!) : In fact, condition A usually implies (see Remark 5.1 in Novshek

(1985)) the existence of a �nite demand intercept Q (!) such that prices are negative

for aggregate outputs exceeding it. Theorems 1A and 1B may thus appear to be of
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limited interest. However, Remark 1 identi�es an interesting class of inverse demand

functions that satisfy B (albeit not the stronger A) and are strictly positive. In section

5 we consider explicitly the implications of imposing the condition that the inverse

demand be a non-negative function.

Remark 1. The class of inverse demand functions of the form

P (!;Q) =

�
b (!)

Q+ c (!)

�a(!)
;

where 0 < a (!) < 1 and b (!) ; c (!) > 0 for all ! 2 
; satisfy condition B. These
functions, which are often used in applications, are strictly positive. �

Condition A; combined with assumptions on the inverse demand and cost func-

tions that are stronger than our maintained assumptions (i) and (ii), allows us to es-

tablish uniqueness of Cournot equilibrium for certain information structures. Specif-

ically, we assume that there are two types of �rms, one of which possesses superior

information (i.e., has a �ner information partition). Condition U formalizes this

assumption:

(U) The set N of �rms can be partitioned into two disjoint sets, K and M; such

that 1 2 K; 2 2M; and such that �i = �1; ci = c1 for every i 2 K; �j = �2; cj = c2

for every j 2M; and �1 is �ner than (or equal to) �2:

Theorem 1C. Consider an oligopoly satisfying conditions (i), (iii), A and U , and

such that for every ! 2 
; P (!; �) is strictly decreasing, and each ci (!; �) is strictly
increasing, twice continuously di¤erentiable and convex for i 2 N . Then it has a
unique Cournot equilibrium.

Even though it is possible to dispose o¤ assumption U following the arguments of

the proof of theorem 2 in Hon-Snir et al (2007), we chose to present here a weaker ver-

sion of the uniqueness result, since its proofs extends easily to the case of non-negative

inverse demand functions considered in section 5. In this latter case existence of supe-

rior information is indispensable for equilibrium uniqueness, as will be demonstrated

in example 4.
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5 Cournot Equilibriumwith Always Non-Negative

Prices

In the previous section we established existence of a Cournot equilibrium under condi-

tions A or B. Although we presented (in remark 1) a class of oligopolies with positive

demand functions for which B holds, it is common for a smooth inverse demand func-

tion satisfying B (and even more so for a demand satisfying A) to become negative

for su¢ ciently large levels of aggregate output: (This is also the case in the complete

information setting �see remark 5.1 in Novshek (1985).) If the inverse demand is then

truncated to rule out non-negative prices, existence of a Cournot equilibrium cannot

be guaranteed even in duopolies with linear or concave inverse demand functions, as

seen in examples 1 and 2.

In this section we discuss the case of non-negative inverse demand functions, and

present additional existence and uniqueness results. The simplicity of the demand

functions in examples 1 and 2 indicates that it is di¢ cult to �nd natural conditions

on the primitives of the oligopoly that would guarantee equilibrium existence. Our

existence theorems 2A and 2B and corollary 1 rely on conditions stated directly as

properties of �rms�pro�t functions.

Consider a non-negative inverse demand function P , i.e., a function that satis�es

P (!;Q) � 0 for all ! 2 
 and Q 2 R+. Since for every ! 2 
; P (!; �) is non-
increasing by assumption (ii), for Q � Q (!) we have

P (!;Q) = 0: (11)

(Recall that Q (!) is the horizontal demand intercept.) Of course, we may have

Q (!) = 1; as in the class of inverse demand functions described in remark 1. But,
if Q (!) is �nite; then (11) implies that the inverse demand is �xed at zero beyond

the demand intercept Q (!) :

The analogs of Novshek�s condition A; or the revenue concavity condition B;

will now be used in conjunction with the requirement that the inverse demand be

a non-negative function. These conditions must now be restated in the form that

makes them consistent with (11). (In what follows; the conditions and assumptions

on derivatives of P (!; �) refer to one-sided derivatives at the endpoints of the interval
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[0; Q(!)].10)

(A0) For every ! 2 
; P (!; �) is a non-negative function that is twice continuously
di¤erentiable on [0; Q(!)] and satis�es QP 00 (!;Q) + P 0 (!;Q) � 0 for every Q 2
[0; Q(!)].

