SMOOTHED VERSIONS OF STATISTICAL FUNCTIONALS
FROM A FINITE POPULATION *
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We will consider the central limit theorem for the smoothed version of statistical
functionals in a finite population. For the infinite population, Reeds (1976) and Fern-
holz (1983) discuss the problem under the conditions of Hadamard differentiability of
the statistical functionals and derive Taylor type expansions. Lindeberg-Feller’s cen-
tral limit theorem is applied to the leading term, and controlling the remainder terms,
the central limit theorem for the statistical functionals are proved. We will modify
Fernholz’s method and apply it to the finite population with smoothed empirical dis-
tribution functions, and we will also obtain Taylor type expansions. We then apply the
Erdos-Rényi central limit theorem to the leading linear term to obtain the central limit
theorem. We will also obtain sufficient conditions for the central limit theorem, both
for the smoothed influence function, and the original non-smoothed versions. Some
Monte Carlo simulation results are also included.
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1. Introduction

We will consider the central limit theorem for the statistical functionals in a finite
population. A reason why we assume an infinite population is to simplify both the the-
ory and the computation. However, in the area of sampling surveys (official statistics,
opinion poll, etc.), the sample size is fairly large compared to the population size, and
thus it may be inappropriate to apply classical statistical theory, especially large sample
theory, directly to these problems. On the other hand, the progress of modern computer
technology makes it possible to work directly with finite population problems in many
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areas of statistical applications, and methods based on resampling, such as the bootstrap
method, help us to measure the accuracy of the estimators. Here, the justification of
resampling methods may depend on the central limit theorem for the estimators and
we will prove the asymptotic normality of the estimators by applying the theory of sta-
tistical functionals developed by von Mises (1947), Reeds (1976), Fernholz (1983), and
Takahashi (1988), among others.

We will also consider smoothed versions of the empirical distribution functions. Al-
though it may sound strange in the finite population problem, in some practical situa-
tions it is reasonable to assume that the underlying distribution function converges to
the continuous distribution function as the population size goes to infinity. Here we have
implicitly assumed the probability space where continuous distribution functions are also
defined. The finite probability spaces are embedded in the space which makes it possible
to consider the limits operation. In this case, the smoothed bootstrap may be applied,
and it is worth considering the smoothed version of the empirical distribution function
and the statistical functionals defined on it. For these reasons, we will derive asymptotic
normality of smoothed statistical functionals for a simple random sample from a finite
population. The non-smoothed version will be obtained as a simple corollary to our
results.

To fix the idea, we let Q) = {z1, ..., 25} be a mutually distinct finite population
of size N, and a simple random sample (X, Xs,...,X,) is taken from QW) without
replacement. More precisely, let (mq,...,my) take all possible permutations of (1,..., V)
with common probability (N!)™', and X; = z,,,1 <i < n.

Define a population distribution function (d.f.)

Fy(z) = %Z T oo (i),

=1

and an empirical distribution function (Xi, Xs,...,X,) by

Fu(r) = 3 In(Xo)

Let T' be a statistical functional defined on the set of distribution functions, including
both the population distribution function and all empirical distribution functions (see von
Mises (1947), Fernholz (1983), Reeds (1976), Takahashi (1988)), then the parameter of
interest is expressed by T'(Fy) and its naive estimate may be given by T'(F},). However,
as a finite population distribution function tends to become a smooth function as N gets
larger, it may be more appealing to replace F, by its smoothed version F,,, the kernel
distribution function estimator, which is to be defined below. This type of statistic
T(Fn) is used in the context of the smoothed bootstrap (Silverman and Young (1987),
Young (1990)) and smoothed quantiles (Falk (1985)). Fernholz (1993) derives asymptotic



normality of smoothed statistical functionals in I.I.D. settings. We consider the finite
population counterpart and obtain its asymptotic distribution. In order to ensure that the
population distribution converges to the sufficiently continuous distribution function, we
need the following Assumption A. This is the standing assumption to be used throughout
this paper;

ASSUMPTION A.  There exist some sequences By > 0 and constant M > 0 satis-
fying the condition
(1.1) 0<i%fBN§supBN§M<oo
N

such that for any bounded set B C R
(1.2) |Fn(x) — Fy(y)| < Byle —y|+ O(1/N), as N —

holds uniformly in x,y € B.

Assumption A represents the situation where the population distribution goes to the
Lipschitz continuous function uniformly in any bounded set of R as N — oo. Also we
note that Assumption A assures that the amount of jumps of Fiy are at most O(1/N).

Now, we have used and will often use Landau’s notation and its probabilistic version;
for {p,,n > 1} and {¢.,n > 1}, p, = o(q,), as n — oo, if Pn— 0, as n — oo,
(pr = 0p(qn), as n — oo, if Z—Z — 0 in probability, as n — oo) and p, = O(g,), as
n—>oo,if|§—Z| < M for all n > 1 and some 0 < M < oo. (p, = O,(q,), as n — oo, if
P([&2 ] <M)>1—cforalln>1,0<e<l1, and some 0 < M < o0).

We are ready to define a smoothed empirical distribution function. For each n > 1,
a kernel d.f. estimator F), is defined by taking the convolution of F),, with some density

ky; Fn = F, x k,. In our case,
(1.3) Fi(z) = Fy s k() = /Fn(:z; )k (1)t
— / Fo(x — )dK, () = / Ko — O)dF,(1)
1 e
= =Y Kule — X)),
- ; n(2 — X))

where K, (x) = [*_ k,(1)dt.

We will next define a reqular kernel sequence {k,,n > 1}, which will be used to define
our smoothed empirical distribution function. Let & be a symmetric kernel function (not
necessarily nonnegative) satisfying [k(z)dez = 1 and let {a,,n > 1} be a sequence of
positive real numbers. The sequence of kernels {k,,n > 1} defined by

1 x
(1.4) kn(z) = ak(a), n>1,
will be called a kernel sequence if a, = o(1), as n — oo. Note that if {k,,n > 1} is a
kernel sequence, then the sequence of d.f. K, (x) = [Z_ k,(t)dt converges weakly to the



d.f. A, where

0, z<0

(1.5) Az) = ,
1, 2>0

We will consider a restricted class of the kernel sequences, which will be called a reg-
ular sequence. A regular sequence will be needed when we prove the op(n_%) convergence

of the remainder terms of the Taylor series expansion of the statistical functionals.

DEFINITION 1. [FERNHOLZ (1991, 1993)] A kernel sequence {k,} is reqular if

there exists a sequence {b,} of positive real numbers such that b, = o(n="?) and
(1.6) / Ik (1)]dt = o(n=1/2).
[¢1>br

Csorgd and Horvath (1995) considers the similar but more restrictive regularity con-
ditions in investigating the asymptotic properties of smoothed empirical and quantile
processes in [.I.D. settings. Imposing these types of regularity conditions on kernel might
be unavoidable to some extent without imposing more smoothness conditions on popu-
lation distributions (Yukich (1992) and van der Vaart (1994)).

