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Abstract

This paper presents a model of Downsian political competition in which voters
are imperfectly informed about economic fundamentals. In this setting, parties’
choices of platforms influence voters’ behavior not only through voters’ prefer-
ences over policies, but also through formation of their expectation on the unknown
fundamentals. We show that there exist pure-strategy equilibria in this political
game with asymmetric information at which the two parties’ policies diverge with
positive probability. This result is in contrast with the well-known median voter
theorem in the classical model of Downsian competition. We also study refinement
of equilibria, and identify the perfect equilibria (Selten, 1975) and the strictly per-
fect equilibria (Okada, 1981). The Nash equilibria with the strongest asymmetry
in the parties’ strategies are proved to be strictly perfect.
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1 Introduction

The classical Downsian model of political competition has a well-known the-
oretical result called Median Voter Theorem (MVT), which states that under
some natural assumptions, two office-seeking parties will announce the same
platform: the median voter's ideal policy. Whereas the model is widely ac-
cepted, an inconsistency between the conclusion of MVT and real phenomena
is often pointed out. In empirical studies, policy divergence, rather than con-
vergence, between parties seems to be dominant. Therefore, it is important to
construct an alternative model that can explain the real data.

With this basic motivation, this paper presents a Downsian electoral model
with two policy alternatives in which voters have only incomplete information
about the value of a “fundamentals” variable affecting the relative effectiveness
of these policies. Two parties observe a realized value of the variable, and then
simultaneously announce their platforms. Observing these platforms, voters
choose a party to vote for. In this setting, parties’ choices of platforms influence
voters’ behavior not only through voters’ preferences over policies, but also
through formation of their expectation on the fundamentals.

The assumption of incomplete information about the fundamentals on the
side of voters reflects the idea that, in actual elections, some data necessary for
evaluation of policies is often unfamiliar to voters, while parties have richer
knowledge obtained perhaps through research activities. In such cases, vot-
ers seem to attribute observed political positions of parties to particular infor-
mation of fundamentals which the parties have probably obtained prior to the
determination of platforms.

For example, when redistributive policy is at issue, the fundamentals vari-
able may summarize information about the extent to which taxation on income
deteriorates the macroeconomic performances by lowering labor incentives.
When there is a stable situation in which a party is “leftist”, i.e., when this
party is more likely to adopt a progressive tax policy than its opponent (the
“rightist”), voters would expect higher average income elasticity of labor from
observation of the leftist party’s choice of the progressive tax than from obser-
vation of the rightist party’s choice of the same policy. This paper is an attempt
to explain how such interactions between strategies and expectation formation
constitute an equilibrium in an election over the general issue.

In this political game with asymmetric information, we identify the pure-
strategy Nash equilibria. We show that there exist Nash equilibria at which
the two parties’ policies diverge with positive probability. We then study re-
finement of equilibria, and identify the perfect equilibria (Selten, 1975) and



the strictly perfect equilibria (Okada, 1981). The perfect equilibrium excludes
Nash equilibria at which both parties are very likely to choose a policy that is
unpopular among voters with the prior informationabout fundamentals. The
Nash equilibria exhibiting the strongest asymmetry between parties’ strategies
are strictly perfect. The last result, in particular, is in marked contrast with the
conclusion of MVT.

There are several studies related to the present paper either in concern with
policy divergence or in focus on incomplete information of political games.
Roemer (2001) shows that in a unidimensional Wittmanian electoral model,
i.e., a political game with a unidimensional policy space in which parties are
motivated to realize their ideal policies, introduction of parties’ incomplete in-
formation on the side of parties about the distribution of voters’ types generates
an equilibrium with differentiated policies. Contrary to his hypothesis of vot-
ers’ informational advantage over parties, we assume parties’ advantage. The
previous example of elections over redistributive policy illustrates a typical sit-
uation where our assumption fits. Furthermore, whereas parties’ uncertainty in
Roemer’s model plays a subordinate role complementing the Wittmanian hy-
pothesis, in our Downsian model, incomplete information for voters is the sole
factor causing policy divergence.

Banks (1990, 1991) models voters’ incomplete information about the can-
didates’ true types, where a type of a candidate represents a policy that he will
implement if elected. He shows that, if there exists a cost for each candidate
which is increasing in the distance between his true type and his platform, then
an equilibrium possesses some interval of types where the strategy is separat-
ing. A more recent work by Kartik and McAfee (2007) constructs a model with
“character” of candidates. Each candidate either has the character or not; if he
does, he commits to a platform, and if not, he strategically chooses a policy.
A unigue mixed equilibrium strategy of strategic candidates is explicitly con-
structed, and hence the equilibrium is symmetric, but different from that in the
conclusion of MVT. The models in these studies share with ours the basic in-
formation structure in which candidates are advantageous. However, they both
impose some additional assumption on candidates’ action ex post or after elec-
tion, while we have no such assumption. Also, an asymmetric equilibrium does
not arise, or at least is not proved to exist, in either model, whereas it exists in
our model and one such equilibrium is even strictly perfect.

The paper is organized as follows: in Section 2, we model political compe-
tition as a dynamic incomplete information game. Section 3 studies the weakly
perfect Bayesian equilibria of incomplete infomation political games describ-
ing the conditions required for voters’ beliefs which support the equilibria. Sec-



tion 4 contrasts this equilibrium result with the complete information version
of our political games. In Section 5, we examine the Nash equilibrium in per-
turbed games discussing the dependence of existence of equilibria on parties’
error probability. Based on the observation obtained in Section 5, Sections
6 and 7 studies the perfect equilibrium and the strictly perfect equilibrium in
incomplete information political games. Section 8 concludes.

2 Model

In this section, we construct a model of political competition. The model is de-
fined as a dynamic game with incomplete information consisting of two parties
and a continuum of voters in which the parties have informational advantage
over voters.

We consider a society consisting of two political partiégndB, and vot-
ers whose population is normalized to 1. There are two possible policies, 0 and
1. Letl = {A B} with generic element andK = {0, 1} with generic element
k. Variablex € X = [0, 1] describes “fundamentals” affecting the relative effec-
tiveness of these policies. After the parties announce their policies, a majority
voting determines one party as the winner. The winning party then carries out
its platform.

Each individual’s utility decreases (monotonically, in the weak sense) in the
variablex, and his threshold fax is represented by his type. Specifically, each
voter belongs to a typé € A = [0,1] distributed according to a distribution
function F with mediand. His utility depends on the executed polikythe
variablex, and his typed. For each typed, we define the utility function
w; : K x X — R of a typed voter by

ws(K,X) = (6 — x)k.

According to this definition, if the value of economic fundamentals &ssvoter
of typed prefers policy 1 ifd > x, prefers policy 0 i < x. Before the election,
voters cannot observe the valuexofWe model this uncertainty by a random
variable® with meanyu. Only the parties can observe the realized valu@.of

Let us provide some examples for the fundamentals variabtel individ-
uals’ utility functions. Suppose that there are two different rates of uniform
income tax as the policy alternatives in a society: policy 1 represents the larger
rate and policy 0 the smaller. The tax revenue will be transfered among voters.
Suppose further that voters make decisions on their labor and consumption af-
ter the determination of tax policy. Thus adopting policy 1 will decrease the
aggregate product in the economy compared with when policy 0 is adopted.



Let x be an index of this decrease in the aggregate product which takes values
in [0,1]. Each voter has a threshofdof the variablex so that he prefers pol-
icy 1 if and only ifx < 6. 1 However, voters only know the prior probability
distribution, whereas the partidsandB know the extent to which levying the
higher tax imposes a loss in the economy, perhaps through research.

As another example, consider a counirfacing a diplomatic problem with
a foreign countryN. There is a suspicion against countdyof possessing
weapons of mass destruction (WMD). The probability tRatas WMD isx.
Citizens in countnyd, only know the prior probability distribution of. Now,
the country must take either a “hard-line” stance (policy 0) or a “soft-line
stance (policy 1) against countl; Thus every voter has a poidtsuch that as
long asx < 9, he support the soft-line policy.

We assume the following properties on the distribution functiond ahd

6.
Assumption 1.
(i) Pis continuous and strictly increasing.

(i) F has density functiof such thatf (x) > 0 for all x € (0,1).

Under Assumption 10 < d,u < 1.

The timing of events is as follows: first, the parties observe the value
of economic fundamentals; second, the parties simultaneously announce their
platforms; third, voters observe the announced policy pair; fourth, voters vote
for the party with their preferred policy; and finally, the winning party carries
out its policy. The parties thus can condition their decisions on the observed
valuex of 6. Voters, on the other hand, can condition their choices on the pair
of announced platform&a, ks).

