
Discussion Paper #2006-5 

 

Modeling the Term Structure of Interest Rates  

with General Diffusion Processes:  

A Moment Approximation Approach 

 

By 

Hideyuki Takamizawa  and  Isao Shoji 

 

This version: October, 2007 

(The previous version: October, 2006) 

 



Modeling the Term Structure of Interest Rates with General

Diffusion Processes: A Moment Approximation Approach

Hideyuki Takamizawa ∗

Graduate School of Humanities

and

Social Sciences,

University of Tsukuba

Isao Shoji

Graduate School of Systems

and

Information Engineering,

University of Tsukuba

October 31, 2007

Abstract

We propose an analytical approximation of the term structure of interest rates under

general diffusion processes of the short-rate and state variables. A method of ap-

proximating conditional moments as the solution to a system of ordinary differential

equations is applied to the pricing of bonds. Numerical experiments based on two il-

lustrative models show that the second-order approximation is accurate for maturities

of up to five years and the third-order approximation is effective for longer maturities.

We also show the possibility of improving the second-order approximation without

much increasing the computational burden.
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1 Introduction

The dynamics of the instantaneous risk-free rate, the short-rate, have been intensively

studied. Yet, their empirical findings are not sufficiently incorporated into the modeling

of the term structure of interest rates despite the fact that the time-series behavior of the

short-rate substantially affects the cross-section of bond prices. In fact, since the volatility

of changes in the short-rate is invariant to changes in probability measures, statistical

properties of the volatility should in principle be inherited from the actual to some pricing

measures. Nevertheless, volatility specifications preferred in time series analysis have often

been abandoned in term structure modeling.

This is simply because analytical models of the term structure cannot generally be

obtained for such specifications, which is inconvenient for practical purposes of pricing

and estimation. Examples of such specifications include constant elasticity of volatility

(CEV) (e.g., Chan et al., 1992, and Nowman, 1997),1 and CEV combined with some

persistent factors, which are modeled by GARCH processes (e.g., Bali, 2000, and Brenner

et al., 1996) or by additional stochastic processes (e.g., Andersen and Lund, 1997, Ball

and Torous, 1999, Durham, 2003, and Gallant and Tauchen, 1998). A common feature

of the GARCH and stochastic volatility models is that the volatility is specified as the

product of the short-rate and persistent factors. These multiplicative volatility models,

however, do not admit closed-form expressions of the term structure.

In this paper, we propose an analytical approximation of the term structure based on

general models of the short-rate and state variables including those preferred in time series

analysis. We adopt a method originally proposed by Shoji (2002), which approximates

a vector containing conditional moments of a multidimensional diffusion process as the

solution to a system of ordinary differential equations. Since the price of a discount bond

is basically given by the conditional expectation of the stochastic discount factor, this

method is readily applicable.

Using the Monte Carlo (MC) method as a benchmark pricing tool, the accuracy of

the approximation is examined for two illustrative models. One is a stochastic volatility

(SV) model in which the short-rate volatility has a multiplicative form, and the other is a

stochastic central tendency (SCT) model, as proposed by Balduzzi et al. (1996, 1998), in
1A notable exception is Ahn and Gao (1999), who derived a closed-form term structure model under

the CEV process with the elasticity parameter of 1.5.
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which all state variables are instantaneously correlated and have level-dependent volatili-

ties. Numerical results based on the two models are that the second-order approximation

is accurate for maturities of up to five years and that the third-order approximation is

effective for maturities longer than this. Also, we show the possibility of improving the

second-order approximation without much increasing the computational burden.

As for related previous studies, Takamizawa and Shoji (2003, 2004) also proposed a

method of approximating the term structure. These studies rely on a local linear ap-

proximation, which is applied to the drift and diffusion terms of the short-rate and state

variables to utilize a framework of affine term structure models. Accordingly, in a multi-

factor setting, models to which the previous method is applicable are limited, such that

they originally have a similar structure as affine models.2 On the other hand, the current

method can achieve higher-order approximations, which may be more beneficial when the

drift and diffusion terms exhibit a high degree of nonlinearity. Besides, no particular re-

striction on models (other than some technical conditions listed in Section 2) is necessary

for applying the current method since the price of a discount bond is directly computed

as the conditional expectation. In terms of computational efficiency, the previous method

has an advantage: with a single calculation, the previous method obtains a vector of

model-implied yields, whereas the current method obtains a single yield.

The rest of the paper is organized as follows. Section 2 explains and implements the

proposed method for bond pricing. Section 3 performs numerical experiments on the

accuracy of the approximation and presents their results. Section 4 provides concluding

remarks.

2 Approximation Formula of Conditional Moments and its

Application to Bond Pricing

We practically explain the approximation method originally proposed by Shoji (2002).

The computation of up to the conditional second moment is illustrated first for a one-

dimensional process, which is then extended to multi-dimensional processes. The compu-

tation of higher-order moments is also possible and is a straightforward extension.
2See Takamizawa and Shoji (2004, p.155). Hence, the previous method cannot be applied to the models

considered in Section 3 of this paper for deriving the term structure.
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2.1 A one-dimensional process

Let Xt be a stochastic process, which evolves according to the following stochastic differ-

ential equation (SDE):

dXt = f(Xt)dt + σ(Xt)dWt , (1)

where Wt is standard Brownian motion, and where the drift and diffusion functions, f

and σ, satisfy certain technical conditions for the solution to (1) to exist for an arbitrary

X0. We also assume that f and g = σ2 are appropriately smooth.3

Let Ψs(t) be a vector containing the first and second moments of an increment of Xt

conditioned on time s < t. That is,

Ψs(t)′ = Es

(
Xt − Xs (Xt − Xs)2

)
. (2)

We then show that Ψs(t) is approximated as the solution to a system of ordinary differential

equations.

