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Abstract

This paper considers a vector autoregressive model or a vector error correction model
with multiple structural breaks in any subset of parameters, using a Bayesian approach with
Markov chain Monte Carlo simulation technique. The number of structural breaks is deter-
mined as a sort of model selection by the posterior odds. For a cointegrated model, cointe-
grating rank is also allowed to change with breaks. Bayesian approach by Strachan (Jour-
nal of Business and Economic Statistics 21 (2003) 185) and Strachan and Inder (Journal of
Econometrics 123 (2004) 307) are applied to estimate the cointegrating vectors. As empirical
examples, we investigate structural changes in the predictive power of the yield curve and the
US term structure of interest rates. We find strong evidence of three structural changes in both

applications.

Key words Bayesian inference; Structural break; Cointegration; Bayes factor;

JEL classificationC11; C12; C32

1 Introduction

The last decade has seen extensive study of the structural break in time series models. Papers

such as Perron (1989) deals with this issue in the framework of a priori imposed break dates,
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while others use methods where the break date is endogenized (Banerjee, Lumsdaine and Stock,
1992; Christiano, 1992; and Zivot and Andrews, 1992). Much of the subsequent research focus
on testing for a structural break when the break date may not be known. Among thesepkhe
statistic of Andrews (1993) and thexpF and aveF statistics of Andrews-Ploberger (1994) are

most notable. Based on Andrews and Andrews-Ploberger’s statistics, Hansen (2000) proposes a
bootstrapping method for testing for a single structural break.

An extension of the literature on testing for a structural break involves allowing for more than
one possible break date. For many macroeconomic or financial time series with the possibility
of a structural break, the assumption of at most one break date is unrealistic and restrictive. Bai
and Perron (1998) propose a test for multiple structural breaks at unknown dates using the dou-
ble maximum test. Another testing method for detecting multiple changes is a likelihood ratio
test with the null ofl breaks against the alternative- 1 break points (Bai, 1999). While these
methods only allow for structural breaks in mean, breaks in variance are often found in economic
and financial data. Schwert (1990) finds that volatility of the stock-market is higher during and
after the 1987 crash. Inclan (1993), Inclan and Tiao (1994), and Chen and Gupta (1997) detect
multiple breaks in variance for several series of stock returns. Engel and Hakkio (1996) find that
European Monetary System exchange rates have higher volatility during the periods of alignment,
and Kim and Engel (1999) find multiple breaks in variance in real exchange rates associated with
historically significant monetary events. Kim and Nelson (1999) combine a structural break with
the Markov switching model to find evidence of variance breaks in postwar business cycles. For
a Bayesian approach to multiple structural breaks, Wang and Zivot (2000) consider univariate
models with multiple breaks in level, trend and variance. Another Bayesian approach to multiple
structural breaks is provided by Chib (1998), who considers structural breaks as regime switching
of discrete-state Markov process with restricted transition probabilities.

The above literatures consider structural break(s) in univariate models. The estimation of and
testing for structural break in cointegrated models has been also received attention. Gregory and
Hansen (1996a) study residual-based tests for cointegration with a single structural break in a
single equation model. They propos&DF—, Z,—, andZ; —type tests designed to test the null of

no cointegration against the alternative of cointegration in the presence of a possible regime shift.



Gregory and Hansen (1996b) extend this work, by permitting a trend shift as well as a regime
shift and providing the critical values for testing cointegration with a single break. Seo (1998)
derives the Lagrange multiplier test for structural breaks in cointegration relations and adjustment
terms, using the framework of Andrews and Ploberger (1994). Hansen and Johansen (1999) test
parameter instability in cointegrating vectors based on Nybldarststistic (1989). Hansen (2003)
explores the multiple-break case in cointegrated systems, and allows changes in any subset of the
parameters, where the time of the change points and the number of cointegration relations are
treated as known. Inoue (1999) derives a rank test for cointegrated systems with a structural
change in trend. Bai et al. (1998) develop methods for constructing confidence intervals for the
date of a single break in multivariate time series, and show that the accuracy of the break point
estimators can be improved with series that have common breaks. While these authors assume
the constant volatility in VAR, Bai (2000) allows the variance-covariance matrices to be affected
by the breaks, using the quasi-maximum likelihood method. He also considered multiple breaks
instead of a single break.

The main contribution of this paper is the development of general multivariate structural
break models. We consider multiple structural breaks in any subset of the parameters in VAR
or co-integrated VAR models, using a Bayesian approach which extends Wang and Zivot’s (2000)
method for detecting multiple structural changes in univariate models. In cointegration analysis,
as changes in volatility and other terms are likely to affect the strength of the adjustment toward
the equilibrium, it is of interest to analyze a model where structural breaks also affect in the ad-
justment terms, cointegrating vectors, and/or cointegrating rank. Hansen (2003) considers similar
general cointegration models with structural breaks in any subset of parameters, where the number
of cointegration relations, the number of breaks and the location of the break points are known.
This paper considers general multivariate cointegrated models with breaks in any subset of the
parameters where the break points and the rank are unknown. This is possible by applying a valid
Bayesian approach to cointegration proposed by Strachan (2003), which is based on the singular
value decomposition method by Kleibergen and Paap (2002) and Kleibergen and van Dijk (1998).
For a less general case where cointegrating rank is not allowed to change with breaks, a simpler

method by Strachan and Inder (2004) can be applied.



The Bayesian approach has several advantages over the classical method in the context of
structural break models as it is technically simpler, allows inferences that are optimal given the
framework, and allows for nonnested model comparison by computing posterior odds (see Raftery,
1994). Additionally, inference from the Bayesian approach is based on the exact finite sample
properties for all of the parameters of the model. Finally, unlike most classical methods for de-
tecting structural breaks, the Bayesian approach provides information about uncertainty in all
estimated parameters including the location of the break dates. When the posterior probability
mass function of the change point exhibits a substantial range in dates, the structural break may
occur smoothly, rather than suddenly at a particular date.

This paper is organized as follows. Section 2 presents a Bayesian approach to VAR model with
multiple structural breaks, using a simple Gibbs sampler. In Section 3, we extend the approach
of the VAR model with multiple breaks to vector error correction models with multiple breaks
in deterministic terms, adjustment term, cointegrating vector, variance-covariance matrices, and
cointegrating rank, using Metropolis-within-Gibbs sampling algorithm, based on the method by
Strachan (2003). We also consider a case where cointegrating rank is not allowed to change with
breaks. This case is treated by applying a simpler method by Strachan and Inder (2004) with
the Griddy-Gibbs sampler to estimate the cointegrating vectors. Section 4 considers the issue of
model selection for detecting multiple structural breaks using Bayes factors calculated by using
Schwarz BIC method and Chib’s (1995) method. In Section 5 determining the cointegrating rank
is considered for the two cases - one for where the cointegrating rank is subject to change and the
other is for where it is not subject to change with breaks. In Section 7, Monte Carlo simulations
are presented using artificially generated data for VAR models and vector error correction models
with multiple breaks in order to examine the performances of detecting the number of breaks using
our methods. To illustrate an empirical study of the VAR model with multiple breaks, Section 8
presents the predictive power of the yield curve on output growth. For an application of the vector
error correction model with multiple breaks, we apply the method to investigate US term structure
of interest rates. Section 9 concludes. All computation in this paper are performed using code

written by the author with Ox v3.30 for Linux (Doornik, 1998).



2 Bayesian Inference in Vector Autoregressive Model with Multiple

Structural Breaks

2.1 Statistical Model for VAR with Multiple Structural Breaks

In this section we consider a Bayesian approach to VAR model with multiple structural breaks.
Lety; denote a vector ai-dimensional 1 x n) time series. If all parameters in a VAR are assumed

to be subject to structural breaks, then the model is

p
Vo= +td+ Zytfid%,i +& (1)
=

wheret = p,p+1,...,T; pis the number of lags; ang are assumedl(0,Q;) and independent
over time. Dimensions of matrices gug & andg; (1xn), ®; andQ; (nxn). The parameters
Lk, & andQ; are assumed to be subjecticstructural breaksng < t) with break pointdy, ..., by,
whereb; < by < --- < by, so that the observations can be separatedimtdl regimes.

Equation (1) can be rewritten in the matrix format as:

Y = XB+E )
/
wherey = Yo Yorn oo )/T]’X:[Xl X2]7
Sip ' Smylp S1,p Sm+1,p
X Si,p+1 " Smtl,p+l 251 pi1 e 2Smi1,pt+1
1= ,
st Smar (T=p+Dsr o (T—p+Dsniar |
Sl,pypfl - S, py;l_ ...... Smi1, py,pfl - Sm+1,p)/1
x SLprYp v SipraYy e SmiLp+Yp 0 SmilptiYa
2_ ’
| SuTYror  SLTYroppr e SLTYro1  SwLTYropi1 |
!/
B=| 1, ) Mo O o O Py s ®a, o P, o, P



Let T be the number of rows of (1 x n), so thatt =T — p+ 1, thenX is T x K wherek =
(np+2)(m+1), andBis k x n. s in X; and Xz is an indicator variable which equals to 1 if

regime isi and O otherwise.