We close this section with some comments. Campbell (1980) proposes the use of
statistical functionals in the finite population and gives a sketch of the proof for the
asymptotic normality in various sampling schemes. She, however, uses essentially the
LLL.D. result in proving the asymptotic normalities. We will fill in the incompleteness of
her arguments and give legitimate proofs for these results. Some of the related results on
the finite population problem are obtained by Motoyama and Takahashi (2003), where
the rate of convergence to a normal distribution of statistical functionals in simple random

sampling is obtained. For L-statistics in survey sampling problems, we refer readers to

Shao (1994).

2. Statistical Functionals
We will briefly review the theory of statistical functionals. We start with the defi-

nition of statistical functionals for the distribution functions on a finite population. We
then define the three typical differentiations of the functionals, and the theory of Taylor
series type expansions. The conditions under which the linear part of the expansions
obeys the central limit theorem, and the conditions and the choice of the topology which
guarantee the convergence of the remainder terms to zero as fast as o(n_%) in probability,
are the main issue of this section. We will modify the arguments of Reeds (1976) and
Fernholz (1983) for the finite population problems with the usual empirical distribution
functions, and then for the smoothed distribution functions.

Let 8 be the parameter of interest. We suppose that 8 is a functional of the underlying
distribution Fiy and we write § = On(Fy). We also let T,, = T,(X1,...,X,) be an



estimator of . Then it is tempting to write T}, = Oy, (F,). We will formalize this in a

manner so that that we can conduct rigorous mathematical arguments in the following

manner(cf. Fernholz (1983, 1993)).

DEFINITION 2.  When T, = T,(X1,...,X,) can be written as a functional T of
the empirical distribution function F,, T, = T(F,), where T does not depend on n, then
T is called a statistical functional. The domain of T is assumed to contain the empirical

d.f.s for alln > 1, as well as the underlying true d.f. Fn. Unless otherwise specified, the

range of T will be the set of real numbers. Moreover, we call T(F,) a smoothed statistical

functional where F, is the smoothed empirical distribution function considered above.
EXAMPLE 1. [SAMPLE MEAN|  The simplest statistic may be the sample mean;
To(X1,.... X)) = = > Xi.
Then for a general distribution function G, the functional defined by
T(G) = [ wdti(a)
satisfies T,(X1,..., X)) =T(F,).

EXAMPLE 2. [SAMPLE QUANTILE| We define a statistical functional for a distri-
bution function G' by

T(G)=G"(q), 0<qg<l, G'q) =inf{z:q<G(2)}.
It follows that the q-th sample quantile is given by the statistical functional defined by
T(Fa) = X(fna)

where [x] is the smallest integer not less than x and Xy < ... < Xy are the order
statistics of Xq,...,X,.

EXAMPLE 3. [L-ESTIMATOR| Statistics of the form
T(Fn) =Y Bl a),  F(g) =infl{z:q < Fu(x)}
=1
where q1,...,qs are numbers in (0,1).

EXAMPLE 4. [M-ESTIMATORS] Let ¢ be a real valued function of two variables
and let T, be defined implicitly by

n

SO(X, T,) = 0.

=1



The corresponding functional is defined as a solution T(G) =0 of

/;/;(:1;, 0)dG(x) = 0.
Estimators of this form are called M -estimators.

Let X1, X,5,..., X, be a simple random sample without replacement from a finite
population xy,...,xy with distribution function Fy. Then Fn(X1),..., Fy(X,) is a
simple random sample without replacement from the finite population {1/N, ..., 1}. Let
Ur(z) = % Sy Do) (Fiv(X5)) be the empirical distribution function of { Fiv(X71), ..., Fin(X,)}
Then

F.(x) =

Now, the monotone increasing and continuous version of Fy with F~'(Fy(z)) = «

and Fx(Fy"(u)) = u will be given by

Frn(zy) + QFNE:U“)) arctan(z — z(1y) = < 2
Fn(z@)) T = T3,
1=1,...,N
(1) Evsla) = | Exlag) + 2EEREE — aw) @ € [0, v
(z@) # 2(i+1))
i=1,....N—1
1+ ﬁ arctan(z — () T > TN
where (1) < 2(g) < ... < vy are the ordered characteristics of the population.

Fyns defined above is the strictly increasing continuous function (but not a distribution
function!) satisfying Fivs(x;) = Fn(x;) forall e =1,..., N and ||Fns — Fn|| = O(1/N).
Hence, defining U,(z) = 1 S0, To,0)(Fnvs(X5)), we also have

(2.2 B(a) = 1 3 fomgan Fas(X0)
_ %é[[O7FNS(w)](FNS(Xi)) — U, 0 Fys(x).
A statistical functional 7" induces a functional 7 of d.f.s U, by
(2.3) T(U,) =T(F,) =TU, o0 Fys).
Generally, for each Fly, we define a statistical functional 7 of d.f. G on [0, 1] by

(2.4) 7(G) = T(G o Fys)



whenever the right hand side is defined. Hence, we can restrict our attention to d.f.s
concentrated on [0, 1] and view them as elements of D[0, 1], the space of right continuous
real valued functions on [0, 1] which have left limits.

If T is a statistical functional and 7 is the functional induced in D[0,1] by (2.3), the
asymptotic properties of T'(F),) and T(Fn) may be determined by the differentiability
of 7. The asymptotic properties depend on the type of the differentiations. We will
consider three different type of differentiations, and they are defined in the following(cf.

Fernholz (1993));
DEFINITION 3.  Let 7 be a functional defined on an open subset A of a normed

vector space V and let g € A.

1. The functional T is Gateauz differentiable at g if there exists a continuous linear
Junctional 7, defined on 'V such that

(2.5) lim T(g+th) —1(g) — 7,(th)

t—0 t

=0

for each h € V. In this case 7, will be called the Gateaur derivative of T at g.

2. The functional T is Hadamard differentiable at g if for any compact subset K C 'V,
(2.5) holds uniformly for h € K. The linear functional 7, will be called the Hadamard
derivative of T at g.

3. The functional T is Fréchet differentiable at g if for any bounded subset B C' 'V, (2.5)
holds uniformly for h € B. The lincar functional 7, will be called the Fréchet derivative

of T at g.
Since singleton is compact, and the compact set is bounded, Fréchet differentiability
implies Hadamard differentiability which in turn implies Gateaux differentiability.