By integrating (1) and taking the conditional expectation, we have

Es[Xt − Xs] = Es

[∫ t

s
f(Xu)du

]
. (3)

By applying the Taylor expansion to f(Xu) around Xs up to the third order and substi-

tuting this into (3), we have

Es[Xt − Xs] = f(Xs)(t − s)

+Es

[∫ t

s

{
f (1)(Xs)(Xu − Xs) +

1
2
f (2)(Xs)(Xu − Xs)2

}
du

]

+Es

[∫ t

s

1
6
f (3)(ξ)(Xu − Xs)3du

]
, (4)

where f (k) = ∂kf
∂Xk , and ξ = αXt + (1 − α)Xs for some α ∈ [0, 1]. (4) can be expressed in

a vector form as

Es[Xt − Xs] = f(Xs)(t − s) +
(

f (1)(Xs)
1
2
f (2)(Xs)

) ∫ t

s
Ψs(u)du + R1 , (5)

where R1 is a residual term corresponding to the last term in (4).

Next, by applying the Ito formula to (Xt−Xs)2 and taking the conditional expectation,

we have

Es[(Xt − Xs)2] = Es

[∫ t

s
{2f(Xu)(Xu − Xs) + g(Xu)}du

]
, (6)

3More specifically, we assume that f and g belong to C4-class only to get the first through third

conditional moments. This assumption does not seem too restrictive because most interest-rate models

actually used lie in such a family.
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where g = σ2. By applying the Taylor expansion to f(Xu) and g(Xu) around Xs up to

the second and third orders, respectively, and then substituting these into (6), we have

Es[(Xt − Xs)2] = g(Xs)(t − s)

+Es

[∫ t

s

{
(2f(Xs) + g(1)(Xs))(Xu − Xs) + (2f (1)(Xs) +

1
2
g(2)(Xs))(Xu − Xs)2

}
du

]

+Es

[∫ t

s

{
(f (2)(ξ1) +

1
6
g(3)(ξ2))(Xu − Xs)3

}
du

]
, (7)

where g(k) is defined analogously with f (k), and ξi = αiXt + (1 − αi)Xs for some αi ∈
[0, 1] (i = 1, 2). (7) can also be expressed in a vector form as

Es[(Xt − Xs)2] = g(Xs)(t − s)

+
(

2f(Xs) + g(1)(Xs) 2f (1)(Xs) +
1
2
g(2)(Xs)

) ∫ t

s
Ψs(u)du + R2 , (8)

where R2 is a residual term corresponding to the last term in (7). Expressing (5) and (8)

together in a vector form leads to

Ψs(t) = A(Xs)
∫ t

s
Ψs(u)du + b(Xs)(t − s) + R , (9)

where

A(Xs) =


 f (1)(Xs) 1

2f (2)(Xs)

2f(Xs) + g(1)(Xs) 2f (1)(Xs) + 1
2g(2)(Xs)


 and b(Xs) =


 f(Xs)

g(Xs)


 .

(9) can be developed to

Ψs(t) =
∫ t

s
eA(Xs)(t−u)b(Xs)du + R̂ , (10)

where R̂ is a residual vector. If, furthermore, A is invertible, we have

Ψs(t) = A−1(Xs){eA(Xs)(t−s) − I}b(Xs) + R̂ . (11)

(10) or (11) without the residual vector is referred to as the approximation formula, which

is used for computing the prices of discount bonds.

According to Shoji (2002), the rate of convergence of both residual vectors, R and R̂, is

O((t− s)(n+3)/2) for up to n-th conditional moments. Therefore, n can also be considered

as the order of approximation. Conversely, the formula is exact if f and g are at most

linear and quadratic functions, respectively. In this case, f (2) and g(3) are zero, and so are

the elements of the residual vectors.
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2.2 A two-dimensional process

Let X ′
t = (x1,t x2,t) be a two-dimensional stochastic process, which follows

dxi,t = fi(Xt)dt + σi(Xt)′dWt (i = 1, 2) , (12)

where Wt is two-dimensional standard Brownian motion. A moment vector can be specified

here as

Ψs(t)′ = Es

(
x1,t − x1,s x2,t − x2,s (x1,t − x1,s)2 (x2,t − x2,s)2 (x1,t − x1,s)(x2,t − x2,s)

)
.

(13)

Similar to the one-dimensional case, the conditional first moments are approximated

using the Taylor expansion of fi(Xt) around Xs up to the third order. Likewise, the

conditional second moments are approximated using the Taylor expansion of fi(Xt) and

gij(Xt) = σi(Xt)′σj(Xt) around Xs up to the second and third orders, respectively. Then,

expressing these moments in a vector form leads to (9), where (Xs is abbreviated for

simplicity)

A =




f
(1,0)
1 f

(0,1)
1

1
2f

(2,0)
1

1
2f

(0,2)
1 f

(1,1)
1

f
(1,0)
2 f

(0,1)
2

1
2f

(2,0)
2

1
2f

(0,2)
2 f

(1,1)
2

2f1 + g
(1,0)
11 g

(0,1)
11 2f

(1,0)
1 + 1

2g
(2,0)
11

1
2g

(0,2)
11 2f

(0,1)
1 + g

(1,1)
11

g
(1,0)
22 2f2 + g

(0,1)
22

1
2g

(2,0)
22 2f

(0,1)
2 + 1

2g
(0,2)
22 2f

(1,0)
2 + g

(1,1)
22

f2 + g
(1,0)
12 f1 + g

(0,1)
12 f

(1,0)
2 + 1

2g
(2,0)
12 f

(0,1)
1 + 1

2g
(0,2)
12 f

(1,0)
1 + f

(0,1)
2 + g

(1,1)
12




,

and b′ = (f1 f2 g11 g22 g12).

