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Abstract

In this paper we present a model of a network or an arrangement of transactions

that involve a risky transfer of assets. Transactions are generated endogenously.
There is a risk in asset transfers and we are concerned with the question of opti-

mal risk management in such a network. Assets in this paper may well be usual
commodities and not limited to financial assets.

If there is some risk of failure in a transfer from one party to another, should
the transfer be done through that arrangement? If so, then what considerations
are relevant to determining whether third parties ought to share that risk? Are

there conditions under which the general public or the government (in the case of a
private arrangement) ought to bear some risk and, if so, what level of compensation

would it be appropriate for them to receive? In the present paper, we address these
questions by analyzing a schematic, formal, model of a network of transactions.

∗This paper is prepared for presentation at the Fourth Decentralization Conference to be held at
Ritsumeikan University, Kusatsu in September 11, 1998. It is a part of the ongoing research project
jointly undertaken with Professor Edward Green of the Federal Reserve Bank of Minneapolis and Dr.
Hiroshi Fujiki of Bank of Japan, and constitutes a part of the draft jointly being written.

†I would like to thank Professor Edward Green who made my visit to Minneapolis possible during
the summer of 1997 and the Federal Reserve Bank of Minneapolis for its financial support. I also like to
thank the Centennial Memorial Fund of the Graduate School of Economics, Hitotsubashi University for
making Professor Green’s visit to Hitotsubashi possible in June, 1998 for our joint work. I profited from
a discussion I had with Nobuhiro Kiyotaki of London School of Economics at the Federal Reserve Bank
of Minneapolis in the summer of 1997.
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1 Introduction

In this paper we present a model of a network or an arrangement of transactions that
involve a risky transfer of assets. Transactions are generated endogenously. There is a
risk in asset transfers and we are concerned with the question of optimal risk management
in such a network. Although this paper is largely motivated by the consideration of risk
management in a network of financial assets transfers, assets in this paper may well be
usual commodities and not limited to financial assets.
Some specific questions regarding risk management in a network of transactions are

the following. If there is some risk of failure in a transfer from one party to another,
should the transfer be done through that arrangement? If so, then what considerations
are relevant to determining whether third parties ought to share that risk? Are there
conditions under which the general public or the government (in the case of a private
arrangement) ought to bear some risk and, if so, what level of compensation would it
be appropriate for them to receive? If a third party possesses private information that
would be of value in determining how best to make a transfer, how does the exposure
of that party to the transfer risk affect the quality of information that the party chooses
to provide? In the present paper, we address the first three questions by analyzing a
schematic, formal, model of a network of transactions. 1

In a sense, a network of transactions generates rents for its participants, both the
service providers and their customers, in most states of the world. In exceptional states
where there are catastrophic losses, though, these losses can be transmitted to many or
all of the participants through transfer failures. Thus, since the network participants
bear this risk that is highly correlated among them, it is efficient for them as a group to
make an insurance contract with the group of non-participants. In our model environ-
ment, it is efficient for network participants normally to distribute part of their rents to
non-participants, in return for which the non-participants will indemnify part of the par-
ticipants’ losses in the catastrophic event. Such a loss-sharing arrangement between the
group of the network participants and the non-participants is the theoretical counterpart
of “safety-net” arrangements in actual economies.
This explanation has a general-equilibrium character. That is, it depends on reasoning

about the welfare and incentives of all of the participants in the network – and even of
non-participants – rather than of service providers (such as banks) alone. For that
reason, it cannot be formalized within traditional models of policy towards network risk.
Those models have been partial-equilibrium models that analyze the profitability and
decision-making of traders as endogenous, but that represent the traders’ customers only
implicitly, via a stream of transfer orders that is specified to be exogenous. Because the
gist of our argument is that wise network risk policy enhances welfare largely through
its indirect effect on the equilibrium decisions of the makers and receivers of a transfer,
rather than through its direct effect on service providers alone, this argument has to be
formulated in a new, general-equilibrium, model.
In order to make such a general-equilibrium model analytically tractable, we have

chosen to abstract from two features of transactions’ network in modern economies. We
disregard the distinction between transfer-service providers and their customers who are

1The last question will be analyzed by our joint paper. For a very preliminary result, see F. Fujiki,
E. Green, and A. Yamazaki [2].
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the ultimate makers and receivers of transfers. Instead, in our model environment, some
traders play a dual role as providers of transfer services to others and as customers of
others. Also, we disregard the fact that transactions are settled by transfers of money
rather than goods. Strictly speaking, ours is a model of circular trade with risky delivery
of goods.
Transfer-arrangement designers, managers, and policy makers are well aware that the

rules governing an arrangement can affect users’ decisions about which transactions to
make through the arrangement. Thus, to set the rules of an arrangement is implicitly
to decide which transactions will be done through it, and which transactions people will
decide to do in alternative ways. (In fact, in case of a network of transactions of financial
assets, rules governing an arrangement that lacks stringent risk controls are sometimes
designed deliberately to make the arrangement infeasible or unattractive for use in making
very large-value payments.) By modeling the cooperative setting of rules by participants
in a transfer arrangement, and by participants in the economy as a whole, from this
perspective, we are able to analyze welfare questions in a conceptually satisfactory way.
Rather than taking that approach of specifying transactions exogenously as previous re-
searchers have typically done, what we take to be exogenous are traders’ utility functions,
which we specify in a way that provides scope for welfare-improving transactions among
some of the traders to occur. We also specify a transfer technology that imputes risks and
costs to those potential transactions. Having specified the model in these terms, we are
able to characterize the efficient patterns of transactions that the traders would choose to
make.
This approach provides answers, for the class of model economies that we study, to

the questions posed above. Not surprisingly, risk considerations play a role in determining
which transactions ought to be made. The specifics of that role can be quite interesting.
For instance, under plausible conditions, even the general public (that is, traders who
would not have transactions with the members of the transfer arrangement if risk were
not present) ought to share transfer risk, as can happen in practice in a settlement ar-
rangement of financial assets, when a central bank serves as guarantor of the settlement
arrangement. While the results obtained about a schematic model economy are far from
constituting definitive advice regarding actual transfer arrangements, we hope that our
analysis may at least provide a helpful framework within which to think in an organized
way about the issues involved in practical cases.

2 Model of a transaction network

Our first task is to formulate a model of a transaction that involves a risky asset transfer.
The model should be rich enough to describe such a transaction recognizably, but simple
enough to be analytically tractable.
Consider what sort of model could satisfy both the requirements of richness and sim-

plicity. A transaction is a related set of asset transfers between traders. The assets
involved might be either commodities or financial assets. An asset transfer involves two
traders, the donor and the recipient, but a transaction can generally involve more than two
traders. Therefore, at the very least, a model of a transaction involving a risky transfer
should include three traders, so that a distinction can be drawn between a participant in
the broad transaction and a participant (that is, the donor or the recipient) in the specific
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transfer where the risk occurs. In order for the third-party participant in the transaction
– that is, the participant who is neither the donor nor the recipient of the risky transfer
– to be essential to making a mutually beneficial transaction, there should be no “double
coincidence of wants” between the donor and the receiver. This consideration suggests
modeling the three participants as a “Wicksell triangle.”
There is a distinction between two types of third party (or potential third party) that a

good model ought to capture. A third party to risky transfer in a Wicksell triangle might
be intrinsically necessary in the sense that the donor and recipient of the risky transfer
would have no double coincidence of wants, even if the transfer did not involve risk
(that is, if the recipient would receive the expected value of the transfer with certainty).
Alternatively, the riskiness of the transfer might impair a double coincidence of wants
that would exist under certainty between the donor and the recipient, and the third party
might be needed solely to restore that double coincidence by serving as a guarantor or
insurer of the transfer. For characterizing the differences between the roles of these two
types of third parties, a four-trader model (including both an intrinsic third party and
a trader whose only involvement would be to share risk) can be useful. On the basis of
these considerations, we will specify the set of traders to be {1, 2, . . . , N} with N = 4.
We will assume that trader 1 is essential to a mutually beneficial transaction but that
trader 2 is the donor and trader 3 is the recipient of the risky transfer. The attributes of
trader 4 will be specified in such a way that trader 4 can only participate in a risk-sharing
capacity.

2.1 Probability structure

The risky transfer will be formalized in terms of a state space, Ω. An algebra of events
(that is, subsets of Ω) is assumed to exist, and a probability measure Pr is defined on the
algebra.
There is a distinguished event S ⊂ Ω, with 0 < Pr(S) < 1. Assume that the risky

transfer from trader 2 to trader 3 succeeds in S, and that it fails in the complementary
event F = Ω\S. When we say that the transfer succeeds, we mean that trader 3 receives
the entire quantity of the asset that is transferred. When we say that the transfer fails,
we mean that the quantity of the asset that was intended to be transferred disappears
irretrievably from the economy.2 3 To simplify the notation we write σ = Pr(S), and we
assume

1/2 < σ < 1

.

2.2 Commodities, endowments, and preferences

Assume that each trader i has an endowment consisting solely a type of commodity that
only he possesses. We denote that type of commodity also by i. Intuitively, trader i is

2Failure of an actual transfer seldom involves such an irretrievable loss, although there are some
contemporary examples and many historical examples of that type of failure.

3To analyze incentive issues, we will specify that trader 1 privately observes an event that is statistically
relevant to the outcome of that risky transfer. This private information will be formalized in a separate
paper in terms of events in the probability space Ω. See H. Fujiki, E. Green, and A. Yamazaki [2].
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endowed with one unit of commodity of type i with certainty. In order to discuss state-
contingent trade of these endowments, we adopt Arrow’s convention that each type of
commodity is a class of state-contingent commodities, one for each state in Ω. Thus the
set of all commodities is N × Ω. Each trader i is endowed with one unit of commodity
(i,ω) for every ω ∈ Ω.
A commodity bundle is represented by a measurable function γ:N × Ω → R+. This

definition is conventional, since N × Ω is the commodity space.
Each trader’s preference between commodity bundles conforms to expected utility.