A party’s strategyis a functions: X — K, whereK = {(qo,q1) € R2 |qo+
o1 = 1}, which assigns for each possible vakuef 6 a pairs(x) = (so(X),s1(X)).

For each polick, s«(x) represents the probability that party takes pok@pn-
ditional on6 = x. We assume thai : X — [0,1] is Lebesgue measurable for
k=0, 1. Denote bySthe set of all strategies of a party:

S= {s=(s0,51) : X — K|s¢ is measurablek = 0,1}.

1The typesd of voters in this example should be derived from their primitive data such as their utility
functions or labor skills. This is true in general cases where we want to apply the model. However, through
this paper, we assume that the distributiondoih the population is given and known to the parties. We
can imagine, for example, that given a political issue, the quantitative data of public opinion on this issue is
provided by public or private surveys.



A voter's strategyis a functiont : K x K — I, where = {(ga,0s)
ER?|ga+0s = 1}, which assigns to each policy péka, kg), a pairts(ka, kg) =
(ta(ka,ks),ts(ka, kg)). For each party< I, tj(ka, ks) represents the probability
that the voter votes for partyafter observing the pair of policy announcements
(ka,kg). We assume that if the two parties announce the same policy, then
he votes for each party with probability one half. DenoteTbthe set of all
strategies of a voter:

T={t=(tats) : KxK =] t(kk) = (3,3) fork=0,1}

A profile of voting probabilities of the citizens, i.e., a fami(¥s)sca €
Moeca i, 2 completely determines the probability of electoral outcomes. We
thus writers () sca) for the winning probability of party.

For each party, define a functiot; : Sx Sx ([seaT) x X — R by

Ui(saSs: (ts)sen.X) = 5 > Saka(XSake(¥) T ((t5(Ka. ke))sea)-
kaeK kgeK

Ui(sa, S, (t5)sea, X) represents the expected utility of partyiven the strategy
profile (sa, s, (t5)sca) conditional onf = x.
For eachd € A, define functiors : Sx Sx T x X — R by

Us (s, Se,t5.X) = Z D> D sak(X¥)sBre (M5 i(Ka, ke)wi (ki X).
1€l kneK kgeK
Us(sa, S, ts, X) then represents the expected utility of a typetizen given the
strategy profilgsa, ss,t5) conditional ong = x.
Political competition in this society can be modeled by a dynamic game
with incomplete information as follows.

Definition 1. An incomplete information political gamis a tuple

M= ((S,S, (T)5€A), (UA7U87 (U5)5€A)7 F, P’/\)’

whereSis the set of strategies of a parfly,is the set of strategies of a voter,
U; is the conditional payoff function of party Us is the conditional payoff
function of a typed voter, F is the distribution function of citizens’ type®,

is the distribution function 0B, andA denotes the specific order of play and
information structure: (i) the parties observes the valu@ ahd then simulta-
neously announce policies, and (ii) every voter cannot observe the vafje of
but observes the announced policies and then votes for a party.

2This notation implicitly assumes that all citizens of one type take the same action. Moreover, we will
denote a strategy profile &) 5 € A. In our setting, this causes no problem.



3 Nash equilibrium and beliefs of voters

In this section, we define the Nash equilibrium and the weakly perfect Bayesian
equilibrium of an incomplete information political game. We then study the
weakly perfect Bayesian equilibrium, paying attention to the relation between
voters’ beliefs on fundamentals and the parties’ strategies. From the result
obtained from this analysis, we derive a corollary on the Nash equilibria in
terms of a newly-introduced functid, which is more explicit in the locations
of switching points of equilibrium strategies.

The Nash equilibrium in an incomplete information political game is de-
fined as follows.

Definition 2. Letl = ((S,S,(T)sca), (Ua,Ug, (Us)sca), F,P.AA) be a political
game. A strategy profile of the parties and the votésg,sg, (t3)sca), iS @
Nash equilibriumin I if

() E[Ua(Sa S5 (t5) sca, 0)] = MaXE[Ua(Sa, S5, (t5) 5ca, 0)],
(i) EUs(Sp, S5 (t5)5ca: 6)] = MaxXE[Us(Sy; S8, (t5) 5ca, 0)], and

(i) for every voter types, E[Us(sh,55.t3. 8)] = MaxE[Up(Si, 5.t5,6)].
5€

If (S, Sg, (t5)s5ca) is @ Nash equilibrium irf” for some strategy profile of
the voters(t*)éeA, we often simply say th&fs,, s5) is a Nash equilibrium.

Using the specific information structurd,, of our political games, the
above definition can be equivalently stated as follows.

Definition 3. Let I be a political game. A strategy profile of the parties and
the voters(s,, ss, (t5)s5¢ca), is aNash equilibriumin I if:

(i) Foralmosteverxe X,Ua(sa,Sg, (t )5€A,x):ma%<UA(sA,s;§, (t3)5en:X),
SIS
(ii) foralmost everyx € X, Us(Sy, g, (t5)5ca,X) = maXUB(S/i,SB( 5)5e0:X);
and

(iii) for every voter typed and for every policy paifka, ks) suchthayf'sy ., (x)

SB kg (X ) >0,
JUs( Ath5,x) Aky (XS kg (XAPX) max,fua SA%ta X)Saky %
[ Sk ( sng(x)d X) tgeT ['Shk( Sék x)dP



The condition (iii) of Definition 3 clarifies that the notion of Nash equi-
librium imposes no requirement on actions of the voters in out-of-equilibrium
paths. Weakly perfect Bayesian equilibrium defined below requires that every
voter’s action at unreached moves be rational with respect to some “belief”
about the conditional distribution &f.

Definition 4. LetT be a political game.
(i) A belief of a voter is a family of probability measures oy b =
(bkA,kB)(kA,kB)erK-

(i) A belief b is consistentwith a strategy paifsa,sg) of the parties if for
every policy pair(ka,kg) such that/ s, (X)sg kg (X)dP(x) > 0 and for
every Borel seY C X,

_ JySak(¥)ss ke (X)AP(X)
[ Saka(xSBke (X)AP(X)

bicy kg (Y) 1)

The right hand side of (1) is exactly the conditional probability that Y
given that the announced policy pair(ig,ks) derived from the strategy pair
(sa,S8). For any strategy paifsa,sg) and any policy pairka,kg) reached
with positive probability by(sa,sg), write Es, s;(8|ka,ks) for the conditional
expectation oB given that(ka, kg) is announced, derived frolsa, Sg):

_ Xk (¥)sie (AP(X)
' saka(X)Sg g (X)dP(X) -

Definition 5. Let ' be an incomplete information political game. A strategy
profile (sa, Ss, (t5)s5ea) is aweakly perfect Bayesian equilibrium ™ if

Esys(01ka, ka) (2)

(i) it satisfies the conditions (i) and (ii) of Definition 3, and

(i) for every voter, there exists a beliéf= (by, ks) (ks ks)ck xk CONSistent
with (sa,s5), such that if he is of typ® € A, then for every policy pair

(ka,ks),
/Ué(SZJSEvtg:X)bkA,kB(dX) = {?g:rx/U5(SZvSE7t57X)bkA,kB(dX)‘
The condition (ii) of Definition 5 requires that every voter’s strategy be opti-

mal conditional on any announced policy pair with some belief @onsistent
with the parties’ strategies.



We proceed to derive the optimality condition of a voter's strategy given the
parties’ strategies, based on a belief consistent with them. For ease of notation,
for any beliefb and policy pair(ka, kg), write Ey, (ka, kg) for the mean oby, ks:

Eb(kA,kB) = /kaAka(dX)

Given a strategy pair of the partiésa,sz) and a beliefb consistent with
(sa,SB), if a type d citizen observes the pair of announced polidies kg) =
(1,0), then he should vote for par#y, i.e., his strategy should gitg(1,0) =
(1,0), if & > E,(1,0). More generally, the optimal strategy of a typevoter,
t5, given the parties’ strategy paisa,ss) and the voter’s belieb consistent
with it, must satisfy the following conditions.

(L0 1 ifEp(L0)<5 0.1) = 1 if Ey(0,1) > 5
A0 i Ey(LO)>8" 2T 0 if Ey(0,1) <8

)
andt;(0,0) =t3(1,1) = 1 by our definition of the strategy s&t

We will concentrate on weakly perfect equilibria supported by an identical
belief among voters. This may be justified since if we require some trembling
hand stability of equilibria, then any stable equilibrium must be supported by
such acommon beiliefof the voters as we will see in later sections.