2.3 Application to bond pricing

Let

zs,t = exp(−
∫ t

s
r(Xu)du) , (14)

and the price of a discount bond at time t maturing at time T is equal to the conditional

first moment of zt,T under the risk-neutral measure. This (actually Et[zt,T − zt,t]) is

computed as one of the elements of the moment vector, Ψt(T ).

In applying the approximation formula (11), the SDE for zs,t is required:

dzs,t = −r(Xt)zs,tdt with zs,s = 1 . (15)

Therefore, if Xt is a two-dimensional process, as is the case for standard SV models in

which the short-rate and volatility are driven by two stochastic factors, a moment vector
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for a three-dimensional process actually needs to be computed. Table 1 provides the

elements of A(Xs) and b(Xs) for a moment vector containing up to conditional second

moments of a three-dimensional process. Likewise, if Xt is a three-dimensional process, as

for the SCT model considered in the next section, a moment vector for a four-dimensional

process is required. The derivation of A(Xs) and b(Xs) is a straightforward extension

of the lower-dimensional cases. Also, the derivation of A(Xs) and b(Xs) for higher-order

approximations is a straightforward extension of the lower-order cases. Therefore, tables

listing the elements of them are omitted to save space. It is noted that filling in A(Xs) is

not as tedious as it seems. Since zs,t has no diffusion term, there are actually many zero

elements in A(Xs).

3 Numerical Experiments

To examine whether the approximation formula can in practice be utilized for pricing

discount bonds, we perform numerical experiments on the accuracy using two illustrative

models. We first check the accuracy of the second-order approximation. If it performs

poorly, we explore possible causes of the inaccuracy, and then consider the third-order

approximation. The identification of the causes also helps us improve the second-order

approximation with much less computational burden than that of the third-order approx-

imation.

3.1 Models

The first is an SV model, which has a multiplicative volatility specification, similar to the

models in Andersen and Lund (1997), and Gallant and Tauchen (1998):

drt = (a0 + a1rt + a2vt)dt + vtrtdW1,t , (16)

dvt = (b0 + b2vt)dt + σvtdW2,t , (17)

where {W1,t,W2,t} are Brownian motions in the risk-neutral measure with the correlation

coefficient ρ12. It is also assumed that the drift of rt depends on vt to incorporate the

volatility feedback effect on expected changes in the short-rate. Note that given b0 > 0

and v0 > 0, vt does not reach zero in finite time: see Karlin and Taylor (1981, Chapter

15.6). This property is favorable for the volatility factor.
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The second is a three-factor SCT model, which is similar to the models originally

proposed by Balduzzi et al. (1996, 1998):

drt = k1(θ2,t − rt)dt + σ1rtdW1,t , (18)

dθ2,t = k2(θ3,t − θ2,t)dt + σ2θ2,tdW2,t , (19)

dθ3,t = k3(θ̄ − θ3,t)dt + σ3θ3,tdW3,t , (20)

where {W1,t,W2,t,W3,t} are Brownian motions in the risk-neutral measure with the cor-

relation coefficients ρij. Since each process can be considered as some interest rate, it is

natural to assume both that the diffusion term of each process depends on its level and

that the instantaneous correlations are non-zero.

To obtain reasonable parameter values, we estimate the models using weekly data

on U.S. interest rates over the period from January 4, 1990 to December 28, 2005 (835

observations). The details of the estimation procedure are presented in Appendix. Panels

A and B of Table 2 present parameter values for the SV and SCT models, respectively.

The actual estimates are in the columns labeled SV-P1 and SCT-P1, which serve as base

cases. To examine the accuracy in relation to various aspects of the models, we change

some of the parameter values from the base cases, while keeping the others unchanged.

SV-P2 is characterized by faster mean-reversion of rt: a1 is doubled and a0 is adjusted to

keep the long-term mean of rt, −a0/a1 +(a2b0)/(a1b2), unchanged. SV-P3 is characterized

by faster mean-reversion of vt: both b2 and b0 are doubled, by which the long-term mean

of vt is unchanged. SV-P4 is characterized by lower volatility: σ is reduced to half. SCT-

P2 exhibits faster mean-reversion: (k1, k2, k3) are all doubled. SCT-P3 exhibits lower

volatilities: (σ1, σ2, σ3) are all reduced to half.

3.2 Experimental setup

We employ the Monte Carlo (MC) method as a benchmark pricing tool. For the MC

method, the continuous-time models are discretized by the Euler method with a step size

of 1/250. The number of replications is set to 5,000. Antithetic variates are used for

variance reduction.

The approximation error is defined as the difference between the yield computed by

the proposed method, yap
τ , and that computed by the MC method, ymc

τ : eτ = yap
τ − ymc

τ

for τ = 0.5,1, 2, 3, 5, 7, and 10.
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State variable values at which the yields are evaluated are selected from the actual data.

