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Abstract

We derive noncentral limit theorems for the partial sum processes of K (X;)—
E{K(X;)}, where K (z) is a bounded function and {X;} is a linear process. We
assume the innovations of {X;} are independent and identically distributed
and that the distribution of the innovations is an a-stable law (0 < o < 1) or
belongs to the domain of attraction of an a-stable law (0 < « < 1). Then we
establish the finite-dimensional convergence in distribution of the partial sum
process to an af-stable Lévy motion. The parameter S determines how fast
the coefficients of the linear process decay and we assume that 1 < af < 2.
We also derive the asymptotic distribution of the kernel density estimator of
the marginal density function of { X;} by exploiting one of the noncentral limit
theorems.

Keywords: linear process; martingale; stable law; af-stable Lévy motion; kernel
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1 Introduction

We consider a linear process defined in (1) below and derive noncentral limit the-
orems for bounded functions of the linear process. The linear process is defined
by

o0
X, =) bjej, i=1,2,..., (1)
j=1

where b; ~ ¢pj7%(j > 1), ¢¢ > 0 and {¢;} are independent and identically dis-
tributed. We assume that €; belongs to the domain of attraction an «-stable law
(0 < a < 2) unless we say otherwise. Let E{e;} = 0 when o« > 1. In this paper
a; ~ a; means a;j/a; — 1 as j — oo. Then a sufficient condition for the existence
of X; is that af > 1.

We shall derive the asymptotic distributions of finite-dimensional distributions
of the partial sum process defined in (2) below when 0 < a < 1 and 1 < aff < 2.

The partial sum process we consider is

nt]

n VeI (K (X)) - B{K(X))}), 0<t<1, (2)

i=1
where K (z) is any bounded function and [a] stands for the largest integer less than
or equal to @ when it appears in subscripts. We can include the case of o = 1 if
we deal with slowly varying functions in Lemmas 5.1-2 below. However, we do not
include the case of & =1 to make this paper readable and easy to understand.

In Theorem 2.1 below, we establish the convergence in distribution of finite-
dimensional distributions of (2) to those of an «af-stable Lévy motion under a set
of assumptions on €;. See Samorodnitsky and Taqqu (1994) for details on stable
laws and «a-stable Lévy motions. If K(x) is integrable, the assumptions can be
relaxed. See Theorem 2.2 below, which is useful to the derivation of the asymptotic
distribution of the kernel density estimator.

A lot of researchers have been studying the asymptotic properties of partial sum

processes of K(X;) — E{K(X;)} and given the asymptotic distributions when X;
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is defined in (1) and €; may have variance. Concentrating on the cases where €
belongs to the domain of attraction of an a-stable law (0 < o < 2), we refer to the
relevant results here.

a.0 < a <2 and af > 2: Hsing (1999); Pipiras and Taqqu (2003)
b.l<a<2,>1,and af < 2: Surgailis (2002)

c.l<a<2, f<1,and 1 < af: Koul and Surgailis (2001)

The limiting distributions are not Gaussian in the cases of b and c¢. Only in the
case of a, the limiting distributions are Gaussian. To our knowledge, there has been
no result in the case where 0 < a <1 and 1 < aff < 2.

We show in Section 2 that the asymptotic distribution in the case of b carrys
over to the case of this paper. However, we need new techniques to tackle the
case of this paper, for example, Propositions 2.5 and Lemmas 5.2 below. Koul
and Surgailis (2001) and Surgailis (2002) focused on the asymptotic properties of
empirical processes of {X;} in the cases of b and c, respectively. The proofs for
the partial sum processes of K(X;) — E{K(X;)} are not given in the two papers.
Surgailis (2004) also deals with asymptotics of the partial sum processes of K (X;)—
E{K(X;)} in some other setups where E{|e;|?} < oco. See also Wu (2003). As
for the partial sum processes, only convergence in distribution of finite-dimensional
distributions is established in Koul and Surgailis (2001), Surgailis (2002,2004), and
Pipiras and Taqqu (2003).

All the above papers crucially depend on Ho and Hsing (1996, 1997). The authors
of the two papers devised the martingale decomposition approach and successfully
studied the asymptotic properties of the partial sum processes of K(X;)—E{K(X;)}
and empirical processes of {X;} when {X;} is a long-range dependent linear process
with E{|e;]*} < oo. Our results crucially depend on Ho and Hsing (1996, 1997)
through Surgailis (2002), too. Koul and Surgailis (2002) is an excellent expository

paper on the martingale decomposition approach. Hannan (1979) is an earlier paper



related to martingale decomposition approaches. Some results in Pipiras and Taqqu
(2003) are also important to the arguments in this paper. See Lemmas 5.1-2 below.