Trader i has a von Neumann-Morgenstern utility function U i:RN
+ → R ∪ {−∞}. Trader

i’s expected utility of consuming a commodity bundle γ is the expectation of the random
variable U i(~γ), where ~γ:Ω→ RN

+ is defined by

∀ω ∈ Ω ~γ(ω) = (γ(1,ω), . . . ,γ(N,ω)) (1)

2.3 Structure of information and economic activity

The sequence of economic activities in this economy is as follows.
Initially, before knowing whether the actual state of nature is in S or F , traders make

an agreement for transfers of goods among them. The agreement among the traders is
binding.
With one exception, the transfers are safe. That is, everything sent out reaches its

intended recipient in its entirety and with certainty. The exception is the transfer of
trader 2’s endowment to trader 3. Recall that this transfer reaches trader 3 in its entirety
in event S, but is completely and irretrievably lost in event F .
The traders also agree ex ante on a second round of transfers, to be made after the

first round transfers have been completed and the result of the risky transfer has become
known. Thus the transfer to be made in the second round can be made contingent on
which of the events S and F has occurred.4 All second-round transfers, including the
one from trader 2 to trader 3, are nonstochastic. However, second-round transfers are
costly. Only a proportion ρ < 1 of the goods that a trader sends in the second round are
received.5

The two rounds of contractually specified transfers are then made. Traders consume
their stocks of goods after these two rounds of transfers have been completed.

4Strictly speaking, this sentence describes a different information structure from the preceding one. If
traders can only distinguish between events S and F on the basis of observing the success or failure of
a transfer, then they can not make any distinction unless a (non-zero) transfer has been attempted. To
assume that they can make a state-contingent transfer in the second round even if no first-round transfer
from 2 to 3 has been attempted neglects this limitation of their opportunity for inference. In the case
where there is no private information, this ambiguity is harmless because risk-averse traders would not
cooperatively choose to make a state-contingent transfer in the second round unless they had exposed
themselves to transfer risk in the first round. How the ambiguity is resolved is important in the private-
information case, though, and we will discuss this issue further when we analyze private information in
a separate paper.

5This assumption, sometimes called “iceberg cost,” can be viewed as a crude way of reflecting various
intuitive considerations including time preference and exposure to business loss due to delayed availability
of transferred funds.
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2.4 Consumption determined by a transaction

To simplify the characterization of traders’ consumption resulting from settlement, we
make two assumptions: that a trader is able to transfer only his own endowment good,
and that only a few of the possible flows of those goods are feasible. Specifically a round
of transfers is a vector φ ∈ R5

+. The components of φ are interpreted as follows.

1. φ1 is the amount sent from trader 1 to trader 2;

2. φ2 is the amount sent from trader 2 to trader 3;

3. φ3 is the amount sent from trader 3 to trader 1;

4. φ4 is the amount sent from trader 4 to trader 3;

5. φ5 is the amount sent from trader 3 to trader 4.

As described above, either all, a proportion ρ, or none of the goods sent may be
received. A transaction is a sequence τ = (τ 1, τS , τF ) of rounds of transfers. The elements
τ1, τS, and τF specify the initial round of transfers, and the round of transfers in event
S and in event F , respectively.

Figure 1: Round of Transfers

1

2 3

φ1

φ2

φ3

4
φ5

φ4

A transaction is feasible if no trader is ever required to send a cumulative amount that
would exceed his endowment. That is, transaction τ is feasible if

∀i τ 1
i +max{τSi , τFi } ≤ 1. (2)
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Let T denote the set of feasible transactions.6
Now we provide an explicit definition of traders’ consumptions resulting from a trans-

action. The following table specifies vectors z1—z5 in terms of which these consumptions
are defined.

z1 (1, 0, 0, 0)
z2 (0, 1, 0, 0)
z3 (0, 0, 1, 0)
z4 (0, 0, 0, 1)
z5 (0, 0, 1, 0)

Furthermore, let χS and χF denote the indicator functions of S and F respectively, and
define τχ(ω) = χS(ω)τ

S + χF (ω)τ
F .

The consumption vector ci(τ,ω) that trader i receives in state ω as a consequence of
transaction τ is as follows.

c1(τ,ω) = (1− (τ 1
1 + τχ1 (ω))z

1 + (τ 1
3 + ρτχ3 (ω))z

3

c2(τ,ω) = (1− (τ 1
2 + τχ2 (ω))z

2 + (τ 1
1 + ρτχ1 (ω))z

1

c3(τ,ω) = (1− (τ 1
3 + τχ3 (ω))z

3 − (τ 1
5 + τχ5 (ω))z

5)

+ (χS(ω)τ
1
2 + ρτχ2 (ω))z

2 + (τ 1
4 + ρτχ4 (ω))z

4

c4(τ,ω) = (1− (τ 1
4 + τχ4 (ω))z

4 + (τ 1
5 + ρτχ5 (ω))z

5

(3)

3 The core

Wemodify the core of an exchange economy to serve as the solution concept to characterize
the set of transactions to which the traders might agree. A core allocation is one that
can be obtained (according to (3)) by a feasible transaction, and such that no coalition of
traders can implement another allocation that its members unanimously prefer – with
at least one of them having a strict preference – by using an alternative transaction that
is feasible for its members. Define a core transaction to be a feasible transaction from
which a core allocation is obtained via (3).
To formalize the notion of unanimous preference within a coalition, for each nonempty

C ⊆ {1, . . . , N}, define θ ∈ T to C-dominate τ ∈ T if

∀i∈C E[U i(ci(τ,ω))] ≤ E[U i(ci(θ,ω))] and
∃i∈C E[U i(ci(τ,ω))] < E[U i(ci(θ,ω))]. (4)

Also define θ ∈ T to be feasible for C if

∀i/∈C ∀ω ci(θ,ω) = zi (No participation of other traders is required). (5)

Finally, define τ ∈ T to be a core transaction if there exist no C ⊆ N and θ ∈ T
such that θ is feasible for C and θ C-dominates τ . Let us say that transaction τ is

6As noted in the footnote above, the informational constraint that, if τ1
2 = 0, then τS = τF , may

or not be added to the definition of feasibility for a transaction. If all traders are risk averse, then the
constraint is never binding when traders have common information.
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individually rational if it is weakly preferred to autarky by every i ∈ N , and that τ is
Pareto-undominated if it is undominated for N .

4 Analysis of a public information environment

We will carry through our analysis using specific utility functions to show why the pref-
erence (and private information) do matter in a network of transactions.7 To this end,
we study core transactions in some parametric versions of the economic environment de-
fined above. N = {1, 2, 3, 4} where 1, 2 and 3 are the essential participants and 4 is the
stand-by party to a transaction. We specify the traders’ utilities as follows.

U1(c) = ln(c1 + βc3)

U2(c) = ln(c2 + βc1)

U3(c) = ln(c3 + βc2 + γc4)

U4(c) = ln(c4 + ϕc5)

with β > max{σ−1, ρ−1}, 0 < ϕγ < 1.

(6)

Here, goods received in trade are “better” substitutes for endowment goods for essential
participants 1,2,3. Trader 4 considers trader 3’s good to be a “worse” substitute for his
own endowment good, and trader 3 considers 4’s good to be a “worse” substitute for
trader 2’s good or even for his own endowment good. We assume that the transfer tech-
nology to satisfy 0 < ρ ≤ σ < 1 and σ > 1/2. In the present paper we assume that there
is no private information.
By an abuse of notation, we write EU i(µ) instead of EU i (Γi(µ,ω)) for the expected

utility of trader i for a given transaction µ. Hence,

EU i(µ) = σ ln
¡
1− µ1

i − µSi + ai−1(µ
1
i−1 + ρµSi−1)

¢
+(1− σ) ln

¡
1− µ1

i − µFi + ai−1(µ
1
i−1 + ρµFi−1)

¢
(7)

for i =1,2,4 where i − 1 = 3 for i = 1 and i − 1 = 5 for i = 4, and ai = β for i =1,2,3,
a4 = γ, and a5 = ϕ. For i = 3, we have

EU3(µ) = σ ln
¡
1− µ1

3 − µS3 + β(µ1
2 + ρµS2 )− µ1

5 − µS5 + γ(µ1
4 + ρµS4 )

¢
+(1− σ) ln

¡
1− µ1

3 − µF3 + βρµF2 − µ1
5 − µF5 + γ(µ1

4 + ρµF4 )
¢
. (8)

When a transaction µ is clear from the context, we may write for simplicity

CSi = 1− µ1
i − µSi + ai−1(µ

1
i−1 + ρµSi−1),

CFi = 1− µ1
i − µFi + ai−1(µ

1
i−1 + ρµFi−1) (9)

for i = 1, 2, 4 and

7Analysis in an economic environment with private information will be carried out in a separate paper.
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CS3 = 1− µ1
3 − µS3 + β(µ1

2 + ρµS2 ) − µ1
5 − µS5 + γ(µ1

4 + ρµS4 ),

CF3 = 1− µ1
3 − µF3 + βρµF2 − µ1

5 − µF5 + γ(µ1
4 + ρµF4 ). (10)

CAi is interpreted as “real” consumption level of trader i in event A in the sense that it
directly determines i’s utility level in event A.
We begin by establishing a series of properties to be satisfied by core transactions that

simplify the characterization of core transactions.
We first want to show that a transaction is in fact endogenously generated in our

model. In other words we shall show that if µ = (µ1, µS , µF ) is a transaction which is
identically equal to zero, then µ is dominated. Thus, the following lemma will guarantee
the nontriviality of considering endogenous transactions using the utility functions given
by (6).