2.2 Prior Distributions and Likelihood Functions for VAR with Multiple Structural

Breaks

Letb= (by,by,...,bm)" denote the vector of break dates. We specify priors for parameters, assum-
ing prior independence betwebBandQ;,i=1,2,...,m+1, suchthap(b,B,Q1,Qp,...,Qmi1) =

p(b) p(B) ™' p(Qi). This is because if we consider that the priorBds conditional orQ as is

often used in regression models with the natural conjugate priors, it is not convenient to consider a
case when the error covariance is also subject to structural breaks. Thus, the prior desisy for

set as the marginal distribution and vectorizegesB) unconditional orf; for convenience. The

prior for the covariance-variance matrf®;, is specified with an inverted Wishart density. For the
prior for the location of the break datbswe choose a diffuse prior such that the prior is discrete
uniform over all ordered subsequenced ef p+1,...,T —1. We consider that all priors fdp,

Q;, andvedB) are proper as:

p(b) ~ U(p+1,T-1) 3)
Qj ~ IW (Wo,,Vo,) (4)
vec(B) ~ MN (vec(By), Vo) (5)

where U refers to a uniform distributionW refers to an inverted Wishart distribution with pa-
rametersjp; € R™" and degrees of freedorwgj; MN refers to a multivariate normal with mean
veqBp) € RK™1 k = (np+ 2)(m+ 1) and covariance-variance mathi € RK™ K",

The joint prior ofb, B, andQ; is given by multiplication of (3) - (5) as follows:



p(b7 87 Qla QZ) ey Qm+1)

m+1
0 q NJOi‘VO‘i/Z’Qi‘—(vo_i+n+1)/2 ‘VO|_1/2
L :
mH-1

1
X exp[—2 {tr .

Zi (Qi oi)

+vec(B—Bo)'V, *vec(B—By) }]

(6)

Using the definition of the matric-variate Normal density (see Bauwens, et al., 1999), the
likelihood function for the structural break VAR model with the parametel®,Q;, ..., Qm.1, IS

given by,

£(0,B,Q1,...,Q0me1Y)

O m+l|Q|_ti/2 exp Ly
[l 2

iy t/2 pmil / .
— ('] Qi7" >exp(—2 Zl [(VGC(Yi —XB))' (Qi® 1) * (vec(Y, — XB))

E{Qil(%—NB)’(\G—NB)}D

[E—

)

wheret; denotes the number of observations in reginne= 1,2, ..., m+1;Y; is thet; x n partitioned

(7)

matrix of Y values in regime; andX; istj x K partitioned matrix ofX values in regime.

2.3 Posterior Specifications and Estimation for VAR with Multiple Structural Breaks

The joint posterior distribution can be obtained from the joint priors given in (6) multiplied by the

likelihood function in (7), that is,

p(baBaQ].)"'va-Fl‘Y) 0 p(b7BaQ].7"'an+1)£(b787Ql>"'an+1 ’Y)

mil Voi/2 |, |~ (i4voi+nt1)/2 ~1/2
0 I_l{NJOl’ |QI| } ‘VO|



x exp(‘i [" (EQi 1) +E{([V80<Yi ~XB)J (@ 1) vedY, - XB)) }

+vec(B— Bo)'V, tvec(B—Bo)]) (8)

Consider first the conditional posterior bf i = 1,2,....m. Given thatp=by < --- < bj_1 <

b <bi;1 < - <bm1 =T and the form of the joint prior, the sample space of the conditional
posterior ofb; only depends on the neighboring break ddies andb;, 1. It follows that, for

bi € [bi_1,bi1],

p(bl | [b_bi]aB)le'“an+laY) O p(bl | biflubi+1uB)Qi)Qi+17Yi) (9)

fori=1,...m, which is proportional to the likelihood function evaluated with a bredl anly
using data between 1 andb;, ; and probabilities proportional to the likelihood function. Hence,

b; can be draw from multinomial distribution as

bi ~ M(biy1—bi—1,pr) (10)

wherep, is a vector of probabilities proportional to the likelihood functions.
Next, we consider the conditional posterior®f, andvec(B). To derive these densities, the

following theorem can be applied:

Theorem In the linear multivariate regression model¥ XB+ E, with the prior densities of
vedB) ~ MN(vedBy), Vo) andQ ~ IW (Wo, Vo), the conditional posterior densities of (&} and

Q are
vedB) | Q,Y ~ MN (vedB,),Vs)
Q|B,Y ~IW (¥,,v,)
where the hyperparameters are defined by
veqB,) = [Vy 1+ Qe (X'X)] [vo—lveo(Bo) +Q® IK)’lveqX’Y)]
Vo= [Vgl+Q e (XX)]

9



W, = (Y —XB)/(Y —XB)+ ¥
v, =T+Vg

Proof: see Appendix Al

From (8), we can write two terms using the above theorem as:

miil{[vec(vi —XB)) (Qi @ I¢) *vec(Y; — xB)} + [vec(B — Bo)]'V, tvec(B — Bo)

— [vec(B—B,)]'Vs 'vec(B—B,) +Q
where
o E{[vec(Yi)]' @ Ir)flvec(yi)} + [vec(Bo)]'Vy *vec(Bo) — [veo(B,)]' Vg ‘vec(B,)

Thus, the conditional posterior € is derived as an inverted Wishart distributiontag b, B,Y ~

IW (Wi ,,Vsi) whereW , = (Y — XB)' (i — XiB) + Wo,; andv, j =t + Vg, thus:

p(Qi | b,B,Y) = Cyt| Q| ~ i1/ 2exp [—;tr (Qilwi,*)} (11)

whereCyy = 2"(+Vo)/2p(=0/4 M F{ (G +vg; +1— ) /2} Wi~ T)/2, T (a) = [ X Lexp(—x)dx
for x > 0. The conditional posterior afec(B) is a multivariate normal density with covariance-

variance matrixyg, that is,
p(vec(B) | b,Qu,..., Qmi1,Y) = (2102 V| H2exp —% {[vec(B—B.)|'Vg 'vec(B-B,)}

(12)

where

10



m+1 -1

Votey (9t (%)

vec(B,) =

m+1
VoflveC(Bo) + ZL {(Qi ® IK)_lVeC(xilYi) }] )

- (13)
and

m+1 -1
Vo= |Vy i+ Z {Q7 @ (X'X) }] (14)

Given the full set of conditional posterior specifications above, we illustrate the Gibbs sam-
pling algorithm for generating sample draws from the joint posterior. The following steps can be

replicated:

e Step 1: Setfj = 1. Specify starting values for the parameters of the mdu®l,B(?, and

0 . . . . ..
Qi( ), whereQ; is a covariance-variance matrix at regime

e Step 2a: Compute likelihood probabilities sequentially for each ddﬂle:';lbéjfl) +1,..., bgjfl) —
1 to construct a multinomial distribution. Weight these probabilities such that the sum of

them equals 1.

e Step 2b: Generate a draw for the first break taten the sample spaccbéj_l) , b(2j_l)) from
p(b(lJ) | béjil),b(zjil),B(j_l),Q(ljil),Q(zjil),Y) )

e Step 3a: Foi = 3,...,m+ 1, compute likelihood probabilities sequentially for each date
atbi_; = bi(igl) + 1,...,bi(j*1) — 1 to construct a multinomial distribution. Weight these

probabilities such that the sum of them equals 1.

e Step 3b: Generate a draw of tlie- 1)th break datebi(i)1 from the conditional posterior
p(b?, | 65 bl BiI-D 007 o™ v). Go back to Step 3a to generate next break

date, but with imposing previously generated break date. Iterate until all breaks are gener-
ated.
e Step 4: GenerateedB)!) from p(vec(B) | b, Q™Y .. .Q!)"Y ) and convert t&8()).

o Step 5: Generat@! from p(Q; | b, BD,Y) foralli =1,...,m+1.

11



e Step 6: Sef = j+1, and go back to Step 2.

Step 2 through to Step 6 can be iteratédimes to obtain the posterior densities. Note that the

first L iterations are discarded in order to remove the effect of the initial values.

3 Bayesian Inference in Co-integrated VAR Model with Multiple Struc-

tural Breaks

3.1 VECM with Multiple Structural Breaks Where the Cointegrating Rank is Sub-
ject to Shift with Breaks

In this subsection, we consider a co-integrated multivariate model with multiple structural breaks
where cointegrating rank and all parameters of the model are subject to shift with breaks. Let
denote ari(1) vector of Ix nwith r linear cointegrating relations. The long-run multiplier matrix

M is decomposed &, wherea is the adjustment term arftlis the cointegrating vector, and both

o’ andB arenxr (r < n). Then, a vector error correction model (VECM) withags is expressed

as

p—1
Ayy = p+to+yal+ ZAymCDl + &
|=
p—-1
= WHtd+y1Ba+ H Ay P +& (15)
=1

wheree ~ iid (0,Q); Y, d andg; are 1x n; ® andQ aren x n.

If all parameters in the VECM (15) are subjectiestructural breakan( < t) with break points
b1,...,bm, whereby < by < --- < by, S0 that the observations can be separatechmtd. regimes,
then the VECM representation withlag for observations= p,p+1,...,T, is:

p—1
Ayt = e +Ht& +Ve-1Brae + ) A1 Pre+& (16)
=1
whereg; are assumed (0, Q).

Equation £?) can be rewritten in the matrix format as:

12



Y=ZN+XI+E=WB+E (17)

/ / /

Ay’p A)/T],W_[Z X],B—[n’ r’},E—[e’p E’T}
/

Zi - Zm+1:|,zi:|:3,p1)/pl S,leT1:| fori=1,... m+1,

|
[ /
n:[rvl n;m] wheref; = Bia,
|
|

C=1 4 - Moy & 8y @ @y g gy o /m+1.,p—1]’
Sip  Smtlp S1,p e Sm+1,p
X SLp+1  Smil[+l 251 pt1 e 2Smi1,p+1
1= ,
st Smiar (T—p+Dsyr - (T—p+D)smar |
SLpAYp1 o SLpdyr e SmiplYp1 r Sme1pdY)
% SLpt1ly, o0 Siprady, e Smitpt1dyp o Smipprady,
0= :
i STAYr g o Sl,TAyT7p+l """ SmiiTAYT 4 o Sm+l¢TA§/T7p+1 ]

Let T be the number of rows of, so thatt =T — p+1, thenX ist x (np+2)(m+1), I is
(np+2)(m+1) xn, Wis T x K wherek = (np+n+2)(m+1), andBisk x n. s; in X is an
indicator variable which equals to 1 if regimeiiand O otherwise. Equation (17) represents the
multivariate regression form o?p).

To estimate the VECM with multiple structural breaks, the method for a VAR model with
breaks presented in the previous section, can be directly applied to esbhm@ie andB =
(M’,I'"), and Strachan (2003)'s method is applied to decompgse Bia;, which is based on
the singular value decomposition (SVD) approach by Kleibergen and van Dijk (1998).

