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Abstract

This paper presents the communication process of passionate belief messages ac-
cording to a protocol, and then to show that, by communication among players,
the posteriors for a given event must be equal among them even if they have asym-
metric information. In our setting, the players may send non-partitional messages
based on their beliefs. We show that players can obtain the same posteriors under
the communication by such noisy information.
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1 Introduction

People tend to believe their own considerations with extravagance and to take
others’ ones calmly. Indeed, consider a race or a contest where people antici-
pate who/which wins. Each person with asymmetric information conceives a
various estimation or a different probability that every candidate wins. Each
person will be confident in her/his own expectations, but take others’ ones
calmly. This paper shows that the communication of such confident expec-
tations leads to a consensus: People with calm consideration for others’ esti-
mations obtain the identical probability for a fixed occurrence even through
passionate communication.

* This article constitutes part of the author’s Ph.D. dissertation and encloses the
previous work [7]. The author is indebted to Akira Yamazaki, his advisor, as well
as to Takashi Matsuhisa and Yoh-suke Akagawa. This is supported by Grant-in Aid
for JSPS Fellows.

Email address: pg01104@srv.cc.hit-u.ac.jp (Ryuichiro Ishikawa).



The literature of communication to lead players’ information to symmetry
was begun in order to address Aumann’s agreement theorem [1]; if all players
commonly know their posteriors of an event, then their posteriors must be
identical. However, he did not address the issue of how common knowledge
of players’ posteriors is achieved. Geanakoplos and Polemarchakis [4] first
address this issue by introducing a communication process between two players
in which the players announce their posteriors to each other. In the process
players can receive messages and revise their posteriors according to what they
learn from the messages. As a result of this communication process, they come
to a consensus on their posteriors. This implies that by the communication
process their posteriors will eventually become common knowledge among
them.

The model of Geanakoplos and Polemarchakis consists of only two players.
In extending this framework to any finite number of players, Cave [3] consid-
ered communication among finitely many players. In his setting every player
receives all messages that any one of them sends out. It is very similar to
auctions in which a price announced by any one of the players is heard si-
multaneously by each and every player. It was shown that the posteriors of
every player must become identical. However, a natural question suggests it-
self: Would it be possible for players to reach a consensus on posteriors even if
communications among players do not simultaneously take place but only in
pairwise manners? Parikh and Krasucki [10] first analyzed a case of pairwise
communication among more than two players, and exhibited a communication
protocol where players will eventually reach a consensus on posteriors. Our
research in this paper is a development along the line of the work by Parikh
and Krasucki.

In all of the models we referred above, both the knowledge of players and mes-
sages sent by them are represented by partitions of the state space. In the case
of partitional messages, players always send the exact values of their posteri-
ors for an occurrence in their messages each other. However, these messages
mean that players are not emotional but are always rational. Nevertheless, we
tend to be emotional, especially tend to believe ourselves as stated above. In
our setting, players believe their own beliefs with extravagant while they have
a kind of rationality for others; they are passionate for their beliefs and are
calm for others’.

I[shikawa, Matsuhisa, and Akagawa (2001) first presented a communication
process with belief messages. Players may send messages in non-partitional
forms of the state space. They can revise their posteriors of an event as they
receive messages from other players. Having revised their information after
the receipt of a message from other player, they, in turn, send a new message
to another player. The process is repeated infinitely many times. In this set-
ting, since the messages sent by players may not be exact information, there is



some difficulty to obtain same posteriors, that is, to reach a consensus. Hence,
Ishikawa et al. required acyclic communication protocol as Krasucki [8]. The
conclusion of this paper is that players will form a consensus on the poste-
riors of an event after an infinite round of communications according to a
protocol independent of cyclicity even if messages sent out to players are in
non-partitional forms.

We begin Section 2 by introducing the communication process with passionate
messages. In Section 3 we prove Main Theorem and state some remarks.