From (3), given a pair of the parties’ strategisg, ss) € Sx Sand a com-
mon beliefb of the voters consistent witfsa, Sg), the fraction of citizens vot-
ing for party A having observed the pair of announced policies (1,0) is equal
to 1— F(Ey(1,0)). Noting the strict monotonicity of in Assumption 1, the
fraction of citizens voting for party in this situation is therefore greater than
or equal to one half if and only &, (1,0) < . We assume that if the voting
results in a tie, each party’s winning probability is one half. Thus, the victory
probability of the parties in an election whet})sca is a profile of voters’
optimal strategies with a common beliefs given by the following formula.

A

TA((t5(1,0))sen) =

VAR,
ik 1] O1] O1] O1| &1 O

(4)

1
1
2
0
1
M((t5(0,1)sea) =4 5 if By
0
T ((t5(

M ((t5(0,0))5ca) = (1.1))5cn) =



Tris defined byrir =1—717..
We will restrict our attention to those Nash equilibria in which each party
takes a “cut-off strategy” defined as follows.

Definition 6. The cut-off strategyof a party switching aroung € X, denoted
by cx = (cx0,Cx1), is a strategy defined by

0 ify<x
cxo(y) = {1 if y>x

The following proposition specifies the set of all cut-off weakly perfect
Bayesian equilibria of a political game in terms of the positions of switching
points of the parties’ strategies and the conditions on voters’ beliefs consistent
with those equilibria. The conditions are stated only for the strategy pairs with
X > Xg. This is a sufficient way of description due to our symmetric modeling
of the two parties: i(cxi\,cxg) is an equilibrium for some equilibrium concept,
then(cx»é,cxi) is also an equilibrium.

Proposition 1. Let = ((SS (T)sea), (Ua,Ug, (Us)sea),F.P.A) be an in-
complete information political game, where the median of the distribution func-
tion F of voters’ types i®. Then, a profile of the parties’ cut-off strategies
(Cx:\,ng) with X > g is a weakly perfect Bayesian equilibrium supported by
a common belieb of the voters consistent Wi(l@xz,cxg) if and only if one of

the following conditions is satisfied.

(i) 0< x5 <x;<1andEy(1,0) = Ey(0,1) = o.
(i) u> 5,0= Xg < Xa <1, E,(1,0) = 3, andE,(0,1) > 5.
(i) p=38,x5=0,x;=1,andE,(1,0) = 3.
(iv) 1 <0,0<x5<x;=1,Ep(1,0) =3, andE,(0,1) < 3.
(V) X3 =% =0, Ex(1,0) > &, andE;(0,1) > &.
(vi) xa =x5=1,Ep(1,0) < 5_ andE,(0,1) < 5.
Proof. Condition (i) Suppose thad < x5 < x, < 1. By the assumption of
monotonicity ofP (the condition (i) of Assumption 1), this occurs if and only
if both policy pairs(1,1) and (0,0) are announced with positive probability.
By the formula (3), partyA has no incentive to deviate frofd, 1) if and only
if Ex(0,1) < d. Similarly, partyB has no incentive to deviate frofi, 1) if

10



and only ifE,(1,0) < &. By the same reasoning, both parties cannot profitably
deviate from the policy paif0, 0) if and only if E;(0,1) > 6 andE,(1,0) > d.
Thus,(cXi\,ché) is a weakly perfect B_ayesian equilibrium with common belief
b if and only if E,(1,0) = E,(0,1) = 4.

Conditions (ii) and (iii) Suppose thad = x5 < X3 < 1. This is equivalent
to that the policy pair$1,0) and(0,0) are announced with positive probabili-
ties. Similar argument as in the preceding paragraph conclude@:;;/lilatx»é)
is a weakly perfect Bayesian equilibrium with common betief and only if
Ey(1,0) = 6 andE,(0,1) > 4. But, by consistency df,

Ep(1,0) =E(6]0< 6 <Xp) < H,

where the inequality follows again from (i) of Assumption 1. Henge; o.
The part (ii)-(vii) can be similarly verified.

Conditions (v) and (vi) Supposexy = x5 = 0. This is equivalent to that
only the policy pair(0,0) is announced with positive probability. Profitable
deviation from(0,0) by either party is impossible if and onlyH,(6|1,0) >
andE,(6|0,1) > . The part (ix) can be similarly proved.

Since all possible locations ¢%j, x5) have been checked, the proof is com-
plete. O

Proposition 1 relates equilibrium strategy profiles of the parties to the con-
ditional “expectations” of the voters with respect to their beliefs which support
those strategy profiles. A remarkable feature is that any “interior” strategy pro-
file of the parties, i.e., a strategy pair with switching points in the interior of
X, is a weakly perfect Bayesian equilibrium if and only if it is supported by a
common belief of the voters such that both conditional expectatiofgdfen
policy pairs(1,0) and(0,1) are equal to the median type, while for “corner”
strategy pairs, the corresponding conditions contain at most one equation for
the two expectations.

For an interior strategy pair of the parties to be a weakly perfect Bayesian
equilibrium, the winning probability conditional on distinct policies,

15 ((t35(1,0))5ca) @nd7s ((t5(0,1))5ea ), must be equal to one half because oth-
erwise, either party can improve its expected payoff by deviating from the pol-
icy pair (0,0) or (1,1). With any corner strategy profile, one of these two pairs
of convergent policy announcements does not occur, and hence the winning
probability given this policy pair does not have to be exactly one-half. The dif-
ference in the equilibrium conditions in Proposition 1 reflects these facts and
will be important in studying equilibrium refinement in later sections.

Proposition 1 can be restated in a form which is more explicit on the po-
sitions of equilibrium strategies by ignoring the constraints for the beliefs on

11



out-of-equilibrium actions. To do this, we first define a funct{@as follows.
Definition 7. Define a functiorQ: X x A — R by

Qx.8)= [ (u-&)dp(u) ©)

The valueQ(x,d) represents the bias éffrom the typed in terms of the
distribution functionP on the interval0, x]. It serves as a measure of the dis-
tance between pointand typed, but more detailed property €f as a function
depends on the property of distribution functien

The properties of functio® described in the following lemma is derived
directly from its definition.

Lemma 1. For the functionQ defined in Definition 7, the following statements
hold under (i) of Assumption 1.

(i) For each voter typ&, the functionQ(-, d) is continuous, decreasing on
[0, &], increasing ord, 1], and takes value®(0,0) =0, Q(1,0) = 1 — 0.

(i) If x,xj € X andx < xj, thenE(0|x < 6 < X;) is greater than, equal
to, less thand as Q(x;, ) is greater than, equal to, less tha(x;,d),
respectively.

The graph ofQ(-, ) in a typical incomplete information political game in
which y > & isiillustrated in Figure 1.

If the parties select different cut-off points, the event that they announce
different policies occurs with positive probability. The preference relation of
a typed voter between the two policies is then equivalently described by the
relation between the values of ti¥-, ) at these switching points: he prefers
the policy of the party with smaller value §f. Each of distinct policies thus
yields one half of the total votes if and only if the values of funct@f, o)
at these cut-off points coincide. Due to the strict concavity of funo@¢n9)
stated in (i) of Lemma 1, there are at most two distinct points at which the
values ofQ(-, &) are equal, such ag andxg in Figure 1.

By (i) of Lemma 1 and the fact th&t < é < 1 implied by Assumption 1,
each of the two points defined in the following definition uniquely exists. These
points determine the intervals X where a point can always find a different
point with equal value of)(-,d).

Definition 8. Pointsx andx. Under Assumption 1, if1 > 6_ we denote by

the unique point in the intervg0, 1] such thaQ(x,d) = 0. If u < J, we denote

by x the unique point in the interval, 1) such thatQ(x,d) = u — 4.

12



Figure 1: The functior®(-, d)

According to this definition, it is clear that the only strategy pair satisfying
the condition (ii) of Proposition 1 i$cg,Co) and that the only strategy pair
satisfying (iv) of the proposition igcy, Cx).

With these observations in hand, we translate Proposition 1 on weakly per-
fect Bayesian equilibria into the following corollary in terms of functiQron
Nash equilibria, which, as a set of the parties’ strategy profiles, coincide with
weakly perfect Bayesian equilibria.

Corollary 1. Letl" be an incomplete information political game. Then, under
Assumption 1, a cut-off strategy pa(icxx,cxg) such thatx > x5 is a Nash
equilibrium ofT if and only if one of the following condition is satisfied.