There are several Bayesian methods for estimating cointegrating vectors. The prior for the

cointegrating vectoB, might be chosen as a normal prior or Studedénsity withr? linear re-
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strictions for identification and normalization @nsuch thaf3’ = (I,,B,), wherep, is (n—r) x

r unrestricted matrix. This prior is used by Bauwens and Lubrano (1996) and Kleibergen and
Paap (2002), but criticized by Strachan (2003) as this prior with the linear identifying restrictions
on (3 is very likely to be invalid because this normalization restricts the estimable region of the
cointegrating space, and the prior with this normalization is not invariant with respect to the or-
dering of the variables. Strachan (2003) proposes the method of identifying the space spanned
by the cointegrating vectors. Strachan and van Dijk (2003) and Strachan and Inder (2004) dis-
cuss further problems associated with the use of linear identifying restrictions, and propose the
Grassman approach which is valid prior on the cointegrating space. The identifying restrictions
aref'3 = I, that do not distort the weight on the cointegrating space, unlike the linear restrictions
which entail several problems. Koop et al. (2004) provide general survey of Bayesian inference in
the cointegrated model with a focus on the prior elicitation for the cointegrating space.

Strachan and Inder (2004) propose a simpler solution than Strachan (2003) to estimate the
cointegrating vector and to detect the cointegration rank that uses a Laplace approximation. How-
ever, their method cannot be directly applied in our structural break model where the cointegration
rank is subject to shift with breaks. Their transformation of the VECM?® s Y = WB+E
whereW = (X,ZB) andB = (I"",a’)’, instead of (17), that i¥ = W B+ E whereW = (X,Z) and
B=(I"",N’), so that the number of rank in each of the subsamples should be specified to generate
draws ofB within the Gibbs sampler. In order to use their method, we estimate toakef) (™)
models and calculate the Bayes factors for all these models to determine the number of cointegra-
tion relations in each of the regimes. By transforming the VECM to (17), generating draBvs of
does not depend on the number of rank, and thus we only need to estimate and calculate the Bayes
factors of total of(n+ 1)(m+ 1) models. However, their method can be used for models where
the cointegrating rank is not subject to shift with breaks as shown in the next subsection.

In this paper Strachan’s (2003) approach is used to identify the cointegrating vectors and the
adjustment terms using the SVDIdf and the number of rank is determined using approach based
on the singular value decomposition method by Kleibergen and Paap (2002) and Kleibergen and
van Dijk (1998) as Strachan (2003) applies this method.

Prior specifications fob, Q;, andveqB) are the same as those of a VAR model shown in the

14



previous sectionp(b) ~ U(p+1,T —1), Qi ~ IW(Yg;, Vo), andveqB) ~ MN(veqBy), Vo). We

assume thdi;, i = 1,...,m+ 1, is distributed independently, so that(nk x nk) is defined as
>n O
Vo = (18)
0 2r

whereZn is n?(m+ 1) x n?(m+ 1) matrix such than = Vi, ® Inme+1), Vi, (N x n) is prior
covariance-variance matrix &f; ~ MV N(Mo,Vn,); Zr is n(np+2)(m+1) x n(np+2)(m+ 1)
matrix and is prior covariance-variance matrixfof N ~ MV N(Io, Zr).

With these priors, the posterior densities o2, andveqB) are given as:

p(bi | B,Qi,Y:) O p(bi | bi—1,bi+1,B,Qi,Qi11,Y;) for Vi (19)
Qi |b,B,Y ~ IW ((Y; —WB)' (Y —WB) + Wo;,ti +Vo;) for Vi (20)
vec(B) | b,Q1,...,Qmi1,Y ~ N(vec(B,),Vs) (21)

whereveqB,) andVg are given as

-1

M1
vec(B,) = |V 1+ > {o e (Ww)}

m+1
VoflveC(Bo) + Z {(Qi & |K)—lvec(V\/|'Yi) }] )
and

Ve = V01+T§{Qil®(vvllw)}] 71-

After drawing the posterior oB = (I'",11’)’ from (21) in the Gibbs sampling, it is possible
to identify the cointegrating vectors and the adjustment terms using Strachan’s (2003) approach
that is based on Kleibergen and van Dijk’'s (1998) SVD approach. Following Strachan (2003), we
define the matriceSjc; for j,k =0,1,2 asSi;j = Mk — Mj27iM2_2];iM2j,i whereMjc; = (t + (p+

3)n+ 1)*1Z§i:tifl+1z’j?tzk7t, 20t = OVWt, z1t = Yr—1, andzy = %. With the identifying restrictions

15



imposed orf3; in the normalizationg{S;1iBi = Ir andB{Slo,i$()17i8017i Bi = Ni =diag(ywi,--->Yri)

Yii > - > Y, a total number of the restrictionsii$, the transformation is given as:

Mi = Bidi + SyfiBLiNia L% (22)

Whereii =0 — soliq]}islo,i, nx(n—r) matricesB’M anda | j are orthogonal t@ anda; such
thatB/B, i = 0 anda , jaf = 0. With this transformation, unrestricted (full rank) model is given
by:

Ay; = ;100 +yt—1q1]:tBL,t)\taL,tit + %P+ & (23)

If Aj =0, thenTll; is a reduced rank and thus the cointegration occurs. Thus, the posterior for

¢ = (veda;),vedp)) is obtained as

pP(Zi |y) = p(Zi,vedNi) | Y) [x—o= P(veqM;),Zi,vedA)) |y o |I (veqM), &, vedA)) |y o
(24)
wherep(i,vedA;) | y) is posterior obtained from unrestricted (full rank) model in (23}[1;, (i, veqAi)))|
is the Jacobian for the transformation. See Appendix of Strachan (2003) for derivation of this Ja-
cobian.

—1/2,<1/2

DefinelT by M = ;1] "MFZ"", then the following transformation by the SVD is given as:

S; O Vi
0 S Vy
= UniS Vi +U2iS Vs (25)

Ny = USV/ = [ Uy U2,i]

whereU; are the eigenvectors of 11, Uy andVj; aren xr, Uzj andVz; arenx (n—r) ands, ;
ands,; are diagonat x r and(n—r) x (n—r). Define ther x r orthogonal matrix; (thus,Y;Y; =
YiYi = Ir) that contains the eigenvectors of tg; 7]3/2810,i35&i8011i311]:i/2ul7i, and(n—r) x (n—

r) orthogonal matrice¥7; andY>; that contain the eigenvector of the matrid:dégSfﬁpzi and
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V2/7iiiV27i respectively. Then the SVD in (25) is expressed as

N =ULiYiYiS Vi +U2iY1iY1iS,; Y2, Yo, Vs, (26)
and we obtain:
Bi = Sipi Ui (27)
o =YiS, V1,52 (28)
)\r,i = Yl17i§z7iY2,i (29)
where the square root matric _%{2 and’iil/2 are defined as diagonal matrices with each of the

diagonal elements replaced by its square root. From (27)-(29), the transformation (22) can be
obtained. To draw; from (24), run the Metropolis-Hastings algorithm to draw from the posterior
p(Ai, i, Bi, Qi |Y) = 9(Ai | ai, Bi, Qi,y) p(ai, Bi, Ai, Qi | y) whereg(Ai | ai, Bi, Qi,y) is the candidate-
generating function that can be chosen by derivation from the conditional posterior density for
vedB) in (21). With the assumption thdt;, i = 1,...,m+ 1, is distributed independently each
other such thafl; ~ MV N(Mo,Vn,) whereVp,(n x n) is the firstm+ 1 diagonal matrix ofg

defined in (18)p(B) is written as

p(B) = p(M)p(r[TT)

mH-1
— {rl p(l’]i)}p(r||'|1,...,|'|m+1) (30)

Then, the conditional posterior density fidf can be written a$l; | b, Q;,Y ~ MV N(M,.i,Vn.i«)
whereVn i = (VrTol +ZzQ7 Y tandn, j = Vi . (Vrjoll'IoJrZ{(Yi — X)) that is derived from
(21). The decomposition of the trace in the posterior, as shown in Kleibergen and Paap (2002),

gives a convenient choice fgris,
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g(Ni | ai, Bi, Qi,y)

) _ (n—r)/2
= (2m)~ (172 ‘aLiZiaLi

(n—r)/2

_1
Bl,iqll,i (Vﬁol+Z{ZiQf1) BL,iqf,i

xexp[—;tr{ﬁl,ﬁfi <V|'|_01+Zi/ZiQi_) SiiBLi (N — Aot T (A Xi)/H
(31)

where

-1

~ -1 -1 ~
NZ{Bl,iSIll,i (Vs +2z07?) Sll,i[h,i} Bl (Ve +2297Y) TSl )

Appendix B provides the decomposition of the trace for the candidate-generating fuggtion

(31). With thej-th draws, we can calculate the Weigﬂﬂ as follows

(j)_g()\i(j)\GthQi,)O (. ,B. PYENe! |y) hi=o -
T p(a”. B A0 ) >

Given the full set of conditional posterior specifications above, we illustrate the Metropolis-

within-Gibbs sampling algorithm for generating sample draws from the joint posterior. The fol-
lowing steps are replicated times to obtain the posterior densities with the fitsiterations

discarded:

e Step 1: Setj = 1. Specify starting values for the parameters of the mdu®1,B©, and
(0)
Q.

e Step 2 - 5: Generate), andQ( ) as described in the previous section of the sampling

scheme for the VAR model.

e Step6a: Set=1. Fromthe posteriord?o(j) = (rOnn wheren =0, ...nWr Ly,
perform the SVD oflY) =uVs v and then compute!” = (' ) given the num-

ber of rankr using (28) and (34).

e Step 6b: Generat(ei , | )and fromp(Zi,Ai | y), and calculatev()
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e Step 6¢: Accep(Zi(j),)\i(j)) with probability mir(wi(j)/wi(j*l),l), otherwise(Zi(j),)\i(j)) =
(Z'(j_l) )\_(j—l)>_

| 770

e Step 6d: Set=i+1, and go back to Step 6a foe=2,...,m+ 1.

e Step 7: Sef = j+1, and go back to Step 2

To determining the number of ramkn each regimé=1,...,m-+ 1, we calculate the Bayes factors

in Section 5.