2 Passionate Communication

2.1 Protocol

Let N be a set of finitely many players and ¢ denote a player. We assume that
players communicate with their opponents by sending messages over the time
period T'= {0,1,...,}. A protocol defines a procedure of a communication
process among players. For simplicity, we restrict our attention to protocols
in which a recipient of a message at any time period immediately becomes
a sender in the subsequent period. We impose one essential property on a
protocol in our analysis of a communication process. This property will be
referred as repetitiveness. It requires that every player must become a recipient
(and a sender in the subsequent period) of a message repeatedly throughout
the entire time periods. Let us state its definition formally.

Definition 1 A protocol is a mapping, Pr of T into the product set N x N,
that assigns to each t € T an ordered pair of players Pr(t) = (i(t), j(t)) such
that i(t) = j(t —1). It is said to be repetitive if, for every player i and for any
k €T, there is ty, € T such that i = j(tx) and t, = k.

In this definition the value of the protocol at time ¢, Pr(t) = (i(t),j(t)), is
interpreted as a pair consisting of the sender and the recipient of a message at
time t. A repetitive protocol assures that every player receives and sends out
her message to another player repeatedly throughout the entire time periods.
It implies that, for every : € N and for every k € T, there exists some t;;, € T’
such that i = j(t;), and for any j € N, there exists some t; € T with
k é tj é tjk such that ] = j(t])



2.2  Communication Process

A state-space ) is a non-empty finite set, whose members are called states. An
event is a subset of the state-space. We denote by 2% the field of all subsets of
it. An event F is said to have occurred in a state w if w € F.

To represent player’ information structure, we define a class of mappings
(I1;);en such that TT; : Q — 29 satisfies the three properties, Reflectivity,
Transitivity and Symmetry:

(Ref) wellj(w);

(Trn) ¢ ellj(w) implies IL;(€) € IL;(w);

(Sym) ¢ elIl;(w) implies w € II;(§).

These three properties imply that II; is a partition of 2. A player i for whom
IT;(w) € E knows in the state w that some state in the event E has occurred.
This is interpreted as the set of states where 7 thinks are possible when w
occurs. We call I1; #’s information structure and II;(w) i's possibility set at w.

In a repetitive protocol Pr as defined above, at every time period there is a
player ¢ who sends a message informing about an event X that she believes
to have occurred with some probability. Let us formally define this communi-
cation process by specifying messages sent by players. Given an event X, the
passionate communication process (Pr, (Q5, 1§, M} ) inenxr) associated with
an event X is defined as a “revision process” of the posteriors of the event X.

Define (Q;, 11, ¢;, Mj,) inductively as follows:

At time 7 = 0 Set, for all 4, QY = II;, IIY = II;, and ¢} (w) = p(X| 1Y (w)) for
each w. Define the message Mjj, sent by i(0) as a mapping from Q into 2
such that, for each w € (),

Mgy (w) = {€] n(X| i) () > aigo) () }-

At time 7 2= 1 Given that (Q7, 117, 7, M[(T)) are defined for all ¢ up to 7 =
t — 1, we define for 7 =t and all i,

Qi Hw) N MLy (w) if i =j(t—1)

Qi(w) = {Qﬁ_l(uJ) ifi#j(t—1)

for every w. Q! represents the information learned by player i from the mes-

sage Mf(ﬁl) when 7 is its recipient at time ¢. After receiving a non-partitional

1

information Q¢, player 7 deduces from it a consistent information ' expressed

I Note that a non-partitional information Q! contains inconsistency: Although
player ¢ can know the finer information at a state, his information does not re-



by a partition IT¢. For each 4, IT¢ is defined as a partition generated by Q:

I (w) = {¢ € Q] Qi(¢) = Qi(w)}

for every w. Then, define, for each i, ¢/ which represents the probabilistic
assessment by player ¢ of the relative likelihood of the occurrence of the
event X conditional upon the player’s information II¢: For each w,

¢;(w) = p(X] I(w)).

M ?(t), which represents a message sent by player i(t), is defined by

)

Mit(t) (w) = {¢] n(X| Hf(t) &) 2 (Jf(t) (w)}
for every w.

