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1 Introduction

In a coordination game with many players, the payoff that a particular strategy generates is a

nondecreasing function of the number of players who adopt that strategy. This class of games

can be used to model a number of economic environments with strategic complementarities

(e.g., Cooper 1999, Schelling 1978). For example, consider a situation in which there are sev-

eral distinct technical standards of an emerging network product. If there are n producers in

the market, each facing a problem in determining which standard it adopts for its product,

then their environment defines an n-person coordination game. Another example is a decision

problem over multiple alternatives in a project team consisting of n members. The charac-

teristic feature of these environments is, of course, the presence of multiple strict equilibria.

Which equilibrium, if any, is the robust prediction of the model? To deal with the equilibrium

selection problem, a systematic analysis is called for.

This paper investigates the equilibrium selection problem in n-person asymmetric binary

coordination games by means of the stochastic evolution analysis introduced by Foster and

Young (1991), Kandori, Mailath, and Rob (1993) and Young (1993). The main contributions

are as follows. First, we develop a systematic analysis into stochastic evolution of many-person

stage games, and compare our results with existing results. Second, we explicitly address the

qualitative difference between selection results obtained in stochastic evolution models with

multi-dimensional state spaces and those in models with single dimensional state spaces, and

shed some light on the source of the difference. For evolutionary analyses that built around the

versions of replicator dynamics, it is well known that there are qualitative difference between

multi-population and single population models (e.g., Weibull 1995). However, it does not

appear to be well recognized that an analogous difference is present for stochastic evolution

models. Our analysis is based on the formulations of and the investigations into appropriate

linear and non-linear minimization programs, which formalize the familiar mistake counting

argument. Authors have proposed varieties of dynamics that employ the mistake counting

argument. Each dynamic requires a particular minimization program that corresponds to

the mistake counting in that particular dynamic. In this paper, we focus on the following

dynamics: adaptive play (Young 1993), multi-population random matching (Young 1998), and

single population random matching (Kandori et al 1993, Kim 1996).

Although the stochastic evolution has grown into an established literature, it should be

stressed that the focus of the paper is on the class of games that appears to have been almost

left untouched: asymmetric, many-person games. To the best of our knowledge, the explicit

equilibrium selection results obtained thus far restrict the stage game to be either symmetric,
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two-person, or both.1 In contrast, the present paper develops a systematic analysis of n-

person games. To keep the analysis tractable we restrict our attention to a binary coordination

game, in which each player has only two strategies and the two unanimous strategy profiles

constitute strict equilibria. As far as formal equilibrium selection results concerned, we focus on

the adaptive play model, mainly because it is the least analyzed among the three representative

models. The main result offers a sufficient condition for stochastically stable equilibrium in an

n-person asymmetric binary coordination game, which leads to a generalization of the existing

result for two-person games. More importantly, the main result is used to derive a multiplicity

result, which states that if the binary coordination game has strategy profiles at which two

strategies generate the same payoff, then both equilibria may well be stochastically stable, even

if each strategy pays off quite differently elsewhere.

The existence of multiple stochastically stable equilibrium is first discovered by Young

(1998) for n-person binary unanimity games played in multi-population random matching. In

several ways our result generalizes that of Young (1998). First, it applies to a general binary

coordination game, which is not necessarily a unanimity game. Second, our result and that of

Young (1998) together show that multiplicity is not specific to a particular selection dynamic.

On the other hand, in a rare study of equilibrium selection in a many-person game, Kim (1996)

obtains, among other things, a uniqueness of stochastically stable equilibrium for a symmetric

n-person binary coordination game played in single population random matching.

Thus, multiplicity may occur in both adaptive play and multi-population random matching,

whereas it does not in single population random matching. One may suspect that the difference

is related somehow to the difference in the dimensions of the respective state spaces. It is not

immediately clear, however, how exactly the difference in dimension leads to the presence

or absence of multiplicity. We try to answer this question by analyzing appropriate mistake

minimization programs.

The remainder of the paper is organized as follows. In the next section we offer an intuitive

explanation of the issues and our results. In section 3 we derive preliminary results for adaptive

play of a many-person binary coordination game. The equilibrium selection results are proved

in Section 4. In the final section we discuss the source of the aforementioned difference in terms

of relevant mistake minimization programs.
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k 0 1 2 3

A a1 a2 a3 a4

B b4 b3 b2 b1

G0

k 0 1 2 3

A 0 a2 a3 a4

B b4 0 0 0

G1

k 0 1 2 3

A 0 ε ε a

B a + δ 0 0 0

G2

k 0 1 2 3

A 0 0 0 a + δ

B a ε ε 0

G3

k 0 1 2 3

A 0 0 0 a4

B b4 0 0 0

G4

k 0 1 2 3

A 0 0 0 a

B a + δ ε ε 0

G5

Figure 1: Payoff tables for binary coordination games, where k is the number of other players

who choose A.

2 Intuition behind the results

The game G0 in Figure 1 describes a symmetric four-person game. Strategies are named A

and B, and the table represents the payoff function of a player. The top row shows the number

of other A players. If a player chooses A and there are two others who do the same, then

the payoff for the player is a3, and so on. It is a binary coordination game if ak and bk are

nondecreasing in k and if a4 > b1 and b4 > a1. It follows that (A, . . . , A) and (B, . . . , B) are

strict equilibria.

Consider a situation in which players play a game over time. The dynamic is a myopic

best response with mistakes, which we call the prototype. On each day, each player chooses a

best response against the profile realized yesterday, but sometimes one may choose otherwise

by mistake. Let the game they play be G1 and let (A, . . . , A) be the realized profile yesterday.

Although everyone is supposed to play A today, assume that exactly one of them chooses

B. What will happen tomorrow? If there are no further mistakes, they will return to the

original equilibrium. One mistake is not enough to drive the players to switch their actions.