In the estimation procedure presented in Appendix, the time series of the state variables

are generated: rt is proxied by the three-month yield for both models; vt for the SV model

is backed out from the five-year yield using the approximation formula; and (θ2,t, θ3,t) for

the SCT model are proxied by the two-year and ten-year yields.4 Using these data, a

kind of arbitrariness on the choice of state variable values seems to be avoidable, such as

providing them with model-implied long-term means. More importantly, the time-series

of the approximation errors can be generated over the same period as the data, which

enables us to highlight when and in what condition the approximation is (in)accurate.

For reference, the time-series of the state variables are plotted in Figure 1.5 Of particular

note is the similarity of the plots between the SV factor, vt, and the spread of the five-

year yield over the three-month yield. In fact, the correlation between the two is 0.975.

Hence, the SV factor implied by our model represents the slope factor, i.e., one of the

important factors driving the term structure: see, e.g., Knez et al. (1994), and Litterman

and Scheinkman (1991).

3.3 Numerical results for the second-order approximation

Table 3 presents mean absolute errors (MAE) expressed in basis point (bp, 1bp = 0.01%):

104 × 1
T

∑
t |eτ,t| for τ = 0.5,1, 2, 3, 5, 7, 10, and T = 167 (= 835/5). First, we report the

results for the SV model, shown in Panel A of Table 3. The second-order approximation

is very accurate for yields with maturities of up to three years: all the MAEs are within

0.4 bp. For the five-year yield, the MAEs are still within 2 bp. For maturities beyond

five years, however, the accuracy becomes worse: for SV-P1, the MAE at τ = 10 reaches

nearly 30 bp. This inaccuracy seems to be somewhat alleviated when the speed of mean

reversion of either rt or vt is faster (SV-P2, -P3), and when the variations in both rt and

vt are smaller (SV-P4).

In Panels (a) and (b) of Figure 2, the time-series of the approximation errors, eτ,t with

τ = 5, 10, are plotted for SV-P1. Obviously, the second-order approximation undervalues
4We also consider various combinations of yields used for inversion or as proxies. Although the estima-

tion results change somewhat, the accuracy results, which are of primary interest, change little from those

reported below.
5To reduce the computational burden on the MC simulations, the sample size of the state variables is

reduced to one fifth by picking up every five observations. This does not change the accuracy results from

those using the full-sample data, which is checked for the base cases, SV-P1 and SCT-P1.
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yields throughout the period, indicating that it fails to generate high spreads at long

maturities (a possible cause of this undervaluation is explored in the next subsection).

While the maximum deviation is at most −5.7 bp for the five-year yield, it is nearly −80

bp for the ten-year yield, which is much larger than the one-standard deviation of the

MC error. The undervaluation is particularly evident during 1991–94 and around 2002.

Looking at Figure 1(a), these periods correspond to high spreads and high volatility. In

fact, when we calculate the correlations between the SV factor and approximation errors,

corr(vt, eτ,t) with τ = 5, 10, they are −0.85 and −0.91, respectively, indicating that the

higher the volatility, the undervaluation becomes more substantial. The difficulty of the

second-order approximation thus arises in a high volatility regime, which results in the

failure of generating high spreads at long maturities.

Next, we report the results for the SCT model, shown in Panel B of Table 3. Similarly,

the second-order approximation is accurate for maturities of up to five years, and becomes

worse for the ten-year yield. Consistent with the previous results, the accuracy improves

when the volatilities of the state variables are lower (SCT-P3). However, faster mean

reversion results in deterioration of the accuracy (SCT-P2), which is in contrast to the

SV model. One explanation is as follows. The state variables are proxied by the 3-month,

2-year, and 10-year yields for the SCT model, which normally form a positive slope as

seen in Figure 1. The increase in ki then increases the drift and as a result the level of

each process. This also increases the volatility of each process by the CEV specification

(with the elasticity of one). Therefore, the performance of the second-order approximation

becomes worse. Also, the finding that high interest rate levels lead to deterioration of the

accuracy for the SCT model can be confirmed in Panels (c) and (d) of Figure 2, where

the time-series of the approximation errors are plotted for SCT-P1. Large negative errors

appear during 1990–92, when all of (rt, θ2,t, θ3,t) are high as seen in Figure 1.6

3.4 A possible cause of the undervaluation of yields

The undervaluation of yields is equivalent to the overvaluation of bond prices, Et[zt,T ].

Recall that zt,u evolves according to dzt,u = −ruzt,udu. By integrating both sides on

6For the SV model, on the other hand, faster mean-reversion results in improvement of the accuracy

(SV-P2, -P3). This is because doubling a1 or b2 does not much increase interest rate levels, whereas it

makes the short-rate more stable, as is the case of reducing σ to half (SV-P4).
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u ∈ [t, T ] and taking the conditional expectation, we have

Et[zt,T ] − zt,t = −
∫ T

t
Et[ruzt,u]du

= −
∫ T

t
Et[rtzt,t + zt,t(ru − rt) + rt(zt,u − zt,t) + (ru − rt)(zt,u − zt,t)]du , (21)

Looking at the right hand side (RHS) of (21), the first term is deterministic, whereas the

second term is exactly calculated for our models. Therefore, the overvaluation of Et[zt,T ]

implies the undervaluation of the last term, Et[(ru − rt)(zt,u − zt,t)], at least for large u,

which exceeds the overvaluation of the third term, Et[rt(zt,u − zt,t)].

