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1 Introduction

This paper studies a participation game in a mechanism to implement a public project.

Many interesting mechanisms have been constructed to solve the “free-rider” problem

in economies with public goods. In the case of a public project, Bagnoli and Lipman

(1989) and Jackson and Moulin (1992) designed mechanisms that implement efficient

allocations. However, Palfrey and Rosenthal (1984) pointed out the importance of the

strategic behavior of agents as they decide whether or not to participate in the mech-

anisms. In the real world, as for example the participation problems in international

environmental treaties, agents often have the right to make such decisions, and they may

have an incentive not to enter the mechanism, hoping that other agents will participate in

the mechanism and provide a public good. This will generate another kind of a free-rider

problem.

Palfrey and Rosenthal (1984) formulated a participation game in a mechanism to

implement a public project with identical agents. In this game, each agent simultaneously

chooses either participation or non-participation. If they enter the mechanism, they

contribute a fixed amount that is common to every participant. The public good is

supplied only if the aggregate contribution of participants outweighs its production cost.

Only the participants bear the cost of the public good, while non-participants can benefit

from the public good at no cost because the public good is non-excludable. Palfrey and

Rosenthal (1984) characterized pure and symmetric mixed Nash equilibria and showed

that an efficient allocation is achieved at a Nash equilibrium but multiplicity of equilibria

may arise.

In this paper, we examine the participation problem which is similar to Palfrey and

Rosenthal (1984). However, there are several differences between our model and that

of Palfrey and Rosenthal (1984). First, we consider heterogeneous agents.1 Secondly,

1Maruta and Okada (2001) analyze a different kind of heterogeneity from ours in the group formation
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we introduce a mechanism that implements the following allocation rules: (i) the public

project is undertaken only if the joint benefit of participants from it is more than its

cost, (ii) the sum of payments from participants is equal to the cost of producing the

public project, (iii) every participant bears a positive cost share, and (iv) the cost share

of each participant is less than his willingness to pay for the public project. This kind

of allocation rule includes many cost-sharing rules. A proportional cost-sharing rule is

an example of such cost-sharing rules. Thirdly, we focus on not only Nash equilibria but

also strong equilibria (Aumann, 1959) and coalition-proof equilibria (Bernheim, Peleg,

and Whinston, 1987).

Our results are summarized as follows. We first characterize the set of participants

at strict Nash equilibria. We show that there exists a strict Nash equilibrium and that

every strict Nash equilibrium supports an efficient allocation in the participation game.

Secondly, we characterize strong equilibria and show that there is a strong equilibrium

in the participation game. Our main result is that the set of strict Nash equilibria, that

of strong equilibria, and that of coalition-proof equilibria coincide and that the sets of

these three equilibria are not empty. Moreover, there are efficient allocations that are

supportable as the three notions of equilibria, and all the equilibrium allocations are

Pareto efficient.

We also extend our model to the case with a multi-unit public good and that with

multiple projects. In these cases, the set of strict Nash equilibria, and that of strong

equilibria, and that of coalition-proof equilibria do not necessarily coincide.

Before the model is introduced, let us discuss the relationship between our work

and other work. First, we consider the possibility that agents form a coalition and

coordinate the participation decisions. We analyze the effect of such coalitional behavior

on the participation decision. Earlier literature on participation games has focused solely

game.
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on Nash equilibria, disregarding the effects (see, for example, Cavaliere (2001), Dixt and

Olson (2000), Palfrey and Rosenthal (1984), and Saijo and Yamato (1999)). In this paper,

analyses are presented of strong and Nash equilibria in the participation game. A strong

equilibrium is a strategy profile that is immune to all possible coalitional deviations.

This is a very demanding equilibrium concept, and many games that are of interest

to economists do not have a strong equilibrium. However, the equilibrium exists in

the participation game studied in this paper. Furthermore, the set of strong equilibria

coincides with that of strict Nash equilibria and that of coalition-proof equilibria. This

is an interesting respect of our model, since strict Nash equilibria, strong equilibria, and

coalition-proof equilibria are based on different concepts of stability and, in particular,

the set of strict Nash equilibria and that of strong equilibria are not in general related

by inclusion.

The second interesting point is relevant to participation games with local public

goods. Konishi, Le Breton, and Weber (1997a) established sufficient conditions for equiv-

alence between coalition-proof equilibria and strong equilibria. Applying their sufficient

conditions, it is straightforward to show that the two sets coincide in the participation

game with excludable public goods. However, we show that the equivalence between the

two sets of equilibria is also established even for the case with a non-excludable public

project. The existence of strong equilibria has been studied in the context of congestion

games, which can be interpreted as a sort of a participation game in mechanisms pro-

viding local public goods with congestion effects. The congestion games satisfying some

conditions have a strong equilibrium (Holzman and Yone, 1997; Konishi, Le Breton, and

Weber, 1997c). Although the participation game studied in this paper is not a congestion

game, it has a strong equilibrium.