Alternatively, assume that (B, . . . , B) was the profile realized yesterday and that exactly one

player makes a mistake today. Then, without further mistakes, players will find themselves

at the other equilibrium the day after tomorrow. One mistake is enough to drive them to

switch their actions. Using this type of “mistake counting argument”, let us measure the size

of the “basins of attraction” of each strategy. It is crucial to observe that the size of a basin
1In stochastic evolution analysis, a selection result is explicit if conditions for a stochastically stable equi-

librium are stated only in terms of payoffs and other primitives in the stage game, without mentioning any

intermediate concepts such as costs of transition or potential minimizing trees.
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in the prototype depends solely on the best response structure of the given game and is not

related whatsoever to any “enriched” structure, such as random matching in a population or

a truncated fictitious play, into which the given game would be embedded in a full-fledged

stochastic evolution analysis. It is also important to recognize that the mistake counting

argument in the prototype would not discriminate equilibria at all if the given game were a

two-person game, so the issues addressed here are specific to many-person games.

Thus, we say that A has the larger basin of attraction in game G1. In such a case, is it

natural to expect that a reasonable equilibrium selection criterion would single out equilibrium

(A, . . . , A)? Not necessarily, since payoffs generated by strategy A may not be large enough

compared to that of B. For example, a2 and a3 may be vanishingly small and a4 may be

smaller than b4. Intuitively, even when the basin of attraction of A is large, it need not be

“deep” enough. Thus an equilibrium selection model may determine the outcome as a balance

of the two factors: comparison of the size and depth of the basins of attraction.2 In game G2,

the balance of the two factors boils down to that of ε > 0 and δ > 0. The way these two

parameters work in determining the selection outcome depends on the “enriched” structure, or

the particular dynamic under study.

Working in the adaptive play with mistakes, our main result states that if a strategy has

the larger basin of attraction in the prototype, and if the basin is also deep enough, then the

strategy constitutes a stochastically stable equilibrium. This sounds simple and intuitive, but

it has a somewhat unexpected consequence. For (A, . . . , A) to be stochastically stable in game

G2, the depth consideration requires that δ should not be as large. Consequently, the main

result implies that there is δ > 0 such that for every 0 < δ ≤ δ and every ε > 0, (A, . . . , A) is

stochastically stable. Likewise, (B, . . . , B) is stochastically stable in Game G3. An immediate

consequence is the existence of multiple stochastically stable equilibria: both equilibria are

stable in G4 provided a4 and b4 are relatively close. If the size of the basins is the same, both

equilibria are stable unless the difference in depth is overwhelming.

Now we return to the prototype. To determine the basin of attraction, we search for

sequences of strategy profiles from one equilibrium to the other, and then identify which of

these contains the fewest mistakes. Such sequences contain asymmetric strategy profiles in

general. Given a full-fledged stochastic evolution dynamic, consider its state space. If it

contains states that correspond to asymmetric stage game strategy profiles, then the mistake

counting in the prototype can be replicated as a mistake counting in the full-fledged model.
2In stochastic evolution models in which the mistake rate or the speed of adjustment is state dependent,

the “depth” of a basin of attraction has been found to be a factor in determining the selection outcome (e.g.,

Binmore and Samuelson 1997, Kandori 1997). When the stage game is a many-person game, our analysis shows

that the depth matters even in state independent models.
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Moreover, such a replication may well be optimal in the mistake minimizing problem in the

full-fledged model. In this way, mistake counting in the prototype may become relevant or

even decisive. The adaptive play is a fictitious play with a finite memory size, so the player

role in the stage game remains intact. Thus, there is no problem in translating a sequence

of stage game strategy profiles into a path of states in the adaptive play. The same is true

for the multi-population random matching model. In contrast, the single population random

matching model is incapable of expressing an asymmetric stage game strategy profile as its own

state, since the player role is absent in the model. Therefore, in the single population random

matching model games G2 and G5 are treated as almost identical provided ε is sufficiently

small. Thus the mistake counting argument in the prototype can never be a factor.

3 Preliminaries

3.1 The game

There are n players, denoted by i ∈ I = {1, . . . , n}, n ≥ 2. Each player chooses her strategy

σi ∈ {A,B}. A generic strategy profile is denoted by σ ∈ Σ = {A,B}n. Let |σ|X be the

number of players employing X ∈ {A,B} in σ. The payoff for player i is:

ui(σ) =

ai
|σ|A , if σi = A,

bi
|σ|B , if σi = B,

where ai
k and bi

k are functions defined on {1, . . . , n} such that

(G1) ai
k and bi

k are nondecreasing in k,

(G2) ai
n > bi

1 and bi
n > ai

1.

The game thus defined is called a binary coordination game. The condition (G1) implies that

the payoff associated with a particular strategy depends only on the number of players who

adopt that strategy. By (G2), both (A, . . . , A) and (B, . . . , B) are strict equilibria. Following

Harsanyi and Selten (1988), let us call αi = ai
n − bi

1 the deviation loss of i ∈ I at equilibrium

(A, . . . , A). The deviation loss at (B, . . . , B) is βi = bi
n − ai

1. The game is symmetric if players

have identical payoff parameters. If the game is symmetric or n ≤ 3, it has exactly two strict

equilibria. The game may well have more than two strict equilibria in general.

3.2 Convergence in the adaptive play

We employ the adaptive play model of Young (1993) for equilibrium selection. The adaptive

play without mistakes is a dynamic adjustment model in discrete time in which the stage game
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is played once in each period. The state of the dynamic in a given period is the most recent

history (i.e., the sequence of strategy profiles most recently realized) of length T . Each player

chooses a best response against her sample, which is a randomly chosen s-length subsequence

of the current state, where s ≤ T . Owing to random sampling, the adaptive play without

mistakes is a finite-state Markov chain. A notable property of the chain is that a state is

absorbing if and only if it is a T -fold concatenation of a strict equilibrium in the stage game.