For a statistical functional T" and a d.f. Fi, the influence function of T at Fi is a

real valued function IF'7 g, defined by

(26) IFT,FN(@') = %T(FN —|— t(Aw — FN))|75:0

where A, is the d.f. of the point mass one at z, i.e. :

0,s<x

Ay(s)=A(s—x) = .

Y

If 7" and 7 are defined as above, then the Gateaux derivative 77, of 7 at uniform

distribution function U and the influence function of T" at Fivs are related by

(2.7) IF7 py o (7) = 7 ((Ap — Fys) o Fyg),



since

T(Fys + HA, — Fys) = T(Fys)

IFT,FNS(J;) = lim

t—0 [
i T A+ (A — Fiys) 0 Fys) —7(U)
~ 50 t

= 15((As — Fns) o Fiyg),

where we have used the fact that Fiys(Fns(x)) = x and Fys(Fys(u)) = u hold from the
monotone increasing property and the continuity of Fis.
Note: Since Fyg is a monotone increasing function, using the (right-)continuity of

Fns we have

F];é(FNs(l')) = mf{x* . FNs(l'*) 2 FNs(l')}
= inf{a": Fys(2™) = Fys(x)} = 2.

And, from the continuity of Fig, we have
Fns(Fys(w)) = Fys(inf{z : Fxs(z) > u}) = u.

Here and in what follows, we assume

1 N
(2.8) [ Wy (o) (o) = < 32 Wy () = 0,
=1

by appropriate choice of additive constant(Reeds (1976), p.38 and Serfling (1980), pp.222-
223 Lemma A).

Under Assumption A, we will prove the following proposition which corresponds to

Theorem 2.3 of Fernholz (1991) for the I.I.D. case.

ProprosIiTION 1. Let Xy,..., X, be a stimple random sample without replacement
from a finite population with distribution function Fy. Let F, be the empirical distribution
function and let F, be the smoothed empirical distribution function defined by (1.3) with

a reqular kernel sequence {k,}. Then, we have

(2.9) Vo osup |]5n(:1;) — F.(2)]—=0 as n,N— oo

—o00oLr<o0

PRrROOF. The proof will be given in the Appendix of this article.

In order to evaluate the linear part of the smoothed statistical functional, we will
show that the influence function of the smoothed statistical functional may be obtained
by smoothing the influence function of the original functional. We will prove the next
lemma under the slightly weaker conditions of Lemma 4 of Fernfolz (1993), which is

suitable for our purpose.



LEMMA 1.  Suppose T is Gateau differentiable at the uniform distribution function
U with derivative ;. If the influence function IF = 1Vt g, is Lebesgue-Stieltjes integrable

with respect to functions of bounded variation, we have
1 n

(2.10) = = STIF(X) + 7(U),
n =1

where ﬁn = ﬁn o F]ng and TF = IF * ky.

Note that when a function ¢ is right continuous having left limit, and a function A is
a (right-)continuous monotone nondecreasing function having left limit, it is easily seen
that the composition g o & is a right continuous function having left limits.

PROOF. Let t;, 1 =1,...,mbe —oco <ty <+ <t, <oo,and {;,1=1,...,m—1
are middle points ¢; < ¢; < t;41. Then as t; = —o0, t,, — 00, max;(ti41 — t;) — 0,

K, .= A, %k, is approximated uniformly on R by the sum

m

S = Z(Kn(tﬂrl) — K, (1) ALz,

=1
Therefore, K, , o Fy& may be approximated by the function of the form S o Fyg in
the space DI0,1].
It follows from the linearity of 7/, and (2.7) that

Ms

(S0 Frg) = D _(Ku(tivy) = Ka(t:)m(Dems, 0 Fiys)

.
Il
—

&3

(2.11) (Ku(tinn) = Ko(0)(IF(@ — 1) + 75(0)).

.
Il
—

Since IF is Lebesgue-Stieltjes integrable with respect to K, the sum (2.11) converges to
ﬁi(:p) + 7, (U) for each given z.

Hence from the continuity of 7/;, we have
T(Kyw 0 Fy§) = IF(2) + (V).

Since,

it follows that

3. Remainder terms

In this section we will show the convergence in probability of the remainder terms

from the linear approximations.



Suppose that 7 : D[0,1] — R is differentiable at /. Also let the remainder term be
Rem(tH) =7(U+tH)—7(U) — 7,(tH).

It follows from the definition of the Hadamard differentiability that for any compact

K C DI[0,1], we have
. Rem(tH)
lim ————=

t—0 t

=0

uniformly in H € K.

In evaluating the remainder term, choosing the norm or metric which give topolo-
gies plays an essential role. Usually, D[0,1] is equipped with the Skorohod topologies
(Billingsley (1999)). However, in Skorohod topologies, pointwise addition of functions is
not a continuous operation and D0, 1] is not a topological vector space (Billingsley (1999)
p.137 Problem12.2). Hence in order to utilize von Mises’s differentiation theory, we adopt
the uniform norm topologies.

Nevertheless, problem still remains after adopting the uniform norm. It is well known
that under the uniform norm the empirical distribution function may not be a random
element of D[0,1] under some circumstances (cf. Billingsley(1999) pp.157-158, Fern-
holz (1983) pp.34-35). We show the result along the line of Fernholz. Consider the
situation that n = 1 and values of the population characteristic are distributed (inde-
pendently of the sampling structures) uniformly on [0, 1]. Define F} as the corresponding

empirical distribution function, i.e.
Fl(l') = AXl.

The random variable X; induces a probability measure p on [0, 1] by pu(B) = P(X; € B)
for any Borel set B C [0, 1]. Since the value of X is uniformly distributed, and from the
fact n = 1, p coincides with the Lebesgue measure on [0, 1].

Now, we define the open ball O, in D[0, 1] with center A,(x € [0,1]) and radius
1/2 as O, = {G € D[0,1] : |G — A;|| < 1/2}. O, is open in D[0, 1], so for any subset
B C[0,1], Op = U,epQ, is also open.

For any x € [0,1], X; = « if and only if Ax, € O,, so if I} is a measurable element
then

P(X, € B) =P(F, € Op)

for any set B C [0, 1]. However, then all subsets of [0, 1] are Lebesgue measurable, which
is false.

We will overcome this difficulty by using the method of Reeds (1976) and Fernholz
(1983). (Note: Dudley (1992, 1994) and Dudley and Norvaisa (1999), and the references
therein proposed the use of p-variation norm with high feasibility of Fréchet differentia-
bility. However, we adopt Hadamard differentiation because the usefulness of Dudley’s

method to the finite population asymptotics is yet unknown to us.)

10



To start with, we will define the distance between a function H € D[0,1] and a set
K C D[0,1] by
dist(H, K) = CI;I61£HH —
where

|H =G| = sup [H(x)— G(x)].