In the above process, player i(t)’s message M/, (w) at w is specified as the
set of states in which the sender i(¢) believes at w that the event X must
have occurred with probability at least equal to qf(t) (w). Though he obtains
the exact value of his posterior, he believes that the event must have occurred
with probability more than the exact value and sends the message. Since
players’ messages take a form of their excessive ‘beliefs’ on the occurrence of
an event, we call the communication process defined above as a passionate
communication. This belief message is much similar to p-belief Monderer and
Samet (1989). However, while p € [0,1] in their p-belief is always fixed, our
beliefs in the messages can be revised according to players’ information.

Furthermore players in our setting have a kind of rationality for others. This is
because player i every time ¢ generates a partition IT¢ from @Q!. A non-partition
information Q! contains inconsistency as stated in Footnote 1. Nevertheless,
players can refine messages sent from others by their own information: They
are calm for the others’ considerations.

2.8 Consensus

In a passionate communication process, Q%(w) are not empty for any time
t € T as we have w € Q!(w) for each i and w € Q: Since w € {&] u(X| ITL(E)) =
iy (W)} C My, (w) for every ¢, and @Q(w) = IIj(w) > w, the intersection
between Qj(w) and Mj, (w) always has w for every player i. Thus ITj(w) is
also non-empty for any ¢, ¢, and w. Therefore, {¢!}°, is well-defined for any
player i. If there exists some ¢ € T such that, for every player i € N, and any
state w € ©, ¢/ (w) = ¢/ (w) at time ¢ > £, then we denote ¢>°(w) := ¢f(w). We

flect it another state. That is, when player ¢ can obtain the information Q;(£) and
Qi(w) such that Q;(§) G Qi(w), Qi(w) does not reflect the finer information Q;(¢).



say that a consensus on the assignment of posteriors of X is reached in the
communication process if ¢°(w) = ¢3°(w) for any pair of players 4,j and in
any state w.

3 Result and Remarks
3.1 Main Theorem

Our main theorem can formally be stated as follows.

Theorem 1 Given any event, the passionate communication process assSoci-
ated with the event leads to a consensus among all the players on the assess-
ment of the relative likelihood of its occurrence: There exists t* € T and a
probability ¢ : Q — [0,1] such that, for each w € Q, for any t = t*, and for
every 1 € N,

;°(w) = ¢*(w).

In the passionate communication process, since players’ messages are not par-
titions on the state space, each recipient cannot know the exact value at the
state in the sent message. Ishikawa, et al. (2001) could not prove to reach the
consensus with cyclic protocols. This is because the sent messages includes
some states where a sender believes the probability of the occurrence without
substance. In the following proof, we can show that such players’ messages
can be decomposed into each exact value of possible assignment.

Though we can prove the above theorem under the messages based on deci-
sion functions such as Parikh and Krasucki (1990) and Krasucki (1996), it is
difficult to interpret it as human behaviors.

3.2 Proof of Main Theorem

Given an event X, let (Pr, (Qf, 1T, Mf(t))(i,t)eNxﬂ be the passionate commu-
nication process associated with X. As defined in §2.2 (p. 5), for any state
w € €, for every t € T, and for each ¢ € N, we have

L) — Qi (w) N MG (w) ifi=j(t—1)
@) {Qﬁ‘l(w) i 51 1)

It immediately follows that Q™' (w) 2 Q!(w) for any state w, for every ¢, and
for each player i. We shall prove the following claim:



Claim 1: For any state w and for each player 7, there exists some t* such that
for any ¢t = t*, we have

Qi(w) = Qf (w).

Suppose not; then, there exists a subsequence {Q¥(w)}g2, of the sequence
{Q!(w)}52, for some state w and a player i satisfying Q% (w) # Q%**'(w) for all
k. Now let |E| be the cardinality of a set E. Since {Q}(w)};2, is a decreasing
sequence, we have

QF ()] = 1 2 Q" (w)]
for all k. Set k* = || + 2; then,

0 < Qi (@) S1QF (W) - 1
< Q1 (w)] -2

S1Q7 (W) = (2 +1) <0,
a contradiction. This proves the above claim.

For the rest of our proof, set
#* = max{t! € T| Yw € Q, ¥Vt > !, Q'(w) = QL (w)}.