We apply the result of Theorem 2.2 to derive the asymptotic distribution of
the kernel density estimator of the density function of X;. A lot of researchers
have been studying the asymptotic properties of the kernel density estimator of the
marginal density function of a linear process defined in (1). All of them assumed
that E{|e;|*} < oo in (1). Honda (2006) is only one exception. Wu and Mielniczuk
(2002) deals with both short-range dependent and long-range dependent linear pro-
cesses. The asymptotic properties are fully examined in Wu and Mielniczuk (2002)
when E{|[*} < oo. Some of the arguments of Wu and Mielniczuk (2002) carry
over to the cases where E{|e;|?*°} < oo for some positive §. When E{|e; >} = oo,
Honda (2006) derived the asymptotic distribution in the cases of a, b, and ¢ defined
above by applying the results of Hsing (1999), Koul and Surgailis (2001), Surgailis
(2002,2004), and Pipiras and Taqqu (2003). See the references in Wu and Miel-
niczuk (2002) and Honda (2006) for other relevant works. Peng and Yao (2004)
applied the results in Hsing (1999), Koul and Surgailis (2001), and Surgailis (2002)
to nonparametric regression.

The paper is organized as follows. We state the assumptions and the main
theorems in Section 2. The main theorems are proved and the propositions for the
proofs are also presented in the section. Those propositions are verified in Section
3. We consider the kernel density estimator in Section 4. All the technical lemmas

and the proofs are confined to Section 5.

2 Noncentral limit theorems

We begin with the assumptions and the notation. Next we state the main theorems.
Then we describe the propositions for the proofs of the theorems and prove the

theorems at the end of this section. Hereafter we assume that 0 < a < 1 and



1 < aff <2, where b; ~ 57",

In this paper, C, C;, and Cy stand for generic positive constants and their
values change from place to place. The range of integration is the whole real line
when it is omitted.

We denote the distribution function and the characteristic function of €; by
G(z) and ¢(0), respectively. Assumptions A1l and A2 are on G(z) and ¢(6),
respectively. Assumption A1 means that €; belongs to the domain of an «a-stable
law. Assumption A2 ensures some of the necessary properties of density functions.

A1: There is an « € (0,1) satisfying

lim G(z)|z|* = ¢, :}Lr(r)lo(l —G(x))z* =cp, and ¢+ > 0.

T——00
A2: |p(0)] < C(1+|0])~° for some positive §.

We always assume that assumptions A1 and A2 hold.
We introduce some notation to define another assumption. We decompose X;
into

X = X5+ X, (3)

7j
where

j—1 e
Xi,j = Z blei—l and Xi,j = Z blei—l-
=1 I=j

Let Fj(r) and Fj(z) stand for the distribution functions of X;; and X;;, re-

irj s
spectively. Lemma 1 in Giraitis et al. (1996) and assumption A2 imply that
Fj(x), j = 1,2,..., are three times continuously differentiable and that Fj(x),
J = So,80 + 1,..., are three times continuously differentiable for a large positive
integer so. Besides all the derivatives of Fj(x) are bounded up to the third order
uniformly in x and j. We write f(z) and F(z) for fy(z) and F(z) for notational

convenience. Then f(x) is the density function of X;.

We define assumption A3.



A3: We can choose a positive v € (0,«) such that

|F" ()| + |F}'(z)] < C(1 + |a|) 7
and

[F"(y) = F"(2)| + |F}' (y) = F} ()] < Clar = y| (1 + |a) 70+
for |x — y| < 1, uniformly in z and j > s.

When ¢; follows an a-stable law (0 < o < 1), assumptions A1-3 hold. See Remark

2.1 below about assumption A3.

Remark 2.1 Let S,(o,n, ) stand for a-stable law. Then the characteristic func-

tion of S,(o,n, 1) has the form

exp{—0®|0|*(1 — insign(f) tan(wa/2)) +iuf} , a#1
exp{—olf|(1 + 2insign(#) log |6]) + iuf} ,a=1"

where i stands for the imaginary unit. When €, follows an a-stable law (a # 1),

the characteristic function of X, ¢;(#), is given by

-1

i1(0) = exp { — (z_:lb;‘) 0] (1 — insign(d) tan(ra/2)) + 1(2 bj)uﬁ} (4)

J=1

and fl(k) (x), k=1,2,...,is represented as

fl(k) (ZL‘) _ (;;)k /OOO Gk(]ﬁl(g)eiigwde + % /UOO ek(]ﬁl(g)@iigwdg- (5)

By appealing to integration by parts as in the proof in Lemma 3 in Hsing (1999),

we can show that assumption A3 holds.