(B0) For every ! 2 
; P (!; �) is a non-negative function that is twice continuously
di¤erentiable on [0; Q(!)] and satis�es QP 00 (!;Q) + 2P 0 (!;Q) � 0 for every Q 2
[0; Q(!)].

The following condition is used in theorems 2A and 2B below.

(C) There exists a pro�le of state-dependent thresholds of output q 2
nY
i=1

B (
;�i)

such that for every ! 2 

nX
i=1

qi (!) � Q (!) ; (12)

and for every strategy pro�le q 2
Yn

i=1
B (
;�i) and every i 2 N there exists a

strategy ri � qi such that11

U i (q) � U i(q j ri): (13)

Intuitively, condition C implies that each �rm i does not want to produce too much,

since by reducing its output below the level qi its expected pro�t does not decrease.

The following two results are the counterparts of theorems 1A and 1B in section

4, stated now for oligopolies with always non-negative prices.

Theorem 2A. A duopoly satisfying conditions (i)�(iii), A0 and C has a Cournot

equilibrium.

Theorem 2B. An oligopoly satisfying conditions (i)�(iii), B0 and C, and such

that ci (!; �) is convex for every i 2 N and ! 2 
; has a Cournot equilibrium.
10The function P (!; �) need not (and typically will not) be di¤erentiable at Q (!) : If Q (!) =1

then the inequality is assumed on the entire R+; i.e., conditions A0 or B0 become A or B, respectively.
11Here and henceforth, we use the notation h � g (for h; g : 
! R+) if and only if h (!) � g (!)

for every ! 2 
:
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When �rms produce below the thresholds
�
qi
�n
i=1

in their best responses, as im-

plied by condition C, prices are positive due to (12) and deviations are evaluated in

the domain where the inverse demand function is twice continuously di¤erentiable

and obeys inequality (9) of condition A or (10) of condition B. This allows us to

establish existence of a Cournot equilibrium using arguments analogous to those of

Section 4, where (9) or (10) hold on the entire R+.

Theorems 2A and 2B lead to the following corollary, that establishes existence

of a Cournot equilibrium if there are thresholds
�
qi
�n
i=1

satisfying (12) such that

the expected monopoly pro�t of any �rm i under any strategy exceeding qi is non-

positive, given i�s information. Denote by 0�i the pro�le of strategies of all �rms but

i according to which every �rm produces zero in every state of nature:

Corollary 1. There exists a Cournot equilibrium in an oligopoly satisfying the

assumptions of either theorem 1A or theorem 1B, if condition C is replaced by the

following: there exists q 2
nY
i=1

B (
;�i) such that
Pn

i=1 q
i (!) � Q (!), and

E
�
ui
�
�;
�
qi; 0�i

��
j �i (!)

�
� 0 (14)

for every i 2 N; every ! 2 
 and every strategy qi that exceeds qi on �i (!) :

In example 3 below we apply theorem 2A to a duopoly with linear demand, and

show that a Cournot equilibrium exists provided the demand intercept Q is known

to both �rms.

Example 3 (A duopoly with a linear demand and complete information on the

demand intercept). Suppose that n = 2: Let �; � : 
 ! R++ be strictly positive

functions. Assume that � 2 B (
;�1)\B (
;�2) ; where �1 and �2 are information
endowments of the duopolists. Suppose that for any ! 2 


P (!;Q) = max f� (!) (� (!)�Q) ; 0g ;

and that the cost functions satisfy (i) and are non-decreasing. Here Q = �: Since �

is both �1- and �2-measurable, both �rms know the demand intercept in every state

of nature. This is a crucial di¤erence with example 1, where Q was not measurable

with respect to the information partition of �rm 2, and a Cournot equilibrium does
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not exist. Here, the measurability Q = � with respect to both partitions leads to a

di¤erent conclusion.

Let q1 = q2 � 1
2
� 2 B (
;�1)\B (
;�2) : Clearly (q1; q2) satis�es (12) of condition

C. But 1
2
� is the revenue maximizing monopoly output level, since the �rms know

� and the demand is linear on [0; �], and thus no �rm will exceed 1
2
� in any best

response. Therefore condition C holds, and the duopoly has a Cournot equilibrium

by theorem 2A. �

The following theorem is a counterpart to theorem 1C when the inverse demand

is a non-negative function. It establishes conditions that guarantee that, when a

Cournot equilibrium exists, it is also unique.