0<z<1

We include the next lemma for completeness.

LEMMA 2.[FERNHOLZ (1983), PP.35-36, LEMMA 4.3.1] Let@: D[0,1]JxR = R
be a function and for any compact set K C DI[0,1], we suppose

mQ(H,t) =0

holds uniformly in H € K. Let ¢ > 0 and let 6, be a sequence such that 4, | 0.
Then for any compact set K C DI[0,1], there exists ng > 1 for which if for all n > no,
dist(H, K) < 6, implies

|Q(H,d,)| <e.

Since, \/n(U, — U) is not a random element of D]0, 1], it may not be measurable and
no probabilistic statement may be made on this term. In order to overcome the difficulty,
Reeds uses the inner probability (Reeds (1976), pp.80-83, Fernholz (1983), p.37). Using
his method, we will obtain the next lemma which is a modification of Fernholz (1983),

p.37 Lemma 4.3.2 for the finite population.

LEMMA 3. Let U, = F, o F5s. Then, for any € > 0, there is a compact set
K C D[0,1] and a positive sequence Sy, | 0 such that

P.(dist(y/Nn/(N — n)(Un —U)K)<énn) >1—c

PROOF. Let (U, — U)* be the continuous version of U, — U defined by Rosén (1964):
it is a constant 0 function in the intervals [0, ) and [, 1] where o and 3 are the smallest
and the largest jump points respectively, and for all ¢ € [a, 3], it is obtained by the
linear interpolation between the left endpoints of constancy intervals for U,, — U. Under
Assumption A, the difference between the original function and the continuous version

is of the order O(n™!), hence we have
(3.1) (U, = U — (U, = U)|| =0(n~") as.
Next, by Proposition 1,
10, = Unll < sup |Fa(Frs(t) = Fa(Fys(0)]
= sup | Fu(x) — Fu(x)

= o(n_l/z) a.s.

11



Combining above inequalities, we have

(0 = U) = (U = U) || < (00 = U) = (U = U)| + [T = U) = (U = U]

= o(n_l/z) a.s.

The random element (Nn/(N —n))"/?(U, —U)* converges weakly to Brownian bridge
Wein C0,1] as min(n, N —n) — oo (Rosén (1964)). It follows that the set of probability
measures P = {Pg,P,,n > 1} is relatively compact, where P,, is a probability measure
of (Nn/(N — n))"*(U, — U)* and Py denotes the probability measure for Brownian
bridge in the space C[0,1]. We also note that the space C0,1] is a completely separable
metric space under the uniform norm. It follows from the converse part of the Prohorov’s
Theorem that P is tight and therefore for any € > 0 there exists a compact set K C C[0, 1]

for which, for any integer n > 1,
P.(K)>1-—e
From the definition of P,, the above equation is tantamount to
P((Nn/(N —n) /> (U, —U) € K) >1—e

We note here that remembering the sample X; = x,,, 1 <i <n where (7y,...,7n)
take all possible permutations of (1,..., N). Denoting “non”-sample X7, i =1,..., N—n
as X7 = z,,, and defining the analogue of the empirical distribution function Fy_, as:

N-—-n

> T(—oo o) (XT).

=1

1
-n

Fioale) = 5

Using the fact
n(F(z) = Fn(z)) = =(N = n)(Fy_,(2) — Fn(2)),

we have
Fole) = Fy(e) = 2" (F5_ (2) — Fu(x)).

n
or equivalently

Fir_a(@) = Fi() = =———(Fu(2) = Fn(2)).

So we may assume here and in the sequel that n/N < 1/2. (This is essentially the same
argument of Erdos and Rényi (1959).)
Since, C[0,1] € D[0,1], K is also compact in D[0,1]. Since ||(U, —U)*— (U, =U)|| =

o(n_%) and by writing \/Nn/(N — n)(U,—U) = \/Nn/(N —n){(U,—=U)— (U, =U)*)+

(U, — U)*}, it can be seen easily that whenever /Nn/(N —n)(U, — U)* € K holds we
have (using n/N < 1/2)

dist(v/ Nn/(N —n)(U, = U), K) < 6x ..

12



It follows that
P.(dist(y/Nn/(N —n)(U, = U),K) < y,) > 1 —c.

It is interesting to note that the empirical distribution function may not be a measur-
able function in D[0, 1] under the uniform norm, while the remainder term is a measurable
function. This can be proved by showing that both the statistical functional and the in-
fluence function are measurable, then the remainder term, as a difference of these terms,
becomes measurable.

It is now possible to evaluate the error under the probability measure.

LEMMA 4. [f K C DI[0,1] is an arbitrary compact set for which
Rem(tH)
[

VNn/(N —n)Rem(U, — U) 2 0.

PROOF. Let ¢ > 0. Then by Lemma 3, there exists a compact set K C D|[0,1] and

—0, as t—0

uniformly in H € K, then

a positive sequence dy, | 0 for which
P.(dist(v/Nn/(N —n)(U, = U),K) < dyn) > 1 —¢/2.
It follows that there is a measurable set £, for which
E, C {dist(y/Nn/(N —n)(U, = U),K) < dx.n}

and

P(FE,) >1—¢

for all n.

We now apply Lemma 2 to Q(H,t) = Rem(tH)/t. We find a constant dy, , | 0 and
a positive integer ng, such that if n, N —n > ng and dist(H, K') < dn, n,

|[\/Nn/(N —n)Rem(y/(N —n)/NnH)| < ¢

follows. Hence, for all n, N —n > ng and H = /Nn/(N — n)(ﬁn — U), we have

P(l\/Nn/(N —n)Rem(U, — U)| < ¢) > P(E,) > 1 —c.

Hence the lemma follows.

REMARK 1.  Under the same conditions of Lemma 3 and Lemma 4, we can prove

v Nn/(N —n)Rem(U, — U) B 0.

PRrROOF. The proof is similar to and simpler than those of Lemma 3 and Lemma 4.

for the unsmoothed case
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4. Asymptotic Normality

We will present and prove our main results of this paper. We will give the asymptotic
normality of the smoothed statistical functionals under the Hadamard differentiability in
Theorem 1. We will also prove in Theorem 2 and Theorem 3 the asymptotic normality
for smoothed and non-smoothed functionals respectively, under the condition which is
given in terms of the original non-smoothed influence function. Combining Theorem
2 and Theorem 3, we claim that the asymptotic distributions of smoothed statistical
functionals are the same as the those of non-smoothed functionals.