Even if €; does not follow an a-stable law, assumption A1 implies that for any

r € (0,a), there is a positive constant C, such that
E{|X17]’|r} SC,«, j:SO,So+1,.... (6)

Hence we can say that assumption A3 is a natural one in terms of (6) and the
existence of bounded and twice continuously differentiable density functions of X ;,

j:80,80+1,....



When K (z) is bounded and integrable, we use A4 below instead of assumption
A3. A4 is not an assumption and follows from assumptions A1 and A2.

A4: There is a positive C' such that
|F"(y) — F"(@)| + |F (y) = Fj (@) < Clz —yl, j=s0,50+1,...

We define S,,, by
Sm = ;(K(Xz) — E{K(X))}). (7)
Then n Y95, ¢ € [0,1], belongs to D[0,1]. See Embrechts et al. (1997,
Appendix A2) for the definition of D[0, 1], the metric, and the weak convergence. We

cannot deal with weak convergence in D[0, 1]. See a comment just before Proposition

2.3.
We are ready to state the main theorems of this paper. We omit n — 0o since

it is obvious from the context.

Theorem 2.1 Suppose that assumptions A1-3 hold and that K(x) is a bounded
function. Then finite-dimensional distributions of nfl/(aﬁ)S[nt], t € [0,1], converge
in distribution to those of an af-stable Lévy motion on [0,1]. The distribution at

t of the af3-stable Lévy motion is given by
tl/(aﬂ)(cé/(“ﬁ)c;;[ﬁ + C}/(aﬁ)cl_(L_),
where

i =0 [ (Kuolt) = KoclO))t H7dt,
0

ci(af —1) }1/(aﬁ)
2 — ap)|cos(raB/2)|fF

Y

Koo(z) = B{K(X; + 1)}, o= {F(

and L™ and Lt are mutually independent random variables whose distribution are

Sap(1,1,0), respectively.

When K (z) is bounded and integrable, assumption A3 is not necessary.
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Theorem 2.2 Suppose that assumptions A1-2 hold and that K(x) is a bounded
integrable function. Then we have the same convergence in distribution as in Theo-

rem 2.1.

Note that we have the same asymptotic distribution as in Surgailis (2002). The
proofs of the theorems are postponed to the end of this section. We give only the
detailed proof of Theorem 2.1 and give just a brief remark on the proof of Theorem
2.2 since Theorem 2.2 can be proved in the same way. In fact we formulated Theorem
2.2 to deal with the kernel density estimator of f(z). Then K(z) is bounded and
integrable. See (47), not (44), in Section 4.

We introduce decompositions of S,, before we state the propositions necessary
to prove the theorems. The same kind of decomposition appears in Surgailis (2002).

However, (8) is a new one.

Sn = (Sn - Tn) + (Tn - Wn) + Wn (8)
 (Sa = T) + (T — T + (T, — W) + W, )
where
T = 33 () bens) - B () (10)
T = 33 (Kelbyei) - E(E (b)) (1)
Kie) = E{K(Xi;+a)}, j2 s, (12
W = 35 (K () — B (). (13
W, - z S~ (Ku(byer) = B{Ko (b6} (14
Since

K@) = [ K(€)f(6 ~ w)de,
it is easy to see from assumption A3 that K;(z), j > sy, and K (x) are contin-
uously differentiable and that all the derivatives are uniformly bounded in ;7 and

x.



If we have established the weak convergence of n‘l/(aﬁ)W[nt] in D[0,1] and that
n= B (S — Tiny) and n= @) (1,1 — Winy) are asymptotically negligible for any
t, Theorem 2.1 follows from (8).

In the application to the kernel density estimator, K;(x) depends on the sample
size through the bandwidth. Thus the dependence on ;7 should be avoided to make
the proof simpler. The decomposition (9) is for Theorem 2.2.

We give some comments on the propositions before we state the propositions.
Propositions 2.1 and 2.2 correspond to Lemma 5.1 in Surgailis (2002) and Propo-
sitions 2.3 and 2.4 correspond to Lemma 5.2 in Surgailis (2002). Proposition 2.5
corresponds to Lemma 3.1 in Surgailis (2002) and that Proposition 2.6 is essentially
Lemma 3.1 in Surgailis (2002). All the proofs of the propositions are given in Section

3.

