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SUMMARY

We call the realized variance (RV) calculated with observed prices contaminated by microstructure
noises (MNs) the noise-contaminated RV (NCRV) and refer to the component in the NCRV associ-
ated with the MNs as the MN component. This paper develops a state space method for estimating
the integrated variance (IV) and MN component simultaneously. We represent the NCRV by a
state space form and show that the state space form parameters are not identifiable; however, they
can be expressed as functions of fewer identifiable parameters. We illustrate how to estimate these
parameters. The proposed method is applied to yen/dollar exchange rate data.
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1 Introduction

The variance of financial asset returns is known to change over time. More specifically, the vari-
ance, or the square root of the variance (volatility), tends to be large (small) following successive
large (small) variances in previous periods. This phenomenon is known as “volatility clustering”.
A huge number of researchers have tried to estimate these changing variances because their values
are crucially important for option pricing, risk management, optimal portfolio construction, etc.
There are two popular classes of models for this sort of volatility dynamics, namely, generalized
autoregressive conditional heteroskedastic (GARCH) models and stochastic volatility (SV) models.
Based on GARCH or SV models with estimated model parameters, one can estimate the changing
variances. See, for example, Bollerslev et al. (1994), Palm (1996) and Zivot, (2008) for comprehen-
sive surveys on GARCH models, Ghysels et al. (1996) for a review of some of the older papers on
SV models and Shephard (2005) for a list of selected papers in the SV model literature.

Our main objective in this paper is to estimate the changing variances, or integrated variance
(IV). The IV is a measure of the variability of financial asset returns over a specified period, for
example, a day (a formal definition of IV will be given in Section 2). Recently, a new class of
estimators for the IV has been developed by Barndorff-Nielsen and Shephard (2001), Barndorff-
Nielsen and Shephard (2002), Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen,
Bollerslev, Diebold and Labys (2001). The estimator is called the realized variance (RV). The RV
employs high frequency financial time series data such as minute-by-minute return data or entire
records of quote or transaction price data. The RV is a model-free estimator in the sense that we
do not have to specify the volatility dynamics. Under moderate assumptions, the RV converges in
probability to the IV, as the sampling frequency tends to be high.

One of the key assumptions needed for the consistency of the RV is that there are no measure-
ment errors in observed log-prices. The measurement error is called microstructure noise (MN)
and emerges because of, for example, discreteness of prices, bid ask bounce and infrequent trading,
etc. When this assumption is violated, the RV is no longer a consistent estimator for the IV. It can
be shown that, under the existence of MN, the RV diverges as the sampling frequency increases.
Several alternative estimators of the RV, which are consistent even under the existence of MN,
have been proposed by Zhou (1996), Zhang et al. (2005), Hansen and Lunde (2006), Bandi and
Russell (2006) and Barndorff-Nielsen et al. (2008). See also Bandi and Russell (2008), who consider
a mean-squared-error optimal sampling theory for reducing the effect of MN.

We call the RV calculated with observed log-prices contaminated by MN the noise-contaminated
RV (NCRV) and refer to the component in the NCRV associated with the MN as the MN compo-
nent (a formal definition of the NCRV and MN component is given in Section 2.3). We propose a
state space approach to estimating the IV and MN components simultaneously. Our approach is
an extension of the state space method proposed by Barndorff-Nielsen and Shephard (2002), who
consider a situation with no MN. In this situation, Barndorff-Nielsen and Shephard (2002) show
that the IV follows an ARMA process' for some specific continuous—time SV models. Barndorff-
Nielsen and Shephard (2002) also show that the RV can be represented as a state space form,
namely, the sum of the IV and an discretization error, which is a white noise uncorrelated with
the IV. Thus, given the state space form parameters, one can apply the Kalman filter to filter out
the discretization error. Simulation study by Barndorff-Nielsen and Shephard (2002) demonstrates
that the estimates of IV series by Kalman smoother have much smaller mean squared error than the
RV series itself. This ARMA representation result is further developed by Meddahi (2003). Med-
dahi (2003) shows that the IV follows an ARMA process for a general class of continuous time SV
models, which is called the square root stochastic autoregressive variance (SR SARV) model (An-
dersen, 1994; Meddahi and Renault, 2004). Meddahi (2003) derives explicit relationships between
the ARMA model parameters and the SV model parameters.