The following definitions and facts from Markov chain theory are relevant to the current

discussion.3 A recurrent class is a set of states that is minimal with respect to set inclusion

among the sets with the property that once the chain enter into the set, it will remain within

thereafter. A finite-state Markov chain has nonempty recurrent classes. A state is absorbing if

by itself it forms a singleton recurrent class. A chain is absorbing if, starting from any state,

the chain will reach an absorbing state in a finite number of steps with probability one.

We now introduce some noise as follows. In each period a player may fail to choose a best

response and end up with a random strategy choice with probability ε > 0. If the randomly

chosen strategy is not a best response to any sample that might be drawn, then the strategy

is called a mistake. The resulting process is called the adaptive play with mistakes. The

crucial property of the play with mistakes is that it has a unique stationary distribution µε, to

which the distribution of play converges in the long run. Young (1993) shows that the limit

µ∗ = limε→0 µε is a stationary distribution of the adaptive play without mistakes. A state is

stochastically stable if the limiting distribution µ∗ puts a positive weight on it.

In principle, the stochastically stable states can be identified by invoking the mistake

counting argument. It involves evaluating the resistance from a recurrent class to another,

which is the minimum number of mistakes for the adaptive play to travel from the origin to the

destination. Due to the potential presence of intermediate recurrent classes, the evaluation of

resistance can be quite complex in general. If there are exactly two recurrent classes, however,

the argument is straightforward, as we only need to consider the direct paths from one recurrent

class to the other.

The stochastic stability analysis for the adaptive play generates equilibrium selection results

when the play without mistakes is absorbing. In this case, the stochastically stable distribution

can be viewed as a probability measure on the set of strict equilibria in the stage game.

A strategic game is weakly acyclic if, starting from any strategy profile, a strict equilibrium

can be reached via a sequence of strategy profiles such that there is exactly one player who

plays differently between each profile and its immediate predecessor, and the new strategy is

a best response against the predecessor. Young (1993, Theorem 1) shows that if the stage

game is weakly acyclic, then the adaptive play without mistakes is absorbing with appropriate
3Basic results for finite Markov chains can be found in, for example, Kemeny and Snell (1976).
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k 0 1 2 3 4

A 0 ε2 ε3 ε4 α

B β 0 0 0 0

u

k 0 1 2 3 4

A 0 0 0 0 α

B β ε4 ε3 ε2 0

v

k 0 1 2 3 4

A 0 0 0 0 α

B β 0 0 0 0

w

Figure 2: Payoffs in a five-person game, in which 0 < ε2 < ε3 < ε4 < min{α, β}.

choices of T and s. One can verify that a binary coordination game is weakly acyclic if it is

symmetric or n ≤ 4. In general, however, it may not be weakly acyclic. In fact, the adaptive

play need not be absorbing.

Example 1. There are five players. Players i = 1, 2 have payoff function u, player i = 3 has

payoff function w, and players i = 4, 5 have payoff function v in Figure 2. The five-person

game has exactly two strict equilibria, because player 3 has a unique best response only if all

the others make a unanimous choice. Now consider the strategy profiles (A,A, A,B, B) and

(A,A, B,B,B). Each is a non-strict equilibrium, in which all players but 3 play their unique

best responses. Since all the states consisting solely of these equilibria form a non-singleton

recurrent class, the adaptive play is not absorbing.

In view of this example, it is important to identify a condition that makes the adaptive

play without mistakes absorbing. In addition, we would like to find a condition under which

there are exactly two strict equilibria. In this paper, we offer a single condition that ensures

these two desirable properties. To state the condition, we need to introduce some notation.

For every i ∈ I, define ki = max
{

k | bi
n−k > ai

k+1

}
. In Figure 3, which depicts the payoff

parameters of i ∈ I, the number ki is m − 1. The threshold ki = k means that at least k + 1

others must be present in order for i to play A optimally. Let k = |σ−i|A be the number of

others adopting A and let BRi(·) be the pure best response correspondence. It follows that

BRi(σ) = {B} if k ≤ ki and A ∈ BRi(σ) otherwise. Note that 0 ≤ ki ≤ n − 2 for every ∈ I.

For every k = 0, 1, . . . , n − 2, let

I(k) =
{

i ∈ I | ki ≤ k
}

, I(k) =
{

i ∈ I | ki ≥ k
}

, I(k) =
{

i ∈ I | ki = k
}

.

The first set is the set of players for which A is a best response if there are k+1 others who play

A. The second is the set of players for which B is a unique best response if there are k others

who play A. I(k) is the intersection of the two. The key condition concerns the distribution

of thresholds ki.

(G3) If there is k, 2 ≤ k ≤ n − 2, such that |I(k − 2)| = k, then I(k − 1) 6= ∅.
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Figure 3: Payoff parameters in an n-person simple binary coordination game.

In words, (G3) can be explained as follows. Assume that |I(k − 2)| = k and consider any

strategy profile in which every i ∈ I(k − 2) chooses A. By definition of ki, A by i is a best

response, regardless of what the n− k others do. What about the choices by the n− k others?

Condition (G3) stipulates that there is some j /∈ I(k−2) such that playing A is a best response

as long as every i ∈ I(k − 2) chooses A.

Lemma 1. If a binary coordination game satisfies (G3), then it has exactly two strict equilibria.

For a binary coordination game that does not involve alternative best responses, the converse

is also true.

The proof of Lemma 1 is left to the reader. Recall that the size of a state and of a sample

in the adaptive play are denoted by T and s, respectively.

Lemma 2. For a binary coordination game satisfying (G3), the adaptive play without mistakes

is absorbing whenever s ≤ T/2.