Proposition 2.1 Suppose that assumptions A1-3 hold and that K(x) is a bounded
function. Then for any r satisfying {2(af — 1)} V (af) <r <2A (2a8 — 1), there

15 a positive constant C' such that
E{|S, — T,|"} < C(n™2*24" L) for any positive integer n.

Proposition 2.2  Suppose that assumptions A1-2 hold and that K(z) is bounded
and integrable. Then we have the same result as in Proposition 2.1. Besides if we
choose another r satisfying (aff + o?8 —a—1)V (af) < r < (aff +a?8 — a) A

{aB(a+ 1)} A2, there is a positive constant C' such that
B{|T, — T|"} < C(n=0B=0"F+a+147 L 0y For any positive integer n.

Since —aff+r+1 < r/(af) < 1 in Propositions 2.3-4 below, it is difficult to show
that n="/ (aﬂ)(T[nt] — Winy) and n=1/ (aﬂ)(T[’nt] — W[’m}) are asymptotically negligible

in D[0,1]. For example, see Theorem 12.3 in Billingsley (1968),



Proposition 2.3 Suppose that assumptions A1-3 hold and that K (x) is a bounded
function. Then for any r satisfying 1 < r < af3, there is a positive constant C' such
that

E{|T, — W,|"} < Cn= 1 for any positive integer n.

Proposition 2.4 Suppose that assumptions A1-2 hold and that K(x) is bounded
and integrable. Then for any r satisfying 1 < r < af, there is a positive constant

C such that
E{|T! —W!|"} < Cn=*"1 " for any positive integer n.

Proposition 2.5 Suppose that assumptions A1-3 hold and that K (x) is a bounded

function. Then

> (Kj(bjer) — E{K;(b;er)})

J=so

belongs to the domain of attraction of an «f-stable law. As a result,

*1/ (aB) zn: i b 61 E{K](bjel)})

i=1 j=so

converges in distribution to cé/(aﬁ)c}LJr + c}/(aﬁ)c[}[f. See Theorem 2.1 for the

definitions of ci and L*.

Proposition 2.6 Suppose that assumptions A1-2 hold and that K(x) is bounded

and integrable. Then

o0

Y (Ko(bjer) — BE{K(bje1)})

Jj=so
belongs to the domain of attraction of an «af-stable law. As a result,
n o0

n YOS S (Koo (bjer) — B{Kx(bjer)})

i=1 j=sp

converges in distribution to cé/(aﬁ)c}[ﬁ + c}/(aﬁ)c[}L*. See Theorem 2.1 for the

definitions of ¢t and L*.
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We are prepared to prove Theorem 2.1.

Proof of Theorem 2.1) Note that

[nt]
n VDS (K (X;) - B{K (X))} (15)
i—1
= n—l/(aﬂ)(s[nﬂ — Thg) + n~1/(aB) (Ting — Wing) + n—l/(aﬁ)W[nt]_
Since 332, (Kj(bje1) — E{Kj;(bje1)}) belongs to the domain of attraction of the
af-stable law in Proposition 2.5, the weak convergence of nil/(o‘ﬂ)W[m], 0<t<1,
in D[0, 1] follows from Theorem 2.4.10 in Embrechts et al.(1997).
Next we deal with the first and second terms on the right hand side of (15).

First we choose r; satisfying the condition of Proposition 2.1. Then we have
E{|n= D (S — Ting) [} < OO0 ([nt] 274257 - [nt]) (16)

for any ¢ larger than 1/n. Note that 0 < —2af+2+r; < ri/(af) and 1 < r/(af).

Next we choose r, satisfying the condition of Proposition 2.3. Then we have
E{In™" ) (T — Wing)|2} < Cnr2/(@) [pg]mob 1572 (17)

for any ¢ larger than 1/n. Note that 0 < —af + 1+ 19 < 1ro/(af3).
The theorem follows from the weak convergence of n !/ (O‘ﬁ)W[nt], 0<t <1,

(16), and (17). Hence the proof of the theorem is complete.

In the proof of Theorem 2.2, we use A4, Propositions 2.2, 2.4, and 2.6 instead of
assumption A3, Propositions 2.1, 2.3, and 2.5. When we examine the tail conditions,

K (bje;) is more tractable than Kj;(bje;) in some applications. See Section 4.