Thirdly, we mention the relationship between the participation game with a public

project and the other models in the context of the provision of a pure public good. In
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a participation game in a mechanism producing a perfectly divisible public good, there

exists a case in which strict Nash and coalition-proof equilibria exist but strong equilibria

do not. (Saijo and Yamato, 1999; Shinohara, 2003). Similar phenomena have also been

observed in standard games of the voluntary contribution of a perfectly divisible public

good. Therefore, in the games of the provision of perfectly divisible public goods, the set

of strict Nash equilibria, that of strong equilibria, and that of coalition-proof equilibria

are not necessarily equal. This paper shows that the equivalence of the three sets of

equilibria does not necessarily hold in a participation game with a multi-unit public

good and that with multiple projects, which are generalizations of the participation

game with a public project. However, in the participation game with a public project,

there is a strong equilibrium, and all three sets of equilibria coincide. This means that

the existence and equivalence results depend on the setting with one and only one public

project. In other words, it hardly holds in the context of the provision of public goods

that a strong equilibrium exists and the sets of strict Nash, strong, and coalition-proof

equilibria all coincide.

2 Participation game in a mechanism implementing

a public project

We consider the problem of undertaking a (pure) public project and distributing its cost.

Let n be the number of agents. We denote the set of agents by N = {1, . . . , n}. Let

y ∈ {0, 1} be the public project. If the project is undertaken, then y = 1, and y = 0 if

not. Let θi > 0 denote agent i’s willingness to pay for the project. Let xi ≥ 0 denote a

transfer from agent i. Each agent i has a preference relation which is represented by the

quasi-linear utility function Vi(y, xi) = θiy − xi. The cost of the project is c > 0.

In this paper, we assume that there exists a mechanism that implements a Pareto
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efficient and individually rational allocation rule. We consider a two-stage game. In

the first stage, each agent simultaneously decides whether or not he participates in the

mechanism. In the second stage, following the rule of the mechanism, only the agents

who selected participation in the first stage decide the implementation of the project and

the distribution of its cost. First, we formally define the outcome of the second stage.

Let P be a set of participants, and let (yP , (xP
j )j∈N) be the outcome of the second stage

when P is the set of participants. We denote θP =
∑

j∈P θj for all sets of participants P :

θP is the sum that agents in P are willing to pay for the public project. For each subset

P of N, #P means the cardinality of the set P .

Assumption 1 For every set of participants P , the allocation to the participants (yP , (xP
j )j∈P )

satisfies

(i) θP > c if and only if yP = 1,

(ii) if yP = 1, then
∑

i∈P xP
i = c,

(iii) θi > xP
i for every i ∈ P , and

(iv) xP
i > 0 for every i ∈ P if and only if yP = 1.

Condition (i) means that the public project is undertaken if and only if the sum that

the participants are willing to pay for the project exceeds the project cost. Condition (ii)

requires that the expenses paid by the participants be equal to the project cost when the

project is undertaken. This is called the budget balance condition. Clearly, conditions (i)

and (ii) imply that (yP , (xP
j )j∈P ) is a Pareto efficient allocation only for the preferences

of agents in P . Item (iii) is the individual rationality condition, which means that the

payoff of every participant after entering the mechanism is greater than 0, when the

project is undertaken. Condition (iv) requires that every participant bear a positive cost

share if and only if the public project is undertaken.
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Several desirable allocation rules satisfy the conditions. The proportional cost-sharing

rule under condition (i) is such an example: for all sets of participants P and for all i in

P ,

xP
i =





θi

θP

c if yP = 1,

0 otherwise.

In this paper, we are not concerned with the implementation problem of an allocation

rule that satisfies (i), (ii), (iii), and (iv) in Assumption 1. However, there is a mechanism

in which the above allocation rule is attainable in equilibria. For example, Jackson and

Moulin (1992) constructed mechanisms which implement a class of cost-sharing rules

satisfying all the above conditions in subgame perfect equilibria and undominated Nash

equilibria.

Assumption 2 Let P ⊆ N be a set of participants. We assume xP
i = 0 for all i /∈ P ,

and every non-participant can also consume yP .

This assumption expresses the non-excludability of the project. In this assumption,

participants bear the cost share for the project, but non-participants do not. In spite of

this, non-participants can benefit from the project.

Given the outcome of the second stage, the participation-decision stage can be re-

duced to the following simultaneous game. In the game, each agent i simultaneously

chooses either si = I (participation) or si = O (non-participation), and then the set

of participants is determined. Let P s be the set of participants at an action profile

s = (s1, . . . , sn). Then, each agent i obtains the utility Vi(y
P s

, xP s

i ) at the action profile

s. That is, if the public project is undertaken, then participants share the cost of it as

defined in Assumption 1. Each non-participant can benefit from the public project at

no cost. On the other hand, if the project is not carried out, then the payoffs for both

participants and non-participants are zero. We call this reduced game a participation

game and formally define it as follows.
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Definition 1 (Participation game) A participation game is represented by G =
[
N, Sn = {I, O}n, (Ui)i∈N

]
, where Ui is the payoff function of i, which associates a real

number Ui(s) with each strategy profile s ∈ Sn: if P s designates the set of participants

at s, then Ui(s) = Vi(y
P s

, xP s

i ) for all i.