Lemma 1 Let µ = (µ1, µS, µF ) be a feasible transaction such that min{²i | i = 1, · · · , 4} >
0 where

²i = 1− µ1
i −max{µSi , µFi } for i = 1, 2, 4

²3 = 1− µ1
3 − µ1

5 −max{µS3 + µS5 , µF3 + µF5 }.
Assume that βρ ≥ 3

√
2. Then, µ is {1,2,3}-dominated. In particular, if µ = 0, then

µ is {1,2,3}-dominated. In other words, a transaction µ which is not {1,2,3}-dominated
generates a transaction. Furthermore, at least one trader among the essential participants
to transaction must be sending all of his endowment to others, i.e., min{²i | i = 1, 2, 3} =
0.

If the cost of a second round transfer 1− ρ is no greater than the cost of risk 1− σ of
a second round transfer so that ρ ≥ σ, then it is immediate that second round transfers
dominate first round transfers. Now, assume that the second round transfer cost is higher
than the cost of risk in transfer from 2 to 3 so that 0 < ρ < σ. Then, it is clear that
among those who do not face direct transfer risk, i.e., i= 1,2,4,5, 8 second round transfers,
should they be effected, involve transfers in the event F or S but not in both events.

Lemma 2 Assume 0 < ρ < σ. Let µ be a feasible transaction such that µSi µ
F
i > 0 for

some i ∈ {1, 2, 4, 5}. Then, µ is {i, i+1}-dominated 9 where, for i = 5, i+1 is understood
to be 4.

By the basic lemma 1 of a transaction, at least one trader among the essential partic-
ipants {1,2,3} to transactions must be sending all of his endowment if the transaction is
undominated. We shall show next that regardless of who is sending his entire endowment
to other participants, trader 2 must be sending at least some of his endowment to trader
3.

Lemma 3 Let µ be a feasible transaction which is individually rational and {1,2,3}-
undominated. Then, trader 2 must be sending some of its endowments to trader 3, i.e.,

max{µ1
2, µ

S
2 , µ

F
2 } > 0.

8It is convenient to refer to trader 3 as trader i = 5 when we look at his transfer to trader 4.
9Here again, {4,5}-dominated means {4,3}-dominated.
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We now wish to check some of the further details of undominated transactions. For
this purpose we like to derive conditions under which a change in transfer from a trader
or traders induces another feasible transaction that can dominate a given transaction.
Let ², ηSi , η

F
i be real numbers in a neighborhood of zero. For i = 1, · · · , 5, and a real

number t in a neighborhood of zero, define

µ1
ti = µ

1
i + t², µ

S
ti = µ

S
i + tη

S
i , µ

F
ti = µ

F
i + tη

F
i . (11)

Let µit be a transaction such that
10

µiti = (µ1
ti, µ

S
ti, µ

F
ti) and

µitj = (µ1
j , µ

S
j , µ

F
j ) for j 6= i (12)

so that in µit only trader i’s transfers are changed.
For any ² (could be either positive or negative) in a neighborhood of zero, we set either

ηSi or η
F
i or both so as to make

d

dt
EU i(µit)(0) = 0. (13)

We then look at a change in expected utility of trader i + 1 resulting from a shift in
transfer induced by ², ηSi , and η

F
i , where i + 1 is 1 for i = 3, and 4 for i = 5. In other

words, we change a transfer or transfers of a trader so as to keep his expected utility
unchanged, and see under what conditions the receiver’s expected utility is increased. If
that happens, the donor and the receiver can dominate the original transaction. We will
check these conditions trader by trader.

4.1 Effects of a change in transfers of trader i = 2

We first establish properties concerning changes in transfers of trader i = 2.

Lemma 4 Let µ be a feasible transaction. Then, for a change in transfers of trader 2 as
defined by (11), (12), and (13), we have the following.

1. If we consider a simultaneous change in second round transfers in both events F
and S by a same amount so that η = ηF2 = ηS2 , then:

sgn

∙
d

dt
EU3(µ2

t )(0)

¸
= sgn[²]sgn

∙
CF3
CS3
− rσρ

¸
(14)

where

rσρ =

µ
1− σ

σ

¶µ
ρ

1− ρ

¶
. (15)

2. If the second round transfer in event F , µF2 , is held constant so that η
F
2 = 0, then:

sgn

∙
d

dt
EU3(µ2

t )(0)

¸
= sgn[²]sgn

∙
CF2
CS2
− rσρ

¸
. (16)

10Here, there is an abuse of notation again since, for i=1, we have µ1
t1 = (µ

1
t1, µ

S
t1, µ

F
t1). But no confusion

should arise in the context of our arguments below.
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3. If the second round transfer in event S, µS2 , is held constant so that η
S
2 = 0, then:

sgn

∙
d

dt
EU3(µ2

t )(0)

¸
= sgn[²]sgn

∙
CF3
CS3
− ρ

µ
1− σ
σ

¶
− ρC

F
2

CS2

¸
= sgn[²]sgn

∙
CF3
CS3
− rσρ2

¸
(17)

where

rσρi =

µ
1− σ

σ

¶µ
ρ

1− ρRi

¶
, (18)

Ri =
CFi /C

S
i

CFi+1/C
S
i+1

. (19)

4. If the first round transfer, µ1
2, is held constant so that ² = 0, then:

sgn

∙
d

dt
EU3(µ2

t )(0)

¸
= sgn[ηS2 ]sgn[1− R2]

= sgn[ηF2 ]sgn[R2 − 1] . (20)

One may note that
σCF3

(1− σ)CS3
=

σ(1/CS3 )

(1− σ)(1/CF3 )

is trader 3’s expected marginal rate of substitution of consumption in event F for con-
sumption in event S. Thus, ρ/(1− ρ) is playing the role of relative price of consumption
in event S, and (14) says for example that if trader 3’s expected marginal rate of substi-
tution of consumption in event F for consumption in event S exceeds the relative cost of
consumption in event S, then an increase in first round transfer from 2 to 3 accompanied
by a decrease in second round transfer by the same amount both in event S and F so as
to keep trader 2’s expected utility unchanged would increase trader 3’s expected utility.
It is interesting to note that whether the first round transfer from trader 2 to trader 3

should be increased or not depends on trader 3’s expected marginal rate of substitution
of consumption in event F for consumption in event S whereas, by (16), the second round
transfer in event S depends on the expected marginal rate of substitution of trader 2. On
the other hand, by (17), the second round transfer in event F depends on the ratio of the
expected marginal rates of substitution of both traders. By (20), these marginal rates
are typically identical when there are positive second round transfers from 2 to 3 in both
events.
One may summarize the results of lemma 4 in terms of real consumptions as follows.

Lemma 5 Let µ be a feasible transaction which is not {2,3}-dominated. Then, the trans-
fer of trader 2, µ2 = (µ

1
2, µ

S
2 , µ

F
2 ) must satisfy the following properties.

1. When one has µ1
2, µ

S
2 , µ

F
2 > 0, µ satisfies

CF2
CS2

=
CF3
CS3

= rσρ. (21)
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2. When one has µ1
2 > 0, µ

F
2 > 0, µ

S
2 = 0, µ satisfies

rσρ ≤ C
F
3

CS3
≤ C

F
2

CS2
, and

CF3
CS3
≤ rσρ2 ,

(22)

where in the last weak inequality, equality holds if µ1
2 + µ

F
2 < 1 , in which case we

have
CF2
CS2
− C

F
3

CS3
=

µ
1− ρ

ρ

¶µ
CF3
CS3
− rσρ

¶
. (23)

In particular, if
CF3
CS3

= rσρ holds, then

CF2
CS2

=
CF3
CS3
.

3. When one has µ1
2 > 0, µ

S
2 > 0, µ

F
2 = 0, µ satisfies

CF2
CS2
≤ rσρ ≤ C

F
3

CS3
. (24)

4. When one has µF2 > 0, µ
S
2 > 0, µ

1
2 = 0, µ satisfies the following.

(a) If max{µF2 , µS2} < 1 , then

CF2
CS2

=
CF3
CS3
≤ rσρ.

(b) If µF2 < 1 , then
CF2
CS2
≤ C

F
3

CS3
≤ rσρ.

(c) If µS2 < 1 , then
CF3
CS3
≤ C

F
2

CS2
≤ rσρ.

4.2 Effects of a change in transfers of trader i = 1 or 3

We now proceed to check the properties of transfers from trader i=1 or 3.

Lemma 6 Let µ be a feasible transaction. Then, for a change in transfers of trader i=1
or 3 as defined by (11), (12), and (13), we have the following.