The undervaluation of Et[(ru−rt)(zt,u−zt,t)] is directly attributable to the approxima-

tion to the drift of zt,u: fz(ru, zt,u) = −ruzt,u. Specifically, in getting to the approximation

formula, we apply the Ito formula to (ru − rt)(zt,u − zt,t) and take the conditional expec-

tation to obtain

Et[(ru−rt)(zt,u−zt,t)] =
∫ u

t
Et[(zt,a−zt,t)fr(Xa)]da+

∫ u

t
Et[(ra−rt)fz(ra, zt,a)]da , (22)

where fr(Xa) is the drift function of ra, which is linear in the state vector, Xa, in our

models. Hence, the first expectation on the RHS of (22) is taken to a quadratic function of

(Xa, zt,a). In other words, this can be expressed by a combination of conditional first and

second moments of increments of (Xa, zt,a). Therefore, the Taylor expansion of fr(Xa) is

unnecessary for the second- or higher-order approximations. On the other hand, the second

expectation on the RHS of (22) is taken to a higher than quadratic function of (ra, zt,a),

as fz(ra, zt,a) = −razt,a. In fact, when this is to be expressed by conditional moments of

increments of (ra, zt,a), the following third moment is necessary: Et[(ra − rt)2(zt,a − zt,t)].

For the second-order approximation, however, this is not included. Then, we need to

approximate fz(ra, zt,a) by the first-order Taylor expansion, so that the second expectation

can be expressed by a combination of conditional first and second moments. By replacing

fz with its linear approximation, fap
z , in (22), the approximation formula is now effective.

fap
z is given by

fap
z (ra, zt,a) = fz(rt, zt,t) + f (1,0)

z (rt, zt,t)(ra − rt) + f (0,1)
z (rt, zt,t)(zt,a − zt,t)

= −(ra + rtzt,a − rt) . (23)

Taking the difference between fap
z and fz leads to

fap
z − fz = −(ra + rtzt,a − rt) + razt,a = (ra − rt)(zt,a − 1) . (24)
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The above difference is more likely to be negative. That is, fap
z is more negative on average

than fz. This is because (ru − rt) > 0 is more likely given that the risk-neutral drift of the

short-rate is positive over a sufficiently wide range of the short-rate, while (zt,u − 1) < 0

holds certainly. Therefore, when fz is replaced with fap
z in (22), Et[(ru − rt)(zt,u − zt,t)] is

undervalued by the approximation formula.

As seen, the undervaluation of Et[(ru − rt)(zt,u − zt,t)] is a cause of the overvaluation

of the bond price by (21), which in turn is attributed to the linear approximation of fz.

Conversely, this approximation is unnecessary for evaluating Et[(ru − rt)(zt,u − zt,t)] if

we consider up to conditional third moments. Then, the third-order approximation can

be expected to improve the accuracy. In addition, among the conditional third moments

required, the above argument suggests that Et[(ru−rt)2(zt,u−zt,t)] may have a fundamental

role for the improvement, if it exists. The next subsection verifies these predictions.

3.5 Numerical results for the third-order approximation

We perform the same numerical experiments to examine the accuracy of the third-order

approximation. To highlight its effect, we continuously use the same parameter values as

presented in Table 2 and, more importantly, the same time-series of the state variables as

used for the second-order approximation.7

Panels A and B of Table 4 present the MAEs of the third-order approximation for

the SV and SCT models, respectively, showing that the improvement of the accuracy is

substantial: for the seven-year yield, all MAEs are within 0.5 bp, and for the ten-year yield

the MAEs range from 0.4 bp to 4.4 bp. Figure 3 also graphs the time-series of errors of the

third-order approximation for SV-P1 and SCT-P1. The errors for the five-year yield do

not exhibit a systematic pattern but fluctuate in a narrow rage of ±0.5 bp. The errors for

the ten-year yield now turn to be positive, indicating that the third-order approximation

overvalues longer-term yields. However, the magnitude of errors is much smaller than that

of the second-order approximation.

Next, we examine whether Et[(rT − rt)2(zt,T − zt,t)] has a significant impact on the

improvement of the accuracy. Aiming at reducing the computational burden, we add
7For the SV model, the third-order approximation generates slightly different values of the implied

SV factor from those already obtained by the second-order approximation. We also run MC simulations

using the newly obtained SV values and calculate errors of the third-order approximation. The results are

unchanged from those using the already obtained SV values presented in Table 4.

12



this moment alone to the moment vector for the second-order approximation, rather than

extract this moment alone from the moment vector for the third-order approximation.

Panels C and D of Table 4 present the MAEs of the extended second-order approximation

for both models, showing that our prediction is correct. Though the magnitude of MAEs

increases from that of the third-order approximation, it is much smaller for the SV model

and marginally smaller for the SCT model than that of the second-order approximation.

Figure 4 also graphs the time-series of errors of the extended second-order approximation.

For SV-P1, by adding Et[(rT − rt)2(zt,T − zt,t)] alone, the undervaluation of yields is

substantially corrected: occasionally even positive errors appear. For SCT-P1, although

the pattern of errors is similar to that shown in Panels (c) and (d) of Figure 2, the

magnitude of errors is somewhat decreased.

The last finding is particularly useful for high-dimensional models, where the length of

a moment vector rapidly increases by higher-order approximations: in general, the length

of Ψt,T consisting of up to n-th conditional moments of a d-dimensional process is
(n+d

n

)
−1 = (n + d)!/(n!d!) − 1. However, by carefully selecting effective moments, it may be

possible that this increase is marginal while higher accuracy is achieved.

4 Concluding Remarks

We proposed an analytical approximation of the term structure of interest rates under

general diffusion processes. This is obtained as one of the elements of a moment vec-

tor, which is approximated as the solution to a system of ordinary differential equations.