Our attention is limited to the pure strategy profiles.

The notions of equilibria of the participation game are defined as follows. The Nash

equilibria of the participation game are defined as usual. First, a definition is given for

a strict Nash equilibrium.

Definition 2 (Strict Nash equilibrium) A strategy profile s∗ ∈ Sn is a strict Nash

equilibrium if, for all i ∈ N and for all ŝi ∈ S \ {s∗i }, Ui(s
∗
i , s

∗
−i) > Ui(ŝi, s

∗
−i).

Before defining strong equilibria, some notation is presented. For all D ⊆ N , denote

the complement of D by −D. For all coalitions D, sD ∈ S#D denotes a strategy profile

for D. For all sN ∈ Sn, denote sN by s.

Definition 3 (Strong equilibrium) A strategy profile s∗ ∈ Sn is a strong equilibrium

of G if there exist no coalition T ⊆ N and its strategy profiles̃T ∈ S#T such that

Ui(s̃T , s∗−T ) ≥ Ui(s
∗) for all i ∈ T with strict inequality for at least one i ∈ T .

A strong equilibrium is a strategy profile at which no subset of agents, taking the

strategies of others as given, can jointly deviate in a way in which all members are at

least as well off and at least one of its members is strictly better off. Obviously, all strict

Nash equilibria and all strong equilibria are Nash equilibria. However, the set of strict

Nash equilibria and that of strong equilibria are not necessarily related by inclusion.

Example 1 Let N = {1, 2, 3}, θ1 = θ2 = θ3 = 3/4, and c = 1. The cost is distributed

among participants in proportion to their willingness to pay for the project. The payoff

matrix of this example is depicted in Table 1, where agent 1 chooses rows, agent 2 chooses
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columns, and agent 3 chooses matrices. The first entry in each box is agent 1’s payoff,

the second is agent 2’s, and the third is agent 3’s. There are two types of Nash equilibria.

One is the Nash equilibrium with two participants, and the other is the Nash equilibrium

with no participants. Only the Nash equilibria with participation of two agents are strict

and strong.

〈Insert Table 1 here.〉

3 Strict Nash equilibria of the participation game

In this section, we characterize the sets of participants attained at strict Nash equilibria.

Since the payoffs to agents depend on the sets of participants, we introduce the following

notations for the sake of convenience.

Definition 4 A payoff function of i, ui : 2N → R+, is defined as follows:

For all sets of participants P ∈ 2N , ui(P ) =





(θi − xP
i )yP if i ∈ P ,

θiy
P otherwise.

The set of feasible allocations of the economy is defined as A:

A =

{
(y, (xj)j∈N) | y ∈ {0, 1}, xi ≥ 0 for all i ∈ N, and

∑
i∈N

xi ≥ cy

}
.

Assumption 3 θN > c.

Definition 5 An allocation (y, (xj)j∈N) is called Pareto efficient if there is no allocation

(ŷ, (x̂j)j∈N) ∈ A such that Vi(ŷ, x̂i) ≥ Vi(y, xi) for all i ∈ N and Vi(ŷ, x̂i) > Vi(y, xi) for

some i ∈ N .

We, hereafter, consider a case in which Assumption 3 holds. By Assumption 3, the

public project is undertaken at all Pareto efficient allocations. In the next Lemma, we

characterize the sets of participants supported as strict Nash equilibria.
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Lemma 1 A set of participants P is supported as a strict Nash equilibrium of the

participation game if and only if θP > c and θP − θi ≤ c for all i ∈ P .

Proof. Let P be a set of participants that satisfies θP > c and θP − θi ≤ c for all i ∈ P ,

and let (yP , (xP
j )j∈N) denote the allocation when P is the set of participants. Then, the

following conditions are satisfied:

ui(P ) = θi − xP
i > 0 = ui(P \ {i}) for all i ∈ P , and

ui(P ) = θi > θi − x
P∪{i}
i = ui(P ∪ {i}) for all i /∈ P.

Therefore, P can be supported as a strict Nash equilibrium.

Secondly, we suppose that P is a set of participants at a strict Nash equilibrium.

Then, we have ui(P ) > ui(P \ {i}) for all i ∈ P and ui(P ) > ui(P ∪ {i}) for all i /∈ P .

If θP ≤ c, then we have ui(P ) = ui(P \ {i}) = 0 for all i ∈ P , which is a contradiction.

Thus, it must be satisfied that θP > c. Since θP > c, ui(P ) = θi − xP
i for all i ∈ P . If

θP − θj > c for some j ∈ P , then the agent j has an incentive to deviate from I to O

because uj(P \ {j}) = θj > θj − xP
i = uj(P ). This is a contradiction. Therefore, we

must have θP − θi ≤ c for all i ∈ P . ¥

In the following lemma, we verify that there is a strict Nash equilibrium in the

participation game.

Lemma 2 There exists a strict Nash equilibrium in the game G under Assumption 3.