1. If the second round transfer in event F , µFi , is held constant so that η
F
i = 0, then:

sgn

∙
d

dt
EU i+1(µit)(0)

¸
= sgn[²]sgn

∙µ
σ

1− σ

¶µ
1− ρ

ρ

¶
−
µ
CSi
CFi
−
µ
1

ρ

¶
CSi+1

CFi+1

¶¸
= sgn[²]sgn

∙
CFi+1

CSi+1

− rσρ
µ
1

Ri
− 1
ρ

¶¸
. (25)
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2. If the second round transfer in event S, µSi , is held constant so that η
S
i = 0, then:

sgn

∙
d

dt
EU i+1(µit)(0)

¸
= sgn[²]sgn

∙µ
1− σ

σ

¶µ
1− ρ

ρ

¶
−
µ
CFi
CSi
−
µ
1

ρ

¶
CFi+1

CSi+1

¶¸
= sgn[²]sgn

∙µ
1− σ

σ

¶
(1− ρ)− C

F
i+1

CSi+1

(ρRi − 1)
¸
. (26)

3. If the first round transfer, µ1
i , is held constant so that ² = 0, then:

sgn

∙
d

dt
EU i+1(µ2

t )(0)

¸
= sgn[ηFi ]sgn[Ri − 1]

= sgn[ηSi ]sgn[1−Ri] . (27)

There are two major differences between the results obtained in lemma 6 and lemma
4. One is that whether a change in the second round transfer in event F or S increases the
expected utility of the recipient or not, each depends on the ratio of the expected marginal
rates of substitution of both the donor and the recipient when the donor is i = 1 or 3,
whereas in the previous case of donor being i=2, whether a change in the second round
transfer in event S increases the expected utility of the recipient or not depends on the
the expected marginal rate of substitution of the donor only. The other is that because
of lemma 2 it does not make sense to consider a simultaneous change in the second round
transfer in events F and S for traders i=1,3.

4.3 Effects of a change in transfers between traders i = 3 and 4

We now come to a consideration of transfers between traders 3 and 4. Here, the trader
3 is an essential participant to a transaction and is regarded to represent a tie between
the settlement system and the outside party. The trader 4 is the stand-by party to a
transaction. It might function as the central bank depending upon whether a transaction
µ requires the trader 4 to effect transfer to 3 in event F .

Lemma 7 Let µ be a feasible transaction and consider a change in transfers between
traders 3 and 4 as defined by a transaction µt satisfying

µ1
ti = µ

1
i + t²i, µ

F
ti = µ

F
i + tη

F
i , µ

S
ti = µ

S
i (28)

where ²i = ηFi = 0 for i=1,2,3. Set ²i and ηFi for i=4,5 so that the expected utility of
trader 4 remains unchanged at t=0. Then:

1. If ²i 6= 0 and ηFi = 0 for i=4,5, we have

d

dt
EU3(µt)(0) =

µ
σ

CF4
+
1− σ

CS4

¶
(ϕγ − 1) ²5 . (29)
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2. If ηF4 6= 0, ²5 6= 0, and ²4 = ηF5 = 0, we have

sgn

∙
d

dt
EU3(µt)(0)

¸
= sgn[²5]sgn

∙
ϕγρ

µ
σ

CS4
+
1− σ

CF4

¶
− 1− σ

CF4

µ
1 +

µ
σ

1− σ

¶
CF3
CS3

¶¸
.

(30)

Let us evaluate the terms inside the above bracket assuming that µ is a feasible transaction
such that µ1

i = µ
F
i = µ

S
i = 0 for i = 4, 5. Certainly one has C

F
4 = CS4 = 1. When µ is

individually rational and not {2,3}-dominated, with µ1
2, µ

F
2 , µ

S
2 all strictly positive, then

by lemma 5 we have

CF3
CS3

=
CF2
CS2

= rσρ =

µ
1− σ

σ

¶µ
ρ

1− ρ

¶
.

It thus follows that

sgn

∙
d

dt
EU3(µt)(0)

¸
= sgn[²5]sgn

∙
ϕγ − 1− σ

ρ(1− ρ)

¸
.

Let us note the term
1− σ

ρ(1− ρ) in the above bracket. If σ = ρ, it is equal to 1/ρ, and

since we have ϕγ < 1, a transaction µ is not dominated even if µ1
i = µFi = µSi = 0 for

i = 4, 5. However, note that the denominator ρ(1− ρ) of the term achieves its maximum
at ρ = 1/2 with the maximum value 1/4. Therefore, one has

min
ρ

½
1− σ

ρ(1− ρ)

¾
= 4(1− σ).

It means that if the value of σ is close to 1, for example if σ = 0.9, then it is small enough,
i.e. 0.4, and inside the bracket tends to become positive, in which case a transaction
µ must specify µ1

5 > 0 and µF4 > 0 if it is not {2,3}-dominated. The following lemma
summarizes the above arguments.

Lemma 8 Let µ be a feasible transaction which is not {2,3}-dominated.
1. If µ specifies a state non-contingent trade between traders 3 and 4, i.e., µ1

5 > 0 and
µ1

4 > 0, then µ is {3,4}-dominated.

2. Assume ϕγ > (1− σ)/ρ(1− ρ). If it is feasible to increase the state non-contingent
transfer from 3 to 4 as well as the state contingent transfer from 4 to 3 in event F,
then µ is {3,4}-dominated.

4.4 Properties of undominated transactions

Using the properties we have derived so far, we will see how undominated transactions
induce state contingent transfers and consumptions. For this purpose, we start from a
transaction that has state non-contingent transfers and show how it needs to be changed
in order for the transaction to be undominated.
We begin by a consideration of a feasible and individually rational transaction µ which

is not state contingent, so that all the transfers are done at first round. In this case we
have the following.
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Proposition 1 Let µ be a feasible individually rational transaction such that:

1. µ effects first round transfers only.

2. Traders 1,2, and 3 make positive transfers.

3. Traders 3 and 4 do not make transfers between them.

Then:

1. Even if trader 1 initiates a state contingent transfer by reducing state non-contingent
transfer so as to keep his own expected utility level unchanged, trader 2 will never
gain in expected utility. 11

2. If trader 2 initiates a second round transfer in event F by reducing state non-
contingent transfer so as to keep his own expected utility level unchanged, trader
3 can gain in expected utility provided that the sum of the first round transfers from
trader 2 to trader 3 and trader 3 to trader 1 is large enough.

3. If trader 3 initiates a second round transfer in event S by reducing state non-
contingent transfer so as to keep his own expected utility level unchanged, trader
1 will gain in expected utility level provided that the sum of the first round transfers
from trader 2 to 3 and trader 3 to 1 are sufficiently large.

4. Trader 3 will gain in expected utility if trader 3 makes a first round transfer to
trader 4 while trader 4 makes a second round transfer to trader 3 in event F in such
a manner to keep trader 4’s expected utility unchanged, provided that the sum of
the first round transfers from trader 2 to trader 3 and trader 3 to trader 1 is large
enough, and if expected marginal rate of substitution between endowment goods of
traders 3 and 4 is not too small relative to the iceberg-cost adjusted cost of risk so
that ϕγ > (1− σ)/ρ.

Thus, according to the proposition 1, if we start from a transaction which has only
first round state non-contingent transfers, then there will be no incentives for traders 1
and 2 to initiate state contingent transfers between the two. But as regards to traders 2
and 3, they have incentives to initiate a state contingent transfer in event F from 2 to 3
provided the sum of the first round transfers from trader 2 to trader 3 and trader 3 to
trader 1 is large enough to satisfy the following inequality.12

µ1
3 +

µ
βρ

σ − ρ

¶
µ1

2 > 1 (31)

For example, for parameter values σ = 0.9, ρ = 0.8, and β = 1.6, the coefficient of µ1
2 in

the inequality is 12.8 so that if the transfer from trader 2 exceeds 5
64
, regardless of the

11This is equivalent to stating that “Trader 1 will never gain in expected utility by initiating a state
contingent transfer while keeping trader 2’s expected utility level unchanged.” Similar remarks apply to
the subsequent statements of this proposition.

12For this inequality as well as other inequalities below, see the proof of the proposition 1 in the
appendix.
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amount of transfer from trader 3 the inequality is satisfied. Thus, all those transactions
satisfying (31) will be {2,3}-dominated by increasing the transfer from trader 2 in event
F and decreasing the first round transfer from 2.
As to transfers from 3 to 1, when the given transaction is entirely state non-contingent,

they have incentives to initiate a state contingent transfer in event S from 3 to 1 provided
the sum of the first round transfers from trader 2 to 3 and trader 3 trader to 1 is large
enough to satisfy the following inequality:

µ1
3 + β(1− σ)

µ
1− ρ

ρ

¶
µ1

2 > 1 ,

because µ will be {1,3}-dominated by increasing µS3 and decreasing µ1
3 under this con-

dition. For the parameter values we specified earlier, the condition above is met, for
example, if µ1

2 ≥ 0.02 regardless of the value of µ1
3. Thus, we may expect at this stage

that a core transaction µ to specify µS3 > 0.
13 One might think at first that it is counter-

intuitive to have µS3 > 0. An economic intuition behind this is the following: as the first
round transfer µ1

2 fails in event F , the consumption of trader 3 in event F , C
F
3 , is below the

level of his consumption in event S,CS3 . If the excess of trader 3’s expected marginal rate
of substitution of consumption in F for consumption in S over the iceberg-cost-adjusted
trader 1’s expected marginal rate of substitution of consumption in F for consumption in
S exceeds relative cost of consumption in event S and F , then it is mutually desirable for
traders 3 and 1 to increase the transfer µS3 by decreasing the first round transfer µ

1
3. This

adjustment cannot be done by changing the level of the first round transfer µ1
3 alone or

by changing the second round transfer in event F, µF3 , because one is required to increase
CF3 and µF3 cannot be decreased beyond zero to achieve this. Of course, it would be a
different story if a given transaction µ has state contingent transfers. For example, if
trader 2 sends a part of his endowment to 3 in event F and/or if trader 3 sends a part of
his endowment in event F , then it is possible that µ would be {3,1}-dominated unless 3
does send a part of his endowment to 1 in event F .
For transfers between traders 3 and 4, we have seen in lemma 8 that if the transaction

µ is not {2,3}-dominated, then there are incentives to initiate a state non-contingent
transfer from 3 to 4 and a state contingent transfer from 4 to 3 in event F . Note,
however, that in the statement of the proposition 1 above, a given transaction µ may be
{2,3}-dominated. But even so, it turns out that there are incentives to initiate a state
non-contingent transfer from 3 to 4 and a state contingent transfer from 4 to 3 in event
F , provided that the sum of the first round transfers from trader 2 to trader 3 and trader
3 trader to 1 is large enough to satisfy the following inequality.