3.2 VECM with Multiple Structural Breaks Where the Cointegrating Rank is Con-

stant

The previous subsection dealt with general VECM with multiple structural breaks. If, however,
the cointegrating rank is restricted to be constant over the whole sample, a simpler method by

Strachan and Inder (2004) can be applied. The structural break VECM witR (0, Q; )

p-1
Dy = P+t +Yi-1Br0; + ZAyH% +&,
I=

can be written as, instead of (1¥)=W B+-E whereY = (Ayy, -, Ayt ), W = (Z1B1, - - -, Zm11Bmyi 1, X),
B=(a,1"), a=(af, -, al4), E=( €,0, o Er0f ), Z = (s,p_ly’pfl,...,s;_lnyl)’
fori=1,....m+1. T andX are defined as in (17). Letbe the number of rows of, thenW is
T x K matrix andB is K x n matrix, wherek = (np+2+r)(m+1).

Prior specification fob, Q;, andvedB) are the same as those of previous subsectiglas~
Up+1,T-1), Qi ~IW(Poi,voi), andvedB) ~ MN(vedqBg),Vp). We assume that;, i =

1,...,m+1, is distributed independently, so thét(nk x nk) is defined as

> 0
Vo=| ° (33)
0 =2r

wherez isnr(m+ 1) x nr(m+1) matrix such thakq = Vg, @l (m+1), Vo (N x N) is prior covariance-
variance matrix ofx; ~ MV N(ao,Vqy,); Zr is n(np+2)(m+ 1) x n(np+ 2)(m+ 1) matrix and is

prior covariance-variance matrix 6f| a ~ MV N(I g, %r).
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With these priors, the conditional posterior fmrQ, andB are given as exactly same as (19),
(20), and (21) respectively. However, we now have to specify a pridsifior W. Since the linear
normalization’ = (I;,$*'), is not valid as discussed by Strachan (2003) and Strachan and Inder
(2004), we apply the Grassman approach by Strachan and Inder (2004) that specifies the prior on
the cointegrating space rather than on the cointegrating vectp(g sl rr (""" |‘|§:1 %
wherel [q] = [ ud~te"Udu, g > 0 with identification restriction§' = I,,. According to Strachan

and Inder (2004), the resulting posterior fbis

p(B|y) O p(B) |B'DoB| 7?|@D1B| " "/ (34)

whereDg = D1 — Dy, D1 = Si1 and Dy = S16553So1, Sik = Mk — Mj2Mo2 Moy, Mk = hjx +
zgzlz’j’tzkyt, hjk = 0if j #Kk, hjj = ¢1. To drawf3 from (34), the conditional posterior f@¥in (34)

is not a known form and thus can be drawn by employing importance sampling, the Metropolis-
Hastings algorithm (see Chib and Greenberg, 1995) or the Griddy-Gibbs sampling (see Ritter and
Tanner, 1992). Strachan and Inder (2004) use the Laplace approximation instead of the simulation
methods. In this paper, we choose the Griddy-Gibbs sampling technique because the algorithm
does not require the specification of the candidate-generating function that approximate the poste-
rior. Choosing the Griddy-Gibbs sampler, however, requires the appropriate choice of the grid of
points and the computing cost is much higher than other algorithms. Appendix C briefly explains

the algorithm of the Griddy-Gibbs sampler for convenience.

4 Detecting for the Number of the Structural Breaks by Bayes Fac-

tors

In this section we consider detecting for the number of structural breaks as a problem of model
selection. In Bayesian context, model selection for médeld ] means computing the posterior
odds ratio, that is the ratio of their posterior model probabilitis, :
P(M 1Y) _ p(Y| M) p(M)

~ (4 [Y) ~ p(v[9g) p(ag) o

p(M;)

P p(A1}) (35)
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whereBF; denotes Bayes factor, defined as the ratio of marginal likelihppd| #) and p(Y |
M;j). We compute the posterior odds for all possible modets1,...,J and then obtain the
posterior probability for each model by computing

Pr(3 | Y) =
Zm:]_POmJ

(36)
whered is the number of models we consider.

There are several methods to compute the Bayes factor. Chib (1995) provides a method of
computing the marginal likelihood that utilizes the output of the Gibbs sampler. The marginal
likelihood can be expressed from the Bayes rule as

o _ P(Y [ 87)p(8r)
PY I = "ot v)

wherep(Y | 67) is the likelihood for Model evaluated a8, which is the Gibbs output or the

(37)

posterior mean o;, p(6;) is the prior density ang(6; | Y) is the posterior density. If the exact
forms of the marginal posteriors are not known like our cgg6; | Y) cannot be calculated. To
estimate the marginal posterior density evaluatef atsing the conditional posteriors, first block
6 into | segments a8 = (64,...,6])’, and definapi_1 = (6},...,8/_;) anddp'*1 = (6/,,,...,6)).
Since p(8* | Y) = [1_, p(6* | Y,¢7,), we can draw!”, ¢+2() where | indicates the Gibbs
outputj =1,...,N, from (8;,...,8)) = (6;,0'"%) ~ p(6;,6' "1 | Y,¢* ,), and then estimatp(6; |

Y,$r ;) as

Y& 2% * 1 N " “ . .
POT [ ,070) = 5 > P(6; 1Y, b5 4, oD,
=1

Thus, the posteriop(6; | Y) can be estimated as

N . .
p(e" | Y) = rl{i, > p(er rY,¢i*1,¢'“’“>>}. (38)
= j:l

|
Note thatp(by,...,bm | B,Q1,...,Qmi1,Y) = [, p(bi | bi—1,bit1,B,Qi,Qiy1,Y;) can be directly
obtained from the Gibbs algorithm shown in Step 2 (a) in the section 2.3.
Chib’s method can be used to determine the number of breaks for VAR models in Section 2

and cointegrated VAR models where the cointegrating rank is subject to change with breaks given
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in Section 3.1, however, it cannot be used for cointegrated VAR models where the cointegrating
rank is constant given in Section 3.2 due to non-standard form of the posterft forthis case,

we can adopt the Schwarz BIC method to approximate the Bayes factors as Yao (1988), Liu et al.
(1997), and Wang and Zivot (2000) use the Schwarz BIC to determine the number of breaks. The

Schwarz BIC is defined as

BIC;=-2Ing (6 Y:M; ) +ajln 1) (39)

where £ (GAJ |Y;Mj> is the likelihood for modelj evaluated a§j, the posterior means of the
parameters for modgl q; denotes the total number of estimated parameters in the ncael
M; denotes the model indicator for modelWith the Schwarz BIC the Bayes factor for modlel
against mode] can be approximated BF; ~ exp[—0.5(BIC; — BICj)]

The BIC method described above gives a rough approximation to the Bayes factors, which is
easy to use and does not require evaluation of the prior distribution, as Kass and Raftery (1995)
note. However, it only provides an approximation, not an exact value of the Bayes factor. In this
paper, the BIC method is only adopted for cointegrated VAR models where the rank is constant.
For VAR models and cointegrated VAR models where the rank is allowed to change with breaks,
we adopt Chib (1995)’s method to compute marginal likelihpog| 24 ) to determine the number

of structural break3.

5 Determining the Cointegrating Rank

To determine the cointegrating rank for the VECM in Subsection 3.1 where the cointegrating rank
is also subject to change with breaks, the Bayes faBE(r | n) is calculated using the Savage-
Dickey density ratio, that is the ratio of the marginal posterior density and the marginal prior
density. With the approach of Chen (1994), the Bayes fa&¥qr | n) for all possible rank except

r = n(thatis, full rank) can be obtained using drawsiaff3;, andA; from the posterior as follows;

Lif the posterior is generated from non-standard form of density through the Metropolis-Hastings algorithm, one can
estimate the marginal likelihood adopting a method by Chib and Jeliazkov (2001).
2An alternative approach for calculating the marginal likelihood is using the harmonic mean of the likelihood as

. 1 .
f(Y | M) =N [z?‘zlL(E)(J) \ Y)} , where8()), j =1,...,N, are Gibbs output. Computing the harmonic mean of the
likelihood is simple, however, as described in Kass and Raftery (1995), this method may exhibit unstable results.
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L]1g 0
cr,i{N ,lei'} -
éffffg()\i | ai, Bi, Qi,Y) p(ai, Bi, Ai, Qi | Y) [5—0 dQidA;dp;da;
BRI = T T T P(a v |y)d<dhdpdo ¢0)

wherec;; is a constant depending upo@nd is calculated as:
_ S ST p(ai, Bi A, Qi) [0 h(Ai | ai, Bi, Qi)dQidA;dB;da
[ [ p(ai,Bi, A, Qi)dQ;dA;dB;da;

whereh(A; | ai, Bi, Qi) is a proper conditional density. As shown in Kleibergen and Paap (2002),

Cir

(41)

an appropriate density functidgnfor the prior specification op(B) is a density function which is

close to the conditional prior o¥, thus

(n-1)/2 (n-r)/2

B\ Vi BuLi

X exp [—;tf {Bl,iVﬁolBL,i (N —&)aizal (N — Ei)/}] (42)

h(\i | ai,Bi, Qi) = h(;; !Gi,Bi)Z(2")_(n_r)2/2‘aﬂii0ﬂ,i‘

where&; = (B Vi 'BLi) "B Vin (Mo — Biai)Zia’, ;(ar, i Zia’, ;)= To obtain the value of (41),

we simulate from the prior

(G, ved). ©i) 0 pvedTi). Q) | _p s, ma. 5 H(vedm), . vedh)))|

to compute the ratio of the integrands of the numerator and denominator in (41), then take an
average of these simulated ratios to estintgateSee Kleibergen and Paap (2002) for details.