Since we have Q!(w) = Q! (w) for any w, for each player i and for every
£2 ¢, we define Q2 1%, and g by Q% (w) = Q¢ (w), 12 (w) = 1 (w), and
¢ (w) = ¢! (w), respectively, for every w € Q and for every i € N. To prove
the theorem, we would like to show that we have ¢i°(w) = ¢5°(w) for any state
w and for every pair i, j of players.

Note that II}{}(w) S My, (w) for any w and for every t. Indeed, let ¢ €

)

[T/ (w). By the definition of I/,
¢ € T (w) ={€ € Q| Q&) = Qi (W)}
={£ € Q| Q) (&) N My (&) = Qjpy (w) N My (w).}

It therefore follows that we have

¢ € Qjy(€) N My () = Qi (w) N My (w) E My (w).

We will say that ¢ is a possible assignment by player i if there is a state w
such that ¢ = ¢°(w). Let the set of all possible assignments by player i € N
be {qi1, G2, - - - Girc;} With gi1 > g2 > -+ > q;k,. Given a possible assignment
q by i, define

Ei(q) == {w € Q| p(X]I*(w)) = ¢}-



Then we shall prove the following:

Claim 2: For every t = t*,

Eih (qig) = U 1126, (§)- (1)
EEB; 1) (di()1)

Let ¢ € Ei)(giy1)- Then ¢ € TI5)(C) € Ueern, (g 50 (§)-

Conversely, let £* € Ej (i) and ¢ € 130, (€*). Then

¢ € TI55, (£7) = Ty (67) € My (£7) = M5 (€7)
={w € Q| p(X] I (W) 2 ¢ (E9)}
(X1

This proves the above claim.

Let us summarize three properties of conditional probabilities that will be
used in our subsequent arguments.

Property (i) For any disjoint sets A;,---, Ax such that p(X|A;) = ¢ for
1<k<K,

(X U Ap) =gq.?

k=1
Property (ii) For any disjoint sets Ay, --- , Ag, there exists some real num-
bers A, € [0,1] for 1 £ k < K such that Y5, A\ = 1, and

K
pX] U Ap) = Mp(XT Ay + -+ Agp(X] Ag) ®
k=1

with A\, > 0 for p(Ag) > 0.
Property (iii) For any disjoint sets Ay, - -+, Ag, if (X | UpAy) = maxy p(X| Ag),
then
p(X| Up Ax) = p(X| Ax) for any k with p(Ag) > 0.

Property (i) is implied by Property (ii). Property (iii) is also an immediate
consequence of Property (ii). Property (ii) is proved as follows: For any disjoint
sets Ay, -+, Ak,

2 This property is called union consistency in Cave [3], and the sure thing principle
in Bacharach [2].
3 This property is called convezity in Parikh and Krasucki [10].



N pX 0 (U Ar))

#X] kL;Jl Ae) = (Urs, Ar)
(XA 4 (XN Ag)
a (U Ag)
__mA) p(X0A) o lAr) p(X N Ak)
n(UpAr)  p(Ar) p(UpAi)  p(Ak)
=) A L) 4,

Set Ay = pu(Ag)/pu(UiA;) for k € {1,--- , K}, and we obtain Property (ii).

Recall (i(t),j(t)) is a pair of a sender and a recipient at time t. Since the
protocol is repetitive, each ¢ becomes a recipient at some ¢; = t*, that is,
i = j(t;). Consider the sender i(¢*) at time t*. Again by the repetitiveness of
the protocol, there is ¢ = ¢’ such that j(f) = i(¢t*). The sender at ¢* is the
recipient at ¢, and all the players become a recipient at least once during the
time period between t* and .

Hereafter let (i*, j*) be (i(¢*), j(t*)), respectively. Let us prove the following:
Claim 3: For any player i, we have ¢;; = ¢;-1.