β
³
ϕγ − (1−σ)

ρ

´
(1/ρ)− ϕγ µ1

2 + µ
1
3 > 1

In fact, traders 3 and 4 can dominate the state non-contingent transaction µ by initiating
a state contingent transfer from 4 to 3 in event F together with a state non-contingent
transfer µ1

5 from 3 to 4 despite the fact that traders 3 and 4 do not mutually gain from
trades in general. This shows that the trader 4 will participate in transaction only in
risk-sharing capacity.

13Later on we shall show that this need not be the case when traders do make state contingent transfers.
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It may be of interest to note that although transfers are done in one direction only
from a trader to another among essential participants, two rounds of transfers function as
if there is an explicit means of payment or are barter trades between any two participants
in the sense that an increase of a transfer in one round can be matched to a decrease of
another transfer in the other round. This gives another sense in which the model in this
paper can be said to represent a settlement network.
Given a transaction µ, a net transfer gap of trader i is defined to be

gi(µ) = 1− µ1
i − χ{3}µ1

5 −max{µSi + χ{3}µS5 , µ
F
i + χ{3}µF5 },

Net transfer gap gi(µ) among the essential participants shows the maximal amount that
trader i can further transfer to others, given a transaction µ. We also define transfer gap
ḡi(µ) (among essential participants) by ḡi(µ) = gi(µ) for i = 1, 2 and

ḡ3(µ) = 1− µ1
i −max{µS3 , µF3 } .

Finally, we give two statements concerning core transactions, assuming parameter
values to satisfy

ϕγ >

µ
1− σ

ρ

¶
1

1− ρ
, (32)

βρ >
3
√
2 , ρ >

3
√
2/2 ,

where the first inequality is satisfied, for example, if ϕγ > 0.63 when σ = 0.9 and ρ = 0.8.
It is also satisfied whenever we have ϕγ > rσρ. The second and the third inequalities are
to ensure that second round transfers are not too costly so that traders are induced to
make such transfers.

Proposition 2 A core transaction µ always specifies state contingent transfers. A typical
core transaction µ specifies transfers such that:

µ1
i > 0 for i = 1, 2, 3, 5, µ1

4 = 0 ,

µF1 > 0, µ
F
2 > 0, µ

F
3 > 0, µ

F
4 > 0, µ

F
5 = 0 ,

µS1 = µ
S
3 = µ

S
4 = µ

S
5 = 0, µ

S
2 > 0 ,

in which case consumptions associated with the transaction are given by:

CF2
CS2

=
CF3
CS3

= rσρ

CF1
CS1

≥
µ
1− σ

σ

¶
1

1− ρ
> rσρ

with equality holding when g1(µ) > 0

CF4
CS4

=
1− σ

σ

µ
1

ϕγρ(1− ρ) − 1
¶
>

µ
1− σ

σ

¶
1

1− ρ .
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We like to note the extent to which traders’ consumptions that a typical core transac-
tion induces are state contingent. Given a typical core transaction as in the beginning of
the statement of the proposition above, for trader 2 and trader 3 the consumption level
in event F relative to that in event S is rσρ, which is less than 1 but approaches 1 as the
value of ρ becomes closer to σ. This may be interpreted to say that the failure of receipt
by trader 3 is compensated by other traders by the factor of (ρ/(1−ρ))−1. Trader 2 is as
responsible as trader 3 for the loss as his relative consumption level in event F is reduced
to the level of trader 3. Trader 1 in turn compensates trader 2 but extent to which he
joins in the compensation is less than that of trader 2 so that his relative consumption in
event F exceeds rσρ. It is very instructive to note that trader 4 also participates in this
compensation scheme but extent to which he does compensate trader 3 is much less than
those of other traders in the sense that his relative consumption level in event F is higher
than those of all the essential participants.

Proposition 3 Let µ be a core transaction. Then:

1. At least one essential participant must be sending all his endowment to other traders in
some event. That is,

(∃i ∈ {1, 2, 3})gi(µ) = 0.
2. Suppose that trader 3 is not sending all of his endowment to other essential participants
so that his transfer gap is positive, i.e., ḡ3(µ) > 0. Then, the transaction µ is a core
transaction if and only if trader 3 is making a transfer to trader 4 either by the amount
of his transfer gap or by the amount of “feasibility bound” given by

v(ϕγ, σ, ρ, β) =
(1− σ) (1− ϕγρ(1− ρ))

β [ϕγρ(1− ρ) − (1− σ)]
,

whichever is smaller, i.e.,

µ1
5 = min{ḡ3(µ), v(ϕγ, σ, ρ, β)},

and trader 4 in turn is making a state contingent transfer in event F at most the amount
given by

µF4 =

µ
ϕγρ(1− ρ)− (1− σ)

σϕγρ(1− ρ)

¶
(1 + βµ1

5) . (33)

The first part of the proposition 3 is a direct consequence of the lemma 1 and is due to
our specification of preferences of essential participants that they prefer the endowment
of another trader to his own. The second part comes from two things. One is that a core
transaction in general specifies positive second round transfers in both events F and S as
well as a positive first round state non-contingent transfer from trader 2 to trader 3. By
(21) of lemma 5, this ensures trader 3’s consumption in event F relative to that in event
S, CF3 /C

S
3 , to be given by r

σρ. Second is that under this circumstance, given (32), the
expected utility of both of the traders 3 and 4 can be increased whenever first round state
non-contingent transfer from 3 to 4 and second round state contingent transfer in event
F from 4 to 3 can be increased. For a first round state non-contingent transfer from 3 to
4, µ1

5, the maximal amount that trader 4 would be just willing to send to 3 is given by
the amount shown in (33).
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5 Conclusion

At the outset of the present paper we posed the following three questions concerning a
given network of transactions that involve a risky transfer of assets.

1. If there is some risk of failure in a transfer from one party to another, should the
transfer be done through that arrangement?

2. If so, then what considerations are relevant to determining whether third parties
ought to share that risk?

3. Are there conditions under which the general public or the government (in the
case of a private arrangement) ought to bear some risk and, if so, what level of
compensation would it be appropriate for them to receive?

To answer these questions we carried through our analysis using a schematic model
economy with four traders. A risky transfer is made between trader 2 and trader 3,
trader 2 being the donor and trader 3 the recipient. There are two types of third party
participants. Trader 1 is one of essential participants along with traders 2 and 3 in the
sense that he is needed in the network of transactions to complete a round of transaction.
The attributes of trader 4 is specified in such a way that he can only participate in a
risk-sharing capacity. Trader 4 is added to a model of three traders in order to answer
the third question listed above.
We answer the first question affirmatively provided that βσ > 1. In other words, if the

risk of transfer is not too high relative to the asset preference of traders, then transfers
will be made through the network. Traders’ expected marginal utility of obtaining other
trader’s endowments must exceed that of their own endowment goods to the extent that
it can overcome a risk of transfer.
The second and the third questions are answered by the proposition 2 and the propo-

sition 3. An efficient transaction typically requires that a transfer loss incurred by trader
3 to be shared not only among the essential participants but also by unessential third
party participant such as the government or the public under certain conditions. How-
ever, trader 3’s loss is not entirely indemnified by others. The efficiency requires that
his loss is indemnified to the extent that his expected marginal rate of substitution of
consumption in event F for consumption in event S is equated to the cost of consumption
in event S relative to that in event F . It is interesting to note that the directly concerned
participant, i.e. trader 2, needs to indemnify trader 3 to the extent that his consumption
in event F is decreased so that his expected marginal rate of substitution of consumption
in event F for consumption in event S becomes identical to that of trader 3. This may
be interpreted to say that the directly concerned participant, the donor, is as responsible
as the intended recipient for the lost transfer.
There are two types of third party participants. Trader 1 is the third party who is

an integral part of the transfer network and is an essential participant. He is required
to participate in the loss-sharing by making a transfer to trader 2 in event F . However,
the extent to which he shares the loss of trader 3 is less that of the directly concerned
participant, trader 2, in the sense that his relative consumption in event F exceeds that
of trader 2 and 3 at least by the factor of cost of the second round transfer.
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On the other hand, trader 4 is the third party who is not, in a narrow sense, an integral
part of the transfer network and is not an essential participant. An intended interpretation
of a role of trader 4 is the general public or the government (in the case of a private
arrangement) because trader 4 as well as trader 3 regards the other’s endowment goods
as a worse substitute for his own endowment goods. A typically efficient arrangement
requires that the general public or the government ought to bear some risk. However, the
extent to which the unessential third party participant bear the risk is much less than
that of the essential participants in the sense that his relative consumption in event F
far exceeds those of the essential participants as exactly shown in the proposition 2. Of
course, we must be aware of the fact that this result does not say that the government or
the public should bear the risk of the transfer arrangement unconditionally. What it does
say is that the level of compensation must depends upon state non-contingent transfer
from the network participants to the government or the public.
These results appear very intuitive on economic grounds. While the results obtained

about a schematic model economy are far from constituting definitive advice regarding
actual transfer arrangements, we hope that our analysis may at least provide a helpful
framework within which to think in an organized way about the issues involved in practical
cases.
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Appendix

Proof of the lemma 1
Let ² be a positive number satisfying

² <
1

2
min{²i | i = 1, · · · , 4}.