3 Proofs of propositions

In this section we prove Propositions 2.1, 2.2, 2.3, and 2.5.
When K(z) is a bounded integrable function, the arguments in the proofs of

Propositions 2.1, 2.3, and 2.5 are still true without assumption A3 since [ |K(£)|d¢ <
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oo and A4 holds. Therefore we omit the proofs of the first half of Proposition 2.2
and Proposition 2.4.

An argument similar to the proof of Proposition 2.3 is found in Surgailis (2004,
p.337). Proposition 2.5 is a modified version of Lemmas 3.1 in Surgailis (2002).
Proposition 2.6 is essentially Lemma 3.1 in Surgailis (2002) and we omit the proof.

We write F; for the o-field generated by {¢;|j < i}.

Proof of Proposition 2.1) We represent S,, and T,, as

S0 = 33 [KOUE by~ ) = e = S (9

+3 3 [BIK ()17}~ EK (X)),
T = 3% [ KU~ beimy) - BUE ~ b DiE (19

The right hand side of (18) is typical of the martingale decomposition approach.
By using the von Bahr and Esseen inequality (von Bahr and Esseen 1965) and the

boundedness of K(z), we obtain

n sp—1
B{I>_ > [B{K(X)|Fi} — B{K(X)|Firy1}]["} < Cn. (20)
=1 j=1
We evaluate
n so—1
Su =T 3 S [BIK(X)IF )~ BE(X)IF, ) = 30 3 [ KU (€)de
i=1 0 =1 S0
i= i= (21)
where
Uij(€) = fi(€ = biei j — Xijn)
—fi (€ = Xijin) — fi(€ = bjeiy) + B{f;(€ = bjeij) -
As in Surgailis (2002), the expression in (22) below is useful in evaluating (21).
[ K@U (22)
—bjei_j -
= [UJ{[, 7 i+ 2= Kign) = (6 + )=} K (€)de] G du).

12



We consider 8 cases to treat (22) and give upper bounds of (22) to each case.
L fbjeigl > 1, | Xijia| > 1, [byul > 1
bjeisl > 1, [Xijnl > 1, |bjul <1
[bjei 4l > 1, [Xij| <1, |bjul > 1
bieisl > 1, [Xiynl <1, |bjul <1
[bjei5l <1, [Xiju| > 1, |bjul > 1
bjeisl <1, [Xijua| > 1, |bjul <1

bjeims] < 1, |X;jp1] < 1, |bjul > 1

¥ X S ok W

|bj6z'fj| < 1, |Xi,j+1| < 1, |bJU| <1

We present the upper bounds and the proofs.
1. [(22)] < CI(|bjeiy| > DI(|Xigia] > 1)]o5]*
Proof) We should deal with

[ e = by = Xag
—fi(€ = bieiy) — f3(€ = bju— Xijp1) + f(€ — bju)}K(f)dg} 4G (u)

<I(|bjei—j| > DI(|X;j41] > 1).

The expression inside [ ] is bounded since [ f;(§)dé = 1. Lemma 5.1 and I(|bju| > 1)
yield |b;|*.

2. (22)] < CI(|bjeig| = DI(|Xiga] = 1).

Proof) The proof is similar to that of 1. We have no |b;|* in 2 since I(|bju| > 1)
is replaced with I(|bju| < 1).

3. |(22)] < CI(|bjeij| > D)Xy [ L(1Xija] < 1)1y~

Proof) We should deal with

—fi(€ = bjeig)| + | £1(€ = bju — Xiji1) — fi (€ — bj“)|)d§}dG(U)

< I([bjei—j| > 1I(|Xijia] < 1).

13



The bound follows from (23), assumption A3, and Lemma 5.1.

4. 1(22)] < CI(bjei—s| 2 )| Xig (| Xiga| < 1).

Proof) The proof is similar to that of 3. We have no |b;|* in 4 since I(|bju| > 1)
is replaced with I(|bju| < 1).

5. 1(22)] < CI(IXij4a] = 1)lbs*

Proof) The proof is similar to that of 1. In 5, I(|bje;_;| > 1) is replaced with
[(|bj€i—j| < ].)

6. 1(22)] < CI(IXij4] = D (Ibjeigl I (bjei—s| < 1) + [bs|* ).

Proof) We should deal with

/|bju<1[/ bew /'f 42— Xija) (24)

—F(&+ 2)|d€ }dz]dG () (1K, ] > DI(Jbjes | < 1).