Since Ej) (i) is a disjoint union of j(t)’s partition for any ¢ = ¢* by Claim
2, we denote i) (gis1) = U3 (&) Notice that g = u(X| Ei(gi)) for any

i € N by Property (i). Due to Property (ii), there is {\;}; with A, € [0, 1] and
> Ar = 1 such that

qi(t)y1 = /L(X| Ei(t) (Qi(t)l)) = ZAZM(X| H;?t) (fl))
l

for any ¢ 2 t*. Let us consider i* and j*. Then there is a state {; € Ejp(q+1)
with g1 = p(X[ I2(6)) = ¢2(&) = g1 Similarly, there eixists & €
Ej«(gj-1) with gj-1 = p(X| 1125 1)(82)) = ¢35 41)1- Thus we obtain

g1 = q;f(fl) < qj*1 < q;ft~+1)(§2) < qj(t*+1)1 <. = a1 = dix1-

The last equality follows from j(¢) = i(t*) = i*. We therefore conclude that
we have ¢;; = ¢;«1 for any player ¢« because all the players become a recipient
at least once during the time period between ¢* and ¢. This proves Claim 3.

Note that the largest possible assignments ¢;; by all players are identical by
Claim 3. By considering Claim 2, we obtain from Property (iii)

p(XT T (W) = gjeen (2)

for any w € Ej)(gir)1) and for every ¢ 2 t*. Furthermore, it implies Fj (gi)1) €

10



Ejw(gjwn) for every t = t*. Hence, we have
Ei-(gi+1) C Ej+(gj=1) C -+ C Ejp(aj@n) = Ei(qi1)
because j(t) = i(t*) = i*. Therefore, we obtain
FEi(gi1) = E(g-1) for any player i. (3)
Set K = min{K;| i € N} where K; is the index of the i’s smallest possible
assignment. We now prove the following:
Claim 4: For any player i € N and for every k with 1 < k < K,

Ez(qm) = E;- (Qi*k)a and  gir, = Qivk-

First we prove the following fact by an induction argument on k.

Fact 1: For any ¢ 2 t* and for each k& with 1 £ k < K,

By (qiyr) = U 0306

EEE; 1) (ige)k)

For k = 1, the assertion of the fact follows from Claim 2.

Now suppose that the assertion holds up to & — 1 for all t = t*. Given t = t*,
let w € Ei(t)(Qi(t)k)- Then,

w e U H;'X(Jt) (3]

E€L;1)(qi(e)k)
as we have w € I1%, (w).
Conversly, let w € 112, (&) for some & € Ej)(qiyk). Then,
w € 1175, (§) € Mgy (§) = {<] (X[ I Q) 2 a5 (&) = g }-
The last set is equal to Ej)(gin1) U - - - U By (Ggr)- It, in turn, is equal to
( U H})?t) (51)) U T U ( U H??t) (ﬁkl)) UEi(t)(Qi(t)k)-
§1€E;(+)(di(e)1) §k—1€E;(6)(Ti(ty (k1))

This is by the induction hypothesis because E;q)(gin) = Ueen, o (a0 L0 (&)
for any n with 1 < n < k —1. Thus we must have w € Ej)(¢;1),) as otherwise
we would have w € II%, (§) C Ei)(gigyn) for some n with 1 < n <k —1, a
contradiction.

11



Next we prove the following:
Fact 2: For any ¢ 2 t* and for any k with 1 < k£ < K, we have

Eiqw (Qi(t)k) - Ej(t)(‘Ij(t)k)'

We use an induction argument on k. For £ = 1, we have already proved
Eiw(¢iw1) = Ei=(gi1) for any player i by (3). Thus, in particular, we have
Eiwy (qin1) = Ejw) (i) for any ¢ = ¢*.