Now, for real numbers t in a neighborhood of zero, define for i = 1, 2, 3,

µ1
ti = µ

1
i + t², µ

F
ti = µ

F
i + tηi,

and for i = 4, 5
µ1
ti = µ

1
i , µ

S
t = µ

S
i , µ

F
ti = µ

F
i .

Since ²i is positive for all i , transaction µt = {(µ1
ti, µ

S
ti, µ

F
ti) | i = 1, · · · , 5} is feasible for

t ≥ 0 in a neighborhood of 0. By differentiation of expected utilities with respect to t ,
one obtains

d

dt
EU i(µt)(0) =

σ

CSi
(β − 1)²+ 1− σ

CFi
[(β − 1)²− ηi + βρηi−1] (34)
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for i = 1, 2, and

d

dt
EU3(µt)(0) =

σ

CS3
(β − 1)²+ 1− σ

CF3
[−²− η3 + βρη2]. (35)

Here, for i = 1, i− 1 is understood to be 3. Trivially, one has
d

dt
EU4(µt)(0) = 0.

To show that the transaction µt {1,2,3}-dominates µ, by (34) and (35) it is enough to
show

(χ{1,2}β − 1)²− ηi + βρηi−1 ≥ 0 (36)

for an appropriate choice of ηi for each i = 1, 2, 3.
14

Start at i = 2 and set η2 = ². Set η3 so that

−²− η3 + βρη2 = 0 or

η3 = (βρ− 1)². (37)

By setting β to be min{β, 2} if necessary, one can assume w.l.o.g. that β ≤ 2. 15 For
i = 1, then, set η1 so that

(β − 1)²− ²+ βρη1 = 0. (38)

Thus, one obtains

η1 =
2− β

βρ
². (39)

By the way ηi’s, i =1,2,3, are set, we have

d

dt
EU i(µt)(0) > 0 (40)

for i = 2, 3. We show
d

dt
EU1(µt)(0) > 0 (41)

by showing (36) for i = 2. By substituting the values of ηi’s in (37) and (39) into (36) for
i = 2, one obtains

(β − 1)²− 2− β

βρ
²+ βρ(βρ − 1)²

=
1

βρ
[βρ(β − 1) + β2ρ2(βρ − 1) + β − 2]²

=
1

βρ
[(β − 1)(βρ+ 1) + β2ρ2(βρ− 1)− 1]²

>
1

βρ
(β3ρ3 − 2)² ≥ 0

(42)

14Note that we are ignoring the first term of the R.H.S. of the equations (34) and (35). We avoided
this to simplify calculations. The cost paid is a tighter requirement of βρ > 3

√
2.

15The requirement that βρ > 3
√
2 must be met with this new β.

21



as βρ ≥ 3
√
2. This proves that µt {1,2,3}-dominates µ. 16

Proof of the lemma 2
Assume µSi µ

F
i > 0 for some i ∈ {1, 2, 4, 5}. Let ² = min{µSi , µFi }. Then, define µ² by

letting µ²j = µj for all j 6= i and µ1
²i = µ

1
i + ², µ

S
²i = µ

S
i − ², µF²i = µFi − ². µ² is feasible and

EU i(µ²) = EU
i(µ),EU i+1(µ²) > EU

i+1(µ) so that µ² {i, i+ 1}-dominates µ.
Proof of the lemma 3
Let µ be a feasible transaction. If trader 3 is sending all of its endowments to other

parties, it is easier to show that trader 2 must be sending some of its endowments to 3.
Thus, it is sufficient to consider the case where trader 1 is sending all of its endowments.
W.l.o.g. assume µ1

1 = 1. To simplify arguments, assume µ
S
3 = µ

F
3 = 0. To maintain the

individual rationality of trader 1, one must have µ1
3 ≥ 1/β. Assume trader 2 sends nothing

to trader 3. Then, again by the consideration of individual rationality for trader 3 and 4,
inequalities below need be satisfied.

ϕµ1
5 ≥ µ1

4

γµ1
4 ≥ µ1

3 + µ
1
5. (43)

It follows that one must have
β(ϕγ − 1)µ1

5 ≥ 1, (44)

which is impossible since β > 0, µ1
5 ≥ 0, and 0 < ϕγ < 1.

Proof of the lemma 4
For any ² in a neighborhood of zero (could be either positive or negative), we set either

ηSi or η
F
i or both so as to make

d

dt
EU i(µit)(0) = 0. (45)

But we have

d

dt
EU i(µit)(0) =

σ

CSi
(−²− ηSi ) +

1− σ
CFi

(−²− ηFi ) = 0. (46)

where CSi and C
F
i are defined as in (9) and (10). It follows that η

S
i and η

F
i are set so that

one has
σ

CSi
ηSi +

1− σ

CFi
ηFi = −

µ
σ

CSi
+
1− σ

CFi

¶
². (47)

We then look at a change in expected utility of trader i + 1 resulting from a shift in
transfer induced by ², ηSi , and η

F
i , where i+ 1 is 1 for i = 3, and 4 for i = 5. We have

d

dt
EU i+1(µit)(0) =

σ

CSi+1

(β²+ βρηSi ) +
1− σ

CFi+1

(χ{1,3,4,5}β²+ βρηFi )

= β

∙µ
σ

CSi+1

+ χ{1,3,4,5}
1− σ

CFi+1

¶
²+ ρ

µ
σ

CSi+1

ηSi +
1− σ

CFi+1

ηFi

¶¸
(48)

where χ{1,3,4,5} =0 for i=2 and =1 otherwise.

16If one is willing to assume βρ(β − 1) > 1, then in the above proof one can show that µt dominates µ
with η1 = η3 = 0 and η2 = (β−1)². In other words, by increasing µi for i = 1, 2, 3 and µ

F
2 , µ is dominated.

22



Let us start from i = 2 and consider four cases.

Case 1: ηF2 = ηS2 = η (A simultaneous change in consumption in both events.)
In this case η is set equal to −² from (47). Substituting this value of η = ηF2 = ηS2 into

(48), one obtains

d

dt
EU3(µ2

t )(0) =
βσ

CS3

∙
(1− ρ)− ρ

µ
1− σ

σ

¶
CS3
CF3

¸
² . (49)

Since the inside of the bracket is positive if and only if

σCF3
(1− σ)CS3

>
ρ

1− ρ ,

it follows that

sgn

∙
d

dt
EU3(µ2

t )(0)

¸
= sgn[²]sgn

∙
CF3
CS3
− rσρ

¸
. (50)

Case 2: ηF2 = 0 (µ
F
2 held constant.)

It follows from (47) and (48) that

d

dt
EU3(µ2

t )(0) = β

∙
σ

CS3
− ρ

σ

CS3

µ
CS2
σ

¶µ
σ

CS2
+
1− σ

CF2

¶¸
²

=
βσ

CS3

∙
(1− ρ)− ρ

µ
1− σ

σ

¶
CS2
CF2

¸
² . (51)

Thus, one obtains

sgn

∙
d

dt
EU3(µ2

t )(0)

¸
= sgn[²]sgn

∙
CF2
CS2
− rσρ

¸
. (52)

Case 3: ηS2 = 0 (µ
S
2 held constant.)

We obtain from (47) and (48) that

d

dt
EU 3(µ2

t )(0) = β

∙
σ

CS3
− ρ

1− σ

CF3

µ
CF2
1− σ

¶µ
σ

CS2
+
1− σ

CF2

¶¸
²

=
βσ

CS3

∙
1− ρ

µ
CS3
CF3

¶
CF2
CS2
− ρ

µ
1− σ

σ

¶
CS3
CF3

¸
²

=
βσ

CS3

∙
(1− ρR2)− ρ

µ
1− σ
σ

¶
CS3
CF3

¸
² .

(53)

It then follows that

sgn

∙
d

dt
EU3(µ2

t )(0)

¸
= sgn[²]sgn

∙
CF3
CS3
− ρ

µ
1− σ
σ

¶
− ρ

CF2
CS2

¸
= sgn[²]sgn

∙
CF3
CS3
− rσρ2

¸
. (54)
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Case 4: ² = 0 (µ1
2 held constant.)

In this case from (47) we have

ηF2 = −
µ

σ

1− σ

¶
CF2
CS2

ηS2 .

Substituting this value into (48) one gets

d

dt
EU3(µ2

t )(0) = βρ

∙
σ

CS3
− 1− σ

CF3

µ
σ

1− σ

¶
CF2
CS2

¸
ηS2

=
βρσ

CS3
(1− R2)η

S
2 . (55)

It then follows that

sgn

∙
d

dt
EU 3(µ2

t )(0)

¸
= sgn[ηS2 ]sgn[1− R2]

= sgn[ηF2 ]sgn[R2 − 1] . (56)

This completes the proof of the lemma.

Proof of the lemma 5.
All the listed properties of µ are consequences of a consideration of the coalition of

traders 2 and 3 not to dominate the given transaction µ by soley changing the transfer
from 2 to 3. In particular, we use (47) and (48) to see whether the coalition {2,3} can
dominate µ. We indicate below which equations are used for this purpose.
(21) follows from (49) and (20).
(22) follows from (49), (17), and (20). To show (23), let

a =
CF2
CS2
, b =

CF3
CS3
.

Then, since b = rσρ2 , one has

b =

µ
1− σ

σ

¶µ
ρ

1− (aρ/b)

¶
.

It follows that

b =

µ
ρ

1− ρ

¶
a =

µ
1

1− ρ

¶
b− rσρ.