For a model where the number of rank is not subject to change with breaks as shown in
Subsection 3.2, the Bayes factors for all possible non-zero rank are obtained using the Savage-

Dickey density ratio as follows:

BF(r=0|r#0) = BF(a=0|a#0)

p(a=0]y)

p(a = 0) 43)
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where the denominator is the prior density evaluated at0; and the numerator is the poste-
rior density evaluated at = 0. The prior forB, veqB) ~ MN(vedBy), Vo) with Vp defined in
(33), impliesp(a) = ™ p(ai), wherea; ~ MV N(do,Vq,). The posterior fon; is also inde-
pendently distributed as; | b,Q;,Y; ~ MV N(0l, j, Vo +i) WhereVy ,i = (Vdj)1+Zi’ZiQi*1)*1 and
O = Vo (Vag 0o+ Z{ (Y — Xili)Qi). Since

1 N

p(a=0|b™ QM Y) — p(a=0]Y) (44)
N —Np n}oﬂ

asN goes to infinity, the numerator of (43) can be easily calculated.

6 Simulation

In this section Monte Carlo simulation is conducted to examine the performance of the approach
outlined in the previous sections. A simulation for VAR models with breaks is followed by another
for VECM with breaks. Two structural breaks are given in artificially generated data for both
simulations. We are interested in examining the performance in both detecting the number of
breaks when the number of the breaks are unknown and the estimation of the location of the

breaks when the number of breaks are correctly specified.

6.1 Monte Carlo Simulation: VAR with Structural Breaks

The first Monte Carlo simulation is for vector autoregressive models with multiple structural
breaks. The following five data generation processes (DGPs) of two-variable VAR models with

two structural breaks are considered:

DGP 1:iy; = 1 +Yi—1P1 + 018
DGP 2:y; = tt + Vi—1P1 + 01&
DGP 3:y; = 4 + Vt—1P1 + O &

DGP 4:y; = Wk + Yi—1Pt + 018
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DGP 5.yt = i + Vi 1P + Ot&

fort=1,2,...,300,

whereg; ~iidN(0,1), ik = g = (—0.1,—-0.1), ¥ = P = 0.2l5, 0y = 01 = 0.02l, for 0 < t < 100,
03 -02

k= 2 = (0,0), ®y = Py = , 0t = 02 = 0.1l5, for 100<t < 200,k = U3 =
—-0.2 05

(0.1,0.1), d; = d3 = —0.2I», 0y = 03 = 0.02l,, for 200<t < 300. DGP 1 contains no structural
break while other models contain two structural breaks. In DGP 2, only the constant term changes
with breaks. DGP 3 allows the constant terms and volatility to change with breaks. DGP 4 allows
K and @ to change with breaks. DGP 5 is the most general model in which breaks affect all
parameters of the model.

The Gibbs sampling algorithm presented in Subsection 2.3 is employed for the estimation of
models fom=0,1,...,4 break points. For prior parameters, we¥g{ = 0.1l, andvg; = 2.001
for all i for the variance-covariance prior in (Bg = 0 andVy = 100x I in (5) to ensure fairly
large variance for representing prior ignorance. The number of lags in VAR is assumed to be
known. Also, we assume that, except the number of breaks, correct model specifications are
known for each model. We assign an equal prior probability to each model Wtaks, so that

Pr(m=i)

Pr(m=0) — 13. After running the Gibbs sampler for 500 iterations, we save the next 2,000 draws

for inference. This procedure is replicated 500 times.

Table 1 summarizes the results of the Monte Carlo simulations. Each element in the Table
shows the average posterior probability out of 500 replications for each number of breaks. We
compute the posterior probability with Chib’s method described in Section 4. For DGP 1, where
there are no breaks, the average posterior probability wierD is 94.2%. For DGP 2, 3, 4, and
5, the correct number of breaks = 2, is detected at about 94.5%, 99.5%, 96.7%, and 98.1%
respectively. Thus, the DGP of the VAR models with breaks in volatility (DGP3 and 5) perform
better than those of the homoskedastic VAR. Overall most of the iterations choose the correct
number of breaks. Table 2 reports that the Monte Carlo mean of estimated break points that are

the mode of the posterior when the correct number of breaks2 is chosen. The estimates are

SInclan (1993) and Wang and Zivot (2000) use the prior odds as an independent Bernoulli process with probability
pe[0,1].
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all close to the true valueb,= (100 200).

6.2 Monte Carlo Simulation: VECM with Structural Breaks

The second experiment is for vector error correction models with multiple structural breaks. We
consider the following five data generation processes (DGPs) of a two-variable co-integrated

model:

DGP 1:Ay; = u+VYi_1P0 + 0
DGP 2:Ay; = W& + Yi—1P0 + Og;
DGP 3:Ayt =  + Yr—1fa + Ot &
DGP 4:Ay; = |k + Yt—1B0t + Og;
DGP 5:Ay: = b + Yt —1B0 + Ot

fort=1,2,...,300

whereg; ~ iidN(0,1). DGP 1 represents a no structural break model. DGP 2 is a structural break
model inp only, and DGP 3 allowgt ando to change with breaks. DGP 4 represents a structural
break model iy, a. DGP 5 allowsy, a ando to change with breaks. In both DGP 4 and 5,
the cointegrating rank is constant over the whole sample. The parameters given in each DGP 2-5
are shown in Table 3. For the DGP 1, the parameters are spt=agy of the DGP 2, and other
parameters are the same as those of the DGP 2. These values are obtained by using Japanese short-
and long-term interest rates.

The Gibbs sampling algorithm in Section 3.2 is implemented for the estimation of models for
m=0,1,...,4 break points. For prior parameters, we set the same valueg;fapo;, B, andVp
as used in the previous simulation for the VAR models with breaks to ensure fairly large variance
for representing prior ignorance. The cointegration rank and the number of the lags in VECM are
assumed known. Also, we assume that correct model specifications are known for each model
except the number of breaks. We assign an equal prior probability to each modebvetks, so

that Err((rrn:é)) = 1. After running the Gibbs sampler for 500 iterations, we save the next 2,000 draws
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for inference. This procedure is replicated 500 times.

Table 4 summarizes the results of the Monte Carlo simulations for model selection. Each
element in the Table shows the average posterior probability out of 500 replications for each num-
ber of breaks. Unlike in the previous simulation for the VAR model, the Schwarz BIC method
is adopted to calculate the marginal likelihood for the posterior probabilities. The Table shows
that in most of the cases the correct number of break paimts,2, is selected with dominantly
high posterior probabilities. The heteroscedastic DGPs (DGP 3 and 5) perform better than the ho-
moscedastic DGPs (DGP 2 and 4), as in the case of the simulation for VAR models in the previous
subsection. DGP 5 shows the best performance with 94.4% of the time-=fa2.

Table 5 reports the Monte Carlo mode of the estimated break points. As in VAR models
cases, these results show that in most of the cases the estimates are all closed to the true values,
b = (100,200). The results of the homoscedastic DGPs, DGP 2 and DGP 4 show much higher

standard deviations in estimating the break points.

7 Application 1: Predictive Power of the Yield Curve

In this section, we illustrate the instability of the predictive power of the yield curve on output
growth in the United States as an empirical application of the VAR model with multiple structural

breaks shown in Section 2.

7.1 Predictive Power of the Yield Curve on Output Growth

The predictive relationships between the slope of the yield curve and subsequent inflation or real
output have been extensively studied. The consumption capital asset pricing model (CCAPM) with
habit formation by Campbell and Cochrane (1999) shows that the term structure is related to the
future economic activity - positive slopes of the real term structure precede economic expansion
and negative slopes precede economic recession. Mishkin (1990a, 1990b), based on the Fisher
decomposition, finds that the yield curve can predict inflation. Although Chen (1991), Estrella
and Hardouvel (1991) and other studies find a positive correlation between the yield curve slopes

and future real economic activities, Estrella et al (2003) suggest verifying the stability of the
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relationship because the predictive power may depend on factors that may change over time such
as monetary policy reaction function, real productivity, or monetary shocks.
Estrella et al (2003) investigate the instability of the predictive power based on the following

model:

iPkt = Bo+ P1SR + & (45)

wheresp is the spread between the two interest rates of bonds with different maturitypiand

is the future growth rate of industrial productidi¥;, at a forecast horizok and is defined as

ipkt = (1200/K)In(IP4«/1P;). We consider the forecast horizon of one year, thakis; 12,

as Estrella et al (2003) show that the predictive power of the spread on industrial production is

maximum ak = 12.

7.2 Estimation Results

Instead of the linear single equation model given in (45), where future growth rate of industrial
production is treated as the endogenous variable, we consider VAR modelswig¥ and 5 lag

terms as:

p
X = ut+_zxt_i¢i+£t (46)

whereX; = (sp,ipkt) andg ~ iidN(0,Q¢). That is, we consider a VAR model with structural
breaks in the intercept termand the volatilityQ.* The data for this model aré&p;, the US indus-

trial productiony, ;, 10-year US treasury rate as a long-term interest rate;anthe Federal fund

rate as a short-term interest rate, based on monthly data obtained from the Saint Louis Federal
Reserve Bank. The sample ranges from 1970:01 to 2005:11 with 430 observations. The two vari-
ablessp =1t —rst andipizr = 100IN(1P;12/1P;), are plotted in Figure 1. The prior parameters

are the same as those used in the Monte Carlo simulation in Section 6.1. The Gibbs sampling is

performed with 10,000 draws and the first 1,000 discarded for the VAR models with the number

4We also consider other models such tha@lso changes with breaks or the homoskedastic models Whdoes
not change over time; however, the results prove to be insignificant as the Bayes factors are much lower than those in
the model (46).
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of structural breaken=0,1,...,4 and the lagp = 3,4 and 5.

Table 6 reports the Gibbs sampling results of model selection for the number of structural
breaksm, and the lag in the VARp. A VAR model withm= 3 andp = 4 results in the highest
posterior model probability with 93.15%. Clearly, a VAR model with no break=0) is rejected
with nearly zero percent of the posterior model probability.