The expression inside { } is bounded due to assumption A3. Hence (24) is bounded
by

CI(|Xij11] = D{[bjer T (1bjei 5| < 1)+ 1 [bjuldG (u) }. (25)

|bju

The bound follows from (25) and Lemma 5.2.
7.1(22)] < O1 Xy [T(1 K| < Dlbgl*
Proof) We should deal with

bjei_; ,
[ /|bju|>1 {77 (J 1+ 2= Sigen) = £(€ + 2)1d€) d=}dGlu) - (26)
oy (T UE = Kigan) = 56 = fi(€ ~ by = Kigo)
+£5(€ = bu)|d€)dG ()| T(| X j1| < DI([bjei5 < 1).
Assumption A3 implies that (26) is bounded by

ClRsjil (Xl < 1) [ dG(w).

bjul>1
Hence the bound follows from Lemma 5.2.
8. 1(22)] < C| X | T(1Xija1] < 1) (|bseimg I (|bseimj| < 1) + |bj]* ).

14



Proof) This bound follows from assumption A3, (22), (4.11) in Surgailis (2002),

and Lemma 5.2. Actually, in this case, we have

T e+ 2= i) — (€ +2)1d: ] Glaw) < 01Kty

and

/ [/ { /Obju| IFi(E+ 2 — Xign) — f(E+ z)|dz}d§][(|bju| < 1)G(du)
< C1 Xy 54110

The above bounds for 1-8 and Lemmas 5.1-2 yield

B{| [ K€U (e[} < ¢t 27, (27)

We evaluate (21) by using (27). We divide (21) into A,, and B,,, where

n n—i+l

Ay = XY [ KOUi©de, (28)
Bo = L% [ KOUOlG+1 2 s)de (29)

We can apply the von Bahr and Esseen inequality to A, and B, because U, ; is
Fi_j-measurable and E{U; ;|F;_;j_1} = 0 almost everywhere.

By (27), von Bahr and Esseen inequality, and Minkowski’s inequality, we can
derive the bounds for E{|A,|"} and E{|B,|"}.

Noticing that —2af 4+ 1 < —r, we have

n n—i+1 r
Bl <2X (30 (7)) <o (30)
=1 1=1
As for B,,, we have
[ n+l .
B{B.} <2) (X (> (31)
I=1  j=1+

< COp2eB+2r i l{ (i)(—2a6+1)/r+1 B (1 n i)(—Qaﬂ-H)/r-H}r

—~nl\n n
Oy —20B+2+r /°° {u(—2a6+1)/r+1 B (1 n 1 +u)(—2a,8+1)/r+1}rdu
0 n

Cn~2eb+2+r

IN

IN
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The proposition follows from (30) and (31). Hence the proof of the proposition

is complete.

Proof of Proposition 2.2) The first half of the proposition can be verified in the
same way as Proposition 2.1 since [|K(£)|d¢ < oo. We only have to replace d§
with |K(§)|d¢ and exploit the integrability of K () in the proof of Proposition 2.1.

We prove the second half of the proposition. We represent T,, — T as

T, —T,

- >y /(fj(g—bjei,j) — f(& = bieij)

—E{/;(§ = bjei—j)} + E{f (£ — bjeiy) }) K()dE
= 23 [, Uit o) = rie (el aci)

1=1 j=so

(32)

By using Lemma 5.3, we obtain
/A /b FE+2) = F1(& +2))de K ()de| < Cllbjes i) AL (33)
Lemmas 5.1-2 and (33) imply
B{| [{ [ (ile+2) - sle+ 2Nz} (e[ } < ot (3

When ¢,_; is replaced with u in (33), we can treat it by applying Jensen’s inequality.
With (34), we can proceed as in the proof of Proposition 2.1 with —2a/ + 1

replaced with —a8 — o?8 + .. Then we have
E{|T, — T}|"} < C(n-ofmetftotiir 4 )

Hence the proof of the proposition is complete.

Proof of Proposition 2.3) First we consider the properties of K;(z). Let K;(0) =

0 by redefining K;(z) by K;(z)— K;(0). Then we have
|K;(z)| < C(LA =) (35)
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by the Taylor expansion at 0 and the uniform boundedness of the derivatives. By

using (35) and Lemmas 5.1-2, we get

E{|K;(bjer)|"} (36)
< C(P(bjer| > 1) + E{|bjer| " I([bjer] < 1)})

< Clby|* < ¢j=?

We represent T,,— W, as (37) below to apply the von Bahr and Esseen inequality.