The proof is given in the Appendix. Under (G3), therefore, the equilibrium selection

problem takes the simplest form. Let A and B denote the T -fold concatenations of (A, . . . , A)

and (B, . . . , B). The resistance from A to B is denoted by r(A,B), and the resistance for the

other direction is r(B,A). (A, . . . , A) is uniquely stochastically stable if and only if r(A,B) >

r(B,A). In what follows, we always assume that a binary coordination game satisfies (G3)

and that s ≤ T/2.4

4Even if (G3) fails, the results in the next section apply as long as the binary coordination game has exactly

two strict equilibria to which the adaptive play without mistakes converges.
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4 Equilibrium Selection

4.1 Linear program for evaluating resistance

Consider the adaptive play with mistakes for a binary coordination game. The current state is

A. In any path from A to B, there is a player who optimally chooses strategy B for the first

time. Let us call that player a first deviator. The first deviator i ∈ I must have a sample against

which playing B is optimal. Such a sample must contain considerable number of B strategies

played by others. Since player i is a first deviator, all such B strategies are mistakes. We set

up a linear program that gives us the minimum number of B strategies that i must face. Its

optimal solution not only gives us the number, but also reveals the way in which mistakes occur.

In many-person games not only the number but also the distribution of mistakes matters. The

linear program introduced below takes care of the case in point.

Fix a player i ∈ I. Set

zi
k = ai

n − ai
n−k + bi

k+1 − bi
1 = αi + bi

k+1 − ai
n−k

for k = 1, . . . , n − 1. Recall that αi = ai
n − bi

1 is the deviation loss at equilibrium (A, . . . , A).

Note that zi
k is nonnegative and nondecreasing in k. The linear program is as follows:

(Pi
A) minx1 + 2x2 + · · ·+ (n − 1)xn−1

s.t. x1 + · · ·+ xn−1 ≤ s,
∑n−1

k=1 zi
kxk ≥ sαi, xk ≥ 0.

In this program, xk is the number of profiles that contain exactly k mistakes.
∑

k xk is the

number of profiles that contain at least one mistake. The first constraint comes from the fact

that this number cannot exceed the sample size. The second constraint expands to

bi
nxn−1 + · · ·+ bi

2x1 + (s−
∑n−1

k=1 xk)bi
1 ≥ ai

1xn−1 + · · ·+ ai
n−1x1 + (s−

∑n−1
k=1 xk)ai

n.

Thus, it ensures that strategy B is a best response against the sample. The objective function

gives the total number of mistakes in the sample. It is clear that (Pi
A) has an optimal solution.

The stochastic stability analysis hinges on the number of mistakes. Do we need additional

integer constraints? For most of our purpose,5 we do not need them, as we only need the

following implications. By the definition of the first deviator, if the optimal value of (Pi
A) is at

least v for every i ∈ I, then v is a lower bound of the resistance r(A,B). If the optimal value

of (Pi
A) is strictly greater than v for every i ∈ I, then the resistance r(A,B) is strictly greater

than v.6

5The only exception is part (2) of Proposition 2.
6In general, the resistance r(A, B) need not be the optimal value on integer solutions of some (Pi

A).
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4.2 Main result

Define

mA = min
{

k | ai
k+1 ≥ bi

n−k for every i ∈ I
}

.

In terms of ki, which was defined in Section 2.2, mA = 1 + maxi∈I ki. We are ready to show

the main result of the paper.

Theorem. Consider an n-person binary coordination game. If (A1) and (A2) are satisfied,

then (A, . . . , A) is stochastically stable:

(A1) mA ≤ n − 1
2

,

(A2) mAzi
k ≤ kαi for every k = 1, . . . , n − 1 and every i ∈ I.

If all inequalities in (A2) are strict, then it is a unique stochastically stable equilibrium.

Proof. Write mA = m. The result is a consequence of the following facts.

(1) Under (A1), the resistance from (B, . . . B) to (A, . . . A) is at most sm.

(2) Under (A2), the optimal value of (Pi
A) is at least sm for every i ∈ I. If the inequalities

are strict, then the optimal value is greater than sm.

To prove (1), it suffices to construct a path from B to A in which there are exactly sm

mistakes. In Phase 2 in Figure 4, let every player sample Phase 1. All the A∗ strategies in the

figure are mistakes and there are exactly sm of them. Let i ∈ {1, . . . ,m} and j ∈ {m+1, . . . , n}.
By definition of m, al

m+1 ≥ bl
n−m for l = i, j. In Phase 3, let j sample Phase 2. Then, since

aj
m+1 ≥ bj

n−m, A is a best response for j. In Phase 3, strategies X ∈ {A,B} by i means that

they are immaterial to the argument. In Phase 4, let i sample Phase 3. Then the respective

strategies yield ai
n−m+1 and bi

m. Now (A1) implies that n−m ≥ m. Since ai
m+1 ≥ bi

n−m, (G1)

implies that ai
n−m+1 ≥ ai

m+1 ≥ bi
n−m ≥ bi

m, which allows i to choose A. Letting j sample the

final available segment of Phase 2 and the initial segment of Phase 4, we make her choose A in

Phase 4 as well. Finally, note that these sample assignments are possible as long as s ≤ T/2.

To prove (2), pick i ∈ I and consider the program (Pi
A). Take a nonnegative, nonzero

vector (x1, . . . , xn−1). By (A2),

mzi
kxk ≤ kαixk

for every k = 1, . . . , n− 1. Assume that the objective value of the vector is less than sm. Then

m
∑

k zi
kxk ≤ αi

∑
k kxk < αism. (?)

Therefore
∑

k zi
kxk < sαi, which means that the vector is infeasible. If the inequalities in (A2)

are strict, then the left inequality in (?) becomes strict, which in turn implies that the vector
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Phase 1 Phase 2 Phase 3 Phase 4
T︷ ︸︸ ︷ s︷ ︸︸ ︷ s︷ ︸︸ ︷ s︷ ︸︸ ︷

σ1 B · · · B A∗ · · · A∗ X · · · X A · · · A
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σm B · · · B A∗ · · · A∗ X · · · X A · · · A

σm+1 B · · · B B · · · B A · · · A A · · · A
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σn B · · · B B · · · B A · · · A A · · · A

Figure 4: Path from B to A.