For small samples Fernholz (1997) proved that smoothed functionals are more efficient
than non-smoothed ones when some regularity conditions are placed on the influence
function in I.I1.D. settings. For related results for the cases of smoothed bootstrap, we refer
readers to Silverman and Young (1987), Hall, DiCiccio and Romano (1989), Polansky and
Schucany (1997), and the references therein.

THEOREM 1.  Let Xy,..., X, be the sequence of a random sample chosen with-
out replacement from the distribution function with the Assumption A. And we also let
{k,} be the sequence of regular kernels with finite first moment. Let T be a statisti-
cal functional and 7 is the induced statistical functional on DI]0,1] by (2.3). Suppose
7 ts Hadamard differentiable at U with the influence function IF = IF1 g, which is
Lebesque-Stieltjes integrable with respect to functions of bounded variations. Suppose
IF = B[] = 2, IF(x;)/N and 0 < 02, = Var[[F] = N, (IF(x) — IF)?/N < oo.

If the IF satisfies the Lindeberg condition of Erdos-Reényi;
lim ZPT(I:FJ(%) - I;F)2
N0 SN (T () — T0)?
where, P, is the subset of P ={1,..., N} such that

ITF () — ﬁ| > T,/n(l — %)O'N.

Then , as n and N —n — oo,

=0 forany 7 >0,

(T(F,) = T(Fys))/onn > N(0,1),
where 03, = Nox(1 =n/N)/n(N —1) = (N —n)oi /n(N —1).
Proor. It follows from Lemma 1 that

(T(F.) = T(Fns))/on .

= (r(U,) = 7(U))/onn
= 71:(U, —U)/onp + Rem(U, — U)/on
— {3 X} + Rem(, = U)o,

14



Since both the influence function and the functional are measurable, the above equa-
tion tells us that Rem(ﬁn — U) is an random element in D[0,1]. Also, by the cen-
tral limit theorem of Erdés and Rényi (1959) and Hajek (1960), the first term in the
right most side of the above equation converges in distribution to N(0,1) as n and

—n — oo. Also, we note that by Lemma 4 the second term Rem(U —U)/onn(=
WN/ —n)\/(N = 1)/NRem(U,, — U) /oy = /n(N — 1)/(N — n)Rem(U, — U)/ox)

converges to 0 in probability. The theorem follows from Slutzky’s lemma.

The next theorem is the central limit theorem for smoothed functionals under the
Erdos-Rényi condition for the original non-smoothed influence function, which is the
extension of Theorem 1 of Fernholz (1993). In order to prove the theorem, we need the

following lemma which is a modification of Lemma 2 of Fernholz (1993).

LEMMA 5.  Let {k,} be the sequence of regular kernels with finite first moment,
and X1,..., X, be the sequence of a random sample chosen without replacement from the
distribution function with Assumption A. Suppose that Fxngs defined before have bounded
derivatives fys = Fyg. If the function ¢ is bounded function and Lebesque-Stieltjes

integrable with respect to functions of bounded variation.

2 LX) — 6(X) B0,

=1

PrROOF. First we write

= Vi [[ (&l = 1) = o) k(1) dF ().

We divide the range of integration of the inner integral,

VA [ (@ = 1) = skt = Vi [ (dla = 1) dle) (1)t

[t|<bn
[ (8 =) = o) ha(1)d
The second term of the above equation is dominated by
Vi [ 16 =) = o)k (D)l

which converges to 0 from the definition of the regular kernels and the fact that ¢ is a
bounded function.

As for the first term, we integrate the term with respect to Fiy

\F//Mn Pz — 1) — ¢(x))kn(t)dtd Fy(x)
f/|t|<bn / (P(x — 1) — d(a))dEn(2)ka(t)dL.

15



From the assumption, a sequence of functions Fs defined before have bounded deriva-

tives fns for which

1
| Fn — Fys|| = O(ﬁ)-

From the assumption that function ¢ is bounded, it follows that there is a positive
constant C > 0, such that

| [(6e = 1) = o(@))dPys()] = | [ 6w — 1) fus(@)de = [ 6(x) fs(a)da

= | [ #la)(fns(a) = fs(a +1))d]
< Clt].

Hence,

| [ (6l = 1) = o(a))d Py ()
= | [(éle = 1) = é(a))d(Fx() = Fys(z) + Fys(e)|
s|/ww—w—a@M@M@—mem
1 [ (6l = 1) = o(a))d (o)

from the assumption that ¢ is bounded.

By substituting the above into the original equation, we have

\/nb,
< t|kn(t)|dt
SOV [ Itk Old + O(F5)

< 20+/nb, + o(i

N)—>O.

THEOREM 2.  In addition to the conditions of Theorem 1, we assume that IF =
IF1p. s a bounded function and Fng has bounded derivatives.
Also suppose IF = E[IF] = Y8 IF(xi)/N and 0 < 0% = Var[IF] = 2N, (IF(x;) —
IF)?/N < 0.
Replacing the Erdos-Rényi condition of Theorem 1, if the IF satisfies the Lindeberg con-
dition of Erdos-Rényi;

IF(x;) — IF)?
ZJI\?T( (xi) _) =0 forany 7>0,
nN=n—oo 370, (IF (xi) — 1F)?

where, P, is the subset of P ={1,..., N} such that
ITF(x;) — IF| > T,/n(l — E)UN.
N
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Then, asn and N —n — oo,
(T(F,) = T(Fns))/on. = N(0,1),
where 03, = Nox(1 =n/N)/n(N —1) = (N —n)oi /n(N —1).
PrOOF. It follows from Lemma 1 that

(T(F,) = T(Fys))/onn = (7(U,) = 7(U))/onm
=TU<~ U)/on s + Rem(U, — U)/ow,n

= (- S X} o + Rem(Tl, — U)o

Using the argument of Erdos and Rényi (1959) (the same argument in the proof of

Lemma 3). Remembering the sample X; = x,,, 1 < ¢ < n where (7T1,...,7TN) take
all possible permutations of (1,...,N). Denote "non”-sample X*, ¢ = 1,...N —n as
XZ'* = xﬂ'n-l-i'

Using the fact

we have

%(éIF(Xi) - ;IF(@)) =~ (2 IF(XT) = o IF ().

So we may assume that n/N < 1/2.
By Lemma 5, we have (using n/N < 1/2)

N/n(N —nZIF ) —IF(X) 20

The theorem follows from the central limit theorem for the finite population (Erdés and
Rényi (1959) and Hajek (1960)), and Lemma 4.

The last theorem, when compared to the previous Theorem 2, displays that both
the smoothed and non-smoothed statistical functional have the same distribution in the
limit.

THEOREM 3.  Under the same conditions of Theorem 2, we have, asn and N —n
— 00,

(T(F,) = T(Fns))/on. =+ N(0,1),

where o3, = NoX (1 —n/N)/n(N —1) = (N —n)oi/n(N — 1), 0 < o = Var[lF] =
s, (IF(x;) = IF)?/N < oo, and IF = E[IF] = YiL IF(x;)/N.