(i) K> 3,0< x5 <Xs <% andQ(x;, 8) = Q(X3, O);

@iy u> 5,x’g:0andxj;:>’<;

(i) p <8, X<X5<x;<1,andQ(x;, 8) = Q(Xs, d);
(iv) u< 6_ Xg = Xandx, =1,
(V) X5 = X5.

More simply,(Cx: , Cx ) is @ Nash equilibrium if and only if

Corollary 1 suggests that the set of pairs of Nash equilibrium cut-off points,
(XA, Xg), is geometrically expressed as the union of two crossing curves in the
unit square. Suppose, for example>> 6. When Assumption 1 holds, by strict
concavity of functionQ(-, ), the set of pointgx,, x5) satisfying (i) or (ii) is
(if the point (9, 0) is added) represented by a curve in the unit square region
with negative gradient which is symmetric with respect to the 45-degree line,

13



0 25 1

Figure 2: The Nash equilibrium switching point pafsg, x5) in Example 1

has interceptions with the sides of the squace X, and passes throuqﬁ, 5).
The points satisfying (v) constitute the 45-degree line in the unit square. These
two parts constitute the set of pairs of Nash equilibrium cut-off points.

Examplel. Let T be a political game in whicl® is uniformly distributed on
the unit interval, that isP(x) = x for all x € X. Moreover, assume th#t is
such that < % = u. In this game, the functio®(-, ) is given by
Q(x, 5) = X—zz — o
for eachx € X. Therefore, by Corollary 1, the set of pairs of Nash equilibrium
cut-off points inl" is
X2 X X %
{(xa,X8)| % — Oxp = B — Oxg, 0<xa,xg <1}.

This set is illustrated in Figure 2.

4 Comparison with complete information case

In this section, We briefly deviate from our main assumption of incomplete
information, and check the fact that if we instead suppose the complete infor-
mation, then the present model’s version of Median Voter Theorem holds true.

We first define the complete information version of a political game as fol-
lows.

Definition 9. A complete information political gams a tuple
r/ = ((87 S> (T/)5€A)7 (UA7 U87 (U6)5€A)7 F7 Pv/\/)a

where/\’ differs from A only in that the voters, as well as the parties, now can
observe the value d, and the set of strategies of a voter is

T ={1:KxKxX—T1|1(1,1,x) = 1(0,0,x) = (1, 1) forall x e X }.

14



The Nash equilibrium and the subgame perfect equilibrium in a complete
information political game are defined in a standard way, and hence we omit
the formal definition of these concepts.

We aobtain the following results on Nash equilibria and subgame perfect
equilibria in complete information political games.

Proposition 2. Letl’ be a complete information political game. Then,

(i) a profile (s;,sg) of pure strategies is a Nash equilibrium[dfif and only
if sp(X) = sg(x) for almost everk with respect td®, and

(i) a strategy profile(s,,sg) is a subgame perfect equilibrium Iff if and
only if, for each party,

-0 if x<&
L x5

Proof. If s;(x) = s5(x) for almost every, then it is optimal for every voter to
set for every,
T"(1,0,x) = 1°(0,1,X) = (3, 3)

since the policy pair$1,0) and(0,1) are reached with probability zero. Such
(sa.Sg) are thus all Nash equilibria df’. If s;(6) # s5(0) with positive
probability, then by our assumption thts strictly increasing, the event that
SA(0) # s5(0) andB # & has positive probability, and hence a party loses with
positive probability. This proves the first part of the proposition.

A strategy profile of votergT3)sca, cOnsists in a subgame perfect equilib-
rium of " if and only if for each voter typ@,

1 if x<o
0 if x>0o'

1 ifx>9d

T5a0,1x) = {o if x<o

rgyA(l, 0,x) = {

This proves the last part of the proposition. O

The statement (ii) of the proposition is the version of Median Voter Theo-
rem in our political game. It says that, given a valuef fundamentals, both
parties will choose the ideal policy of voters who have the median type under
the statex: policy 1 if x < 8, and policy 0 ifx > 8. The subgame perfect equi-
librium corresponds to the notion of political equilibrium in standard electoral
models. The reason for the indeterminancy of Nash equilibria appearing in the
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statement (i) of the proposition is that, the definition of the Nash equilibrium in
the present model allows arbitrariness of voters’ actions off equilibrium.

Restricting these results to pairs of cut-off strategies, the following corol-
lary may be more appropriate in comparison with the results for incomplete
information games.

Corollary 2. Letl"" be a complete information political game.

() Then, a cut-off strategy profile of the parti@;,cx»é) is a Nash equilib-
rium of I’ if and only ifx} = xg, and

(ii) the unique cut-off subgame perfect equilibriuniég;, c3).

By the statement (i) of Corollary 1 and the statement (i) of Corollary 2, the
set of cut-off Nash equilibria in a complete information political gaes
a proper subset of that in the corresponding incomplete information political
gamerl . Specifically, in any cut-off Nash equilibrium &f, the policies of the
two parties coincide at every observed valu&oMoreover, by Proposition 2,
even if we allow the whole class of strategies of a party, the equilibrium policy
convergence essentially remains true. In contrast, in a complete information
gamel, there are Nash equilibria in which policy divergence occurs with pos-
itive probability, i.e., the strategy profiles satisfying the conditions (i) and (ii)
of Corollary 1.

By (ii) of Proposition 2, in a subgame perfect equilibrium of a complete
information political game”’, policy divergence is possible only at the parties’
observationd = 4. This is because given th&t= 9, the voters are divided
into two groups prefering different policies. By looking at the conditions (i)-
(iv) of Corollary 1, we understand that unobservababilitypdfy the voters in
a political game expands the possibility of policy divergence from the @oint
in X to the various intervals keeping the conditional expectatiorg fofed at
0.

We recognize, however, that there is still a difficulty in interpreting this
result because of the considerable multiplicity: there is a continuum of Nash
equilibria in an incomplete information political game. Natural questions arise
at this point: Can we refine the equilibria by some stability criterion? If so,
which strategy pairs stated in Corollary 1 are stable? The following sections
will study these problems.
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5 Perturbed games

As the first step for equilibrium refinement, in this section we analyze perturbed
games of incomplete information political games. We show the existence and
important properties of the “critical type” of voters in a perturbed game, which
plays essentially the same role as the median type in a hon-perturbed game.
Then we study the Nash equilibria in a perturbed game.

We define a perturbation in an incomplete information political game as
follows.

Definition 10. Define% = {g: A — (0,3)|g s continuous andE = (0, 3).
A perturbationof an incomplete information political game is a trigte=
(en,€8,9) EEXE X 9.

Then a perturbed game is defined as follows.

Definition 11. Given an incomplete information political ganie= ((SS
(T)éeA)a (UA>UB> (U5)5€A)7F7P7/\) and a perturbatiom’ = (SA,EB,g), aper-
turbed gamef I with p is a political game

~ ~ A~

f(p) = (S(EA)7S(€B)7(-,I;<g(6)))6€A)7(0£7U£7U§)7F7RA)7
where
={se 9s(x) € [e,1—¢] x [¢,1—¢] for all x € X},

= {teT|t(ka,ks) € [e,1—€] x [¢,1— €] for all (ka,ks) € K xK },

and for each party, U is the restriction of functiotJ; to S(ea) x S(sB)
ﬂéeAT( (8)); and for each voter typé, Up is the restriction of)5 to §(ga) x

S(es) x T(9(3)).

The analogue of cut-off strategy in a political game in Definition 6 is defined
as follows.

Definition 12. The cut-off strategyswitching aroundk € X of partyi in a per-
turbed gamerl (p) with perturbation p = (&a,£g,9), denoted byc{ =
(cx'o, ” %), is a strategy defined by

. & if y<x
cioy) =1 -
<o(Y) {1— g ify>x
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The Nash equilibrium of a perturbed game can be defined in the same way
as in Definition 2 except that the original strategy sets of players are now re-
placed by those defined in Definition 11.