(x1, . . . , xn−1) is infeasible, even if the right inequality in (?) is a weak inequality. Thus, in this

case the optimal value is greater than sm.

Part (1) of the proof establishes a link between the discussion on the prototype in Section

2 and the formalism developed here for the adaptive play. The path from B to A constructed

in Figure 4 replicates the sequence from (B, . . . , B) to (A, . . . , A) in the prototype in which

exactly m players make mistakes in the first period.

What (A1) requires is clear from the definition of mA; in Figure 3, the two payoff curves

intersect in the left half of the domain. The condition dictates that strategy A has the larger

basin of attraction, in the sense that we used the term in the discussion of the prototype.

Condition (A2), meanwhile, concerns the “depth” of the basins. The notion of depth in

turn concerns the deviation loss, which is defined at each strategy profile to be the difference

between the best response payoff and the suboptimal payoff. Rewrite (A2) as

(m − k)α ≤ m(an−k − bk+1).

For k = m, . . . , n − m − 1, as Figure 3 shows, the left hand side is nonpositive and the right

hand side is nonnegative under (A1). This means that the inequality is satisfied by (A1) in

the middle part of Figure 3. The genuine requirement of (A2) thus only concerns the left and

the right portions of the figure. For k = 1, . . . ,m− 1, the inequality requires the deviation loss

to be sufficiently large relative to the equilibrium deviation loss, α. For k = n − m, . . . , n − 1,

the inequality can be rewritten as

(k −m)α ≥ m(bk+1 − an−k),

which states that deviation loss should not be too large relative to α. In particular, it dictates

that

β ≤ (n −mA − 1)α
mA

,

11



which means that the deviation loss at (B, . . . , B) is not overwhelming compared to the devi-

ation loss at (A, . . . , A).

In intuitive terms, (A2) requires that the basin of A is relatively deeper than that of B.

We can describe the result as follows. If strategy A has the larger basin of attraction and if

the basin is relatively deep enough, then (A, . . . , A) is stochastically stable.

Example 2. Consider the n-person linear symmetric binary coordination game in which

ak = a(k − 1), bk = b(k − 1), for k = 1, . . . , n,

where a > 0 and b > 0. Then mA = db (n − 1) / (a + b)e, where dxe is the least integer that

is greater than or equal to x. Without loss of generality, we may assume that a > b. Then,

ignoring the rounding problem, (A1) holds true.7 It follows from zk = (a + b)k that

mAzk = mA(a + b)k ≤ (a + b)(n − 1)k
2

< (n − 1)ak = kα,

which shows that (A2) is also satisfied in strict inequalities. Hence, the unique stochastically

stable equilibrium is (A, . . . , A). This example indicates that the main theorem generalizes

the entirely natural observation that (A, . . . , A) is uniquely stochastically stable in the linear

coordination game in which a > b.

4.3 Multiplicity of stochastically stable Equilibria

Interchanging ai
k and bi

k and replacing zi
k with wi

k = bi
n − bi

n−k + ai
k+1 − ai

1, the main theorem

generates a pair of conditions that ensures the stochastic stability of (B, . . . , B):

(B1) mB ≤ n − 1
2

,

(B2) mBwi
k ≤ kβi for every k = 1, . . . , n − 1 and every i ∈ I,

where mB = min
{

k | bi
k+1 ≥ ai

n−k for every i ∈ I
}
.

If all the conditions for the respective equilibria are satisfied within a single game, then

multiple stochastically stable equilibria arise. The four conditions are jointly equivalent to the

next two.8

Proposition 1. Consider an n-person binary coordination game. If there is a positive integer

m such that

(M1) m = mA = mB ≤ n − 1
2

,

7If n is either odd or sufficiently large, (A1) is in fact true.
8Note that (A2) implies that mA ≤ mB . Hence, (A2) and (B2) imply that mA = mB .
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(M2)
(

m − k

m

)
αi ≤ ai

n−k − bi
k+1 ≤

(
n −m − k − 1

m

)
βi

for every k = 0, 1, . . . , n− 1 and every i ∈ I, then both (A, . . . , A) and (B, . . . , B) are stochas-

tically stable.

An important implication of (M1) is that

bi
m+1 = · · · = bi

n−m = ai
m+1 = · · · = ai

n−m.

Following the interpretation we gave for (A1), we take (M1) as stating that the basins of

attraction of the respective equilibria are equal in size.

Roughly speaking, therefore, if the size of the basins of attraction is the same, then both

equilibria are stochastically stable unless one of the two basins is considerably deeper than the

other. In some games, seemingly considerable difference in depth may not be reflected in the

selection outcome. The class of unanimity games offers itself as such an example.

A binary unanimity game is a binary coordination game in which m = mA = mB = 1.

For the game G0 in Figure 1, for example, the definition implies that ai
2 = ai

3 = bi
2 = bi

3.

Many authors appear to define a unanimity game with additional conditions that ai
1 = ai

2

and bi
1 = bi

2. Being more general, our definition qualifies any two-person binary coordination

game as a unanimity game. For unanimity games, a complete characterization of the selection

outcome is available.

Proposition 2. Consider an n-person binary unanimity game, n ≥ 2. If

(1) βi ≤ (n−2)αi and αi ≤ (n−2)βi for every i ∈ I, then both equilibria are stochastically

stable.

(2) there is i ∈ I such that αi > (n − 2)βi or βi > (n − 2)αi, then, assuming that the

sample size s is sufficiently large,9 (A, . . . , A) is stochastically stable if and only if

min
i∈I

βi

αi + βi
≤ min

i∈I

αi

αi + βi
.