The estimates of the break points and other parameters of the VAR modemwti3 and
p = 4 are presented in Table 7. The posterior mass of each break date is plotted in Figure 2.
The first break point is detected in the 95% HPDI (Highest Posterior Density Interval) between
1973:09 and 1975:07 with the posterior mode 1974:07. After the first break the variance of the
interest rate spread decreased significantly and the productivity growth changed due to the first oil
shock. The second break point is detected in the 95% HPDI between 1977:10 and 1979:10 with
the posterior mode 1978:11. This second break date is associated with the advent of Fed Chairman
Volcker in October 1979, initiating some fundamental changes until October 1982. However, the
HPDI of the second date merely covers the assumed break date, October 1979, in the tail. The
variance-covariance matrix of the regime between the second and third brealkKzateanuch
larger than that of the previous regim@;. The third estimated break date is found between
1982:09 and 1983:03 with the posterior mode 1983:01. This third break date is associated with
the completion of the Volcker's monetary policies of the period withrtba-borrowed reserves
operating procedurewhile the estimated mode of the third date is not exactly matched with the
assumed date but the HPDI merely covers the assumed date in the tail. After the third break date
the variance of both the spread and the industrial productivity growth was much reduced as shown

in Qg.

8 Application 2: US Term Structure of Interest Rates

In this section, we analyze the US term structure of interest rates using the cointegration model

with multiple structural breaks presented in Section 3.
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8.1 The Expectations Hypothesis

The term structure of interest rates states that the expected future spot rate is equal to the future
rate plus a time-invariant term premium. For an overview of the expectations hypothesis theory,
see Shiller (1990). The continuously compounded yield to maturity fdr@eriod bond is defined
asrfy = —(1/f) pr whereps; denote the log of the price of a unit-par-value discount bond at
datet with f periods to maturity, and the one-period future rate of return, earned from peribd
tot+ f+1, is given by 1 Fr = Pr/Pr11;. Letr¢ denote the yield to maturity att. Then the
expectations hypothesis implies:

f—1 ]

Mg —rye = ft Z _;Et (Arygyi)+Lg (47)

J=1i=
wherelLs = f*lzjtg/\j andA; is the term premium. Ify; is integrated of order one, then;
must be integrated of order one ayyd andy;; are cointegrated with cointegration vector (1, -1),
which is analyzed by Campbell and Shiller (1987). This cointegration relationship should be held
in any pair of yield to maturity.

However, many studies find that the expectations hypothesis is rejected for US data. Hall et al
(1992), and Engsted and Tanggaard (1994) consider this is due to the instability for interest rates
between September 1979 and October 1982, known as the period witbrtHeorrowed reserves
operating procedureTaking this period into consideration, several studies such as Hansen and Jo-
hansen (1999), Bliss and Smith (1998), and Hansen (2003) show that the expectations hypothesis

is held when structural breaks are imposed into the models.

8.2 Estimation Results

We analyze the US term structure of interest rates for detecting structural breaks in a vector error
correction model applying the method outlined in Section 3. The data we use are the same as those
of the previous application, that is, the Federal fund rate as a short-term interest rate and 10-year
treasury bond yield as a long-term interest rate based on monthly data from the Saint Louis Federal
Reserve Bank ranges from 1970:01 to 2006:01, with 432 observations. These series are plotted in

Figure 3.
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Lety: = (ri¢,rst), Wherer,; denotes the long-term interest rate at tivandrs; denotes the
short-term interest rate at tinte then the VECM with multiple structural breaks in the coin-
tegrating rank, the adjustment temm the cointegrating vectds, the risk premiumd and the

covariance-variance matrf2 can be expressed from the Granger representation theorem as:

p—1
Model 1:Ay; = (V1B — & )0 + ZlAthqui +&
i=

p—1
= Ik +Y—1Bt0r + ZAyt—qui + & (48)
i&

whereg; ~ N(0,Q;) andpy = —&0a¢. Thus, |k is restricted as its space spannedopy However,
we ignore this restriction g% is independent upon the space spannedihyNote that the risk
premiumad is assumed to be constant in a given regime. This model is estimated using a method
in Section 3.1, which is based on Strachan’s (2003) approach with the Metropolis-within-Gibbs
sampling algorithm. We also estimate a model where the cointegrating vectors, and thus the
number of rank, are not subject to change with breaks as:
p—1
Model 2: Ay; = P + Y180 + i; Dy i Wi + & (49)

whereg; ~ N(0,Q;). This model is estimated using a method in Section 3.2, based on Strachan
and Inder’'s (2004) approach with the Griddy-Gibbs sampler. Model 1 aljgws 3 andQ to
change with the breaks, while Model 2 restricts the cointegrating v@dtmremain constant over
the whole sample. We estimate both models and calculate the Bayes factors=forl,...,4
break points. The number of lags in VAR, is varied withp = 2,3 and 4. We set the same prior
parameters used in the Monte Carlo simulation in Section 6.2. The MCMC sampling is performed
with 10,000 draws with the first 1,000 discarded for both models.

Table 8 and Table 11 report the posterior model probabilities for the various number of break
points as a model selection for Model 1 and Model 2 respectively. Note that the posterior model
probabilities for Model 1 are calculated by Chib’s method while those for Model 2 are by the

Schwarz BIC method. Clearly, no-structural breais= 0, is rejected by the data for both Model
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1 and 2. Model withm= 3 andp = 3 is strongly favored with 99.7% for Model 1 and 97.2%

for Model 2. Table 9 presents the posterior probabilities for different number of rank for Model
1 withm= 3 andp = 3, and it shows that = 1 is favored for all regimes, although it is not
clear in the regime 3. For Model 2 where the cointegrating rank does not change with break,
the posterior probabilities for each rank igiP= 0| Y) = 0.0790, P(r =1|Y) = 0.9210, and

Pr(r =2|Y) = 0.000, so that the rank 1 is strongly supported. The estimates of the parameters
excluding the lag terms in the vector error correction model with three structural breaks are given
in Table 10 for Model 1 and in Table 12 for Model 2. The posterior mode for the first two breaks
are detected around late 1979 and late 1982, which almost coincides with the period withthe
borrowed reserves operating procedufEhe third break is detected in 1988:06 for both models.
The posterior probability mass functions for the break dates are shown in Figure 4 for Model 1
and in Figure 6 for Model 2.

The results show that there are significant changes o, andQ; however, no significant
changes are shown [ To compare Model 1 to Model 2, we calculate the Bayes factor using the
Schwarz BIC a8F; ~ expg—0.5(BIC, — BIC;)], that results in 33.9%.Thus, Model 2 is strongly
favored over Model 1.

As for the adjustment terno; = (a|0ng’i,ashom)’ wherei = 1,...,4, djongi is negative in all
regimes, andisnort iS positive in all regimes for both models. This suggests that positive deviation
from the long-run equilibriumy¢ > 0) would be corrected by rising in the short rate and/or by
falling in the long rate. The adjustment terms for the short caigi (in absolute value) are
much higher than those for the long term ratghg; for all regimes, which indicates that the short
rate tends to have much more power to adjust toward the long-run equilibrium than the long-term
rate. In regime 2, between late 1979 and late 1982, volatility of both the long- and short-term
interest rates is quite high and the adjustment term in absolute value is also very high. After the
third break (regime 4), the volatility of the interest rates and the adjustment term are quite small,
especiallyajong for both models seem not to be significant; that is, the long term rate does not

respond by the deviations from the long-run equilibrium, while only short-term rate moves toward

5See Kass and Raftery (1995) for a rule of thumb for evaluating Bayes factors. According to this rule of thumb, if
BF; is between 20 and 150, there is a strong evidence against moaiedl if BFj is more than 150, there is a very
strong evidence against model
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the equilibrium. The posterior densities for the adjustment terms are plotted in Figure 5 for Model
1 and in Figure 7 for Model 2.

The expectation hypothesis implies tBat= —1 and this value is included in the 95% HPDI of
the posterior density. More formal testing for this over-identifying restrictions on the cointegrating
vector can be done by computing Bayes factor with the nui,of —1 against the alternative of
B2 # —1. The Bayes factor is computed using (39)Bi5~ exp[0.5(BICyr — BICR)], where
BICyr denotes the unrestricted BIC and Rl@enotes the restricted BIC with the restrictions of
B> = —1. The Bayes factor is approximated to 338.98 for Model 2, which shows very strong

evidence to support the expectation hypothesis.

9 Conclusion

We developed a Bayesian approach for analyzing a VAR model and co-integrated VAR model
with multiple structural breaks based on the MCMC simulation methods. The number of struc-
tural breaks are chosen by the posterior model probability based on the estimation of the model.
In the case of the cointegrated VAR models, the cointegration rank is also allowed to change
with breaks, and the adjustment term and the cointegrating vectors are estimated using Strachan’s
(2003) method with the Metropolis-within-Gibbs sampling algorithm, a valid Bayesian method
in terms of prior restrictions for the cointegrating vector. For a model where the cointegration
rank is not allowed to change with breaks, we apply Strachan and Inder’s (2004) method and use
the Griddy-Gibbs sampling method to generate the cointegrating vectors. The Monte Carlo sim-
ulations demonstrated that our approach provides generally accurate estimation for the number
of structural breaks as well as their locations. The Bayesian approach provides useful informa-
tion such as uncertainty of models and all parameters including the location of the dates by the
posterior mass function for each estimated break point.