Now suppose that the assertion holds up to k—1 for any ¢t = ¢*. If the assertion
does not hold for &, then there is some ¢ = t* such that

Eyiy (i) # Ejiy (@iyn)- (4)

It implies that we have ¢77, (@) # gy, for some @ € Ey4(g;i),)- We have two
cases:

(I) For some n W?th 1<nsk-1, 4 (@) = 4j(iyn-
(II) For some n with k+1=n = K, q}’fg) (@) = gj(iyn-

In case (I), by the induction hypothesis, we have @ € Ej(g)(qj(g)n) = B,y (qz'(i)n)
in contradiction to @ € Ey(g;iy)-

In case (IT), let us note
0oy (w) < gjy for any t = ¢ and for any w € Ey (qiur)- (5)

Indeed, if ¢7p, (§) > qjr for some t = t* and for some & € Ejy)(qiwr), we

have ¢35, (§) = qjn for some n with 1 < n < k — 1. Then, by the induction
hypothesis, & € Ej(t) (q;-’ft) (5)) = Ej(t)(Qj(t)n) = Ei(t) (qi(t)n) in contradiction to
£ € Eiw(¢iwr)- Hence, we have a5 (W) = gjuyr for any w € Eiy)(gir) and

j
for any t = t*.

By Fact 1 and Property (ii), there is {\;}; with A\; € [0,1] and >; \; = 1 such
that
ik = (X Eiy(qior)) = D Mp(X] T35, (&) (6)
!

for any ¢ 2 t*. Let us consider i* and j*. Thus there is a state & € E;(gix)
with gi-x = p(X| 1152(&1)) = ¢52(&1) = gy The last inequality is due to (5).
Similarly, there is §& € Ej-(gj=1) with gjo, = p(X] 1155 1)(§2)) = @55 11y, BY
continuing the same arguments, we obtain

Qe = q;f(fl) < i~k < q]('?t*+1)(£2) < it +1)k <-.. = 9i 0k = Qi*k-

The last equality follows from j(¢) = i(t*) = i*. We therefore conclude that
we have

¢ir = qi=x for any player i (7)

12



because all the players become a recipient at least once during the time period
between t* and ¢.

It follows from (5), (7), and Property (iii) that we have
dik = 450 (w) for any w € Fj)(giyk) and for any t = ¢*.
Thus, we have Ej«) (¢ir) € Ej(gjr) for all t = t*. This proves Fact 2.

It now follows from Fact 2 by the repetitiveness of the protocol that we have:

Ei-(gix) € Ej«(gj-k) € --- € Ejipn(gin) = Ei= (qivk)

as j(t) = i(t*) = ¢*. Thus, we obtain F;j(¢;x) = Ej-(gi) for any i € N which
proves the first half of Claim 4. To complete its proof, we show the following:

Fact 3: For any player ¢ and for each k such that 1 £ k£ < K, we have

Gik = ik

We first show that, for any ¢ = t*, and for each k with 1 £ k& < K, we have
Qi = Qj(t)k- Suppose there are some £ > t* and some k with 1 < k< K
such that ql k # (i Then, since Ejq (g ()k) = Ej)(gq) by the . first half
of Claim 4, We have gy, # ¢;°(w) for any w € Ey; (qi(f)k). As Property (ii)
and Fact 1 imply giy = > Mp(X | Iy (&) for some {A;}y, it follows that
there are &, &p € E( i (Gigiye) such that q; )(fl/) < Qi < q]‘?&)(fl”). This is
a contradiction because &y, &p (¢ k) Thus, the proof of Claim 4 is
complete.

Recall K = min{K;| i € N}. As the last step, we prove the following:
Claim 5: K = max{K;| i € N}.

Let j = argm1n{K| i € N}. We have Q = Uz L E;(g;1). Thus, we must have
Q= Uz:1 E;(gy) for each player ¢ € N as F;(qi) = Ej(qji) for any k with
1 £k £ K; = K by Claim 4. Therefore, E;(g;;) must be empty for all [ > K
because {F;(gi)};" is a partition of Q. Thus, it would induce a contradiction
unless we have K; = K; = K for all « € N. This proves Claim 5.

Finally, define ¢ : Q — [0,1] by ¢®(w) = ¢°(w) for all w € Q. Then, given
i € N and w € Q, there is some k£ with 1 < k < K such that w € F;(qy) as
Q = U, Ei(qi). Since Ei(gix) = Ei(gi-x) by Claim 4, we obtain ¢°(w) =
G-k = ¢ (w) = ¢*°(w). This completes the proof of the theorem.
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4 Example

In this section we illustrate the communication process discussed in the above.
Consider the communication among three players A, B, and C. The state space
Qis {wy, wo, w3, wy }. They have their own initial information structure at time
t =0 as Figure 3. Let p be the common prior on €2 as follows:

p) =) = 5, e =, s =3

Let the event X be {w;}.