Proof. By Lemma 1, we show the existence of a set of participants P ⊆ N that satisfies

the condition

θP > c and θP − θi ≤ c for all i ∈ P, (1)

in order to prove this statement. Let T be a set of participants such that:

T ∈ arg min
Q⊆N

θQ such that θQ > c. (2)
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Note that there is at least one set of participants R satisfying θR > c by Assumption

3. Now, suppose that θT − θi > c for some i ∈ T . Since θT > θT\{i} > c, θT is not the

minimal number, which contradicts (2). Therefore, it holds true that θT − θi ≤ c for all

i ∈ T . ¥

In the participation game, there may be a non-strict Nash equilibrium. For example,

a Nash equilibrium at which no agents choose I is obviously not strict in Example 1. Note

that, if non-strict Nash equilibria exist, then the project is not done in the equilibrium,

and the allocations supported as the non-strict Nash equilibria are Pareto-dominated by

that attained at a strict Nash equilibrium. The following proposition shows that the set

of strict Nash equilibria coincides with the set of Nash equilibria that support efficient

allocations.

Proposition 1 In the participation game, a strategy profile is a strict Nash equilibrium

if and only if it is a Nash equilibrium at which an efficient allocation is attained.

Proof. First, we prove that every strict Nash equilibrium is a Nash equilibrium that

supports an efficient allocation. Obviously, every strict Nash equilibrium is a Nash

equilibrium. Hence, we need to show that every allocation achieved at a strict Nash

equilibrium is Pareto efficient. Assume that (yP , (xP
j )j∈N) is the allocation attained at a

strict Nash equilibrium. Note that Vi(y
P , xP

i ) = θi − xP
i for all i ∈ P and Vi(y

P , xP
i ) =

θi for all i /∈ P . Suppose, on the contrary, a feasible allocation (ŷ, (x̂j)j∈N) Pareto

dominates (yP , (xP
j )j∈N). It must be satisfied that Vi(ŷ, x̂i) = θi for all i /∈ P because

θi is the greatest payoff of agent i in A. Hence, there is at least one participant j ∈ P

such that Vj(ŷ, x̂j) > Vj(y
P , xP

j ). Let J ⊆ P be a set of such participants and let

εj = Vj(ŷ, x̂j) − Vj(y
P , xP

j ) > 0 for all j ∈ J . Since Vj(y
P , xP

j ) = θj − xP
j > 0 for

every j ∈ J , we must have ŷ = 1: otherwise, Vj(ŷ, x̂j) = 0. Then, we learn that
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Vj(ŷ, x̂j) = θj − xP
j + εj for all j ∈ J . By the argument above,

x̂j = 0 for all j /∈ P ,

x̂j = xP
j − εj for all j ∈ J , and

x̂j = xP
j for all j ∈ P \ J .

Summing up x̂j for all j ∈ N yields
∑

j∈N x̂j =
∑

j∈P xP
j −

∑
j∈J εj = c −∑

j∈J εj < c,

which contradicts the feasibility of (ŷ, (x̂j)j∈N). Hence, (yP , (xP
j )j∈N) is Pareto efficient.

Secondly, each Nash equilibrium that supports an efficient allocation is a strict Nash

equilibrium. Let s ∈ Sn be a Nash equilibrium that attains an efficient allocation. Denote

the set of participants at s by P s. Since the project is done at efficient allocations, we

have θP s > c. Furthermore, it is satisfied that θP s − θi ≤ c for all i ∈ P s: if there is

an agent j ∈ P s such that θP s − θj > c, then agent j has an incentive to deviate from

s because uj(P
s \ {j}) = θj > θj − xP s

j = uj(P
s). This contradicts the idea that s is a

Nash equilibrium. It follows from Lemma 1 that s is a strict Nash equilibrium. ¥

4 Strong equilibria in the participation game

4.1 Equivalence between strict Nash equilibrium and strong

equilibrium

First, we show that the set of strong equilibria coincides with that of strict Nash equi-

libria.

Proposition 2 In the participation game with a public project, a strategy profile is a

strong equilibrium if and only if it is a strict Nash equilibrium.

Proof. (⇐) Let s∗ ∈ Sn denote a strict Nash equilibrium. Let P ∗ be the set of

participants at s∗. Let T ⊆ N be a coalition and sT ∈ S#T be a strategy profile of T .
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We show that some members of T are worse off by jointly deviating from s∗T to sT .

We take a partition of T consisting of four sets: T ∗
I ∩ TI , T ∗

I \TI , TI\T ∗
I , and T\ (T ∗

I ∪ TI),

where T ∗
I ≡ {i ∈ T |s∗i = I} and TI ≡ {i ∈ T |si = I}. The set of participants in (sT , s∗−T )

is (P ∗ \ (T ∗
I \TI))∪ (TI\T ∗

I ). We denote this set by P̃ . In the strict Nash equilibrium s∗,

ui(P
∗) = θi − xP ∗

i > 0

for all i ∈ P ∗, and

ui(P
∗) = θi > 0

for all i /∈ P ∗. We calculate the payoffs of the members of T after the deviation. To do

so, we need to consider the following two cases: θ eP ≤ c, and θ eP > c.