Theorem 2C. Consider an oligopoly satisfying conditions (i), (iii), A0 and U .

Also assume that for every ! 2 
; P (!; �) is strictly decreasing on [0; Q(!)]; where
Q is a strictly positive and �2-measurable function,12 and each ci (!; �) is strictly
increasing, twice continuously di¤erentiable and convex for i 2 N . If a Cournot

equilibrium exists (e.g., under conditions of theorems 2A or 2B), then it is unique.

In example 3 we established existence of a Cournot equilibrium for a duopoly

with linear demand, provided the demand intercept Q is known to both �rms. If

in addition we assume that �1 is �ner than �2; and that the state-dependent costs

are strictly increasing, twice continuously di¤erentiable and convex, then by theorem

2C this duopoly�s Cournot equilibrium is unique. The next example shows that in

theorem 2C we cannot dispense with condition U .

Example 4 (Non-Uniqueness of Cournot Equilibrium when no Firm Has Superior

Information). Consider a duopoly in which 
 consists of three states, !1, !2; and !3;

each one is chosen by nature with equal probability. Firms�information partitions are

�1 = ff!1; !2g ; f!3gg, and �2 = ff!1; !3g ; f!2gg ; i.e., �rm 1 cannot distinguish

between !1 and !2; and �rm 2 cannot distinguish between !1 and !3: In all states of

12This condition did not appear in the statement of Theorem 1C. It is needed only when prices

are restricted to be non-negative. Indeed, without Q�s measurability with respect to both �elds,

there are counterexamples to uniqueness even if all �rms have the same information, see Lagerlöf

(2007).
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nature �rms face the same quadratic inverse demand function

P (Q) = maxf1�Q2; 0g:

Thus, �rms know the inverse demand in every state of nature, but have incomplete

information about their costs.13 Firm 1 has a constant marginal cost of 1
100
in states

!1 and !2, while its marginal cost is 2 in !3: Firm 2 has a constant marginal cost of
1
100
in states !1 and !3, while its marginal cost is 2 in !2:

Since in !3 the marginal revenue of �rm 1 is always below its marginal cost, �rm

1 produces zero in this state in any best response. Similarly, �rm 2 produces zero in

!2 in any best response. It follows that each �rm i�s strategy qi can, without loss of

generality, be identi�ed with a scalar: q1 can be viewed as the quantity x produced

by �rm 1 in state !1 (and thus also in !2); and q2 as the quantity y produced by �rm

2 in state !1 (and thus also in !3).

We claim that both

q� = (x�; y�) =

�
3

10

p
2;
3

10

p
2

�
� (0:424 26; 0:424 26)

and

q�� = (x��; y��) =

�
7

30

p
6;
7

30

p
6

�
� (0:571 55; 0:571 55)

are Cournot equilibria.

Let us show �rst that q� is a Cournot equilibrium. For y 2 [0; 1�x�] the expected
pro�t of �rm 2,

U2(x�; y) =
1

3
u2 (!1; (x�; y)) +

1

3
u2 (!2; (x�; 0)) +

1

3
u2 (!3; (0; y))

=
1

3
y

 
1�

�
3

10

p
2 + y

�2!
+
1

3
y
�
1� y2

�
� 2
3

y

100
;

has a (unique) maximum on [0; 1�x�] at y = y� = 3
10

p
2: Thus �rm 2 has no incentive

to deviate from y� to another strategy in [0; 1� x�]: Now, for y 2 [1� x�; 1],

U2(x�; y) =
1

3
y
�
1� y2

�
� 2
3

y

100
:

13Lagerlöf (2007) provides an example of equilibrium non-uniqueness with symmetrically informed

�rms but with incomplete information on the inverse demand. This example shows that knowing

the inverse demand does not guarantee uniqueness either.
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The maximum of 1
3
y (1� y2)� 2

3
y
100
on [1�x�; 1] is attained at y = 7

30

p
6 � 0:571 55:

This maximum is equal to 343
6750

p
6 � 0:124 47; and therefore �rm 2 has no incentive to

deviate from y� (that gives it a payo¤U2(x�; y�) � 0:152 74) to a strategy in [1�x�; 1]:
Since producing more than 1 would yield a negative expected pro�t, we have shown

that �rm 2 will not deviate unilaterally from q�: By symmetry, the same holds for

�rm 1, and thus q� is indeed a Cournot equilibrium.