Based on two illustrative models, we showed that for maturities of up to five years, the

second-order approximation is accurate, which seems to justify matching the approxima-

tion formula exactly with the five-year yield to obtain a model-implied latent process.

Beyond five years to maturity, the third-order approximation is effective. We also showed

that inclusion of Et[(rT − rt)2(zt,T − zt,t)] is the key to the improvement of the accuracy

without much increasing the computational burden.

The proposed method can also be utilized for computing the characteristic function,

which in turn allows for computing option prices through the Fourier inversion technique:

e.g., Bakshi and Madan (2000), and Duffie et al. (2000). The accuracy of the approxima-

tion in terms of option prices is worth examining, which is left for future research. Another

direction of future research is to estimate the behavior of latent processes implicit in term

13



structure data, using models that have little tension in explaining both time-series and

cross-sectional dimensions of the data.

Appendix: Estimation Method

Since the estimation is not a main focus of the paper, a simple procedure is employed,

which nonetheless seems to provide reasonable values. Following Chen and Scott (1993),

Duffee (2000), and Pearson and Sun (1994), we employ the quasi-maximum likelihood

method, where both time-series and cross-sectional dimensions of term structure data are

utilized. The weekly (Wednesday) data consist of U.S. LIBOR rates with maturities of

3, 6, and 12 months, and U.S. Swap rates with maturities of 2, 3, 4, 5, 7, and 10 years.8

Through linear interpolation to these rates, implicit discount bond prices and their yields

to maturity are calculated. This yield data, with maturities of 0.25, 1, 2, 3, 5, 7, and 10

years, are actually used for the estimation.

For both models, the short-rate rt is proxied by the three-month yield. For the SV

model, vt is backed out from the five-year yield, y5,t, by assuming that it is exactly ex-

plained by the approximation formula at any point in time. Specifically, letting Ỹ de-

note the second-order approximation of the true yield function, we invert the equation,

y5,t = Ỹ (rt, vt, 5), for vt. For the SCT model, (θ2,t, θ3,t) are proxied by the two-year and

ten-year yields, (y2,t, y10,t). The rest of the yields, denoted as yε
τ,t, are explained with

measurement errors, ετ,t:

yε
τ,t = Ỹ (Xt, τ) + ετ,t ετ,t|Xt ∼ i.i.d.N(0, ξ2) , (25)

where Xt = (rt, vt) for the SV model and Xt = (rt, θ2,t, θ3,t) for the SCT model. The

distributional assumptions for ε.,t conditioned on Xt are summarized as: all errors have

the same variance, ξ2, and they are contemporaneously and serially independent.

For the SV model, the density function at time t conditioned on time t − ∆ is

p(rt, y5,t, {yε
τi,t}; rt−∆, y5,t−∆) = p(Xt, {ετi,t};Xt−∆)

∣∣∣∣∣
∂Ỹ (Xt, 5)

∂vt

∣∣∣∣∣
−1

= pT (Xt;Xt−∆)

∣∣∣∣∣
∂Ỹ (Xt, 5)

∂vt

∣∣∣∣∣
−1

×
∏
i

pC(ετi,t;Xt) .(26)

8When one or more of the Wednesday observations are missing, we choose another day of the week on

which all rates are available in the following order: Tuesday, Thursday, Friday, and Monday.
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The first equality follows from the change of variables. The second equality follows from

the decomposition into the time-series (marginal) and cross-sectional (conditional) compo-

nents with noticing that Xt is Markovian. Note that the Jacobian, ∂Ỹ (Xt, 5)/∂vt, is also

based on the second-order approximation of the yield function, which is already obtained

in the iteration procedure for backing out vt. The density function for the SCT model is

similar but simpler, as Xt is proxied by the observed yield vector so the Jacobian does not

appear.

In computing pT , the SDEs for Xt in the actual measure are required. To obtain them,

we need to specify the market prices of risk. Here, a simple specification will suffice, as the

physical dynamics are actually irreverent to the assessment of the accuracy. For the SV

model, the prices of risk for uncertain variations in rt and vt are λ1/vt and λ2 (constant),

respectively.9 For the SCT model, the prices of risk are all assumed to be constant. Then,

the resulting drift terms in the physical measure are also linear for both models. Still,

since analytical expressions for pT are unknown, it is assumed to be the normal density

function, where the first and second conditional moments of Xt in the actual measure are

substituted. Using the proposed method, this computation is straightforward.

9The former specification is the so-called extended market price of risk, proposed by Cheridito et al.

(2007), which is consistent with non-arbitrage if vt, given v0 > 0, does not reach zero in finite time under

both measures. For the SV model considered here, the condition is b0 > 0, which indeed is implied by the