First, consider the case in which θ eP ≤ c. In this case, the public project is not

undertaken at (sT , s∗−T ). Since the payoffs of the members of T at (sT , s∗−T ) are given by

ui(P̃ ) = 0 for all i ∈ T , we obtain the following four inequalities:

ui(P
∗) > ui(P̃ ) for all i ∈ T ∗

I ∩ TI ,

ui(P
∗) > ui(P̃ ) for all i ∈ T ∗

I \TI ,

ui(P
∗) > ui(P̃ ) for all i ∈ TI\T ∗

I , and

ui(P
∗) > ui(P̃ ) for all i ∈ T\ (T ∗

I ∪ TI).

Therefore, the deviation cannot raise the members’ payoffs.

Next, let us consider the case in which θ eP > c. Note that the public project is

undertaken at (sT , s∗−T ). If T ∗
I \TI is not empty, then it follows from Lemma 1 that

θP ∗ − θi ≤ c for all i ∈ T ∗
I \ TI . Thus, we have θP ∗ − θT ∗I \TI

≤ c. Because θ eP =

θP ∗ − θT ∗I \TI
+ θTI\T ∗I > c, we must obtain θTI\T ∗I > 0. This implies that TI\T ∗

I is non-

empty. It is satisfied that ui(P
∗) > ui(P̃ ) for all i ∈ TI\T ∗

I because ui(P̃ ) = θi − x
eP
i

for every i ∈ TI\T ∗
I . Therefore, if T ∗

I \TI is not empty, the deviation does not improve

the members’ payoffs. If T ∗
I \TI and TI\T ∗

I are empty sets, then P ∗ = P̃ holds. Clearly,
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no member of T is better off by the deviation. If T ∗
I \TI is empty and TI\T ∗

I is non-

empty, then none of the agents in TI\T ∗
I can improve their payoffs by the deviation since

ui(P
∗) = θi > θi−x

eP
i = ui(P̃ ) for all i ∈ TI\T ∗

I . Consequently, s∗ is a strong equilibrium

of G.

(⇒) Let s∗ be a strong equilibrium, and let P ∗ be the set of participants at s∗. If

θP ∗ ≤ c holds, then we have ui(P
∗) = 0 for all i ∈ N . When all agents jointly choose I,

then every agent i has the payoff ui(N) = θi − xN
i , which is positive by Assumption 1

and 3. This is a contradiction. Hence, we have θP ∗ > c. It also holds that θP ∗ − θi ≤ c

for all i ∈ P ∗: if there exists an agent j ∈ P ∗ such that θP ∗ − θj > c, then agent j

has an incentive to deviate from s because uj(P
∗ \ {j}) = θj > θj − xP ∗

j = uj(P
∗).

This contradicts the idea that s∗ is a strong equilibrium. Therefore, s∗ is a strict Nash

equilibrium. ¥

Although the sets of strict Nash equilibria and strong equilibria are subsets of that

of Nash equilibria, it is not evident whether the two sets coincide. The two-player

game depicted in Table 2 shows that the set of strong equilibria does not necessarily

coincide with that of strict Nash equilibria. In this game, (B1, B2) is the only strict Nash

equilibrium, and a strong equilibrium is uniquely determined by (A1, A2). Hence, the

two sets have an empty intersection, and both of them exist. However, from Proposition

2, the set of strict Nash equilibria coincides with that of the strong equilibria in the

participation game. An implication of Proposition 2 is that the two non-cooperative

equilibrium concepts based on different types of stability coincide in the participation

game with a public project.

Note that a weakly dominated strategy may be used at a strong equilibrium.2 In

the example in Table 2, A1 is weakly dominated by B1, and so is A2 by B2. However,

2For every agent i, a strategy si ∈ S is weakly dominated in the game G if there exists another

strategy s′i ∈ S such that Ui(s′i, s−i) ≥ Ui(si, s−i) for all s−i with strict inequality for some s−i.



15

(A1, A2) is a strong equilibrium of the game. In the participation game with a public

project, every strong equilibrium is a strict Nash equilibrium, which implies that the

strong equilibrium does not consist of weakly dominated strategies in the participation

game.

〈Insert Table 2 here.〉

By Lemma 2, Proposition 1, and Proposition 2, the set of strong equilibria and the

set of Nash equilibria that support efficient allocations coincide, and a strong equilibrium

exists in the participation game.

Corollary 1 The set of strong equilibria coincides with the set of Nash equilibria that

support an efficient allocation in the participation game.

Corollary 2 The participation game has a strong equilibrium.

These results contrast with those of a participation game with a perfectly divisible

public good. Saijo and Yamato (1999) introduced a model of voluntary participation

in a mechanism to provide a perfectly divisible public good. We find from their results

that the Nash equilibria of the game are not always Pareto efficient. Hence, if agents

have the right to decide either participation or non-participation in the mechanism, then

efficient allocations are not necessarily attained even if the mechanism is constructed to

implement efficient allocations in its equilibrium. It was also proven by Shinohara (2003)

that the game does not always have a strong equilibrium.3 In contrast, in a participation

game with a public project, there exist strong equilibria, and an efficient allocation of

the economy can be supported as the equilibrium.