PrROOF. The proof is performed in a similar manner as those of Theorem 1 and
Theorem 2.
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We first note

(T(F,) = T(Fns))/onn
= (r(Un) = 7(U))/onn
=1,(U, —U)/onn, + Rem(U, —U)/on.,

= (IR v + Rt~ ) v

Since both the influence function and the functional are measurable, the above equa-
tion tells us that Rem(U, — U) is a random element in D[0,1]. Also, by the cen-
tral limit theorem of Erdés and Rényi (1959) and Hajek (1960), the first term in the
right most side of the above equation converges in distribution to N(0,1) as n, N —
n — oo. Also, we note that by Remark 1, the second term Rem(U, — U)/onn.(=
VN/(N —n)\ /(N = 1)/NRem(U, — U)/oy = /n(N — 1)/(N — n)Rem(U, — U)/ox)

converges to 0 in probability. The theorem follows from Slutzky’s lemma.

5. Monte Carlo Simulation

In this section, we present Monte Carlo simulation results for sample median
(5.1) F71(0.5)

and inter-quartile range

(5.2) E710.75) — F71(0.25).

These statistics are often used (ex. Deaton (1997) p.22 Table 1.2. Consumption and
income for panel households, Céte d’Ivoire, 1985-86) because they are less affected by

outliers which may appear in wide class of data.

5.1. Quasi-populations
We use the following simulated log-normal quasi-populations of different sizes whose

mean and standard deviation of the distribution on the log scale is 3 and 0.4 respectively.
(i) generated values of log normal random number of size 1,000

(ii) generated values of log normal random number of size 5,000

(iii) generated values of log normal random number of size 10,000

We use these populations because they approximate many economic variables such

as household income and savings.
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5.2. Construction of the Confidence Intervals
To construct the confidence intervals, we calculate the influence functions of the
median and the inter-quartile range.
As is well-known(cf. Huber (1981)), the influence function of a non-smoothed median
is
Ay_p-105) — 0.5
f(F=10.5))

{ 72“17:3(0.5)) x < F71(0.5)

IFT7F($) =

2f(F—11(0.5)) z > F71(0.5)

and the influence function of a non-smoothed inter-quartile range is

A$_F—1(0.75) - 1 ‘I‘ 075 N Al’—F_l(O.QE)) - 1 ‘I‘ 025
FF=1(0.75)) F(F=1(0.25)) ’

IFT7F($) =

where F'is an underlying distribution function and f is its density.
In order to obtain the influence functions of the smoothed functionals, we utilize the

following Lemma of Fernholz (1993).

LEMMA 6.[FERNHOLZ (1993), PROPOSITION 2]  Let k be fized, and define the

smoothed functional T for general distribution function G as;
(5.3) T(G) = T(G k).
If T is Gateaux differentiable in a neighborhood of Fys including F' = F x k, then

(5.4) IF%,F = IFT,F * k

Utilizing this lemma, we calculate the influence functions of smoothed functionals.
Let K(x) = [ k(t)dt be the distribution function with respect to kernel k, and let f
be the density function with respect to the smoothed (cumulative) distribution F = Fxk.

Then, the influence function of the smoothed median is

Fe (2) = K(z — F70.5)) = 0.5
N V()

and the influence function of the smoothed inter-quartile range is

C K(z = FP7H0.75)) = 14075 K(x— F7(0.25)) — 1 4+0.25

F7.plr) = FF1(0.15)) FF1(0.25))

In our simulations, we smooth two functionals with uniform distribution /[—0.1,0.1],
which satisfies the conditions of regular kernel and it is easy to calculate the convolutions.
Using these influence functionsd we construct the confidence intervals as follows(we

describe the non-smoothed case, smoothed case is similar):
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(i) Calculate the variance of the influence function o3, as

(5.5) o3 = Var[lF] = %(IF(:}(;Z) —IF)?/N,
(5.6) IF = E[IF] = ﬁ TF(z;)/N.

(ii) Approximate
(5.7)

with standard normal distribution (0%, = Nox(l —n/N)/n(N —1) = (N —
n)ox/n(N —1)).

(iii) Construct a one-sided 100(1 — «) confidence interval as
(5.8) (= 00, T'(F,) + 0N n2al
and a two-sided 100(1 — «) confidence interval as
(5.9) [T(F,) = onnzae T(F) + 0 nzaps]
where z, is the upper a% point of the standard normal distribution]

5.3. Results of Monte Carlo Simulations

In order to evaluate the fruits of theoretical facts, we calculate the empirical coverage
ratio of confidence intervals constructed by our normal approximations. The simulated
samples of sampling fractions 10% and 30% are chosen 100, 000 times repeatedly, then the
relative frequencies that the intervals contain the true value of parameter are evaluated.
We can judge that the intervals are precise when the empirical coverage probability is close
to the nominal confidence coefficient. Although readers may claim that these sampling
fractions are extraordinarily high in reality, in a stratified population or in a selected unit
of population, fractions of these types are not exceptional.

In what follows, the numbers in parentheses in tables for two-sided intervals are the
lengths of the intervals.

As a whole, except for the slightest difference between the smoothed and the un-

smoothed cases, we can see the following features:

(i) All the intervals, especially the cases with population sizes larger than 5000, display

better features for both the one-sided and two-sided situations.

(ii) The case when the sampling fraction is 10% is better than the case of a sampling

fraction 30% in small sample situations.
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(iii) The intervals of higher confidence coefficients perform better than those of lower

confidence coeflicients]

Compared to the case of a sampling fraction of 10%, the case of 30% seems to be
not as good when population and sample sizes are relatively small. However, our normal
approximations show good performance for large size samples, so they are very useful for

application to large scale sample surveys.

Table 1. One-sided confidence intervals for sample medians(sampling fraction10%).

90% (one-sided) 95%(one-sided) 99%(one-sided)
sample size 100 0.95278 0.98441 0.99839

population size 1000

sample size 500 0.91295 0.96173 0.99483
population size 5000

sample size 1000 0.89981 0.9559 0.99309
population size 10000

Table 2.  Two-sided confidence intervals for sample medians(sampling fraction10%, length of

intervals in parentheses).

90% (two-sided)  95%(two-sided) 99%(two-sided)

sample size 100 0.93512 0.96572 0.99494
population size 1000 (3.142083) (3.744022) (4.920478)
sample size 500 0.90636 0.95292 0.99251
population size 5000 (1.405430) (1.674672) (2.200892)
sample size 1000 0.89818 0.94831 0.99091
population size 10000 (0.9937106) (1.184079) (1.556143)
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Table 3. One-sided confidence intervals for sample medians(sampling fraction30%).