The first case follows from Proposition 1. The second case is proved in the Appendix.

According to (1), multiplicity arises if βi ∈ [αi/(n−2), (n−2)αi]. As n increases, the condition

becomes increasingly generous. If n = 2, Proposition 1 is not applicable since (M1) fails.

Nonetheless, Proposition 2 remains valid. A well-known result of Young (1993, Theorem 3)

states that risk dominant equilibrium in a two-person binary coordination game is stochastically

stable. For two-person games, (1) fails and the risk dominance is equivalent to the inequality

condition in (2). Viewed thus, Proposition 2 generalizes Young (1993, Theorem 3).
9Recall that when s is small, the mistake counting in the adaptive play may not be able to discriminate

equilibria at all. In the extreme case of s = 1, both equilibria are stable even in two-by-two coordination games.
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5 Discussion

We have shown equilibrium selection results from which the multiplicity of stochastically stable

equilibria follows in a class of games. Given a unanimity game with multiple stochastically

stable equilibria, the main theorem implies that each neighborhood of the game contains a game

in which (A, . . . , A) is uniquely stochastically stable and another in which (B, . . . , B) is uniquely

stochastically stable, as games G1, G2 and G3 in Figure 1 illustrate. As a correspondence, the

stochastically stable equilibrium is not lower hemicontinuous.10

Now let us return to the prototype in Section 2. Assuming that everyone chose action B

yesterday, how many mistakes today shall allow a player to optimally choose A tomorrow? Let

us say that the answer is m. With m mistakes today, at least one player will choose A optimally.

Do subsequent optimal switches to A accumulate enough to reach the other equilibrium? It

may well be the case that they do. It is such a sequence of profiles in the prototype that the

path in Figure 4 reproduces in the adaptive play, and the number m of mistakes required today

translates into a feasible solution in the linear program such as (Pi
A), which was formulated in

Section 4, of the form

(x1, . . . , xm−1, xm, xm+1, . . . , xn−1) = (0, . . . , 0, s, 0, . . . , 0).

In general, mistakes in the prototype that trigger a transition from an equilibrium to the other

can be embedded into the adaptive play by this type of solutions, which we call corner solutions.

In this way, mistake counting in the prototype carries over to that in the adaptive play. To

understand our selection results, it is crucial to note that a corner solution can be optimal in

the relevant linear program. Roughly speaking, multiple stochastically stable equilibria arise if

corner solutions are optimal in both directions, i.e., from one equilibrium state to the other and

vice versa. Notice that if the stage game were a two-person game, all these considerations would

be irrelevant as the prototype would not discriminate any equilibrium. Thus the relationship

between the prototype and the adaptive play emerges specifically in analysis of many-person

games.

An entirely analogous relationship can be established between the prototype and the multi-

population random matching model. For simplicity, consider a symmetric n-person binary

coordination game. For each player role j, j = 1, . . . , n, there is a population Cj consisting of

N agents. The state space of the model is {0, 1, . . . , N}n, which keeps track of the number of

B-players in each population. In each period, an agent in Cj is informed of the state in the

previous period, and is randomly matched with n− 1 agents, each of whom are chosen from a

different population, and they play the stage game. The agent intends to play the best response
10This feature reminds us of the equilibrium refinement literature; see, for example, Okada (1981).
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against the previous state, but may occasionally make a mistake. Now set the previous state

be (0, . . . , 0), which corresponds to (A, . . . , A) equilibrium in the stage game. Focus on an

agent in population Cn and consider what kind of current period mistakes by others allow her

to play B in the next period. Specifically, assume that exactly xj agents in Cj make mistakes,

j 6= n. Since the previous state is (0, . . . , 0), the current state for the particular agent in Cn is

x−n = (x1, . . . , xn−1). In the next period, the probability of the agent facing exactly k others

who are playing B in the n-match is given by p(k,x)/Nn−1, where

p(k,x−n) =
∑

j1,...,jk∈J
all distinct

k∏
h=1

xjh

∏
j∈J\{j1,...,jk}

(N − xj).

and J = {1, . . . , n−1}. Now we can write down the nonlinear program that works for evaluating

the resistance from (A, . . . , A) to (B, . . . , B) as follows:

min
x−n=(x1,...,xn−1)

n−1∑
j=1

xj

subject to 0 ≤ xj ≤ N, j = 1, . . . , n − 1,

n−1∑
k=0

p(k,x−n)bk+1 ≥
n−1∑
k=0

p(k,x−n)an−k.

A feasible solution of the program is called an interior solution if 0 < xj < N for every

j 6= n. Otherwise, it is called a corner solution. Taking this program as the point of departure,

we could derive selection results for the multi-population random matching model by following

the line of reasoning in Section 4. For example, the program takes the simplest form if the stage

game is a unanimity game. In such a case, one can prove that corner solutions are optimal in

both directions, from one equilibrium state to the other and vice versa, if and only if

max{an/bn, bn/an} ≤ (n − 2)n−1,

which is precisely the condition found in Young (1998) under which both equilibria are stochas-

tically stable.

To relate the program to the single population random matching model, we introduce an

extra constraint that

x1 = x2 = · · · = xn−1 = x,

which dictates that populations are indistinguishable from each other. For such states, the

map p(k,x−n) simplifies to

p(k,x) =

(
n − 1

k

)
xk(N − x)n−k−1,
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which is precisely the function that appeared in Kim (1996). With the extra condition, the

program reduces to

minx

subject to 0 ≤ x ≤ N and
n−1∑
k=0

(
n − 1

k

)
xk(N − x)n−k−1(bk+1 − an−k) ≥ 0.

It is obvious that the reduced program always has an interior optimal solution. With just a

single variable, the mistake counting argument in single population model is not capable of

accommodating that in the prototype. In particular, as Kim (1996) shows, multiplicity does

not arise.