Recall the notatiotks, s; (6|ka,kg) in (2) for the conditional expectation of
6 given that the announced policy pair (ia, kg) derived from strategy pair
(sa,ss). In any perturbed gamig(p), this is defined for all policy paira, ks)
since they are reached with positive probability, i.e., the denominator of the
right-hand side of (2) is positive for alka,ks). Let (sa,S8) = (¢3,¢&) and
supposei < Xa. Then we have

(1-£n)e8 Jo® XdPX)+(1—£a) (1—8) fys XdP(X)+-£a(1—£B) fi, XdP(X)

Fona(811,0) = i jeoplie) (1=ea) 1-eo PO Pl Fe(T-so) POl " ()
P ea(1-£8) Jo® XAP(X)+£agB iy XdP(X)+ (1) B fi, XdP(X)
Esns6(010.1) = = (e Po+enealPvn) PO+ (1 emeall- PO

The formula (3) for a voter’s optimal strategies given a belief consistent with
the parties’ strategy pair is therefore completely connected to the strategies of
the parties in a perturbed garﬁép) as follows: In a perturbed garrfe(p),
given a strategy profile of the partiésy, sg) € S(ea) x S(ep), a strategyt; €
T(g(0)) is optimal for a typed voter if and only if

(10 1 if Egs(60]1,0)< 3
OATTT10 i By sg(0]1,0) > 5
¢ (01) = 1 if Egq(0]0,1) >0
SA T if Es,(0]0,1) <3

(8)

andt; o(0,0) =t5 A(1,1) = 3.
Now, letl" (p) be a perturbed game with perturbatjor- (£, £g,9). Define
a functionLg : X — [0,1] by

L0 = [ ot wdut [ 1 gw)f(udu ©

Ly(x) is the population of voters who vote for the party announcing policy
1 given8 = x and the two parties take different policies after obserxinghe
first term in the right-hand side of (9) is equal to the fraction of voters who
prefer policy 0 in the original gamie but vote for the party announcing policy
1 due to perturbation. The second term is the fraction of voters who prefers
policy 1 in the original game minus the fraction of voters within this group
who vote for the party announcing policy 0 due to perturbation.
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Using functionLg, we define the notion of critical type in a perturbed game,
which plays the same role as the median t@ga a nhon-perturbed game.

Definition 13. Let f(p) be a perturbed game With perturbatjor- (&, &g, 9)-
A voter typed(g) is called thecritical type of I'(p) if Lg(d(Q)) = % and for
anyx,y € X,

X< 8(g) <y==Lg(x) < 1 < Lg(y).

We then have the following lemma for the properties of the critical type of
a perturbed game.

Lemma 2. Letl" be an incomplete information political game.
(i) In any perturbed gamé(p), there exists the critical typé(g).

(i) If (g");_, is a sequence of voters’ perturbations converging pointwise to
the constantly 0-valued function, thim,, .., 6(g") = d.

(i) There exist sequencegy)y_j, r = 1,2,3, of the voters’ perturbations,
each of which converges pointwisedtasn — oo, such thatd(g7) < 0 =
0(93) < (gg) for everyn.

Proof. See Appendix. O

The statement (i) in Lemma 2 guarantees the existence of the critical type
in every perturbed game. It allows us to study stability of Nash equilibria in
non-perturbed games by comparing the conditional expectatiofisaofl the
critical types in perturbed games. Moreover, by the statement (ii), the critical
type in a perturbed game converges to the median type in the original game as
voters’ perturbations go to zero. The statement (iii) says that the direction of
the convergence of critical types to the median type depends on the manner of
convergence of voters’ perturbations. This fact will be important particularly in
considering the strictly perfect equilibrium where we have to take into account
all kinds of perturbations which converge to zero.

Let(p) be a perturbed game wigh= (&a, €g,9). By Definition 13 of the
critical type and the condition (8) for the voters’ optimal strategies, we then
obtain the following formula for the winning probability of the parties in the
perturbed game, which is analogous to (3):(tf) 5ca € MscaT(9(8)) is a
profile of voters’ optimal strategies in the perturbed gdre) given a pair of
the parties’ strategie®a, sz) € S(ea) x S(es), then
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1 if Es (0/1,0) < 8(g)
Ma((t5(1.0)oea) = 1 3 if Es(6/2,0) = 8(g) .
0 if Es,s(0]1,0) > 6(Q)
1 if Es,(0]0,1) > 8(g)
M ((t5(0.1)sea) = 1 3 if Esu(6]0.2) = 3(g) (10)
0 if Es,55(0]0,1) < 5(9)
1

As the following proposition will show, the necessary and sufficient con-
ditions for Nash equilibrium in a perturbed game is almost the same as the
conditions of the weakly perfect Bayesian equilibria described in Proposition
1. However, since all policy pairs are reached with positive probability in a
perturbed game, the conditions are now completely based on the strategies of
the parties.

Proposition 3. Letf(p) be a perturbed game with perturbatign= (&a, €g,9)
Then, a pair of the parties’ cut-off strategiés, ss) = (ci2,c2) in I'(p) such
that xa > xg is @ Nash equilibrium of (p) if and only if one of the following
conditions is satisfied.

(i) 0<xg <xa<landEg, s(6|1,0) =Eg, (0|0,1) = 5(Q).

@iy u> 3(9), O=xg<Xa<1,
ESA,SB(G‘]-?O) == 5(9), andEsA,sB<6‘o, 1) Z 5(9)

(i) p= 3(9), and(xa,xg) = (0,0) or (xa,xs) = (1,0) or (xa,xg) = (1,1).

(iv) u< 3(g), O<xg<Xa=1,
Es,s(0]1,0) = 8(g), andEs, s,(6]0,1) < 5(g).

The conditional expectations;, s;(6|1,0) andEs, 5;(010,1) is given by (7).

Proof. Conditions (i), (ii), and (iv) The gain or the loss for a partyfrom
deviating from an equilibrium probability pafsa(x),ss(x)) to the “opposite”
strategy, for example, parfyy deviating from(ea, €g) to (1 — &a, €g), is always

& less than the corresponding deviation without error in the original game
Thus, this does not alter the essential argument for possibility of a party’s devi-
ation in the proof of Proposition 1, except that now the median &ypaust be
replaced with the critical typ&(g) and a belief-based expectati&g(ka, kg)

with the strategy-based expectatigg) s, (6|ka,ks), by (10).
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Condition (iii). With any of the three strategy pairs in the condition (iii) of
the proposition, the conditional expectations given policy pairs (1,0) and (0,1)
are equal tqu. Thus, it is a Nash equilibrium if and only jif = 5(g). O

Corollary 3 below restates Proposition 3 using funci@more explicitly
describing the locations of equilibrium cut-off points. For notational ease, we
preliminarily define functiong andy from [(E x E)\ {(ea, 8)|ea=¢€8}] x A
to R and functiongp and from E x A to R by, given mearu of 6,

2(1—gg)+(1—£a)2 Y 1— -0
¢ (en 28, 8) = (A1 (sEBE?s,f)(lf/})s;f)B](“ L y(en e.8) = %’

B(e.8) =52, Ple.6) = U

(11)

Corollary 3. Let[ (p) be a perturbed game with perturbatign= (&a, £g,9)
Then, a pair of the parties’ cut-off strategiés, ss) = (¢22,c2) in ' (p) such
thatxa > xg is a Nash equilibrium of (p) if and only if one of the following
conditions is satisfied.

O u> 6(g) B <EnLOD<Xxg<Xa< 1 Xg < 3(9)
Q(xa,5(g)) = #(£a,£8.6(9)), andQ(xe, 8(9)) = Y(£a,es.5()).
(i) 1> 8(0),0=xg < Xa < 1, andQ(xa, 5(g)) = §(£a, 5(0)).
(i) p= 3(9), and(xa,xg) = (0,0) or (xa,xs) = (1,0) or (Xa,xg) = (1,1).
(iv) 1 =5(g), £a= €8, 0 < X5 < Xa < 1, andQ(xa, 5(3)) = Q(xe. 5(9))-
V) u< S(g), En< &g, 0<xg < Xa <1, Xp > S(g),
Q(xa,5(9)) = ¢ (e, £6,6(9)), andQ(xe, (9)) = W(ea, £6,6(9))-

(vi) 1 < 8(g), 0< X < Xa = 1, andQ(xs, 5(g)) = {(es, 5(g)).