We develop the state space method by Barndorff-Nielsen and Shephard (2002) for dealing with
the problem of MN. We assume that an observed log-price is the sum of the true log-price and an
ii.d. MN. We represent the NCRV by a state space form in that the NCRV is the sum of three
unobserved components: the IV, which follows an ARMA process, a white noise (discretization
error) and a MN component, which follows a MA(1) process. By applying the results of Granger
and Morris (1976), we show that the sum of these three components, namely, the NCRV, follows

We interchangeably use the term “ARMA process” and “ARMA model” in this paper.



an ARMA process. This ARMA process can be regarded as the (unique) reduced form of the state
space form. The existence of MN component introduces many complexities in the identification of
the state space form parameters. It is shown that the number of state space form parameters of the
NCRYV is more than the autocovariance structure of the NCRV can uniquely determine. In other
words, the state space form parameters of the NCRV are not effectively identified in the sense that
different sets of parameter values can give the same autocovariance structure. See Section 4 for
more details.

We show that the state space form parameters can be expressed as functions of the uncondi-
tional mean and variance parameters of the underlying continuous time SV model and parameters
regarding MN (the variances of the MN and its square). Then, we prove that these parameters
are uniquely identified. We illustrate how to estimate these identifiable parameters and the state
space form parameters. With estimates of the state space form parameters, one can estimate the
IV and MN components simultaneously by applying the Kalman filter to the state space form.
One advantage of our method, compared with other existing methods, is that it can filter out not
only the MN components but also the discretization errors. The proposed method is applied to
yen/dollar spot exchange rate data. We find that the magnitude of the (daily) MN component is,
on average, about 21% — 48% of the (daily) NCRV, depending on the sampling frequency.

The rest of the paper is organized as follows. In the next section, we introduce the class of
SV models employed in this paper and define formally the RV, IV, MN and MN component. In
Section 3, we briefly summarize the results in Meddahi (2003) on the ARMA representation of
the IV. In Section 4, we explain our state space approach in detail. In Section 5, we conduct an
empirical analysis applying our method to the yen/dollar spot exchange rate. The last section
provides a summary and concluding remarks. Appendix A provides details on the derivations of
the equations in the text. Some results are presented in Appendix B.

2 SR-SARV model, IV, RV and MN

2.1 Square root stochastic autoregressive variance (SR-SARV) model

Let p(t) be the log of the (efficient) spot price at time ¢. Throughout the paper, we assume that
p(t) follows the SR-SARV model considered in Meddahi (2003), which is given by the following
class of continuous time SV models:

dp(t) = o()dWy, o*(t) = 0 + wi PL(f(t) + w2 Pa(f(1)), (1)
where f(t) is a state-variable process and the functions P;(-) and Py(-) are defined so that:

E[P/(f(1)] = EIP(f(8)] = 0, var[Py(£())] = var[P2(£(8))] = 1,
cov[Pr( (1)), Po(f ()] = 0, @)

By(f(#), Vh>0,

where \; and )y are positive real numbers. The unconditional mean and variance of o2(t) are
E[0%(s)] = 0? and var[o?(s)] = w? + w3, respectively. Let x; = exp(—A;) and k2 = exp(—\z).
Hereafter, we work mainly with x; and ks instead of A\; and Ay because it is more convenient for
describing our results. Thus, the model has a total of five free parameters: 0%, w}, w3, kK1 and ks.

The model given in (1) and (2) is called the “two—factor SR-SARV model”. When wy, = 0, the
model is refereed to as the “one factor SR SARV model”. The SR-SARV model includes many
known models, such as constant elasticity of volatility processes, GARCH diffusion models (Nelson,
1990), eigenfunction stochastic volatility models (Meddahi, 2001) and positive Ornstein—Uhlenbeck
Levy-driven models (Barndorff-Nielsen and Shephard, 2001). See Meddahi (2003) for more details.