Thus, one obtainsµ
ρ

1− ρ

¶
(a− b) =

µ
1

1− ρ

¶
b− rσρ −

µ
ρ

1− ρ

¶
b = b− rσρ

which gives (23).
(24) follows from (49) and (16).
The last properties of the lemma follow from (49), (16), and (20).

Proof of the lemma 6
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Given a feasible transaction µ, define another feasible transaction µit as in (12). Then,
for i = 1, 3 we have by (48)

d

dt
EU i+1(µit)(0) = β

∙µ
σ

CSi+1

+
1− σ

CFi+1

¶
²− ρ

µ
σ

CSi+1

ηSi +
1− σ

CFi+1

ηFi

¶¸
. (57)

Let us consider three cases.

Case 1: ηFi = 0 (µ
F
i held constant.)

Setting ηFi = 0 in (47), and substituting the value of η
S
i into (57), one obtains

d

dt
EU i+1(µit)(0) = β

∙µ
σ

CSi+1

+
1− σ

CFi+1

¶
− ρ

µ
σ

CSi+1

¶µ
CSi
σ

¶µ
σ

CSi
+
1− σ
CFi

¶¸
²

=
βσ

CSi+1

∙
(1− ρ) +

µ
1− σ

σ

¶µ
CSi+1

CFi+1

− ρ
CSi
CFi

¶¸
²

=
β(1− σ)ρ

CSi+1

∙µ
σ

1− σ

¶µ
1− ρ

ρ

¶
−
µ
CSi
CFi
−
µ
1

ρ

¶
CSi+1

CFi+1

¶¸
²

=
βρ(1− σ)

rσρCFi+1

∙
CFi+1

CSi+1

− rσρ
µ
1

Ri
− 1
ρ

¶¸
² .

(58)

Hence, it follows

sgn

∙
d

dt
EU i+1(µit)(0)

¸
= sgn[²]sgn

∙µ
σ

1− σ

¶µ
1− ρ

ρ

¶
−
µ
CSi
CFi
−
µ
1

ρ

¶
CSi+1

CFi+1

¶¸
= sgn[²]sgn

∙
CFi+1

CSi+1

− rσρ
µ
1

Ri
− 1
ρ

¶¸
. (59)

Case 2: ηSi = 0 (µ
S
i held constant.)

Again letting ηSi = 0 in (47) we obtain from (57)

d

dt
EU i+1(µit)(0) = β

∙µ
σ

CSi+1

+
1− σ

CFi+1

¶
− ρ

µ
1− σ
CFi+1

¶µ
CFi
1− σ

¶µ
σ

CSi
+
1− σ

CFi

¶¸
²

=
β(1− σ)

CFi+1

∙
(1− ρ) +

µ
σ

1− σ

¶µ
CFi+1

CSi+1

− ρ
CFi
CSi

¶¸
²

=
βσ

CFi+1

∙µ
1− σ

σ

¶µ
1− ρ

ρ

¶
−
µ
CFi
CSi
−
µ
1

ρ

¶
CFi+1

CSi+1

¶¸
²

=
βσ

CFi+1

∙µ
1− σ

σ

¶
(1− ρ)− C

F
i+1

CSi+1

(ρRi − 1)
¸
² .

(60)

It then follows
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sgn

∙
d

dt
EU i+1(µit)(0)

¸
= sgn[²]sgn

∙µ
1− σ

σ

¶µ
1− ρ

ρ

¶
−
µ
CFi
CSi
−
µ
1

ρ

¶
CFi+1

CSi+1

¶¸
= sgn[²]sgn

∙µ
1− σ

σ

¶
(1− ρ)− C

F
i+1

CSi+1

(ρRi − 1)
¸
. (61)

Case 3: ² = 0 (µ1
i held constant.)

This case for i 6= 2 is exactly the same as that for i = 2. Hence, from (55) and (20)
we have

sgn

∙
d

dt
EU i+1(µ2

t )(0)

¸
= sgn[ηFi ]sgn[Ri − 1]

= sgn[ηSi ]sgn[1− Ri] . (62)

This completes the proof of the lemma.

Proof of the lemma 7

Case 1: ηFi = 0, ²4 6= 0, ²5 6= 0.
Set ²4, ²5 so that we have

d

dt
EU4(µt)(0) = −

µ
σ

CF4
+
1− σ

CS4

¶
²4 + ϕ

µ
σ

CF4
+
1− σ

CS4

¶
²5 = 0 , (63)

or ²4 = ϕ²5. Then, using this value of ²4, we obtain

d

dt
EU3(µt)(0) =

µ
σ

CF4
+
1− σ
CS4

¶
(ϕγ − 1) ²5 .

Case 2: ηF4 6= 0, ²5 6= 0, ²4 = ηF5 = 0.
Set ηF4 and ²5 so as to make

d

dt
EU4(µt)(0) = ϕ

µ
σ

CS4
+
1− σ

CF4

¶
²5 −

1− σ

CF4
ηF4 = 0 .

It follows that

ηF4 =
ϕCF4
1− σ

µ
σ

CS4
+
1− σ

CF4

¶
²5 .

Using this value of ηF4 , one sees that

d

dt
EU3(µt)(0) = −

µ
σ

CS3
+
1− σ

CF3

¶
²5 +

γρ(1− σ)
CF3

ηF4

=

∙
γρ(1− σ)

CF3

µ
ϕCF4
1− σ

¶µ
σ

CS4
+
1− σ

CF4

¶
−
µ

σ

CS3
+
1− σ

CF3

¶¸
²5

=
CF4
CF3

∙
ϕγρ

µ
σ

CS4
+
1− σ

CF4

¶
− 1− σ

CF4

µ
1 +

µ
σ

1− σ

¶
CF3
CS3

¶¸
²5 .
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We thus obtain

sgn

∙
d

dt
EU 3(µt)(0)

¸
= sgn[²5]sgn

∙
ϕγρ

µ
σ

CS4
+
1− σ
CF4

¶
− 1− σ

CF4

µ
1 +

µ
σ

1− σ

¶
CF3
CS3

¶¸
.

(64)
This completes the proof.

Proof of the proposition 1
Let µ be a transaction satisfying the three conditions stipulated in the statement of

the proposition. Then, µ is feasible, individually rational and satisfies (∀i = 1, 2, 3)0 <
µ1
i < 1, µ

F
i = µ

S
i = 0, and µ

1
j = µ

F
j = µ

S
j = 0 for j = 4, 5. It follows that we have

CFi = C
S
i for i = 1, 2, 4

CF3 = 1− µ1
3 CS3 = 1− µ1

3 + βµ1
2

where one has

µ1
2 ≥

1

βσ
µ1

3

by the individual rationality of trader 3. Thus,

CFi
CSi

= 1 for i = 1, 2, 4, and

0 <
CF3
CS3

< 1 .

If trader 3 sends almost all its endowments so that µ1
3 is very close to 1, because µ

1
2 ≥

(1/βσ)µ1
3, the ratio C

F
3 /C

S
3 becomes arbitrarily close to 0. We check trader by trader that

µ can be dominated by changing µ to be state contingent.

• i=1: Since we have
CS1
CF1
−
µ
1

ρ

¶µ
CS2
CF2

¶
=
CF1
CS1
−
µ
1

ρ

¶µ
CF2
CS2

¶
= 1− 1

ρ
< 0 ,

it follows from (25) and (26) that µF1 and µ
S
1 must stay zero, otherwise it will be

{1,2}-dominated.

• i=2: Since CF2 /CS2 = 1 > rσρ for σ > ρ, µS2 must stay zero by (16). On the other
hand, one has

ρ

µ
1− σ

σ

¶
+ ρ

µ
CF2
CS2

¶
= ρ

µ
1− σ

σ
+ 1

¶
=

ρ

σ
.

Therefore, by (17), if
CF3
CS3

<
ρ

σ
,

then µ will be {2,3}-dominated by increasing µF2 above zero and decreasing µ1
2. But

since we have
CF3
CS3

=
1− µ1

3

1− µ1
3 + βµ1

2

,

27



the above inequality amounts to having

1− µ1
3 <

ρ

σ
(1− µ1

3 + βµ1
2) ,

or

µ1
3 +

µ
βρ

σ − ρ

¶
µ1

2 > 1 . (65)

For example, for parameter values σ = 0.9, ρ = 0.8, and β = 1.6, the coefficient of
µ1

2 in the inequality is 12.8 so that if the transfer from trader 2 exceeds
5
64
, regardless

of the amount of transfer from trader 3 the inequality is satisfied.

Thus, all those transactions satisfying (31) will be {2,3}-dominated by increasing
the transfer from trader 2 in event F and decreasing the first round transfer from 2.

• i=3: Since inequality
CF3
CS3

<

µ
1

ρ

¶
CF1
CS1

=
1

ρ

always hold for 0 < ρ < 1, by (26) an increase in µF3 will not dominate the given
transaction µ so that µF3 must stay zero.

On the other hand, we have

CS3
CF3
−
µ
1

ρ

¶
CS1
CF1

=
CS3
CF3
− 1
ρ
>

µ
σ

1− σ

¶µ
1− ρ

ρ

¶
⇔ −(1− ρ)(1− µ1

3) + βρµ1
2 >

µ
σ

1− σ

¶µ
1− ρ

ρ

¶
(1− µ1

3)

⇔ µ1
3 + β(1− σ)

µ
1− ρ

ρ

¶
µ1

2 > 1 .

(66)

It thus follows from (26) that for transfers satisfying (66), µ will be {1,3}-dominated
by increasing µS3 and decreasing µ

1
3. For the parameter values we specified in an

earlier example, the condition above is met if µ1
2 ≥ 0.02, for example, regardless of

the value of µ1
3.