Proof. See Appendix. O

Based on Corollary 3, we can outline the set of Nash equilibria of a per-
turbed game in terms of cut-off point pairs as in Figure 3 in which the graphs are
illustrated for cases of a unifori, where the dashed lines represent the set of
Nash equilibria in the original game. For example, consider a perturbed game
in which 4 > &(g) andéea > €g. There are at most two pairs of cut-off points
satisfying the condition (i) of the corollary such @&, xg) and (X, xg) in the
left-hand graph of Figure 6 in Appendix. Note that, by symmetry between the
parties, the corollary implies that there exists no interior Nash equilibrium at
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Figure 3: Nash equilibria in perturbed games
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which partyB's switching point is greater than or equal to pa#g. Also,

there are at most two pairs of cut-off points satisfying the condition (ii) such as
(ya,0) and(y4,0) in the left-hand graph of Figure 7. But, since this condition
imposes no requirement on the relation betwgeandeg, cut-off pairs such as
(0,z5) and(0,z3), wherezg andz; are the two points whose values of function
Q(-,0(g)) are equal td (&g, d(Q)), are also equilibrium pairs of cut-off points.
Therefore, there exist at most six Nash equilibria in this perturbed game, whose
cut-off point pairs are illustrated ag,- - - ,Xg in the left-top square of Figure

3. The relation between the rest of Figure 3 and Corollary 3 can be similarly
explained.

As shown in Figure 3, Corollary 3 suggests that, for any interior Nash equi-
librium (sa,sg) in a non-perturbed game, in which parties are more likely to
announce the ex ante popular policy in this game (i.e., policytD3f 6, and
policy 1 if 4 < &), there existsomeslight perturbation that possesses an in-
terior Nash equilibrium neafs,, s;) like the strategy pair with cut-off point
pair X or Xz in Figure 3. It also suggests that near each of the corner Nash
equilibria in the original game, there always exists a corner Nash equilibrium
in any slightly perturbed game like the strategy pairs with cut-off point pairs
X3, ,Xg. We derive these conjectural claims from the fact that, by (iii) of
Lemma 2, the relation between the prior mean of fundameptaisd the me-
dian typed in a political game implies the same relation betwgeand the
critical typed(g) in any slightly perturbed game, while either relation between
&a andeg can happen given only that the perturbations are small.

In particular, there exists no interior Nash equilibrium in a perturbed game
in which the party with smaller perturbation is more likely to choose the ex
ante unpopular policy in the perturbed game. This simply reflects that a pary
can be less populist in an equilibrium as long as it is publicly believed to make
more mistakes.

6 Perfect equilibrium

In the preceding section, we have analyzed the Nash equilibria of perturbed
games. Using those results, we now proceed to examine the stability of Nash
equilibria of incomplete information political games. In this section, we study
the perfect equilibrium of Selten (1975).

We define the perfect equilibrium of a political game as follows. We apply
the equilibrium concept only to strategy pairs in which the parties take cut-off
strategies.

Definition 14. A strategy profile(cy; , Cx, (t5)sea) is @ perfect equilibrium
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in a political gamerl if there exists a sequence of perturbatigps)> ; =
(€a,€8,9") g With Iim p” = (0,0,0), 3 and a numbeN such that there ex-

ists a sequence of strategy proflles in the perturbed gﬁmé‘s) in which the
parties take cut-off strategie xnvCBn» (t3)sea)n>N, satisfying the following
conditions:

(i) Foreveryn> N, (c Xn,cf(ﬁ, (t3)sea) is @ Nash equilibrium of (p"), and
(i) Amo(XNXB? (t3)sen) = (Xa, X5, (t3)5en)-

Remark .A perfect equilibrium by this definition is always a perfect equilib-
rium by the original definition of Selten (1975), except that our political games
are not finite, but the converse may not hold because our definition involves the
requirement that Nash equilibrium strategies of parties in perturbed games be
cut-off strategies.

As the following proposition will state, ift > o (1 < 9), the perfect equi-
librium only excludes Nash equilibria such that both parties choose the same
cut-off point larger (smaller) than the median type. Proving that these Nash
equilibria are not perfect equilibria is easy: recall that in the previous section
we have seen that there is no Nash equilibrium with both parties switching at
points larger (smaller) than the critical type in a perturbed game withd(g)

(1 < &(9)). Note also that the critical typ&(g) converges to the median type

d. For any of the above-mentioned Nash equilibria of the original political
game and for any slight perturbation, therefore, there is no Nash equilibrium
in the perturbed game near that Nash equilibrium of the original game. Those
Nash equilibria are therefore not perfect equilibria.

For any of the remaining Nash equilibria, on the other haot)epropor-
tion between the two parties’ perturbations exists so that keeping this propor-
tion, the values of functiongg andy in (11) converge to the level @-distance
of the Nash equilibrium strategies from the median type as perturbations go to
zero. This fact, together with the continuity @ and the convergence of the
critical type to the median type, implies that those Nash equilibria are perfect
equilibria. This part of the claim is proved more formally below.

Proposition 4. Letl" = ((S,S,(T)sea) (Ua,Us, (Us)sen), F,P.A\) be a politi-
cal game with median typ& Then, a cut-off strategy of the partiers(z, CXE)
with x; > X3 is a perfect equilibrium if and only if one of the following condi-
tions is satisfied:

3Here the convergence of the sequence of functigfi$ to 0 is in the sense that it converges to the
constantly0-valued function fromA.
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() u>0,0< Xg < Xa < X% andQ(xy,0) = Q(xg,0);

(i) p> o andx; =x5 < 0;

(i) p=35andQ(x;,d) =Q(x5,0);
(iv) u< 5 X< x5 <Xp <1 andQ(xj, 5_) = Q(xg, 5_); and
V) u< 6_andxj\:xgz 5.
Proof. The proof for the excluded Nash equilibria has been already done in the
above text. It only remains to show that there is a proportion of the parties’

perturbation against which any of remaining Nash equilibria is stable. Suppose
u > &. Note that for any3 € (0,1) U (1, »),

) 3(g)=_1i §g)=42 @2
(g,g)lin(o,O)(p(Be’e’ (9) (s,g)IT(O,O)W(BE’E’ (9) = (12)

Ed

The right-hand side has range «,0) for 8 > 1. Recall that the perturbed
game has a Nash equilibrium such tat xo > xg > O only if B > 1. But
the range of)(-, &) for the remaining Nash equilibria is contained(inc, 0].
By continuity of Q, therefore, Nash gquilibriecxx,cxg) in (i) and (i) of the
proposition excepfco, Co), whoseQ(+, d)-value is 0, are perfect equilibria sta-
ble against the perturbation with proportiBrsuch thaQ(xy, ) = Q(xg,d) =
(11— 8)/(1~ B). Finally,
; 2 . & ; 2 . 5

(e’gl)[n(opy(s ,€,0(9)) (s,gl)lT(o,o)W(g ,€,0(9)) =0.
This proves that[0], [0]) is a perfect equilibrium. The cage< J is similar. If
u = 9, by (iii) and (iv) of Corollary 3, if we can choose a sequelp);_; =
(ea,€8,9")_4 converging tq0,0,0) such that for alh, 6(g") = p andep = €,
the statement of the proposition is proved. This is indeed possible by (iii) of
Lemma 1. O

The set of cut-off point pairs of perfect equilibria in a political game with a
uniform 6 is illustrated in Figure 4, where the dashed line represent the set of
non-perfect Nash equilibria.

Proposition 4 states that if the distribution of random varigbls biased
toward the right (left) relative to the median type, Nash equilibria in which
both parties switch around points greater (less) than the median type are not
perfect equilibria. This is a direct consequence of Corollary 3 describing the
relation between the relative ex ante popularity of policies in the original polit-
ical game and the Nash equilibria in a perturbed game. Thus these non-perfect
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Figure 4: Perfect equilibria

Nash equilibria rely on the condition that one of policy pairs cannot occur with
positive probability. In the proof of the proposition, however, we argued that
there existsomeproportion of the parties’ error probabilities against which a
Nash equilibrium is stable. This suggests that we must further examine whether
there are perfect equilibria that are stable againgtirection of perturbation.

7 Strictly perfect equilibrium

In this section, we study the problem of complete stability raised at the end
of the previous seciton through analysis of the strictly perfect equilibrium of
Okada (1982). After defining an appropriate notion of strictly perfect equilib-
rium in our setting, we will show that the only strictly perfect only the corner
perfect equilibria are strictly perfect.

We define the strictly perfect equilibrium in a political game as follows fo-
cusing, again, only on strategy pairs in which parties choose cut-off strategies.