3In the participation game with a perfectly divisible public good, the provision of the public good

increases as the number of participants rises. In the case in which the number of participants at a

Nash equilibrium is sufficiently small, if all non-participants at the Nash equilibrium jointly switch to

participation, then each of them can be better off. For details, refer to Shinohara (2003).
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4.2 Coalition-proof equilibria and strong equilibria

The notion of a coalition-proof equilibrium was introduced by Bernheim, Peleg, and

Whinston (1987) and is known as a refinement of Nash equilibria based on the stability

against self-enforcing coalitional deviations. It is defined by using the notion of restricted

games. A restricted game is a game in which a subset of agents play the game G, taking

strategy profiles of agents outside the subset as given. We formally define it as follows.

Let T ( N and t = #T . Let s̄N\T ∈ Sn−t. A restricted game G|s̄N\T is a game in

which the set of agents is T , the set of strategy profiles is St, and the payoff function for

each i ∈ T is the function Ui(·, s̄N\T ) that associates a real value Ui(sT , s̄N\T ) with each

element sT in St such that: Ui(sT , s̄N\T ) = Vi(y, xi), where (y, (xj)j∈N) is the allocation

when agents play (sT , s̄N\T ) in G.

Definition 6 A coalition-proof equilibrium (s∗1, . . . , s∗n) is defined inductively with re-

spect to the number of agents t:

• When t = 1, for all i ∈ N , s∗i is a coalition-proof equilibrium for G|s∗N\{i} if

s∗i ∈ arg max Ui(si, s
∗
N\{i}) s.t. si ∈ S.

• Let T ⊆ N with t = #T ≥ 2. Assume that coalition-proof equilibria have been

defined for all normal form games with fewer agents than t.

• Consider the restricted game G|s∗N\T with t agents.

– A strategy profile s∗T ∈ St is called self-enforcing if, for all Q ( T , s∗Q is a

coalition-proof equilibrium of G|s∗N\Q.

– A strategy profile s∗T is a coalition-proof equilibrium of G|s∗N\T if it is a

self-enforcing strategy profile and there is no other self-enforcing strategy

profile ŝT ∈ St such that Ui(ŝT , s∗N\T ) ≥ Ui(s
∗
T , s∗N\T ) for all i ∈ T and

Ui(ŝT , s∗N\T ) > Ui(s
∗
T , s∗N\T ) for some i ∈ T .



17

Coalition-proof equilibria are defined as the Pareto efficient frontier within the set of

self-enforcing strategy profiles. The self-enforcing strategy profiles are recursively defined

with respect to the number of agents in coalitions. At a self-enforcing strategy profile

of N , no proper coalition of N can coordinate its members’ strategies in a way in which

all members of the coalition are at least as well off and at least one of them is strictly

better off, and no proper subsets of the coalition further deviate in a self-enforcing way.

Note that every strong equilibrium is a coalition-proof equilibrium and every coalition-

proof equilibrium is a Nash equilibrium, but a coalition-proof equilibrium is not always

a strong equilibrium. However, in the participation game with a public project, every

coalition-proof equilibrium is a strong equilibrium.

Proposition 3 In the participation game with a public project, a strategy profile is a

strong equilibrium if and only if it is a coalition-proof equilibrium.

Proof. By the definitions of coalition-proof equilibria and strong equilibria, every strong

equilibrium is a coalition-proof equilibrium. We show that a coalition-proof equilibrium

s ∈ Sn is a strong equilibrium. Suppose, on the contrary, that s is not a strong equilib-

rium. Since the profile s is a coalition-proof equilibrium, it must be a Nash equilibrium.

If s is a strict Nash equilibrium, then it is also a strong equilibrium by Proposition

2. Therefore, s must be a non-strict Nash equilibrium. By Proposition 1, s does not

support an efficient allocation. Because of this, we have Ui(s) = 0 for all i ∈ N . By

Lemma 2, there is at least one strict Nash equilibrium in this game. Denote a strict Nash

equilibrium by s∗. Note that s∗ must be a coalition-proof equilibrium; hence, it must

also be a self-enforcing strategy profile. By Proposition 2, s∗ is a strong equilibrium, and

we have Ui(s
∗) > 0 for every i ∈ N . Since s is Pareto-dominated by the self-enforcing

strategy profile s∗, s is not coalition-proof, which is a contradiction. Therefore, s is a

strong equilibrium. ¥
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Konishi, Le Breton, and Weber (1997a, 1997b, 1997c) studied the no-spillover game,

in which the strategy spaces of all players are common. In the no-spillover game, for each

player i, his payoff is not affected by the choices of those players who choose strategies dif-

ferent from i.4 These authors established sufficient conditions for the existence of strong

equilibria and the equivalence between coalition-proof equilibria and strong equilibria in

the game. One of the sufficient conditions is the condition of positive population mono-

tonicity: the payoff of every player i increases if more players choose the same strategy as

players i.5 Konishi, Le Breton, and Weber (1997a) proved that, if the population mono-

tonicity condition is satisfied, the set of coalition-proof equilibria coincides with that of

strong equilibria in every no-spillover game. Konishi, Le Breton, and Weber (1997b) also

showed that strong equilibria exist in games in which the set of pure strategies for each

player consists of two alternatives. Although the participation game is a no-spillover

game, it does not satisfy positive population monotonicity because the payoffs of non-

participants decrease when a participant switches to non-participation and the project is

then not undertaken. It was also proven by Konishi, Le Breton, and Weber (1997c) that,

if a no-spillover game satisfies negative population monotonicity6 and anonymity7, then

the game has a strong equilibrium. The participation game with a public project does

not satisfy negative population monotonicity. Furthermore, the participation game is