We show next that q�� is a Cournot equilibrium. For y 2 [1� x��; 1] the expected
pro�t of �rm 2,

U2(x��; y) =
1

3
y
�
1� y2

�
� 2
3

y

100
;

reaches the maximum value of 343
6750

p
6 � 0:124 47 at y = y�� = 7

30

p
6: Thus, �rm 2 has

no incentive to deviate from y�� to another strategy in [1�x��; 1]: For y 2 [0; 1�x��],
the expected pro�t of �rm 2

U2(x��; y) =
1

3
y

 
1�

�
7

30

p
6 + y

�2!
+
1

3
y
�
1� y2

�
� 2
3

y

100
;

reaches the maximum value of� 0:11798 at y � 0:36792:Hence �rm 2 has no incentive
to deviate from y�� to a strategy in [0; 1 � x��]: Since producing more than 1 would
yield negative expected pro�t, this shows that �rm 2 will not deviate unilaterally

from q��: By symmetry, the same holds for �rm 1, and thus q�� is another Cournot

equilibrium of the duopoly. �

Remark 2 (In�nitely many states of nature). Throughout this paper we main-

tained the assumption that the set of states of nature 
 is �nite. However, this

assumption is by no means necessary, and was made only to simplify the presen-

tation. In Einy et al (2007), a discussion paper on which this article is based, the

uncertainty is represented by a probability space (
;z; �) ; where 
 is a (possibly

in�nite) set of states of nature, z is a �-�eld of subsets of 
; and � is a common

prior. Firm i�s information is described by a �-sub�eld zi of z, which is not nec-

essarily generated by a partition of 
. The results on existence and uniqueness of

Cournot equilibrium remain valid in this more general context. Their proofs follow

very closely those presented here, but some additional assumptions are made, which

are not needed when 
 is �nite. In particular, it is assumed that the demand in-

tercept Q is bounded, and that the state-dependent inverse demand function, cost
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functions, and their �rst and second order derivatives, are bounded uniformly in !

on some su¢ ciently big interval [0;M ]:�
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6 Appendix

Denote by B (
) the set of all non-negative real-valued functions on 
: The following

de�nition of a partial order on B (
) will be needed in the sequel: if g; h 2 B (
) ;
g � h (respectively, g > h) if and only if g (!) � h (!) (respectively, g (!) > h (!))
for every ! 2 
: Similarly, we will say that g � h (respectively, g > h) on A � 
 if
and only if g (!) � h (!) (respectively, g (!) > h (!)) for every ! 2 A:

6.1 Proofs of theorem 1A and 1B

6.1.1 Part I: Proof of theorem 1A

We will show �rst that for each ! 2 
 the pro�t function u1! (�) � u1 (!; �) of �rm 1 has
decreasing di¤erences in the �rst coordinate, that is, if x1 � x2 � 0 and y1 � y2 � 0;
then �

u1! (x1; y2)� u1! (x2; y2)
�
�
�
u1! (x1; y1)� u1! (x2; y1)

�
� 0; (15)

i.e.,

[x1P (!; x1 + y2)� x2P (!; x2 + y2)]� [x1P (!; x1 + y1)� x2P (!; x2 + y1)] � 0:

Since P (!; �) is continuously di¤erentiable, this condition is equivalent to

@

@y2
[x1P (!; x1 + y2)� x2P (!; x2 + y2)] � 0;

or

x1P
0 (!; x1 + y2)� x2P 0 (!; x2 + y2) � 0;

for every x1 � x2 � 0 and y2 � 0: This condition, in turn, is equivalent (since P 0 (!; �)
is also continuously di¤erentiable by condition A) to

@

@x2
[x2P

0 (!; x2 + y2)] � 0;

or

x2P
00 (!; x2 + y2) + P

0 (!; x2 + y2) � 0; (16)

for every x2 � 0 and y2 � 0: However, (16) is implied by assumption (ii) and condition
A on P .
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From (15) it follows that the expected pro�t function U1 of �rm 1 also has de-

creasing di¤erences in the �rst coordinate: for every (q1; q2) ; (eq1; eq2) 2 B (
;�1) �
B (
;�2) such that q1 � eq1, q2 � eq2;�

U1
�
q1; eq2�� U1 �eq1; eq2��� �U1 �q1; q2�� U1 �eq1; q2�� � 0:

Similarly, the expected payo¤ function U2 of �rm 2 has decreasing di¤erences in the

second coordinate.