Definition 15. A strategy profilgcy: , Cx:., (t5)5ea) € SX Sx [Tsea T is astrictly
perfect equilibriumin a political gamel” if for every sequence of perturba-
tions (p")p_1 = (€4, €8,9")m_4 With limp_. p" = (0,0,0), and for some num-
berN, there is a sequence of strategy profiles in the perturbed gﬁ(p€$ in
which the parties take cut-off strateglégﬁ, f(ﬁ D) 5ea)n=N € Mn=n [S(ER) x

S(ed) X MseaT (g "(d))]. satlsfylng the following conditions:
(i) Foreveryn> N, (cp Xn, iﬁ, (t3)5ea) is @ Nash equilibrium of (p"), and

(”) A@w(XAvx& (t5)56A) = (XA?XBﬂ (té)JEA)'
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Remark .If we seek to follow the original definition of strictly perfect equilib-
rium rigorously, even if we put aside that our political games are not finite, we
have to let the set of perturbations for partyclude allfunctionsg; : X — [0,1]

whose valueg(x) represents the error probability batx € X. We thus have
made a restriction on the set of possible perturbations , which may bring about
some weakening on the requirement of strict perfectness. Similarly, continu-
ity assumption ofjy may be some weakening. It thus remains open whether a
strictly perfect equilibrium by Definition 15 satisfies the same conditions in the
definition if we allow for a more general set of perturbations. On the other hand,
since we restricted equilibrium strategies in perturbed games to the class of cut-
off strategies, the existence of a sequence of Nash equilibria in perturbed games
in Definition 15 is a stronger condition than allowing all strategies to consist
in Nash equilibria of perturbed games. It is therefore still unclear whether the
above definition is a necessary or it is a sufficient condition for a strategy profile
to be a strictly perfect equilibrium according to the original definition.

By Corollary 3 and several facts used in the proof for Proposition 4, we first
obtain the following result.

Corollary 4. In any incomplete information political ganie there is no strictly
perfect equilibrium(cy; , Cx; ) such thal < X, xg < 1.

Proof. Suppose thatt # 6. Then, by (i) and (v) of Corollary 3, the equations
(12), and continuity o, for any interior Nash equilibriuntcy; , ¢ ) of a polit-
ical game, there exists a particular proportfwf parties’ perturbations such
that the value oQ(-,5(g)) of any Nash equilibrium in any perturbed game with
this proportionf converges to the value €J(-,0) of x/, | = A, B, as perturba-
tions goes to zero. (Recall thatxx,cxg) is a Nash equilibrium if and only if
Q(x4,0) = Q(xg, d)) as shown in Corollary 1.) Thus by continuity @ for
any interior perfect equilibrium in the original game, there exists sBraach
that any sequence of Nash equilibria of perturbed games witiftb@verges
to another Nash equilibrium of the original game. Therefore, no interior perfect
equilibrium is strictly perfect. O

The following proposition shows that only (part of, whgnr= d) the corner
perfect equilibria are strictly perfect. As we have stated before, in perturbed
games, the corner Nash equilibria always exist. Moreover, as Figure 7 suggests,
these equilibria converge to the corner perfect equilibria as perturbation goes
to zero. This is the main idea of the proof.

Proposition 5. Letl = ((S;S (T)sea), (Ua,Us, (Us)sea), F,P.A) be a politi-
cal game, where the mean @is u and the median type with respectids .
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Figure 5: Strictly perfect equilibria

Then, under Assumption 1, the strictly perfect equilibri&l are
(i) (co,Co), (Ck,Co), and(co,Cx) if p > &;
(i) (c1.co) and(co,cy) if p = &5

(iii) (c1,c1), (Cx,C1), and(cy,cx) if p < &.

Proof. See Appendix. O

Figure 5 illustrates the set of strictly perfect equilibria of incomplete infor-
mation political games in which is a uniform random variable, angd# 9,
where the dashed lines represent the set of Nash equilibria.

When a corner strategy pair is chosen by the parties, at least one party sticks
to announcing one particular policy independent of what valug ibhas ob-
served. Proposition 5 states that such strategy pairs are strictly perfect, and
which policy is constantly chosen by a party depends on the relative ex ante
popularity of policies in the political game. As noted earlier, the main reason
for the robustness of such a corner Nash equilibrium is that for any slight per-
turbation, there exists @eorner Nash equilibrium of the perturbed game near
that equilibrium. This implies that an inelastic party in the original Nash equi-
librium keeps on choosing one policy with probability as large as possible even
after perturbation is introduced. Thus the notion of strictly perfect equilibrium
in our model requires at least one party not only to take a constant strategy in
the original political game but also to do so even if small imperfection in its
rationality is introduced.

There is also a remarkable feature in the voters’ beliefs aBaainsistent
with strictly perfect equilibria. Consider, for example, a political game with
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pu > & and a strictly perfect equilibriunisa, ss) = (cx,Co) in this game. For

this strategy paifks, ;(6|1,0) =, while Es, s;(810, 1) is not defined since the
policy pair (0,1) is out of equilibrium in this case. If, howeveisy, s5)m_; =
(cf(ﬁ,ch);":l is a sequence of Nash equilibria in perturbed games converging to
(sa,Ss) as perturbation goes to zero, then

lim Eg (6/0,1) =E(6]6 > %) > &.

That is, any belief of voters consistent witkn, s3) would expect, on average,
0 to be higher tha if (0,1) were observed, whil&s, s;(0/1,0) = &. Since

a larger level of@ implies that the policy 1 is unpopular among the voters, it
then prevents parti to deviate from taking policy 0. Such public image on
the policy pair (0,1) is derived only from the equilibrium strategy of paxty
due to the stubbornness of paBy Having observed announcement (0,1), the
voters consider that even padtakes policy 0 and therefore it is probable that
the value off is considerably large.

8 Concluding remarks

We have constructed incomplete information political games with Downs type
parties in which the parties have informational advantage over voters. We have
shown the existence of multiple Nash equilibria and perfect equilibria, and
proved that Nash equilibria with strongest asymmetry in the parties’ strate-
gies are strictly perfect. Possibility of policy divergence in Nash equilibrium
depends on the effect of voters’ beliefs on fundamentals that is consistent with
the strategies of the parties. A policy that is unpopular among citizens ac-
cording to the prior information about fundamentals is relatively unlikely to be
chosen in perfect equilibria. We have also shown that in any strictly perfect
equilibrium, at least one party adopts the sticky strategy selecting an ex ante
popular policy independent of observed fundamentals.

The results concerning the Nash equilibrium can be extended to more stan-
dard settings where policy spaces have uncountable cardinality. Indeed, if for
any level of fundamentals variable, there are two policies with supporters of
equal masses, then multiple Nash equilibria including policy divergence ex-
ist. In such a model, however, equilibrium refinement would be much more
difficult than the present model.

We may also generalize the uncertainty environment to include incomplete
information of parties as well as voters, where both parties and voters receive
private signals of fundamentals prior to elections. In such a case, on one hand,
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voters have two sources of information about fundamentals variable: their sig-
nals and parties’ policy announcements. Each party, on the other hand, in-
fers from its private signal what signals its opponent and voters have received.
Bernhardt et al. (2007) develop, somewhat relatedly, a model of political
parties with private information about the distribution of voters’ preferences,
where the set of signals for each party is finite, while assuming complete in-
formation on the side of voters. These extensions and generalizations are left
open for future research.

9 Appendix: proofs of propositions

Proof of Lemma 2 . Statement.(By continuity of f andg, Lg is continuous
for everyg € ¢. Sinceg(d) < 3 for all 6 € A, Ly(0) < 3 < Lg(1). Also,
Lg(X) = —[1—-2g(x)]f(x) < O for all x € (0,1). Thus there exists the critical
typed(g) = (Lg) *(3).

Statement (ii) Note that the convergence of a sequence of continuous func-
tion to a continuous function on a compact domain is uniform.(g&t>_; be a
sequence i converging pointwise to the constantly 0-valued function. Then
the convergence is uniform. Take amye (O, %). Then there idN such that for
alln>Nandd € A, g"(d) < a. Fix such a numbeN. Then for alln > N,
Ly(0) > 1—a andLg (1) < a.

By the proof of statement (i), the inverse functidng,)*l exists for every
g€ ¥. Foreveryn > N, the domain ofLg) ~1 contains intervah = (a, 1—a),
which include%. So((Lgn) ~|a)n=n converges pointwise 6~ |o. Therefore,
liMn e 8(g") = iMoo (Lgp) Ya(3) = F[a(3) = 6.

Statement (jii) 5(g) = 9 if and only if Lg(d) = % which is equivalent to
thatAg = f05 g(u) f(u)du equalsBy = fglg(u)f(u)du. 3(9) < ¢ if and only if
Ag < Bg. A sequencég?),_; satisfying the properties in the statement can be
obtained as follows: fon > 2, defineg} by

1 if <5
) =911 -
DN(5-8)+1 if 5>0.

Letg = g = 3. Then,g}(3) < # forall > & and alln. ThusAg = o= > By
for all n, andlimn_. g7(d) = 0 for eachd € A. A sequencégs),,_; satisfying
the properties is constructed by reversing the definitior§ @) over[0, 5] and
(8,1] for eachn. Finally, for eachn, defineg} by g5(8) = le for all & € A.