2.2 Integrated and realized variances

Given the process of 02(t), the TV is defined as

t
1V, = / o’(s)ds, t=1,2,..,
t

—1



where the unit of ¢ is determined depending on the research objective. For example, if the researcher
is interested in changes in variances of daily (weekly) returns, ¢ is interpreted as a day (week).

Under moderate assumptions, we can consistently estimate the IV by the estimator known as
the RV, which is defined as

where rt(m) =p(t) — tf = ft 1 o(s)dW (s), and m is a positive integer. Here, and hereafter,

the notation “(m)” 1mp11es that its Value depends on the sampling frequency m. For example, if
t denotes a day and we take observations every five minutes, then m = 288. In this case, rt(288)
denotes a five minute return, because one day is 5 x 288 minutes. It is well known that, as m — oo,
RV;(m) 51 (see, e.g., Barndorff-Nielsen and Shephard, 2002).

For the two—factor SR-SARV model, the variance and autocovariances of I'V; are expressed in
terms of the SV model parameters as:

2wi(ky —logrr —1)  2w3 (k2 — logky — 1)

vV = g )2 (log r2)?

wi(l — k1) wi(l— ka)?

(log #1)? (log r2)?

cov[IV;, IV, 4] = and (3)

Wik (1 — Kk1)?  wika(l — Ka)?
(log k1)? (log k2)?

cov[IVi, IV; o] =

Let dgm) = RVt(m) — IV} and O'Z(m) = Var[dgm)]. For m > 1, we have:

m 2 4 4 2 1 1 4 2 1 1
oy = S SO (e gy — 1) + ( 20 (kg —logry —1). (4)

m  (logr)? log k2)?

It can be shown that Ji(m) — 0 as m — oco. See Meddahi (2003) for the above results.

2.3 MN component

Now assume that the observed log-price p*(t) is contaminated by a measurement error or MN so
that:

p(t) = p(t) +&(t).
We assume the following properties of MN g(t).
Assumption 1
(a) &(t) ~i.i.d.(0,02) with w? = var[e*(t)] < oc.
(b) e(t) is independent of p(s) for all s and t.

We do not assume any specific distribution for £(t).

*(m)

The observed return r, is defined as:

M = pt ) -t (- L) =™ ™, (5)

where e{™) = e(t) — e(t — L) It is easy to show that

E [em =0, var [eﬁ"‘)} =202 and cov [eim)=e(m)' } - { N i 1?



Note that var[e!™] and cov[eim),eiTL] do not depend on m. We define the NCRV, denoted by

m

RVt*(m)7 as RVt*(m) = r:glfi. We write
i=1 ™
m 2
RV, (m) = Z (T§T1)+# + e(ih ; ) = RVt(m) + ugm) (6)
i=1

ugm) =2 ZTET) ; eimi

Note that, unlike RVt*(m), ugm) is not necessarily positive because the first term of ugm) may be

negative. We call ugm) an MN component. We propose a way of estimating the MN component as
well as the IV in a later section.

In Appendix A, we show that:

E [u,ﬁ’")} =2mo? and

80202 4+ 2(2m — 1)w? + 4mol t=s, 7

(m)  (m) : s : (7)
cov[ut Uy }: w? t=s=+1,
0 otherwise.

Thus, ugm) has the autocovariance structure of a MA(1) process. Assume that the MA(1) process
is expressed as:

™ =M g™ oM™, g™ ~ WN(0, 0™, (8)
where WN (0, a) denotes a white noise process with variance a. The mean and autocovariances of
ugm), in terms of cSZ”), 953”) and Ug(m), are:

E [uim)] = c&m) and

2(m)y _2(m) _
(m)  (m) (1+(€ﬁ) 2()Z§ = ©)
cov [ut , Ug = 0., o, t=s=£1,
0 otherwise.

Later, we utilize these two different expressions of the moments of ugm) to derive the implicit

relationships among the SV and MA(1) process parameters.