4The no-spillover game is formally defined as follows: a game is called a no-spillover game if, for all

pairs of agents i, j ∈ N , for all strategy profiles s ∈ Sn, and for all strategies for i, ŝi, if sj 6= si and

sj 6= ŝi, then Uj

(
si, sj , sN\{i,j}

)
= Uj

(
ŝi, sj , sN\{i,j}

)
.

5The game satisfies positive population monotonicity if, for all i, j ∈ N and for all s ∈ Sn, if si 6= sj ,

then Uj(si, sj , sN\{i,j}) ≤ Uj(sj , sj , sN\{i,j}).
6The game satisfies negative population monotonicity if, for all i, j ∈ N , for all s ∈ Sn, if si 6= sj ,

then Uj(si, sj , sN\{i,j}) ≥ Uj(sj , sj , sN\{i,j}).
7The condition of anonymity requires that the payoff of a player depend only on the number of

players who choose the same strategy. The formal definition is as follows: a game is anonymous if, for

all s, ŝ ∈ Sn and all i ∈ N , if si = ŝi and #{j ∈ N |sj = s̄} = #{j ∈ N |ŝj = s̄} for all s̄ ∈ S, then

Ui(s) = Ui(ŝ).
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not anonymous because agents are heterogeneous and the payoffs of participants depend

not on the number of participants but on their composition in our model. Although the

conditions of Konishi, Le Breton, and Weber are not sufficiently met in our game, the

set of strong equilibria coincides with that of coalition-proof equilibria and is not empty.

The following theorem summarizes the results that have been obtained so far.

Theorem In the participation game, the set of strict Nash equilibria, that of strong

equilibria, that of coalition-proof equilibria, and the set of Nash equilibria that support

efficient allocations coincide.

Remark 1 Let us consider an allocation rule that satisfies (ii), (iv), and the following

conditions:

(i)′ For all sets of participants P , θP ≥ c if and only if yP = 1.

(iii)′ For all P ⊆ N and for all i ∈ P , θi ≥ xi. (weakly individual rationality)

In the participation game in a mechanism to implement this allocation rule, the set of

strong equilibria contains that of strict Nash equilibria, and they do not always coincide.

Furthermore, a strict Nash equilibrium does not necessarily exist in the game. However,

the game has a Nash equilibrium at which efficient allocations are attained, and every

set of participants at Nash equilibria that support efficient allocations is characterized

as P ⊆ N with θP ≥ c and θP − θi < c for all i ∈ P . We can show that the set of

Nash equilibria that support efficient allocations, that of strong equilibria, and that of

coalition-proof equilibria coincide in a similar way to Propositions 2 and 3. Therefore,

the equivalence between a strong equilibrium and a coalition-proof equilibrium can be

obtained in a case in which the allocation rule satisfies (i)′ and (iii)′ instead of (i) and

(iii).
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5 More general participation games: examples

In Section 4, we prove that the set of strong, strict Nash, and coalition-proof equilibria

coincide in the participation game with a public project. In this section, we consider

two natural generalizations of the participation game with a public project: participation

games with a multi-unit public good and participation games with multiple public projects.

The purpose of this section is to investigate whether or not the results in Section 4 can

be extended to the more general participation games.

5.1 Participation games with a multi-unit public good

There is one private and one public good. We assume that the public good is produced

in the units of integers only. Let l > 1 be a natural number. Let Y be a subset of Rl
+

such that Y =
{
(y1, . . . , yl) ∈ {0, 1}l| y1 ≥ y2 ≥ · · · ≥ yl}: in this model, at most l units

of the public good can be produced. Let c > 0 be the cost of producing one unit of

the pubic good. Each agent i has a preference relation that is represented by the utility

function Vi : Y ×R+ → R+, which associates a real value Vi(y, xi) =
∑

k∈{1,2,...,l} θk
i yk−xi

with each element (y, xi) in Y × R+, where θk
i > 0 denotes agent i’s willingness to pay

for the k-th unit of the public good.

Example 2 Let N = {1, 2, 3, 4}. Let l = 2. Suppose that θ1
i = 2 and θ2

i = 0.8 for all

i ∈ N and c = 1. Assume that a mechanism implements the equal cost-sharing rule.