Then,Agg = ng = Z(n—frz) for all n, andlimy_.. g5(5) = O for eachd € A.
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Proof of Corollary 3. Conditions (i) and (v)Supposeu # 3(9), Ea # &g, and
0 < xg < Xa < 1. Then, substituting (7) into the equation system

Esusa(6]1,0) = Esy(611,0) = 5(9) (13)
in (i) of Proposition 3, whergsa, ss) = (¢, c), and solving foiQ(x;, 5(g)),
i = A, B, yield the two equations

Q<XA7 5(9)) - ¢(£A7 €B, 6(9))7 Q(X|37 5(9)) = 4’(5A, €B, 6(9)) (14)

in the conditions (i) and (v) of Corollary 3. (14) has no solution such that
Xa = Xg under the above assumptions. Note that

H>0(9), & < &5 = (ea.8,0(0)) > H—(g) = MaxQ(x. 5(9)).
n n . 15
H<05(9), &> &= ¢(£a,€8,0(9)) > 0=maxQ(x,5(g)). )

Thus, ifu > 3(9), ea<ep,orifu< S(g), &a > &g, then there exists no solution
to (14) such thakg < xa. Also, note that

Ep > &g — ¢(£A78|37 5(9)) > W(3A7 €B, 5(9))7 (16)

Ep < &g — ¢(£A78|37 5(9)) < W(3A7 €B, 5(9))

Since, by the property (i) in Lemma 1, functi@(',g(g)) is decreasing on
[0,6(g)] and increasing ofd(g), 1], there are at most two solutions to (14)
such thatd < xg < xa < 1 in each possible case: jf > d(g) andea > &g,
strategy pairs with pairs of cut-off points such @&g, xs) and (xy,xg) in the
left-hand graph of Figure 6; ift < d(g) andea < &g, Strategy pairs with pairs
of cut-off points such agxy, xs) and(x,, xg) in the right-hand graph of Figure
6. Therefore, in particular, IEI > &(g), there exists no Nash equilibrium such
that 5(g) < Xg < Xa; if u < 8(g), there exists no Nash equilibrium such that
xg < Xa < 6(Q).

Conditions (ji) and (vi) Substituting (7) andg = 0 into the equation
Es,s(0]1,0) = 8(g) in (i) of Proposition 3 and solving foR(xa, 8(g)) yield
the equation in (ii) of Corollary 3. If this equation is satisfied, then the inequal-
ity in (ii) of Proposition 3 is necessarily satisfied. Thus, the condition (ii) in
Corollary 3 is equivalent to the condition (ii) in Proposition 3. The equivalence
result between the condition (vi) in the corollary and the condition (iv) can be
similarly proved.

Condition (iv) If ea = &g, the two equations in (i) of Proposition 3, when
seen as equations for two variabl@sq, 6(g)), i = A, B, are linearly dependent,
and have a solution if and only if = 5(g). Also, the solutions in this case are

A

all (Q(xa,5(9)),Q(xs,0(g))) such thaQ(xa,d(g)) = Q(xg, 5(g)). O
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Figure 7: FunctiorQ and corner NE in perturbed games wii> &g
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Proof of Proposition 5 .By Corollary 4, the possible strictly perfect equilib-
ria of I are the eight strategy pairs which appear in the conditions (i)-(iii) of
Proposition 5.

We preliminarily define a functio®: X x (A\ {u}) — R by

Q(x,8) = LI (17)

for each(x, ) € X x (A\ {u}).
Then, properties that correspond to the properties (i) and (ii) of funQion
stated in Lemma 1 follows:

(i) For each typed € [0, ), the function@(-,é) i§ continuou:c,, decreasing
on [0, 8], increasing ond, 1], and takes value®(0,0) =0, Q(1,0) = 1.

(i) Foreachd e (u,1], Q(-, d) is continuous, decreasing @ d], increasing
on[d,1], and takes value®(0,8) = 0, Q(1,9) = 1.

Statement (i) Suppose thatt > d. Let [(p) be a perturbed game with
close enough t0 so thaté(g) < u. Then, by Corollary 4(sa,sg) = (G, C&)
can be a Nash equilibrium d¥(p) for all (ea,€s) € (E x E) NV for some
neighborhoodv of (0,0) in R?, only if (sa,sg) satisfies the condition (ii) or
(iv) of Proposition 3.

Consider the condition (ii) of Proposition 3. The constraints for the condi-
tional expectations in (ii) are rewritten as

Q(xa, 8(9)) = Axa,8(9)) < 22 (18)

If u> 3(9) the inequality in (18) is satisfied for agy € E.

Note that the convergencelim _Q(-,5) = Q(-, ) is uniform sinced(-, 3),
o<u,6—0

0 €A, andQ( ) are continuous and their domains compact. Hence, by the
statement about the functi@®(-, 5) with 5 < u in (i) of Lemma 1, there exist
a,B > 0 such that for alld € B4(3) = (5 — a,5 + a), the functionQ(-, d)

is decreasing o0, — 8] and increasing od + 3,1]. Thus, for sucha,
there existy > 0 such that for alld € B4(9d), functionsés : [—y,0] — R and
ns:[—Vv,1] — R given by

for eachz € [—y,0], Q(&5(2),5) = z and for eactz € [y, 1], Q(n5(2),6) = z

(19)
are well-defined. If we define two other functiods [—y,0] — R andn :
[~y,1] — R by

for eachz e [—y,0], Q(£(2),d) = z and for eaclz e [—y,1], Q(n(2),d) =z,
(20)
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the families of function$és) 5.g, (5) aNd(Ns) sep, (5 Uniformly converge td

andn asd — ¢ again by continuity of the functions and compactness of their
domains. Note thaf (0) = 0 andn(0) = x. Therefore, by the same reasoning
as in the proof for the statement (ii) of Lemma 2,

lim _ 0,and lim _ __£\_x
(8,5)%(076)66( 1— 25) (86)4(076)’76( 1728)

Since (&34 (—15%£).0) and(né( \(—1%%),0) are pairs of Nash equilibrium

cut-off points inf*(p) and 6(g) — 0 asg goes to the constantly 0-valued func-
tion by the statement (ii) of Lemma 2, it has been verified {ltatco) and
(ck, Co) are strictly perfect equilibria of . By symmetry between the parties,
(co,Cx) is also a strictly perfect equilibrium.

Statement (iii).Similarly, using the condition (vi) of Proposition 3 and the
statement (ii) of Lemma 1, (iii) of Proposition 5 can be proved.

Statement (ii). Suppose thap = 6. In this casex =1 andx = 0 by
definition. By the condition (iii) of Lemma 2, there exists two sequences
(07)n-1 and (g3);_; of the voters’ perturbations, each convergingdiasuch
that3(g?) < 6= and 3(93) > o = U for all n. Thus, from the proofs of
the statements (i) and (iii), the possible strictly perfect equilibria(ereco)
and(co,c1). Moreover, for any sequenceég)),_, and(g3);_; with the above
properties, and for any sequence of the partles perturba(uﬂﬂsB *_, con-

verging to(0,0), there exist sequenc ﬁ,cag) 1 and(cbn,cbn) ", of Nash

equilibria in perturbed gamefs(s[{,sg,gl) n=12---,such that
lim (a, 8) = (1,0) and lim (b, bg) = (0,1) (21)

and sequence(s:é’/%,czn) *_, and (cen, eg) ", of Nash equilibria in perturbed
games (e8,€5,03),n=1,2,---, such that

I|m(dA,dB) (1,0) and lim (€h,€8) = (0,1) (22)

Furthermore, by the condition (iii) of Corollary 3, if = 3(92), (c,ce?) and
(CSA, ciB) are Nash equilibria of any perturbed gaﬁ(ep) with the voters’ per-
turbationg;.

Thus, if u = J, for any sequence of perturbatiop™);_; = (€2, 8,91
converging to(0,0,0), construct two sequencés,, xg)_; and(Ya,Yg)n-1 as
follows: if u > &(g"), let (xa,xg) = (a},ag) and (ya,yg) = (b}, bg); if u <
3(g"), let (<3, x3) = (d2,d3) and (y3,yR) = (€4,€b); and if p = 5(g"), let
(XA, XB) = (1,0) and (y4,¥3) = (0,1). Then, by (21) and (22)im (X3, X3) =
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(1,0) and r!im (Ya,¥g) = (0,1). Therefore,([1],[0]) and ([0],[1]) are indeed
strictly perfect equilibria. This completes the proof for the statemeni(ii).
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