With the partial order � on B (
;�i) and the pointwise convergence topology on
it, for every g; h 2 B (
;�i) with g � h the interval [g; h] � B (
;�i) is a compact
lattice. Now denote the constant function on 
 which is �xed at the level14 Z (re-

spectively, 0) by the same symbol, Z (respectively, 0), and let strategy pro�les of the

�rms be restricted to S1 � S2 � [0; Z]� [0; Z] ; a product of compact lattices. Since
the state-dependent inverse demand and cost functions are continuous (by assump-

tion (i) and condition A), then each function U i is continuous on S1 � S2 in both
coordinates:

Now reverse the order in S2; i.e., replace the order ���with ��0�according to
which g �0 h if and only if h � g: Then both U1 and U2 exhibit increasing, rather

than decreasing, di¤erences. The reversal of order has no e¤ect on continuity of U1

and U2: Since both S1 and S2 are compact lattices, theorem 5 of Milgrom and Roberts

(1990) implies that there exists a Cournot equilibrium when strategy pro�les of the

�rms are restricted to be in S1 � S2:15 Denote one such equilibrium by (q1�; q
2
�) : If

(q1; q2) 2 B (
;�1)�B (
;�2) ; denote by ri the strategy of i which is equal to 0 on
the �i-measurable set A =

�
! j qi (!) > qi (!)

	
; and to qi on Ac; for i = 1; 2: Notice

that U1 (q1; q2�) � U1(r1; q2�) and U2 (q1�; q2) � U2 (q1�; r2) ; as follows from assumptions
(i) and (iii). Therefore

U1
�
q1�; q

2
�
�
� U1

�
r1; q2�

�
� U1

�
q1; q2�

�
and
14Recall that Z is a level of output above which each �rm�s monopoly pro�t is negative, in every

state of nature.
15One more thing needs to be veri�ed before applying this theorem, namely that U1 is super-

modular in q1 for �xed q2, i.e., for every q1; eq1 2 S1 and q2 2 S2; U1
�
q1; q2

�
+ U1

�eq1; q2� �
U1
�
max(q1; eq1); q2� + U1 �min(q1; eq1); q2� ; and similarly for U2: However, it can be easily checked

that this inequality actually holds as equality.
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U2
�
q1�; q

2
�
�
� U2

�
q1�; r

2
�
� U2

�
q1�; q

2
�
;

since (q1�; q
2
�) is a Cournot equilibrium when the strategy pro�les of the �rms are

restricted to S1 � S2: But these inequalities show that (q1�; q2�) is actually a Cournot
equilibrium without any restrictions on strategies. �

6.1.2 Part II: Proof of theorem 1B

The proof is a direct consequence of the Nash existence theorem. First, for each

! 2 
; ui! (�) � ui (!; �) is concave in strategies of �rm i. Indeed, the second deriv-

ative of qi (!)P (!;Q (!)) with respect to qi (!) is equal to qi (!)P 00 (!;Q (!)) +

2P 0 (!;Q (!)) ; which is non-positive as follows from assumption (ii) and condition

B. Thus, qi (!)P (!;Q (!)) is concave in qi (!) ; and from convexity of ci (!; �) it
follows that ui! (q (!)) = qi (!)P (!;Q (!)) � ci (!; qi (!)) is also concave in qi (!) :
The expected pro�t function U i clearly inherits concavity in qi from ui!.

Second, following notations of Part I, restrict the strategy set of each �rm i to

the compact Si = [0; Z] : As in Part I, U i is continuous in all coordinates simulta-

neously on the compact cube [0; Z]N : Thus, all ingredients for the existence of Nash

equilibrium are in place, with the above restriction of strategies. However, the re-

stricted equilibrium is an equilibrium in the unrestricted oligopoly as well, which can

be shown again exactly as in Part I. �

6.2 Proof of theorem 1C

Since all conditions of theorem 1B are satis�ed, the oligopoly has at least one Cournot

equilibrium. We will show that it is unique.