Let P be a set of participants. Note that one unit of the public good is produced if

#P = 1, and two units of the public good are provided if #P ≥ 2. Table 3 shows the

payoffs to participants and non-participants in this example. From the table, we can

easily find that one and only one agent enters the mechanism at all strict Nash and

coalition-proof equilibria. However, these Nash equilibria are not strong equilibria, since

three non-participants at the Nash equilibrium can gain higher payoffs if all of them
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jointly deviate from non-participation to participation; thus, a strong equilibrium does

not exist in this example. Therefore, the set of strict Nash equilibria and that of strong

equilibria do not necessarily coincide in the participation game with a multi-unit public

good.

〈Insert Table 3 here.〉

5.2 Participation games with multiple public projects

Let us consider an economy with two public projects (A and B) and their corresponding

mechanisms. The set of strategies of every agent is denoted by S = {A,B,O}: A

means participation in the mechanism undertaking the public project A, B designates

participation in the mechanism implementing the public project B, and O represents

participation in neither mechanism. The public project A is produced from c units of

the private good, and B is produced from αc units of the private good, where α > 0. The

production costs of public projects A and B are shared by participants equally. Every

agent i has a preference relation that is represented by the quasi-linear utility function

θA
i yA + θB

i yB−xi, where yA ∈ {0, 1} and yB ∈ {0, 1} represent the public projects A and

B, and θA
i and θB

i denote the willingness to pay for public projects A and B, respectively.

Example 3 Assume that θA
1 = θB

1 = θA
2 = θB

2 = θ > 0, 2θ > αc > θ > c, and 1 < α < 2,

say α = 1.5, c = 1, and θ = 1.25. The payoff matrix is depicted in Table 4. In this

example, the cost of project B is higher that that of project A. Project A is undertaken

if one or two agents choose A, and project B is undertaken only if two agents choose B.

Thus, it is a Nash equilibrium for the two agents to select B. This strategy profile is

also coalition-proof, because (A,A) is the only deviation that improves payoffs of the two

agents, but the deviation is not self-enforcing. However, strategy profile (B, B) is not

strong since the deviation from (B,B) to (A,A) is profitable. Hence, in the participation

game with two projects, there may be a coalitional deviation that increases payoffs of its
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members but is not self-enforcing. Therefore, the set of strong equilibria does not always

coincide with that of coalition-proof equilibria.

〈Insert Table 4 here.〉

The above examples indicate that the equivalence among the three sets of equilibria

does not always hold in the games with a discrete public good and multiple public

projects. Therefore, it is an essential assumption to the equivalence result that there is

one and only one public project in the economy.

Remark 2 Konishi, Le Breton, and Weber (1997a) showed that the set of coalition-

proof equilibria and that of strong equilibria coincide in many games of the provision of

local public goods. (Refer to Greenberg and Weber (1993) and Konishi, Le Breton, and

Weber (1998) for games of the provision of local public goods.) However, in games of

the provision of non-excludable public goods, the equivalence rarely holds. The above

results show that the two equilibrium sets coincide in the participation game with a

public project, while they may fail to coincide if the public good can be provided in

multiple units or if there are multiple projects.

6 Conclusion

We have investigated a participation game in a mechanism providing a public project. We

characterized the strict Nash, strong, and coalition-proof equilibria of the participation

game. We showed that the set of strict Nash, strong, and coalition-proof equilibria

coincide and that all of the equilibria exist. We find from the result that the participation

in a public project is in a class of games in which the three different non-cooperative

equilibria coincide. Furthermore, an efficient allocation of the economy can be achieved

as various notions of equilibria, and only the efficient allocations are supportable as the

equilibria. These results are contrasted with those in the models of providing a perfectly



23

divisible public good, such as a participation game with a perfectly divisible public good

and the voluntary contribution of a perfectly divisible public good. The equivalence

between the sets of coalition-proof and strong equilibria is established, although the

conditions of the earlier literature have not been sufficiently satisfied in our model. This

paper clarified the conditions that the set of coalition-proof equilibria and that of strong

equilibria coincide in the game of the provision of non-excludable public goods.

Although efficient allocations are attained at the equilibria, the allocations are less

desirable from the viewpoint of equity. In Example 1 on page 8, there exist strict Nash

equilibria at which two agents enter the mechanism. Obviously, these Nash equilibria

support efficient allocations. However, in these equilibria, only two agents bear the cost

for the public project, and the other agent enjoys the project at no cost. To achieve

more equitable allocations, it is desirable that all agents participate in the mechanism.

It is left for future researches to study the possibility of constructing the mechanism, in

which all agents participate at equilibria.
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Table 1: Payoff matrix of Example 1

1\2 A2 B2

A1 2, 2 0, 2

B1 2, 0 1, 1

Table 2: An example in which the set of strong equilibria and that of strong equilibria

are disjoint.
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The number of participants Payoffs to participants Payoffs to non-participants

0 - 0

1 1 2

2 1.8 2.8

3 32
15

2.8

4 2.3 -

Table 3: Payoffs of Example 2

1\2 A B O

A 0.75, 0.75 0.25, 1.25 0.25, 1.25

B 1.25, 0.25 0.5, 0.5 0, 0

O 1.25, 0.25 0, 0 0, 0

Table 4: A participation game with two public projects
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