3 ARMA Representation of IV

In this section, we briefly summarize the results in Meddahi (2003) on an ARMA representation
of IV for SR-SARV models.

3.1 One-factor case

Meddahi (2003, Proposition 3.1) shows that if the true process of p(t) follows a one factor SR
SARV model, then IV; follows an ARMA(1, 1) process:

Vi =crv +kiIViy +mp + 01m1, (10)

where &, is defined as in the statement below (2), 7; is a white noise process with var(n;) = o}

and cov(n,,d\™) = 0 for all t and s. Other ARMA(1, 1) model parameters ¢y, 6; and ol are



expressed in terms of the one—factor SR-SARV model parameters o2, w? and &, as:

1—+/1—4p?

C[V:(l—lil)O'Q, 91:T7
(1 + &?)var[IV;] — 2k cov[IV;, IV 1]

Tn = 1+6? ’

SN

where

—k1 + corr[IV;, IV, 4]
14 k3 — 2k corr[IVy, IV 1]

p=
It can be shown that p is equal to 61 /(1 — 0}), i.e., the first order autocorrelation of the MA(1)
process 1; + 6111 in (10). The corr[IV;, IV;_4] is given by

(1 — I€1)2
2(/‘&1 — lOgKZl — ].) '

corr[IVy, I'Vy 4] =

Note that corr[IV;, IV;_41] is a function of k1 and does not depend on other SV model parameters,
which, in turn, implies that #; is also a function of only x;. This is not true for the two—factor
case. This substantially simplifies the identification problem of the state space form of the NCRV,
as we will see in Section 4.

3.2 Two—factor case

Meddahi (2003, Proposition 3.3) shows that if the true process of p(t) belongs to the two—factor
SR SARV model, then IV; follows an ARMA (2, 2) process:

IVy = crv + (k1 + 62)IVi1 — kikolVi_o + 1y + 01151 + 021 —o, (12)
where k1 and k9 are defined as in the statement below Equation (2), n; is a white noise process
with var(n:) = 0727 and cov(n, dgm)) =0 for all t and s. Let ¢1 = k1 + k2 and ¢o = —k1 k2.2 Other

ARMA (2, 2) model parameters in (12) ¢yy, 61, 62 and 0727 are expressed in terms of the two factor
SR SARV model parameters o2, w?, w3, k1 and Ky as:

1= Vis+1p
T2 )

Vds+1—-2s—1
crv=(1—¢1— ¢2)0%, b ;

2 =

P2 2s

(13)

o2 = mvar[IVy] — 2macov[IVy, IVi_1] — 2¢ocov[IV;, IV;_s]

nT 1+67 +65 ’
where
mo=14¢7 + ¢35, m=¢i(1— o),
2 1 1 2 2
s = —p—g [1 + — —sign(pQ)\/<1—|— —> — p_;-l :
i 20:) 43|

(14)

—¢1(1 = ¢y) + (1 + ¢} — do)corr[IVy, IV 1] — drcorr[IV, IV; ]
PL=T+ 67+ ¢2) — 261 (1 — do)cort[IVy, IV, 1] — 2acort[TV;, IV, o]’

7(152 — ¢1COH‘[I‘/,5, I‘/tfl] + COIT[I‘/t, I‘/t,Q]
(1 + (;5% + (;5%) = 2¢1 (1 — ¢o)corr[IV;, IV 1] — 2¢acort[IV;, IV, o]’

P2 =

2We can rewrite the ARMA(2, 2) form in (12) with a more familiar parameterization, i.e., IVy = cjy +¢11V;_1 +

- d141/d7+402

¢2IVi_o+mt+01mi—1 +02m:—2. The expressions of k1 and k2 in terms of ¢; and ¢ are given as k1 = 5

61—1/87+402
2

and ko = , respectively.



and sign(p2) = 1 if po > 0 and sign(p2) = —1 if po < 0. We assume that p, # 0, which implies
that 6 # 0. As in the one factor case, we can show that p; = (61 + 6162)/(1 + 67 + 62) and
p2 = 02/(1+ 6% 4+ 63), i.e., p1 and p are the first and second order autocorrelations of the MA(2)
process 1. + 611:—1 + Oam—o in (12), respectively. See Meddahi (2002) and Meddahi (2003) for
more details.