Tn—Wn:—kzn:IAn(k)JrliBn(k), (37)
where 7 7
Au(k) = j:%)(fe(bjenﬂw — B{K; (bjens11)}),
Buk) = :;W:(Kj(bjel_k) B (e}

We evaluate the two terms on the right hand side of (37) by using von Bahr and

Esseen inequality, Minkowski’s inequality, and (36). Then we have

E{| Z An(k)|r} <2 Z (ijaﬁ/r)r < Cn—aﬁJrrJrl, (38)
k=1 k=1 j—k

00 k+n—1

B By <25 (% i) (39)
—af+r — 1 k\—as/r kN —ap/r r
< Cn B++1};ﬁ{(ﬁ) B H_(l‘f‘ﬁ) B +1}

< (Op 0Bt+r+l /OOO {u*aﬁ/rJrl _ (1 + % +u)_a6/r+1}rdu < CpoBtrl

(37)-(39) yield the result of the proposition. Hence the proof of the proposition
is complete.

Proof of Proposition 2.5) Put

oo

nk(z) = Y [Kj(bjz) — E{K;(bjer) }].

Jj=so0
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We deal with only the case where ¢z < 0 < cf. The other cases can be treated in

the same way. If we establish

/8 s
lim [2] 7k (2) = 07 (Koo(#s) — Koo(0))s H1/8ds, (40)

the proposition follows from the argument in Lemma 3.1 in Surgailis (2002). Note

that

lim_|o|"P(ng () <7) = ClW(—/OOO(KOO(—S)—KOO(O))S(1+1/ﬁ)d8)a

and
of _ o[ _ ~(14+1/8) 75\ ¥
Tim @ P(nx(e) > ) = o Baﬁ( /0 (Koo(5) — Koo(0))s ds)

when we have (40).

We will establish only (40) when z — co. We can proceed in the same way when
z — —oo. Consider K;(z)— K;(0) as in the proof of Proposition 2.3 and remember
(35). Then it is easy to see that ng(z) is well defined.

As in Surgailis (2002), we represent 1y (z) as
2 Ve (2) = 21/ / — Kiy(0))dt + O(z17). (41)
By making a change of variables of zcyt™® = s, we obtain

Pk (2) (42)
1/6 203y 141 1
= 3 / Ki(zeo 9171 (bizeos)17612) — Kizeg/syr/81(0))s™ D ds + O(271F).

In (41)-(43), [a] in subscripts stands for the largest integer which is smaller than or
equal to a.

(35) implies that

| K (20051781 (Bzco5)1/812) — Kiaeoysyro1(0)] < Cr({(zco/s) ' 2} A Cy). (43)

(40) follows from (42), (43), Lemma 5.4, and the dominated convergence theorem.

Hence the proof of the proposition is complete.
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4 Density estimation

In this section, we investigate the asymptotic properties of the kernel density esti-
mator of f(zy), where x; is a fixed point and f(x) is the density function of Xj.
We still assume that 0 < o <1 and 1 < aff < 2.

The kernel density estimator f (xo) is defined by

fuo):%éK(Xi;“),

where h is the bandwidth, K(§) is a symmetric bounded density function, and

(44)

X, is defined in (1). As we mentioned in Section 1, the asymptotic distribution
of f(zo) — E{f(xo)} is given in Honda (2006) in the cases of a, b, and ¢ defined
in Section 1. In Honda (2006), K(§) has compact support. We just assume that
[E2K(£)dE < oo in this paper.

We derive the asymptotic distribution of f(xzy) — E{f(x)} by following the
argument for Case 2 in Honda (2006) and exploiting Theorem 2.2 in this paper.
The asymptotic distribution is the same as in Case 2 in Honda (2006).

We take h = c3n™7, where c¢3 is a positive constant and 0 < v < 1. We
recommend 7 = 1/5 from a theoretical point of view. It is because this is the
optimal order to estimate f(xo) when the effect of the heavy tail does not appear
in the asymptotic distribution of f(zo) — E{f(x)}. The asymptotic distribution is
given in Theorem 4.1 below. The asymptotic distribution is the same as in the case
of independent and identically distributed observations when 2/(af) < 1+ . On

the other hand, the effect of the heavy tail appears when 2/(af3) > 1+ 7.