These formulations clarify why the prediction of equilibrium selection by mistake count-

ing analysis differs for different dynamics. In multi-dimensional state models, the mistake

counting argument becomes richer than that in single population models in that an optimal

solution of the associated minimization program may be a corner solution, which reflects the

mistake counting argument in the prototype. Consequently, if two equilibria possess basins

of attraction of the same size in the prototype, then both may well be stochastically stable

in multi-dimensional state models, but they never be in single population random matching

model.

Appendix

A.1 Proof of Lemma 2

Recall that T and s are the history size and the sample size of the adaptive play, respectively.

Lemma 2 states that the adaptive play without mistakes is absorbing in a binary coordination

game whenever s ≤ T/2. This is a consequence of Lemma 3 below. For definitions of symbols

and mathematical conditions that appear in the proof of Lemma 3, see section 2.

Lemma 3. In a binary coordination game, the adaptive play without mistakes is absorbing if

T = 2 and s = 1.

Proof. Consider the adaptive play with (T, s) = (2, 1). Let σ ∈ Σ be the sample given to i ∈ I

on a particular day. To avoid ambiguities caused by multiple best responses, let the player

choose B if and only if B is a unique best response against σ. Formally,

bri(σ) =

A, if i ∈ I(k − 1),

B, if i ∈ I(k),
(?)

where k = |σ−i|A, the number of others that adopt A. Clearly, bri(σ) ∈ BRi(σ).
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Pick σ1 ∈ Σ and assume that each player chooses σi
1 on day 1. Starting from σ1, we

construct a path that leads to either (A, . . . , A) or (B, . . . , B). Set |σ1|A = k1 so that we can

depict it, with an appropriate permutation, as follows:

σ1 = (

k1︷ ︸︸ ︷
A, . . . , A, B, . . . , B).

We can assume that 1 ≤ k1 ≤ n − 1. On day 2, let everyone sample σ1. Following (?), they

play σi
2 = bri(σ1). The outcome of day 2 is σ2. By construction,

• For every i ∈ I(k1 − 2), i ∈ IA(σ2).

• For every i ∈ I(k1), i ∈ IB(σ2).

• For every i ∈ I(k1 − 1), i ∈ IA(σ2) if and only if i ∈ IB(σ1).

Thus σ2 can be written as

σ2 = (

k2︷ ︸︸ ︷
|I(k1−2)|︷ ︸︸ ︷
A, . . . , A,

|I(k1−1)∩IB(σ1)|︷ ︸︸ ︷
A, . . . . . . , A,

|I(k1−1)∩IA(σ1)|︷ ︸︸ ︷
B, . . . . . . , B,

| I(k1)|︷ ︸︸ ︷
B, . . . , B).

Case 1. k2 > k1. Following (?), let σi
3 = bri(σ2) for every i ∈ I. We show that k3 = |σ3|A > k2.

In σ2, every i ∈ I has at least k1 others playing A. Therefore i ∈ IA(σ3) for every i ∈ I(k1−1).

Hence k3 ≥ k2. If k2 ≥ n − 1, then σ3 = (A, . . . , A). Thus we can assume 2 ≤ k2 ≤ n − 2.

Claim 1: If I(k1 − 1) ∩ IA(σ1) = ∅ then I(k1) ∩ I(k2 − 1) 6= ∅.

Proof of Claim 1. Assume that I(k1−1)∩IA(σ1) = ∅. It follows that |I(k1−1)| =

k2. If I(k1)∩ I(k2 − 2) 6= ∅, then I(k1)∩ I(k2 − 1) 6= ∅. If I(k1)∩ I(k2 − 2) = ∅,

then I(k2 − 2) = I(k1 − 1). Hence |I(k2 − 2)| = k2. Thus (G3) implies that

I(k2 − 1) 6= ∅. Clearly, I(k2 − 1) ⊂ I(k1). Therefore I(k1) ∩ I(k2 − 1) 6= ∅. ‖

It follows from Claim 1 that either I(k1− 1)∩ IA(σ1) 6= ∅ or I(k1)∩ I(k2− 1) 6= ∅. Therefore,

k3 > k2. Under the sample assignment σi
t+1 = bri(σt) for every i ∈ I, we have shown that

k2 > k1 implies k3 > k2. By induction, the play eventually reaches (A, . . . , A) if k2 > k1.

Case 2. k2 < k1. This case is entirely analogous to Case 1.

Case 3. k2 = k1 and 2 ≤ k2 ≤ n − 2. In this case, σ2 can be written as follows.

σ2 = (

k2︷ ︸︸ ︷
|I(k2−2)|︷ ︸︸ ︷
A, . . . , A,

|I(k2−1)∩IB(σ1)|︷ ︸︸ ︷
A, . . . . . . , A,

|I(k2−1)∩IA(σ1)|︷ ︸︸ ︷
B, . . . . . . , B,

| I(k2)|︷ ︸︸ ︷
B, . . . , B).
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If I(k2 − 1) = ∅, then |I(k2 − 2)| = k2. Thus (G3) implies I(k2 − 1) 6= ∅.

Let σi
3 = bri(σ2). Then

σ3 = (

k3︷ ︸︸ ︷
|I(k2−2)|︷ ︸︸ ︷
A, . . . , A,

|I(k2−1)∩IA(σ1)|︷ ︸︸ ︷
A, . . . . . . , A,

|I(k2−1)∩IB(σ1)|︷ ︸︸ ︷
B, . . . . . . , B,

| I(k2)|︷ ︸︸ ︷
B, . . . , B).

If k3 6= k2, then we can apply either Case 1 or Case 2. Thus we can assume that k3 = k2 = k1.

Then

|I(k2 − 1) ∩ IA(σ1)| = |I(k2 − 1) ∩ IB(σ1)| ≥ 1. (†)

The inequality follows from I(k2 − 1) 6= ∅. For every i ∈ I(k2 − 1) ∩ IA(σ1), let σi
4 = bri(σ2).