data.
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[A]i,j 1 2 3 4 5

1 f
(1,0,0)
1 f

(0,1,0)
1 f

(0,0,1)
1 f

(2,0,0)
1 /2 f

(0,2,0)
1 /2

2 f
(1,0,0)
2 f

(0,1,0)
2 f

(0,0,1)
2 f

(2,0,0)
2 /2 f

(0,2,0)
2 /2

3 f
(1,0,0)
3 f

(0,1,0)
3 f

(0,0,1)
3 f

(2,0,0)
3 /2 f

(0,2,0)
3 /2

4 2f1 + g
(1,0,0)
11 g

(0,1,0)
11 g

(0,0,1)
11 2f

(1,0,0)
1 + g

(2,0,0)
11 /2 g

(0,2,0)
11 /2

5 g
(1,0,0)
22 2f2 + g

(0,1,0)
22 g

(0,0,1)
22 g

(2,0,0)
22 /2 2f

(0,1,0)
2 + g

(0,2,0)
22 /2

6 g
(1,0,0)
33 g

(0,1,0)
33 2f3 + g

(0,0,1)
33 g

(2,0,0)
33 /2 g

(0,2,0)
33 /2

7 f2 + g
(1,0,0)
12 f1 + g

(0,1,0)
12 g

(0,0,1)
12 f

(1,0,0)
2 + g

(2,0,0)
12 /2 f

(0,1,0)
1 + g

(0,2,0)
12 /2

8 f3 + g
(1,0,0)
13 g

(0,1,0)
13 f1 + g

(0,0,1)
13 f

(1,0,0)
3 + g

(2,0,0)
13 /2 g

(0,2,0)
13 /2

9 g
(1,0,0)
23 f3 + g

(0,1,0)
23 f2 + g

(0,0,1)
23 g

(2,0,0)
23 /2 f

(0,1,0)
3 + g

(0,2,0)
23 /2

[b]j f1 f2 f3 g11 g22

Table 1:



6 7 8 9

f
(0,0,2)
1 /2 f

(1,1,0)
1 f

(1,0,1)
1 f

(0,1,1)
1

f
(0,0,2)
2 /2 f

(1,1,0)
2 f

(1,0,1)
2 f

(0,1,1)
2

f
(0,0,2)
3 /2 f

(1,1,0)
3 f

(1,0,1)
3 f

(0,1,1)
3

g
(0,0,2)
11 /2 2f

(0,1,0)
1 + g

(1,1,0)
11 2f

(0,0,1)
1 + g

(1,0,1)
11 g

(0,1,1)
11

g
(0,0,2)
22 /2 2f

(1,0,0)
2 + g

(1,1,0)
22 g

(1,0,1)
22 2f

(0,0,1)
2 + g

(0,1,1)
22

2f
(0,0,1)
3 + g

(0,0,2)
33 /2 g

(1,1,0)
33 2f

(1,0,0)
3 + g

(1,0,1)
33 2f

(0,1,0)
3 + g

(0,1,1)
33

g
(0,0,2)
12 /2 f

(1,0,0)
1 + f

(0,1,0)
2 + g

(1,1,0)
12 f

(0,0,1)
2 + g

(1,0,1)
12 f

(0,0,1)
1 + g

(0,1,1)
12

f
(0,0,1)
1 + g

(0,0,2)
13 /2 f

(0,1,0)
3 + g

(1,1,0)
13 f

(1,0,0)
1 + f

(0,0,1)
3 + g

(1,0,1)
13 f

(0,1,0)
1 + g

(0,1,1)
13

f
(0,0,1)
2 + g

(0,0,2)
23 /2 f

(1,0,0)
3 + g

(1,1,0)
23 f

(1,0,0)
2 + g

(1,0,1)
23 f

(0,1,0)
2 + f

(0,0,1)
3 + g

(0,1,1)
23

g33 g12 g13 g23

Table 1 (continued): The elements of A(Xs) and b(Xs) in the approximation formula

A moment vector Ψs(t) contains up to conditional second moments of a three-dimensional process,

X ′

t = (x1,t x2,t x3,t): the first three elements are Es[xi,t −xi,s] (i = 1, 2, 3), the next three elements

are Es[(xi,t−xi,s)
2] (i = 1, 2, 3), and the last three elements are Es[(xi,t−xi,s)(xj,t−xj,s)] ((i, j) =

(1, 2), (1, 3), (2, 3)). xi,t follows dxi,t = fi(Xt)dt + σi(Xt)
′dWt , where Wt is three-dimensional

Brownian motion. The notations in the table are as follows: gij = σ′

iσj ,

f
(k,l,m)
i =

∂fk+l+m
i

∂xk
1∂xl

2∂xm
3

, and g
(k,l,m)
ij =

∂gk+l+m
ij

∂xk
1∂xl

2∂xm
3

.



Panel A: Parameter values for the SV model

SV-P1 SV-P2 SV-P3 SV-P4

a0 −0.034 −0.028 −0.034 −0.034

a1 −0.048 −0.096 −0.048 −0.048

a2 0.291 0.291 0.291 0.291

b0 0.032 0.032 0.064 0.032

b2 −0.229 −0.229 −0.458 −0.229

σ 0.125 0.125 0.125 0.063

ρ12 −0.143 −0.143 −0.143 −0.143

Panel B: Parameter values for the SCT model

SCT-P1 SCT-P2 SCT-P3

k1 1.133 2.266 1.133

k2 0.712 1.424 0.712

k3 0.010 0.020 0.010

θ̄ 0.263 0.263 0.263

σ1 0.157 0.157 0.078

σ2 0.232 0.232 0.116

σ3 0.148 0.148 0.074

ρ12 0.533 0.533 0.533

ρ13 0.314 0.314 0.314

ρ23 0.756 0.756 0.756

Table 2: Parameter values for the SV and SCT models

The SV and SCT models are given by

SV model: SCT model:

drt = (a0 + a1rt + a2vt)dt + vtrtdW1,t , drt = k1(θ2,t − rt)dt + σ1rtdW1,t ,

dvt = (b0 + b2vt)dt + σvtdW2,t , dθ2,t = k2(θ3,t − θ2,t)dt + σ2θ2,tdW2,t ,

dθ3,t = k3(θ̄ − θ3,t)dt + σ3θ3,tdW3,t ,

and the correlation coefficients between Brownian motions are ρij. The columns of SV-P1

and SCT-P1 present the actual estimates using data on U.S. LIBOR and Swap rates over

1990–2005. Alternative sets of parameter values are obtained based on them.