90% (one-sided) 95%(one-sided) 99%(one-sided)
sample size 300 0.93353 0.98207 0.99866

population size 1000

sample size 1500 0.90336 0.95278 0.99256
population size 5000

sample size 3000 0.93079 0.95512 0.99066
population size 10000

Table 4. Two-sided confidence intervals for sample medians(sampling fraction30%, length of

intervals in parentheses).

90% (two-sided)  95%(two-sided) 99%(two-sided)

sample size 300 0.91039 0.96548 0.99424
population size 1000 (1.599870) (1.906363) (2.505385)
sample size 1500 0.88282 0.93482 0.99091
population size 5000 (0.7156098) (0.8527015) (1.120640)
sample size 3000 0.90292 0.94974 0.98661
population size 10000 (0.5059727) (0.6029035) (0.7923494)

Table 5. One-sided confidence intervals for smoothed sample medians(sampling fraction10%).

90% (one-sided) 95%(one-sided) 99%(one-sided)
sample size 100 0.95445 0.98435 0.99834

population size 1000

sample size 500 0.91447 0.96367 0.99552
population size 5000

sample size 1000 0.90483 0.95786 0.993
population size 10000
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Table 6. Two-sided confidence intervals for smoothed sample medians(sampling fraction10%,

length of intervals in parentheses).

90% (two-sided)  95%(two-sided) 99%(two-sided)

sample size 100 0.93529 0.96752 0.99521
population size 1000 (3.165274) (3.771655) (4.956795)
sample size 500 0.90714 0.95581 0.99304
population size 5000 (1.415939) (1.687195) (2.217350)
sample size 1000 0.89895 0.95001 0.99115
population size 10000 (1.000993) (1.192757) (1.567548)

Table 7. One-sided confidence intervals for smoothed sample medians(sampling fraction30%).

90% (one-sided) 95%(one-sided) 99%(one-sided)
sample size 300 0.93533 0.98113 0.9987

population size 1000

sample size 1500 0.91001 0.95471 0.99343
population size 5000

sample size 3000 0.93079 0.95512 0.99066
population size 10000

Table 8. Two-sided confidence intervals for smoothed sample medians(sampling fraction30%,

length of intervals in parentheses).

90% (two-sided)  95%(two-sided) 99%(two-sided)

sample size 300 0.90517 0.96556 0.99476
population size 1000 (1.611678) (1.920433) (2.523876)
sample size 1500 0.88967 0.94752 0.99132
population size 5000 (0.720961) (0.8590779) (1.129020)
sample size 3000 0.90915 0.95047 0.98905
population size 10000 (0.5096809) (0.6073221) (0.7981564)
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Table 9. One-sided confidence intervals for sample inter-quartile ranges(sampling fraction10%).

90% (one-sided) 95%(one-sided) 99%(one-sided)
sample size 100 0.87794 0.94572 0.99329

population size 1000

sample size 500 0.90063 0.95342 0.99092
population size 5000

sample size 1000 0.89934 0.95181 0.99202
population size 10000

Table 10. Two-sided confidence intervals for sample inter-quartile ranges(sampling fraction10%,

length of intervals in parentheses).

90% (two-sided)  95%(two-sided) 99%(two-sided)

sample size 100 0.92177 0.96616 0.99485
population size 1000 (4.249439) (5.063518) (6.65459)
sample size 500 0.91433 0.95735 0.99087
population size 5000 (1.943841) (2.316229) (3.044041)
sample size 1000 0.919 0.96182 0.99323
population size 10000 (1.373149) (1.636208) (2.150341)

Table 11. One-sided confidence intervals for sample inter-quartile ranges(sampling fraction30%).

90% (one-sided) 95%(one-sided) 99%(one-sided)
sample size 300 0.85486 0.9187 0.98698

population size 1000

sample size 1500 0.91475 0.95681 0.99182
population size 5000

sample size 3000 0.91218 0.95477 0.99003
population size 10000
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Table 12. Two-sided confidence intervals for sample inter-quartile ranges(sampling fraction30%,

length of intervals in parentheses).

90% (two-sided)  95%(two-sided) 99%(two-sided)

sample size 300 0.89541 0.9546 0.99358
population size 1000 (2.163709) (2.578217) (3.388351)
sample size 1500 0.91531 0.96037 0.99353
population size 5000 (0.9897555) (1.179366) (1.549950)
sample size 3000 0.9172 0.96021 0.99273
population size 10000 (0.6991734) (0.8331163) (1.094900)

Table 13.  One-sided confidence intervals for smoothed sample inter-quartile ranges(sampling
fraction10%).

90% (one-sided) 95%(one-sided) 99%(one-sided)
sample size 100 0.879 0.94585 0.99331

population size 1000

sample size 500 0.9024 0.95407 0.99073
population size 5000

sample size 1000 0.89808 0.95104 0.99214
population size 10000

Table 14. Two-sided confidence intervals for smoothed sample inter-quartile ranges(sampling

fraction10%, length of intervals in parentheses).

90% (two-sided)  95%(two-sided) 99%(two-sided)

sample size 100 0.92194 0.96566 0.99518
population size 1000 (4.258238) (5.074003) (6.668369)
sample size 500 0.91574 0.95783 0.99081
population size 5000 (1.950190) (2.323794) (3.053983)
sample size 1000 0.91763 0.96177 0.99357
population size 10000 (1.376929) (1.640712) (2.156260)
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Table 15. One-sided confidence intervals for smoothed sample inter-quartile ranges(sampling
fraction30%).

90% (one-sided) 95%(one-sided) 99%(one-sided)
sample size 300 0.8555 0.92003 0.98739

population size 1000

sample size 1500 0.91652 0.9582 0.99218
population size 5000

sample size 3000 0.91179 0.95488 0.99038
population size 10000

Table 16. Two-sided confidence intervals for smoothed sample inter-quartile ranges(sampling

fraction30%, length of intervals in parentheses).

90% (two-sided)  95%(two-sided) 99%(two-sided)

sample size 300 0.89756 0.95435 0.99312
population size 1000 (2.168189) (2.583556) (3.395367)
sample size 1500 0.91756 0.96083 0.99348
population size 5000 (0.9929883) (1.183218) (1.555012)
sample size 3000 0.91782 0.96035 0.99291
population size 10000 (0.7010979) (0.8354095) (1.097914)
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Appendix
The proof of Proposition 1 will be shown along the lines of Fernholz (1991), and for
this purpose we first show the following lemma. A covering C' of R is a collection of

intervals whose union is R. The intervals need not have finite length.