Theorem 4.1 Suppose that assumptions A1-2 hold. Then we have
2/(@B) < 1+7: Vnh(f(xo) — B{f(x0)}) = N(0, 5 (o)),
2/(aB) > 1+7y: nt VD (f(ag) — B{f(20)}) 5 &/ cf L+ + /5L,

where % means convergence in distribution,
= [ KHde =0 [ (T ) = ) Dt
0
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and see Theorem 2.1 for the definitions of o and L*.
Proof) We decompose f(z9)—E{f(z0)} as in Wu and Mielniczuk (2002) and Honda
(2006). We reproduce (2.2) in Honda (2006) here.

f(wo) = B{f(0)} = Sa + Sb, (45)
where
Se = o SR - B (R A (1)
= S R - [ K@l + ch - T
S = o [E(K(EIR ) - B{E(F) (47)
= LS [ [ K@ fulro 6~ Kyt~ TE{E (T

—

The asymptotic distribution depends on which is stochastically larger, S, and Sj.
Note that [ K (&) fs,(xo + &R — x)d€ in (47) is bounded and that

J{ [ K€l + €h — ) o =

We state two propositions about the asymptotic distributions of S, and S,. We

omit the detailed proofs.

Proposition 4.1 Suppose that assumptions A1-2 hold. Then we have
VnhS, % N(0, kf ().

Proposition 4.2 Suppose that assumptions A1-2 hold. Then we have

nlfl/(aﬁ)sb LN C;/(aﬂ)c}‘L‘}* n C}/(aﬁ)C;L,.

Proposition 4.1 follows from Lemma 4.1 and the proof of Theorem 2.2 in Honda

(2006). As for Proposition 4.2, we should apply the argument for Theorem 2.2 in
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this paper to [ K(§)fs,(zo + Eh — x)d€. Then the argument for Theorem 2.2 here
implies that
nSy, — W' = o,(n'/(@%), (48)

where

Wi = 33 (K lbe) ~ EKuelbie)}),

Knol2) = [ K(€)(flwo+&h— 2) = f(zo +EM)dE.

Since [&2K(£)d€ < oo, the arugument in the proof of Proposition 4.2 in Honda

(2006) carries over and we have
n—l/(aﬁ)W;L N cé/(aﬁ)c}rLJf i C}/(aﬂ)C;L_‘ (19)

Then Proposition 4.2 here follows from (48) and (49).
By combining (45) and Propositions 4.1-2 here, we obtain the asymptotic distri-

bution in Theorem 4.1. Hence the proof of the theorem is complete.

5 Technical lemmas

All the technical lemmas and the proofs are given in this section. First we state the

lemmas. Then we prove the lemmas.
Lemma 5.1 Suppose that assumptions A1-2 hold. Then
P(|bjei| > 1) < Cb;|* and P(|)~(1,j| >1) < Cj7 Y for any j > 1.

Lemma 5.2 Suppose that assumptions A1-2 hold. Then for any v > 1, there

exists a positive constant C., such that
B{lbjer["T(1bjer] < D} < Colbyl* and - B{X 1 T( K1) < D} < Gyt
for any 7 > 1.
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Lemma 5.3 Suppose that assumptions A1-2 hold. Then
sup |F}'(z) — F"(2)] < Cj~*"*' for any j > s.

Lemma 5.4 Suppose that assumptions A1-2 hold and that K(x) is a bounded

function. Then
jli_)r(r}o sup |Kj(r) — Koo(x)| = 0.
We prove the lemmas.
Proof of Lemma 5.1) The lemma follows from (3.35) in Pipiras and Taqqu (2003)
with 7 ~ ¢o577.
Proof of Lemma 5.2) We verify only the latter inequality with v = 1. When j is
sufficiently large, 2|b;| < 1 for any [ > j. Then by exploiting (3.41) in Pipiras and

Taqqu (2003), we get

B{|X 4| I(|X1,] < 1)}

oy o
< C;(/o dz + |by| x dx)
=j

2/

IN

O MIb + b1 — @Jbl) ")

=3

CY ||™ < Cj Pt

I=j

IN

Proof of Lemma 5.3) Notice that

oo (50)
= / |Fj(z —y) — F]"(x)|df7j(y)
: /y|<1 | (x —y) = F}'(2)|dFj(y) + C /ym dF;(y)

< O( _ WldF) +P(X15] = 1)),

The lemma follows from (50) and Lemmas 5.1-2.
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Proof of Lemma 5.4) By using the differentiability and boundedness of f;(z) and

Lemmas 5.1-2, we have

< [Ifile=y) = H@IdE )

< [ ey - f@aBm +C [ dF)

lyl<1 ly|>1

IN

a | > ol ian
O( [, Wlafsw) + P(1%i, > 1) < C;

Then
Jlim sup|f(z) — f;(x)| = 0. (51)

(51) and Scheffé’s theorem imply

lim [ 17(2) = fe)ldz = 0.

j—o0

Hence

K5(@) — Kao(@)] < [ K@+ 9l £5) = f@)ldy = 0 as j — oo.
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