• i=4,5: We have CF4 = CS4 = 1. Let us compute the inside the bracket of the second
term on L.H.S. of (64). It becomes

ϕγρ− (1− σ)− σ

µ
CF3
CS3

¶
= ϕγρ− (1− σ)− σ

µ
1− µ1

3

1− µ1
3 + βµ1

2

¶
=

ρ

1− µ1
3 + βµ1

2

∙
β

µ
ϕγ − 1− σ

ρ

¶
µ1

2 −
µ
1

ρ
− ϕγ

¶¡
1− µ1

3

¢¸
.

(67)

It thus follows that µ is {3,4}-dominated by increasing both µF4 and µ1
5 by appro-

priate amounts when

β

µ
ϕγ − 1− σ

ρ

¶
µ1

2 >

µ
1

ρ
− ϕγ

¶
(1− µ1

3) , (68)
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where parameter values satisfy

ϕγ >
1− σ

ρ
. (69)

By summarizing the arguments, we obtain the statement of the proposition 1.

Proof of the proposition 2 and the proposition 3
The first part of the proposition 3 is a direct consequence of lemma 1. To show the

proposition 2 and the second part of the proposition 3, we will look for characteristics of
typical core transactions by modifying state non-contingent transactions.

Step 1: Wemodify a feasible and individually rational transaction µ, having only state
non-contingent transfers, so as to avoid domination by coalitions stated in proposition 1.
Thus, assume that µ is a feasible and undominated transaction satisfying

µ1
i > 0 for i = 1, 2, 3, 5,

µF2 > 0, µ
S
3 > 0, µ

F
4 > 0,

all other µAi ’s are 0 for A = 1, F, S .

We will look at traders 1 and 2 to check whether further state contingent transfers are
called for.
Since we have

ρCF1
CS1
− C

F
2

CS2
=

ρ(1− µ1
1 + βµ1

3)

1− µ1
1 + βµ1

3 + βρµS3
− 1− µ

1
2 + βµ1

1 − µF2
1− µ1

2 + βµ1
1

>

µ
1− σ

σ

¶
(1− ρ)

⇔ µF2
1− µ1

2 + βµ1
1

− ρ

1 + ((1− µ1
1 + βµ1

3)/(βρµ
S
3 ))

>
1− ρ
σ

,

(70)

by (26), when the inequality (70) holds, µ is {1,2}-dominated by increasing µF1 and de-
creasing µ1

1 so that µ must specify µ
F
1 > 0 in order to be undominated.

The term (1− ρ)/σ may become arbitrarily close to 0 for σ sufficiently close to 1 and
ρ sufficiently close to σ. On the other hand, the second term in the last inequality in
(70) may be reduced very close to 0 for sufficiently small µS3 . Thus, in general, we expect
that when the transfer µF2 of trader 2 in event F is not too small relative to the benefit
(1−µ1

2+βµ
1
1) of his consumption in event F , undominated transfer µ must specify trader

1 to effect positive transfer µF1 to trader 2 in event F .
By (14) of the lemma 4, when we have

CF3
CS3

=
1− µ1

3 − µ1
5 + ρ(βµF2 + γµF4 )

1− µ1
3 − µ1

5 − µS3 + βρµ1
2

< rσρ ,

µ will be {2,3}-dominated by increasing both µF2 and µS2 by the amount of a decrease in
µ1

2. It means that a core transaction will guarantee in event F approximately 100 r
σρ %
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of the utility level trader 3 gets in event S. Recall that

rσρ =

µ
1− σ

σ

¶µ
ρ

1− ρ

¶
and as a function of ρ it increases from 0 to 1 as ρ increases from 0 to σ. In case of a
failure in transfer from trader 2 to trader 3, µ1

2 is lost in event F . If the compensation of
this loss is not done sufficiently, then an increase in second round transfer from trader 2
accompanied by a decrease in first round transfer will make both traders better off.

Step 2: Following the arguments of the previous step, let µ be a feasible and un-
dominated transaction as specified in Step 1 except for µS2 which we now consider to be
positive. Then, since all three of µ1

2, µ
F
2 and µ

S
2 become positive, by (21) of the lemma 5,

we obtain
CF2
CS2

=
CF3
CS3

= rσρ . (71)

By (71), when we have

CF3
CS3
−
µ
1

ρ

¶
CF1
CS1

>

µ
1− σ

σ

¶µ
1− ρ

ρ

¶
⇔
µ
1− σ

σ

¶
2ρ− 1
1− ρ

>
CF1
CS1

. (72)

Thus, by (26), when this inequality holds µF3 must be positive to avoid domination by an
increase in µF3 and an accompanying decrease in µ

1
3. But since both µ

F
3 and µ

S
3 cannot be

positive by the lemma 2, we need to look at (62) to check which of µF3 and µ
S
3 need be

positive. By (62) and (71), µF3 must be positive if

CF1
CS1

< rσρ . (73)

Since 0 < ρ < 1 implies rσρ > (2ρ − 1)/(1 − ρ), (73) but not (72) gives the criterion of
when µF3 must be positive.

Step 3: Following the arguments of Step 3, we now take µF3 to be positive instead of
µS3 . We go back to Step 1 to consider transfers of i = 1. We have

ρCF1
CS1
− C

F
2

CS2
=

ρ(1− µ1
1 − µF1 + βµ1

3 + βρµF3 )

1− µ1
1 + βµ1

3

−1− µ
1
2 − µF2 + βµ1

1 + βρµF1
1− µ1

2 − µS2 + βµ1
1

=
βρ2µF3 − ρµF1
1− µ1

1 + βµ1
3

− βρµF1 − µF2 + µS2
1− µ1

2 − µS2 + βµ1
1

−(1− ρ) ≥ 1− σ
σ

(1− ρ)

⇔ µF2 − µS2 − βρµF1
1− µ1

2 − µS2 + βµ1
1

− ρµF1 − βρ2µF3
1− µ1

1 + βµ1
3

≥ 1− ρ

σ
.

(74)
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Thus, by (61), if µ is undominated, it must satisfy the above weak inequality where the
equality holds when µ1

1 + µ
F
1 < 1.

Step 4: By step-by-step arguments we have been led to consider feasible and undom-
inated transactions µ satisfying

µ1
i > 0 for i = 1, 2, 3, 5,

µFi > 0 for i = 1, 2, 3, 4

µS2 > 0, and all other µSi ’s and µ
4
i are 0.

We finally come back to i = 4 and check transfers between trader 4 and trader 3. We
have

CF3
CS3

= rσρ

CF4 = 1− µF4 + βµ1
5

CS4 = 1 + βµ1
5 .

(75)

Hence, the terms inside the second bracket in (64) are given by

ϕγρ

µ
σ

CS4
+
1− σ

CF4

¶
− 1− σ

CF4

µ
1 +

µ
σ

1− σ

¶
rσρ
¶

=
ϕγσρ

CF4

∙
CF4
CS4
− 1− σ

σ

µ
1

ϕγρ(1− ρ)
− 1
¶¸
. (76)

Here one may note that 0 < ϕγρ(1− ρ) < 1/4 since 0 < ϕγ < 1 and the maximum value
for ρ(1− ρ) is 1/4 for 0 < ρ ≤ σ and σ ≥ 1/2. Therefore, for an undominated transfer µ
having µF4 > 0 and µ

1
5 > 0, we have

CF4
CS4
≥ 1− σ

σ

µ
1

ϕγρ(1− ρ)
− 1
¶

(77)

with strict equality holding for an interior solution.
It follows from (75) and (77) that we have

µF4 ≤
µ
ϕγρ(1− ρ)− (1− σ)

σϕγρ(1− ρ)

¶
(1 + βµ1

5) (78)

where strictly equality corresponds to that in (77). The R.H.S. of this weak inequality is
less than or equal to 1 if and only if

µ1
5 ≤

(1− σ) (1− ϕγρ(1− ρ))

β [ϕγρ(1− ρ)− (1− σ)]
= v(ϕγ, σ, ρ, β) . (79)

We like to impose a parameter restriction so that the nominator of the first term in the
R.H.S. of (78) is positive, i.e., ϕγρ(1− ρ)− (1− σ) > 0. Thus, we assume

ϕγ >

µ
1− σ

ρ

¶
1

1− ρ
. (80)
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For example, this condition is satisfied if ϕγ > 0.63 when σ = 0.9 and ρ = 0.8. It is also
satisfied whenever we have ϕγ > rσρ.
(79) means that as long as the value of µ1

5 is set to satisfy this weak inequality, the
value of µF4 can be set to satisfy (78) with equality because it becomes feasible to do so.
The value of v(ϕγ,σ, ρ, β), for example, is 0.456 for ϕγ = 0.9, σ = 0.9, ρ = 0.7, β = 2,
and is 3.7 for ϕγ = 0.7, σ = 0.9, ρ = 0.8, β = 2. Thus, whenever the value of µ1

5 can
be feasibly increased within the bound of v(ϕγ, σ, ρ, β), then the value of µ1

5 is given by
v(ϕγ,σ, ρ, β) and if µ1

5 cannot be increased feasibly up to the value of v(ϕγ, σ, ρ, β), then
strict inequality holds in (79). But in either case the value of µF4 is given by (78) with
equality. It therefore follows that in (77) the equality always hold. We are now done with
step-by-step arguments.
The second part of the proposition 3 follows from the arguments leading to (78) and

(79) in Step 4 by noting that (64) is derived on the basis of transferring to trader 4 just
enough to make him indifferent in expected utility to transferring µF4 to trader 3 in event
F.
The statement of the proposition 2 summarizes the results of the above arguments.
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