Let q� be a Cournot equilibrium, and pick a �rm i: Since

E

 
qi (�)P

 
�;
X
j 6=i

qj� (�) + qi (�)
!
� ci

�
�; qi (�)

�
j �i (!)

!
(17)

is maximized (and in particular locally maximized) at qi = qi� for every ! 2 
; the
Kuhn-Tucker conditions are satis�ed:

E
�
qi� (�)P 0 (�; Q� (�)) + P (�; Q� (�))�

�
ci
�0 ��; qi� (�)� j �i (!)� = 0 (18)
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for every ! in which qi� > 0; and

E
�
qi� (�)P 0 (�; Q� (�)) + P (�; Q� (�))�

�
ci
�0 ��; qi� (�)� j �i (!)� � 0 (19)

for every ! in which qi� = 0:

Note that for each ! 2 
 the function

F (q;Q) = qP 0 (!;Q) + P (!;Q)�
�
ci
�0
(!; q)

is decreasing in q and non-increasing in Q when q � Q: Indeed, @F
@q
= P 0 (!;Q) �

(ci)
00
(!; q) < 0 since P is strictly decreasing and c is convex by assumption, and

@F
@Q
= qP 00 (!;Q)+P 0 (!;Q) � 0 as follows from P (!; �) being decreasing and condition

A. Now suppose that q� and q�� are two Cournot equilibria: That F is decreasing in

q and non-increasing in Q implies that one cannot have�
qi�; Q�

�
<
�
qi��; Q��

�
or
�
qi�; Q�

�
>
�
qi��; Q��

�
(inequality in both coordinates and strict inequality in the �rst coordinate) on any

atom �i (!) of �i: This is because otherwise conditions (18) and (19) would not hold

simultaneously for max ((qi�; Q�) ; (q
i
��; Q��)). To summarize, any �rm�s equilibrium

strategy and the aggregate output in equilibrium cannot move in the same direction:�
qi�; Q�

�
�
�
qi��; Q��

�
and

�
qi�; Q�

�
�
�
qi��; Q��

�
(20)

on any element of �i.

We will next show that every Cournot equilibrium satis�es the equal treatment

property, i.e., that strategies of �rms of the same type are equal. Indeed, if q� is

a Cournot equilibrium, and qi� 6= qj� where i and j are �rms of the same type, then
consider an n-tuple q�� obtained from q� by interchanging i and j. Clearly, q�� is also a

Cournot equilibrium. However, if �i (!) 2 �i is a set on which w.l.o.g. qi� > qj� = qi��;
then the obvious fact that Q� = Q�� leads to contradiction with (20). Thus, the equal

treatment property holds in any Cournot equilibrium.

Now suppose that q� and q�� are Cournot equilibria in the oligopoly. We will

show that they coincide. Due to the equal treatment property, Q�(!) = jKj q1� (!) +
jM j q2� (!) ; and it will su¢ ce to establish that qi� = qi�� for i = 1; 2: If q2� and q2�� are
not equal everywhere, then there exists ! 2 
 such that w.l.o.g.

q2� > q
2
�� on �

2 (!) . (21)
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Consequently,

q1� � q1�� on �2 (!) : (22)

Indeed, if (22) does not hold, there is !0 2 �2 (!) with q1� > q1�� on �
1 (!0) : But

�1 (!0) � �2 (!) since the information partition of 1 is �ner than that of 2. Thus,

from (21), also Q� > Q�� on �1 (!0) ; contradicting (20)):

We now claim that

Q� � Q�� on �2 (!) : (23)

Indeed, both Q� and Q�� are measurable with respect to the information partition of

the more informed �rm 1, and thus, if (23) does not hold, there is !00 2 �2 (!) with

Q� < Q�� on �1 (!00) : (24)

Strict inequality in (22) on �1 (!00) � �2 (!) together with (24) would contradict

(20), and thus q1� = q
1
�� on �

1 (!00) : But then Q� > Q�� on �1 (!00) because of (21),

contrary to the choice of !00: Thus (23) must hold.