The method is applied to two empirical studies, the predictive power of the yield curve and the
US term structure of interest rates, in order to show that our Bayesian method is useful to analyze
the case of multiple structural breaks. We found strong evidence of three structural breaks in both

applications.
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Appendix A. Proof of Theorem

For a linear regression modél= XB+E, E ~ iidN(0,Q), whereY andE areT x n; Xis T x K;
B is K x n, given the prior density fovedB) ~ MN(vedBy),Vo) andQ ~ IW (Wg, Vo), the joint

posterior is obtained by the joint prior

p(veqB),Q) = p(veqB))p(Q)
0 ’q_,0|vo/2 |Q|7(vo+n+1)/2 ‘V0|71/2 exp _% {tl‘ (Q_lwo) +veqB— Bo)’Vo‘lvec(B— BO)}

(50)

with the likelihood

£(B,Q1Y)0|Q| exp —%tr{Q*l(Y —XB)'(Y —XB)} (51)

so that the joint posterior is

p(veqB),Q|Y) O p(vedB),Q)£(B,QY)

X exp —% {veqB - By)'V, *vedB — Bo) }] . (52)

From the joint posterior (52), it is easy to derive the conditional posterior densi€y, fahich

is the inverted Wishart density (¥,,v,) as

pQ|BY) = W 0pB.Q|Y)

‘Q|,(T+v0+n+1)/2 exp [;tr {Q_l ((Y —XB)'(Y —XB) + lPO) }

OJ

= |Q| (Tt Zexp [—;tr (Ql‘P*)] (53)
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whereW, = (Y —XB)'(Y — XB) +Wo andv, = T +vo.

As for the conditional posterior density faedB), the likelihood

£B,Q1Y) O |1Q 2exp [—;tr{Ql(Y —XB)' (Y — XB)}}

O Q] 2exp [—; (vedY —XB)) (Q®I7) t(vedY — XB))} (54)

can be used for obtaining the joint posterior density instead of (51) as:

p(veqB),Q|Y) O p(veqB),Q)£(B,Q|Y)
0 |q_,ovo/2‘Q’—(T+vo+n+1)/2‘VO|—1/Zexp[_§tr (Ql%)}
x exp[—; {(vedY ~xB)Y (@ Ir) " (vedY —XB)) + (vedB ~ Bo)) Vg ved B~ BO)}} .

(55)

The key term in the third line of the joint posterior density (55) can be written as:

(veqY —XB)) (Q®17) *(veqY — XB)) + (ved B — Bo))'V, *veqB — Bo)

= (veqB—B,))'V5 'vedB—B,) +Q (56)

whereQ = (vedY)) (Q® It) tvedY) + (veqBo))'V, vedBo) — (veqB,))'Vg lvedB,), Vs =
Vo4 (Q 1@ (X'X)] 7, andvedB,) = Vi [V tvedBo) + (Q @ Ix) ~tvedX'Y)].

To prove equation (56), first rewrite the LHS of equation (56) as:

LHS = (veqY —XB)) (Q®It) *(vedY —XB)) + (vedB— Bo))'V, *veqB — Bo)
= (vedY)) (Q 1@ It)vedY)+ (vedXB)) (Q 1@ It)vedXB) — 2(ved(Y)) (Q 1@ I1)ved X B)

+ (vedB))'V, vedB) + (vedBo))'V, *veqBo) — 2(veqBy))'V, tvedB). (57)
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The RHS can be written as:

RHS (veqB—B,))'V; lvedB—B,) + (vedY)) (Q® ) tveqY)

+(vedBo))'V, ‘vedBo) — (vedB,))'Vs 'vedB,)
= (veqB))' Vg lvedB) —2(vedB,)) Vg lvedB)

+(veqY)) (Q '@ It)vedY) + (veqBo))'V, tvedBy). (58)

So, from (57) and (58),HS— RHSis

LHS—RHS = (vedXB))' (Q '®Ir)veqXB)+ (veqB))'V, vedB) — (vedB))' Vg veqB)
—2{(veqY)) (Q '®Ir)veqXB) + (veqBy))'V, ‘veqB) — (vedB,))' Vg ‘vedB) }

= ¢-29 (59)

where¢ and® are defined as

¢ = (vedXB)) (Q '@ It)ved XB) + (vedB))'V, *veqB) — (veqB)) Vg 'vedB) (60)

D = (veqY)) (Q *@It)vedXB) + (vedBo))'V, *veqB) — (vedB,)) Vg tvedB).  (61)

By substitutingvg = [V '+ {Q 1@ (X'X) }] ! the third term of in (60) is

(vedB))'VglvedB) = (veqB)) [V 1+ {Q1® (X'X)}]veqB)
= (vedB))'V, 'veqB) + (vedB)) [Q ! ® (X'X)] veqB)

= (vedB))'V, 'veqB) + (vedB)) vec[(X'X)BQ*]. (62)
Using (62) in (60), we have
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¢ = (vedXB)) (Q t®@It)vedXB) — (veqB)) vedX'XBQ1).

Since(vedXB)) (Q 1@ It)vedXB) = ((I,® X)vedB)) ved XBQ 1) = (vedB))' (In®X)'ved XBQ 1),
and(vedB)) vedX’XBQ 1) = (vedB))' (In® X)'vedXBQ 1), so we have = 0.

Next, we conside®. The first term of9 in (61) is

(vedY)) (Q 1@It)vedXB) = (vedY)) (Q 1®It)(In®X)vedB)

= (veqY)) (Q teX)vedB). (63)

SincevedB,) = Vg [V, 'veqBo) + (Q® Ix) "ved X'Y)] = Vg [V, 'vedBo) + vedX'YQ1)], the

third term of® is,

(veqB,)) Vg lvedB) = [V, 'vedBo)+vedX'YQ )] vedB)
— (vedBo))'V, ‘veqB) + [(Q @ X')veqY)] veqB)
= (vedBy))'V, *vedB) + (veqY)) (Q ' ® X)vedB).

(64)

Thus, with (63) and (64), we ha as:

D = (vedY)) (Q '@X)vedB)+ (vedBo))'V, ‘vedB)
—{(vedBo))'Vy *vedB) + (veqY))' (Q *® X)veqB)}

= 0

Therefore, with¢ = © =0, we havdkHS— RHS= ¢ — 29 = 0, so that equation (56) is proved

and thus the conditional posterior density ¥@qB) is
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p(B,QJY)
p(Q1Y)

exp[—; {(veo(v —XB))' (Q®Ir) ! (vedY —XB)) + (veqB—Bo))'V; 'veqB — Bo)}]

p(vedB) | Q,Y) 0 p(vedB),Q 1Y)

|

O

exp[—; {(veqB-B,))'V5 'veqB-B,)}
where
Ve =[Vo 1+ (Q e (XX)]

and

veqB,) = Vi [V, tvedBo) + (Q®@ 1) tvedX'Y)],

so thatvedB) | Q,Y ~ MN(vedB,),Vs).

Appendix B. Decomposition

The conditional posterior specification feedB) in (21) is Normal. Sinc&= (N',T")" = (M4,..., M},

if we assume thap(B) = {[T™* p(Ti)} p(T" | My,...,Mms1) as (30) where prior fofl; is Nor-
mal such ag(M;) O exp[—%tr{(l‘li - I'Io)’Vrjol(l‘li - I'IO)H, the conditional posterior farl; is
also Normal such ag(; | Q;,y) O exp[—%tr(l‘li — ”*,i)/Vn_i,i (N — I'I*_,i)} whereVn . j = (Vr|_01+
Z{ZiQfl)‘l andll, j =V i (Vl-l’oll'IoJr Zl(Y; — XT)Qi). The trace in the posterior density can be

decomposed as follows:

tr{ (M= M) Ve (M=) §

~ -1 ~
= U‘{(Biai + SR LA % =) (VﬁolJr Z{ZiQi’l> (Bicti + SiiBLikio % — rl*,i)}
(@Sl )N BL S Vel + 220 ) T SRy —Xo}

_ _ -1
o (ool )t Si(Bia — M) (V|-|’01+ Z{ZiQfl) Sf. Bl,i}
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-1

« [{m,ﬁfi (e zze?) st s (el +zz0) " Ba rl*,i>]

where

- -1 -1 1 _
Ai = {B/J_,iql%i (VrTolJFZi/ZiQFI) qu:iBL,i} B iSiii <V|{01+Z{Zi§2(1) Sia (ool )t

So that equation (31) can be derived.

Appendix C. Griddy-Gibbs Sampler

The Griddy-Gibbs sampler is proposed by Ritter and Tanner (1992). This sampler can be im-
plemented when the conditional posterior density is unknown to the researcher. The advantage
of using this sampler over the importance sampler or the Metropolis-Hastings algorithm is that
researcher does not have to provide an approximation of the function. The disadvantage is that
this sampler demands more computing time. The procedure for implementing the Griddy-Gibbs

sampler is as following:

1. Before we begin the chain, we must choose the range of the grid and the number of the grid.

The range should be chosen so that the generated numbers are not truncated.

2. Let vedPB) = (B1,B2,---,Bm). With an arbitrary starting value (within the upper and the
lower bound of the grid), computé(B|BL, BL, ..., Bk, Y), wherei denotes thé-th loop,
over the grid(B1,1,B12,-..,BLu), wherepy 1 is the lower bound of the grid g¥;, andByy

is the upper bound of the grid @#.

3. Compute the values = (0,®P,, @3, ..., Py) where

B o .
@ = [ F(BulByBs ... Bl )P

1,1

j=2...U

4. Compute the normalized pdf valugg = G; /Py of Z(B1|BL, RS, - - -, Bl Y).
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5. Draw the random numbers from the uniform density with the lower bound as zeros and the

upper bound ag®y and invert cdfG by numerical interpolation to obtain a dreﬁy from

Z(BI|B|27 Blga ceey Blr‘mY)
6. Repeat steps 2-5 f@p, ..., Bm.