τ 0.5 1 2 3 5 7 10

Panel A: MAE of the second-order approximation for the SV model

SV-P1 0.15 0.16 0.20 0.37 1.91 7.08 29.10

SV-P2 0.14 0.14 0.17 0.32 1.61 6.01 25.39

SV-P3 0.18 0.18 0.23 0.39 1.68 5.44 19.67

SV-P4 0.15 0.16 0.19 0.34 1.55 5.24 20.08

Panel B: MAE of the second-order approximation for the SCT model

SCT-P1 0.17 0.18 0.24 0.42 1.69 5.03 17.06

SCT-P2 0.35 0.36 0.43 0.70 2.60 7.86 28.59

SCT-P3 0.17 0.17 0.20 0.31 0.96 2.64 8.47

Table 3: Mean absolute errors (MAE) of the second-order approximation

The MAE (expressed in basis point) is given by 104
×

1
T

∑
t |eτ,t| (T = 167), where eτ,t =

yap
τ,t−ymc

τ,t , and where yap
τ,t and ymc

τ,t are the τ -maturity yields computed by the approximation

and MC methods, respectively.



τ 0.5 1 2 3 5 7 10

Panel A: MAE of the third-order approximation for the SV model

SV-P1 0.15 0.15 0.15 0.15 0.14 0.47 4.35

SV-P2 0.14 0.14 0.14 0.14 0.12 0.29 2.91

SV-P3 0.18 0.18 0.18 0.16 0.14 0.34 2.52

SV-P4 0.15 0.15 0.15 0.16 0.15 0.27 2.26

Panel B: MAE of the third-order approximation for the SCT model

SCT-P1 0.17 0.18 0.18 0.18 0.15 0.28 1.95

SCT-P2 0.35 0.35 0.32 0.26 0.15 0.39 3.29

SCT-P3 0.17 0.17 0.17 0.17 0.12 0.06 0.38

Panel C: MAE of the extended second-order approximation for the SV model

SV-P1 0.15 0.15 0.16 0.18 0.46 1.59 6.64

SV-P2 0.14 0.14 0.14 0.17 0.51 1.95 8.85

SV-P3 0.18 0.18 0.18 0.17 0.29 1.33 6.86

SV-P4 0.15 0.15 0.16 0.17 0.23 0.62 3.56

Panel D: MAE of the extended second-order approximation for the SCT model

SCT-P1 0.17 0.18 0.22 0.36 1.45 4.52 15.93

SCT-P2 0.35 0.36 0.41 0.64 2.41 7.47 27.72

SCT-P3 0.17 0.17 0.19 0.26 0.80 2.27 7.65

Table 4: Mean absolute errors (MAE) of the third-order and extended second-

order approximations

The MAE (expressed in basis point) is given by 104
×

1
T

∑
t |eτ,t| (T = 167), where

eτ,t = yap
τ,t − ymc

τ,t , and where yap
τ,t and ymc

τ,t are the τ -maturity yields computed by the

approximation and MC methods, respectively. The moment vector for the third-order ap-

proximation contains up to conditional third moments, whereas the moment vector for the

extended second-order approximation includes only Et[(rT − rt)
2(zt,T − zt,t)] in addition

to conditional first and second moments.
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(b) Two- and ten-year yields
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Figure 1: Time-series of the state variables over 1990—2005

The data consist of discount bond yields implicit in the U.S. LIBOR and Swap rates. Panel (a)

displays the short-rate proxied by the 3-month yield, the spread between the 5-year and 3-month

yields, and the SV factor calculated from the SV model. Panel (b) displays the 2- and 10-year

yields, which are used as proxies for (θ2,t, θ3,t) in the SCT model.



(a) e5,t for SV-P1
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(c) e5,t for SCT-P1
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(b) e10,t for SV-P1
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(d) e10,t for SCT-P1
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Figure 2: Time-series of errors of the second-order approximation over 1990—2005

The approximation error is defined as eτ,t = yapτ,t − ymcτ,t , where yapτ,t and ymcτ,t are the τ -maturity

yields computed by the approximation and MC methods, respectively.



(a) e5,t for SV-P1
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(c) e5,t for SCT-P1
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(b) e10,t for SV-P1
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(d) e10,t for SCT-P1
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Figure 3: Time-series of errors of the third-order approximation over 1990—2005

The approximation error is defined as eτ,t = yapτ,t − ymcτ,t , where yapτ,t and ymcτ,t are the τ -maturity

yields computed by the approximation and MC methods, respectively. The moment vector for

the third-order approximation contains up to conditional third moments.



(a) e5,t for SV-P1
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(c) e5,t for SCT-P1
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(b) e10,t for SV-P1
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(d) e10,t for SCT-P1

-40

-30

-20

-10

0

90 92 94 96 98 00 02 04

Ap
pr

ox
im

at
io

n 
er

ro
r (

bp
)

Figure 4: Time-series of errors of the extended second-order approximation over

1990—2005

The approximation error is defined as eτ,t = yapτ,t − ymcτ,t , where yapτ,t and ymcτ,t are the τ -maturity

yields computed by the approximation and MC methods, respectively. The moment vector for

the extended second-order approximation includes only Et[(rT − rt)2(zt,T − zt,t)] in addition to

conditional first and second moments.