But now (21) and (23) contradict (20). Thus, strategies q2� and q
2
�� must coincide

almost everywhere. Now, if q1� di¤ers from q
1
�� on �

1 (!) for some ! 2 
, and w.l.o.g.
q1� > q

1
�� on �

1 (!) ; then Q� > Q�� on �1 (!) since q2� = q
2
��; contradicting (20) again.

We conclude that q1� = q
1
�� as well. �

6.3 Proof of theorems 2A and 2B

First, restrict strategy sets of each �rm i to be Si =
�
0; qi

�
: Note that for every

strategy pro�le q 2 S1 � ::: � Sn; Q �
Pn

i=1 q
i � Q: Hence, strategy pro�les in

S1 � ::: � Sn have exactly the same properties as if conditions A0 or B0 held on the
entire R+. Thus, just as in the proof of theorems 1A and 1B (replacing Si = [0; Z]

with Si =
�
0; qi

�
), there is a Cournot equilibrium q� 2 S1 � :::� Sn in the oligopoly,

provided all unilateral deviations of i considered in (2) are in Si:

To show that q� is a Cournot equilibrium in the unrestricted oligopoly as well, we

now prove that unilateral deviations of i to strategies outside Si are not pro�table.

Indeed, if qi is ith strategy which is not in Si; then for some ri � qi; by (13)

U i
�
q� j qi

�
� U i

�
q� j ri

�
;
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and

U i
�
q� j ri

�
� U i (q�)

since ri 2 Si and q� is a Cournot equilibrium when the strategy pro�les of the �rms are
restricted to S1� :::�Sn. This proves via (2) that q� is indeed a Cournot equilibrium
of the oligopoly without restriction on strategies. �

6.4 Proof of Corollary 1

Given a pro�le of strategies q; consider the strategy ri of i which is equal to 0 on the

�i-measurable set A =
�
! j qi (!) > qi (!)

	
; and to qi on Ac: If ! 2 A;

E
�
ui (�; q (�)) j �i (!)

�
� E

�
ui
�
�;
�
qi; 0�i

��
j �i (!)

�
� 0

= E
�
ui
�
�; q (�) j ri (�)

�
j �i (!)

�
as follows from conditions (i), (ii), and (14). And if ! 2 Ac; then qi = ri on �i (!) ;
and thus for every ! 2 


E
�
ui (�; q (�)) j �i (!)

�
� E

�
ui
�
�; q (�) j ri (�)

�
j �i (!)

�
: (25)

By taking the expectation over ! in (25), we obtain (13). Existence of a Cournot

equilibrium in a duopoly then follows from theorem 2A under condition A0, and in

an oligopoly from theorem 2B under condition B0. �

6.5 Proof of theorem 2C

Note that if q� is a Cournot equilibrium, then

Q� < Q: (26)

Indeed, if this is not case, consider an ! 2 
 such that Q� � Q on �1 (!) (such an !
exists since both Q� and Q are measurable with respect to the �nest of all information

partitions, �1). If there exists a �rm i 2 K with qi� > 0 on �1 (!) ; then i would

bene�t by switching its output to zero on �1 (!) and saving its costs, contradicting

(3). And if for all i 2 K qi� = 0 on �
1 (!) ; then

P
j2M q

j
� = Q� � Q on �1 (!) : But

since both
P

j2M q
j
� and Q are measurable with respect to �

2, there exists an !0 2 
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such that �1 (!) � �2 (!0) and
P

j2M q
j
� � Q (> 0) on �2 (!0) : Accordingly, there

exists a �rm j 2M with qj� > 0 on �
2 (!0) ; and just as before this means that j has

a pro�table deviation from q� on �2 (!0) ; contradicting (3). We conclude that (26)

holds.

But if q� and q�� are two Cournot equilibria, it follows from (26) that q�; q��;

and all strategy pro�les close to them16 have exactly the same properties as if the

di¤erentiability condition in A0 held for all Q � 0 (i.e., as if A0 had the original form
A). We can therefore show that q� and q�� coincide, just as in the proof of theorem

1C, using the �rst-order conditions derived from maximization of (17). �

16What we have in mind are strategy pro�les that constitute, at each state of nature, small

unilateral deviations from q� or q��:
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