7. Seti =i+ 1 (incremeni by 1) and go to step 2.

Note that integration at the step 3 can be done by the deterministic approximation such as the

Simpson’s rule or the Trapezoidal rule.
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Table 1: Monte Carlo Results for VAR Models: Average Posterior Probabilities

DGPW.of breaks m=0 m=1 m=2 m=3 m=4

DGP 1 0.942 0.057 0.001 0.000 0.000
DGP 2 0.000 0.013 0.945 0.042 0.000
DGP 3 0.000 0.000 0.995 0.004 0.000
DGP 4 0.000 0.000 0.967 0.033 0.000
DGP 5 0.000 0.008 0.981 0.011 0.000

Table 2: Monte Carlo Mean of the Mode of the Posterior for the Break Points mhe2; VAR
Models
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()=Monte Carlo standard deviation

DGP 2 DGP 3 DGP 4 DGP 5

1stbreak 99.571(3.092) 100.06 (1.635) 99.987 (2.216) 100.03 (1.504)
2nd break 200.94 (2.237) 200.97 (1.403) 200.85 (3.093) 201.02 (1.883)

The true value of the first break istat 100, and the second istat 200.
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Table 3: Parameters Given in DGPs for Monte Carlo Simulations of VECM with Two Structural

Breaks
DGP 2 DGP 3 DGP 4 DGP 5
W (-0.0551, -0.0370) (-0.0072, 0.0250) (-0.0389, -0.0862) (-0.0342, 0.0355)
Ho (0.0746, 0.1578) (0.0045, -0.1671) (0.0378, 0.1123) (-0.0017, -0.0535)
Hs (-0.0448, -0.2355) (0.0421, -0.1282) (-0.0558, -0.1406) (-0.0227, -0.0997)
o1 (0.0004, 0.1766) (-0.0511, 0.0983) (-0.0333, 0.1530) (-0.0503, 0.1413)
as (-0.2292, 0.1425) (-0.0525, 0.0331)
a3 (0.0118, 0.0884) (0.0018, 0.0746)
B (1,-0.9902) (1, -0.9894) (1, -0.9807) (1, -0.9744)
0.0764 00238 0.1272 00499 0.0828 00292 0.3049 01010
o 0.0238 00353 0.0499 00787 0.0292 01134 0.1010 02131
0.0685 00196 0.0865 00272
> 0.0196 00252 0.0272 Q0579
0.0112 Q0007 0.0133 00007
% 0.0007 Q0028 0.0007 Q0027
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Table 4: Monte Carlo Results for VECM Models: Average Paosterior Probabilities

DGP\#.0of breaks m=0 m=1 m=2 m=3 m=4

DGP 1 0.946 0.054 0.000 0.000 0.000
DGP 2 0.084 0.030 0.875 0.030 0.000
DGP 3 0.000 0.000 0.902 0.098 0.000
DGP 4 0.085 0.108 0.807 0.000 0.000
DGP 5 0.000 0.000 0.944 0.056 0.000

Table 5: Monte Carlo Mean of the Mode of the Posterior for the Break Points mhe2;
VECM

()=Monte Carlo standard deviation

DGP 2 DGP 3 DGP 4 DGP 5

1stbreak 91.231(21.24) 99.090 (3.335) 100.96 (17.43) 100.27 (0.793)
2nd break  188.21 (23.74) 200.33 (1.085) 203.01 (13.54) 200.82 (2.170)

The true value of the first break istat 100, and the second istat 200.

Table 6: Model Selection: Application 1

p\m m=0 m=1 m=2 m=3 m=4

p=3 0.0000 0.0000 0.0000 0.0002 0.0000
p=4 0.0000 0.0000 0.0000 0.9315 0.0120
p=5 0.0000 0.0000 0.0000 0.0344 0.0219

Note: Each element shows the posterior probability in () using Chib’s (1995) method.
p: the number of the lag in a VAR

m: the number of the structural breaks
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Table 7: Posterior Results of a VAR Model with= 3 andp = 4 for Application 1

(): standard deviation

(a) Estimates of Break Points

Posterior Mode 95% HPDR

1stbreak 1974:07 (0.5580) 1973:09, 1975:07
2nd break 1978:11 (0.5602) 1977:10, 1979:10
3rd break 1983:01 (0.1637) 1982:09, 1983:03

(b) Estimates of Other Parameters (Mean of the Posterior)

Parameters sp ip Parameters sp ip
H -0.0123 (0.0170) 0.1283 (0.0573) sp(—2)  -0.2612 (0.0228) 0.0212 (0.0217)
o 0.0543 (0.0302) 0.2197 (0.0748) ip(—2) 0.0590 (0.0081) 0.0762 (0.0221)
Ha -0.0488 (0.0952) 0.0823 (0.0442) sp(—3)  0.0410(0.0272) -0.1705 (0.0213)
™ 0.0773(0.0071) 0.1058 (0.10133) ip(—3)  0.0113 (0.0067) 0.0129 (0.0114)
sp(—1) 1.1967 (0.0131) 0.0675(0.0119) sp(—4) -0.0292 (0.0157) 0.1290 (0.0133)
ip(—1)  0.0049 (0.0071) 1.0700 (0.0163) ip(—4)  -0.0718(0.0049) -0.2303 (0.0075)

0.1928 00322 0.0916 00599
(0.0424 (0.0221) (0.0379 (0.0210)
Q1= , Qo = :
0.0322 12628 0.0599 09991
(0.0221) (0.2661) (0.0210 (0.2195
2.0566 04891 0.0822 —-0.0057
(05271 (0.1277) (0.0073 (0.0017)
Q3= , Qp =
0.4891 13336 —0.0057 04911
(0.1277) (0.2728 (0.0017) (0.0455
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Table 8: Selection of the Number of the Breaks for Application 2 by Model 1

pm m=0 m=1 m=2 m=3 m=4

p=2 0.0000 0.0000 0.0000 0.0000 0.0000
p=3 0.0000 0.0000 0.0000 0.9973 0.0018
p=4 0.0000 0.0000 0.0000 0.0007 0.0000

Note: Each element shows the posterior probability in ().
p: the number of the lag in a VAR

m: the number of the structural breaks

Table 9: Selection of the Number of Ranks of Model 1 with=- 3 andp =3

ranki i=1 =2 i=3 i=4

r=0 0.0000 0.0311 0.0000 0.0742
r=1 1.0000 0.9699 0.6121 0.9258
r=2 0.0000 0.0000 0.3880 0.0000

Note: Each element shows the posterior probability in ().
r: the number of rank

i: regime divided by the structural breaks
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Table 10: Posterior Results of Model 1 with= 3 andp = 3, andr = 1 for all regimes for

Application 2

(a) Estimates of Break Points

Posterior Mode

95% HPDR

1stbreak 1979:10 (0.0548) 1979:09, 1979:10

2nd break 1983:01 (0.0601) 1982:10, 1983:02

3rd break 1988:06 (0.1226)

1988:04, 1988:08

(b) Estimates of Other Parameters (Mean of the Posterior)

Parameters I rs Parameters r rs
m 0.0219 (0.0053) -0.0043 (0.0167) 03 -0.0265 (0.0049)  0.0755 (0.0093)
Lo -0.0005 (0.0763) 0.2087 (0.0819) a4 -0.0006 (0.0010)  0.0171 (0.0011)
ls 0.0238 (0.0114) -0.1297 (0.0132) P, 1 -0.9911 (0.0636)
L -0.0194 (0.0017) -0.0289 (0.0055) B, 1 -0.9915 (0.0793)
ay -0.0100 (0.0011) 0.0368 (0.0023)  Ps 1 -1.0023 (0.0193)
a, -0.0831 (0.0189) 0.1610 (0.0679) P 1 -0.9935 (0.0473)
[ 00407 00378 | [ 04822 05426 |
o (0.0058 (0.0075) 0, (0.1193 (0.1407)
0.0378 01796 05426 28110
| (0.0075 (0.0247) | | (0.1407) (05828 |
[ 01153 00423 | [ 00471 00053 |
0, (0.0205 (0.0077) e (0.0047) (0.0006)
0.0423 01140 0.0053 00204
| (0.0077) (0.0181) | | (0.0006 (0.0019 |
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Table 11: Selection of the Number of the Breaks for Application 2 by Model 2

pm m=0 m=1 m=2 m=3 m=4

p=2 0.0000 0.0000 0.0000 0.0000 0.0000
p=3 0.0000 0.0000 0.0000 0.9719 0.0263
p=4 0.0000 0.0000 0.0000 0.0009 0.0009

Note: Each element shows the posterior probability.
p: the number of the lag in a VAR

m: the number of the structural breaks
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Table 12: Posterior Results of Model 2 with= 3 andp = 3, andr = 1 for all regimes for

Application 2

(a) Estimates of Break Points

Posterior Mode 95% HPDR

Istbreak 1979:10 (0.0552) 1979:09, 1979:10

2nd break 1983:01 (0.0610) 1982:11, 1983:02

3rd break 1988:06 (0.1376) 1988:04, 1988:08

(b) Estimates of Other Parameters (Mean of the Posterior)

Parameters r s
m 0.0225 (0.0053)  -0.0061 (0.0162)
Lo 0.0000 (0.0644)  0.2117 (0.0762)
ls 0.0263 (0.0173) -0.1228 (0.0165)
Ha -0.0189 (0.0024) -0.0301 (0.0071)
ay -0.0102 (0.0012) 0.0371 (0.0022)
oz -0.0846 (0.0181) 0.1672 (0.0640)
as -0.0257 (0.0051)  0.0709 (0.0216)
o -0.0003 (0.0013)  0.0173 (0.0014)
B 1 -0.9844 (0.0610)
[ 00406 00376 | [ 04829 05438 |
0, (0.0058 (0.0075) . (0.1179 (0.1412) |
0.0376 01789 05438 27944
| (0.0075 (0.0249 | | (01412 (05808 |
[ 01150 00420 | [ 00472 00053 |
0, (0.0207) (0.0078, 0 (0.0047) (0.0006)
0.0420 01147 0.0053 00205
| (0.0078 (0.0182 | | (0.0006 (0.0019 |
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Figure 1: The Interest Rates Spreag)(and the US Industrial Production Growth Raite) (

solid line - the interest rates spread, dotted line - the US industrial production growth rate
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Figure 2: Posterior Probability Mass of the Break Dates for Application 1
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Figure 3: US Long- and Short-Term Interest Rates
solid line - 10-year TB rate, dotted line - 3-month TB rate
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Figure 4: Posterior Probability Mass of the Break Dates for Application 2 - Model 1

80F
70F
60

s0f

S | O S A
1985 1990 1995 2000 2005

55



Figure 5: Posterior Density @f for Application 2 - Model 1
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Figure 6: Posterior Probability Mass of the Break Dates for Application 2 - Model 2
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Figure 7: Posterior Density af for Application 2 - Model 2
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