For everyone else, let σi
4 = bri(σ3). Then

σ4 = (

k4︷ ︸︸ ︷
|I(k2−2)|︷ ︸︸ ︷
A, . . . , A,

|I(k2−1)∩IA(σ1)|︷ ︸︸ ︷
A, . . . . . . , A,

|I(k2−1)∩IB(σ1)|︷ ︸︸ ︷
A, . . . . . . , A,

| I(k2)|︷ ︸︸ ︷
B, . . . , B).

By (†), k4 > k2. Following (?), let σi
5 = bri(σ4) for every i ∈ I. We show that k5 = |σ5|A > k4.

In σ4, every i ∈ I has at least k2 others playing A. Therefore i ∈ IA(σ5) for every i ∈ I(k2−1).

Hence k5 ≥ k4. If k4 ≥ n− 1, then σ5 = (A, . . . , A). Thus we can assume that 3 ≤ k4 ≤ n− 2.

Claim 2: If I(k2) ∩ I(k4 − 2) = ∅ then I(k2) ∩ I(k4 − 1) 6= ∅.

Proof of Claim 2. Assume that I(k2)∩I(k4−2) = ∅. It follows that |I(k4−2)| = k4.

Thus (G3) implies that I(k4−1) 6= ∅. Since k4 > k2, I(k4−1) ⊂ I(k2). Therefore

I(k2) ∩ I(k4 − 1) 6= ∅. ‖

Noting that I(k4−2) ⊂ I(k4−1), it follows from Claim 2 that I(k2)∩I(k4−1) 6= ∅. Therefore

k5 > k4, which allows us to apply Case 1 for the rest of the play.

Case 4. k2 = k1 = 1 or k2 = k1 = n − 1. Consider the first case. Then σ2 can be written as

σ2 = (A,

|I(0)∩IA(σ1)|︷ ︸︸ ︷
B, . . . . . . , B,

| I(1)|︷ ︸︸ ︷
B, . . . , B).

Letting σ1
3 = br1(σ2) and σi

3 = bri(σ1) for every i 6= 1, we have σ3 = (B, . . . , B). The second

case can be dealt with analogously.

Proof of Lemma 2. We give a sketch of the proof. Details can be found in Maruta and Okada

(2007). Given a binary coordination game, consider the adaptive play in which s ≤ T/2. Fix

an initial state, which is an arbitrary sequence in Σ with length T . Since s ≤ T/2, there is

σ1 ∈ Σ such that the play reaches the s-length concatenation of σ1 in a finite number of steps
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with a positive probability. By Lemma 3, in the adaptive play with (T, s) = (2, 1), there is a

path starting from σ1 that eventually leads to either (A, . . . , A) or (B, . . . , B). It suffices to

replicate this path in the current setting. By providing players with appropriate samples, the

replication is possible thanks to the assumption that s ≤ T/2.

A.2 Simple optimal solutions in the relevant program

The next result characterizes the conditions under which (Pi
A) possesses a simple optimal

solution.

Proposition 3. Consider program (Pi
A) for a player i ∈ I in a binary coordination game.

Denote by λ1 and λ2 the Lagrange multipliers for the best response constraint and the sample

size constraint, respectively. The following conditions are equivalent:

(1) There is k∗ ∈ arg min
k

zi
k 6=0

k

zi
k

such that bi
k∗+1 ≥ ai

n−k∗.

(2) There is an optimal solution in which λ2 = 0.

(3) The solution

(x∗1, . . . , x
∗
n−1 : λ∗1, λ

∗
2) =

( k∗︷ ︸︸ ︷
0, . . . , 0,

s(ai
n − bi

1)
zi
k∗

, 0, . . . , 0 :
k∗

zi
k∗

, 0
)

is optimal.

Proof. The result is a simple application of the duality theorem of linear programming. A

complete proof is given in Maruta and Okada (2007).

This result allows us to prove case (2) of Proposition 2. Consider a unanimity game. One

can verify that the resistance r(A,B) coincides with the minimum of the values of the optimal

integer solutions of (Pi
A). It suffices to compare optimal values of (Pi

A) and that of (Pi
B), the

programs to evaluate r(A,B) and r(B,A), respectively.

Fix i ∈ I. In any unanimity game, zi
1 = · · · = zi

n−2 = αi. Thus arg min(k/zi
k) ⊂ {1, n− 1}.

There are three cases to be distinguished:

Case 1. βi > (n− 2)αi. Then arg min(k/zi
k) = {n− 1}. Therefore, Proposition 3 implies that

the optimal value of (Pi
A) is (n − 1)sαi/(αi + βi) < s. If the sample size s is large enough

so that (n − 1)
⌈
sαi/(αi + βi)

⌉
< s, then there is path from A to B that contain exactly

(n−1)
⌈
sαi/(αi + βi)

⌉
mistakes, where dqe is the smallest integer not less than q. On the other

hand, again by Proposition 3, the optimal value of (Pi
B) is s.
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Case 2. αi > (n − 2)βi. Similarly, the optimal value of (Pi
B) is (n − 1)sβi/(αi + βi) < s and

that of (Pi
A) is s.

Case 3. βi ≤ (n − 2)αi and αi ≤ (n − 2)βi. The optimal values of the two programs are s.

Therefore:

r(A,B) = min
i∈I

{
(n − 1)

⌈
sαi

αi + βi

⌉
, s

}
and r(B,A) = min

i∈I

{
(n − 1)

⌈
(n − 1)sβi

αi + βi

⌉
, s

}
,

from which it follows that, ignoring rounding, r(B,A) ≤ r(A,B) if and only if

min
i∈I

βi

αi + βi
≤ min

i∈I

αi

αi + βi
.
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