X
( N\
w1 W2 w1 %)

w3 Wy w3 Wy

I T e,

Fig. 3. Players’ Information Structures.

The players communicate by sending the messages each other. Consider the
communication protocol as shown in Figure 4. We assume that they make use
of this repetitive protocol.

t=2,5"

Fig. 4. The Repetitive Protocol for Communication.

First, A sends his message to B at time ¢ = 0 as Table 4. B receives it and
consists of his own partition as Figure 5. Since the other players A and C
do not receive any information this time, their information structures do not
change at all.

14



Table 4
A’s message at time t = 0.

w1 w2 w3 W4
@ 1/3 0 1/3 0
Mg {wl,W3} Q {wl,wg} Q
()
.
Qp My

Fig. 5. B’s information structure at time ¢t = 1.

In the similar way, one player sends information and another player receives
it each time while following the shown protocol. Table 5-9 and Figures 6-9

respectively show the sender’s message and players’ information structures
each time after time 2.

Table 5
B’s message at time ¢t = 1.
w1 w2 w3 Wy
a5 1/3 0 1/3 0
Mé {wl,wg} Q {wl,wg} Q

15



& =) ©
& =) ®

Qe 1%

(®)

Fig. 6. C’s information structure at time t = 2.

Table 6
C’s message at time t = 2.

w1 w2 | W3 | Wq

| 1 |o]jofo
MZ|{wm}lQ| Q@

W2 W2

@/\ @/\

w3 Wy @ Wy
NN N
Q% I

Fig. 7. A’s information structure at time ¢ = 3.

Table 7
A’s message at time t = 3.

w1 w2 | W3 | We

See Table 9, and we can observe that consensus on the limiting values of the
posteriors about X is guaranteed in the example. Figure 9 shows the stable
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Fig. 8. B’s information structure at time ¢ = 4.

Table 8
B’s message at time ¢t = 4.

Wi | w2 | w3 | wy
a3 1 010
My | (et 2] ele
Table 9
Players’ messages at time ¢t > 4.
Wi | w2 | w3 | wy
e || 1 Jolo]o
%y 1 01010
@ || 1 Jolo]o
MP | {wi} | Q| Q] Q
we | wr]elele
Wee | {wi} | | Q| Q

information structures in reaching consensus.
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Fig. 9. Players’ Information structures at time ¢ > 4.

5 Concluding Remarks

This paper investigates how players reach consensus in the p-belief commu-
nication. Though we consider communication pairwise, it can be also shown
in the context of the communication among a part of players if only players
make use of the round protocol. If we consider the case of the communication
among all players, it is the same model of Cave [3].

In our model the following two are essential; (i) players evaluate their own
beliefs of an event by the conditional probabilities, and (ii) they can gener-
ate partitions from their information. The first mentioned often in the above
means that their decision functions, intended to be conditional probabilities,
satisfy convexity and union consistency. Krasucki [8] pursued how players
reach consensus without convexity. The second implies that their messages
are disjoint unions of the element of their own generated partitions even if the
messages are not partitions. Therefore we can apply the convexity.

Finally we remark on Heifetz [5]. He paid attention to Parikh and Krasucki’s
informal claim: Even when the players reach consensus, the consensus need not
become common knowledge among them. Heifetz said that this claim is some-
what puzzling because the communication value is formally common knowl-
edge in reaching consensus. To solve this puzzle, he introduced a broader space
incorporating the time into the basic state space. He distinguished between
the cases that players know who communicates whom and that they do not.
One possibility in his model is that consensus is reached by mutual knowledge
of the communication protocol*. Krasucki [8] introduced the acyclic protocol
because the decision functions in his model do not satisfy (weakly) convex. We
may prove that mutual knowledge of the protocol enables to reach consensus
even on the cyclic one.

4 This possibility was suggested by Professor Takashi Shimizu
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