LEMMA 6. Let Xy,..., X, be a stimple random sample without replacement from a
finite population with distribution function Fx. Let {C,} be a sequence of coverings of R
such that the number of intervals in each C,, is O(n") for some constant \. Suppose that
maxyec, Pry(I) = maxjee, Pr (X € 1) = o(n_l/z) where Pp, stands for the probability
generated by Fn. If T, is the mazimum number of X s with values in any I € C,,, then

1,
7

— 0,

asn, N — oo a.s..

PROOF. For each n > 1, define Y} as the number of X;’s with values in [ € ;. Then
Y7 is a random variable from a hypergeometric distribution with probability function

N\ (N (=)
ply) = ( Y )((N)ny ) , y=0,1,...,min(n, N77),

where 7% = Pp, (I). Note that 7* = o(n="/2) as n, N — oo.
For any ¢ > 0, and k = |ey/n], we have
P(T, > ey/n) < Z P(Y; > ey/n) = Z P(Y; > k).
IeCy, IeCy,

Using the well known identity of hypergeometric distribution,
ply +1) (N7* —y)(n —y)

ply) W+ DN =Nr—nty+1)°
max(0,n + N7* — N) <y <min(n, N7*) — 1,

we have the following inequalities for & > nn* (See Feller (1968) for binomial case).
DN =)L =7+ (n—k)+1)

(R DN = m)(L— ) + (n— k) + 1) — (N — k)0 — &)
— P(¥; = K)O(L),

P(Y; > k) < P(V; = k)

from 7 = o(n=1/2).
It follows from Stirling’s formula that
by 1 (N7*)(N — Na*)n(N — n) 12
(Yr=k) ~ 27k(Nm — k)N(n — k)(N —n — (N7~ — k)
( N(1L —7*)(N = n) )N( N )N”*
N(N —n— (Nm*—Fk)) N1 —=ma)(N(l —7*) — (n —k))

(i) (i)
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Here we have

( (N7*)(N — N7*)n(N —n)

1/2
27Tk(N7T* . k)N(n _ k)(N o — (NT[‘* — k))) = O(n—1/4)

N —)(N=n) \"
(N(N—n—(Nw*—k))) =0

Nr* Nn*
(N(l_ﬂ'*)(N(l—Tr*)_(n_k))) = O(l)

So for sufficiently large n, N and a constant C < oo,

P(Y; > k) < C(%)ﬁ(ﬁﬁ)”

Recalling the fact .
( n ) — o/AH0(1)
n—e/n 7

we have

nﬂ-* eﬁ
< E\/ﬁ
P(Y1>k)_C<6\/ﬁ) e

< (lemeVn

for some constants C and C’ and sufficiently large n, as k = |ey/n| > nr* for large n.
Therefore
P(T, > eyn) <C' ) e~V = O(nA)e_Eﬁ

IeCy

since the number of intervals in C, is O(n*). Hence
Y P(T, > ey/n) < oo,
n=1

and since € > 0 was arbitrary, the first Borel-Cantelli Lemma implies that

Now we will prove the proposition.

PROOF. Define the function ¢) on Ry by
Q1) = sup(F(x +1) — Fy(z).

It is easily seen that Q(0) =0, limi—. Q) = 1,and

Qs +1) = sup(Fn(z + s +1¢) — Fiv(z))
= Sl;p(FN(l' +s+1t)— Fn(e+1t)+ Fy(e +t) — Fy(a))
< Sl;p(FN(l' +s+t)— Fn(z+1t)+ Sl;p(FN(l' +1) — Fn(x))

I
o
=
_|_
<
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Since {k,} is regular, there exists a positive sequence {b, } satisfying the condition of
Definition 1. We may assume b, ! = o(n) without any restrictions, or else we may replace
b, by max{b,,n"/4}.

Let Q, = Q(b,) and define zg = —o0,z; = F5'(:Q,) for :Q,, < 1 and z; = oo for
k= inf{i : 1Q, > 1}. The intervals I} = (—o0,z1],lz = (z1,22],..., [ = (¥)-1,00)
define a covering €, of R.

From Assumption A,
Q) = Q(s)] < |sup(Fiv(a +1) = Fiv(2)) = sup(Fy (@ + s) = Fn(2))]
< 2M|t—s|—|—0(%).
So, we have
P%Uﬁ:}%@ﬂ—ﬁwwfﬁg2Qn§4MM+IK%J:om*ﬂ)

The number of intervals in (), satisfies the relationship k < Q' +1. Since b, ' = o(n)
as n — oo we have nb, — oo and hence Q(nb,) — 1, so for sufficiently large n, Q(nb,) >
1/2. We see @' = O(n) from Q(nd,) < nQ(b,) = nQ,. Therefore {C,} satisfies the
assumption of Lemma 1.

For any = € R, « € [; for some j, we have (x —b,) € [;Ul;_1 and (z+b,) € [;U ;4.

Hence if |t| < b, then
27,

ValFy(e —1) = Fy(w)] < Nk

where T), is defined as in Lemma 6. Therefore,
Vil Fu(z) = Fo(z)] < \/ﬁ/ [Foule = 1) = Fu ()| |k (t)]di
SV [ B = ) = E(a) a0
t<by
V[ IR =0 = B0
> n
2T,

Vv Jiil<s,

The first term of the last inequality converges almost sure to zero by Lemma 1 and the

<

oDl [ ka0

second term converges to zero since {k,} is a regular sequence. The proposition follows.

COROLLARY 1.  Under the assumption of Proposition 1,
(a) The smoothed and non-smoothed Kolmogorov-Smirnov statistics \/msup,, | F,(x) —
Fn(2)| and /nsup, |F,(x) — Fn(2)| have the same asymptotic distribution.
(b) For x such that 0 < f; < Fy(x) < fo < 1 in sufficiently large N, the normalized

smoothed empirical process has a normal distribution as a limit

Vi(EL(x) = Fy(2))/on. <5 N0,1), n,N —n — oo,
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where on, = (N —n)/(N —1))Fn(z)(1 — Fn(x)).

PRrROOF. By triangular inequality,

Visup [Fu(z) = Fy(x)] = Vnsup |Fu(a) = Fo(2))]
< Vsup | Fu(x) = P ()]
< Vusup [Fo(z) = Fy()] + v/nsup |[Fu(@) = Fu(2)].
Hence, (a) follows from proposition 1.
Dividing
VilEu(z) = Ex(@)} = Va{F(2) = Fo(2)} + Vol Fu(e) = Fx(2)},
(b) follows from the proposition and the asymptotic normality of the hypergeometric

distribution(Eeden and Runnenburg (1960)): /n{F,.(z)— Fnx(z)}/o KN N(0,1) as n and
N —n — oc.
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