4 State Space Approach

In this section, we explain our state space approach in detail. Our state space approach is in
the same spirit as the state space method used in Barndorff-Nielsen and Shephard (2002), who
consider the situation without MN. First, we give a state space form of the NCRV in Section 4.1.
The existence of MN components requires additional efforts for checking the identification of the
state space form. In Section 4.2, we show that the state space form parameters are not identifiable;
however, they can be expressed as functions of fewer identifiable parameters. We illustrate how to
estimate these identifiable parameters in Section 4.3.

In what follows, we assume that ws = 0 for ease of exposition. Corresponding results for the
two—factor case can be derived in a similar manner and are summarized in the Appendix B.

4.1 State space form of the NCRV
Substituting RVt(m) =IVi + dgm) into (6), we have:
RV™ = 1V, +d™ + uf™. (15)

Let n; and ft(m) be denoted by the state variables a; and Bt(m), respectively. From (8), (10) and

(15), we have the following state space form of RVt*(m):

Observation equation

IV
(m)
Ryy™ = [1 10 0] " |+d™, (16a)
it
(m)
t
State equation
I‘/;f Cry K1 0 91 0 I‘/;ffl 1 0
(m) (m) m) (m)
Uy _ | cu 0 0 0 6y Uy_q 0 1 Nt 16b
ay o |Tlo oo o o | T 0 5’”)’()
gl Lol Looo o flam] Lo
where
™ { 0 ] o™ 00
) ~ 0 0 ol 0 . (16¢)
m 2(m
Given the values of ¢y, k1, 61, 0;27, cSZ”), 953”), Uz(m) and O'Z(m), we can estimate IV; and ugm) by

applying the Kalman filter to the state space form.? One problem of the state space form is how to
estimate those parameters. One may simply think that we could estimate them directly from the
state space form by, for example, quasi-maximum likelihood (QML) estimation under Gaussian

3Note that here nt and & do not follow a Gaussian distribution. In this case, the Kalman filter provides the best
linear unbiased estimator (Anderson and Moore, 1979). See Durbin and Koopman (2001) for more details on the
Kalaman filter.



noise assumption. We show; however, that this approach is not applicable for the state space form
given in (16a) (16c¢).

In general, parameters of a state space form are not necessarily identified (see, for example,
Hamilton, 1994, p.388). More precisely, they are not identified in the sense that there are infinitely
many combinations of the parameters that give the same autocovariance structure. Thus, we have
to check whether state space form parameters are uniquely identified before proceeding to their
estimation. We consider this problem in the next subsection. In fact, we show that the above
parameters in the state space form cannot be uniquely identified.

4.2 Identification of model parameters

Because RV, is the sum of three components, IV; (an ARMA(1, 1) process), di"™ (a white

noise process) and u,ﬁ’") (an MA(1) process), RVt*(m) itself follows an ARMA(1, 2) process (see
Granger and Morris, 1976) so that it is expressed as:

(1= s LRV = et + 1+ 0™ L+ o™ 12)(™ o™ ~ WN(0,02™). (17)

Note that the AR coefficient x; is the same as that of the I'V; in (10). The ARMA model repre-
sentation of a state space form is commonly referred to as a reduced form or ARMA reduced form.
Parameters of the ARMA reduced form are identifiable.
From (8), (10) and (15), we have
(1 -k L)RV;"™ = (1= wy L)IV; + (1 — 5y L)d™ + (1 — 5y L)ui™
= cy +n+0m— + dﬁm) - I€1d§:n% + ft(m) (18)

+(1— m)c&m) + (Gq(fn) — /cl)ft(inl) — megm)gt(’fg.

The two expressions on the right-hand sides in (17) and (18) are of the same process and hence
their means and autocovariances must be identical. The autocovariances of the MA process in (17)
are given as

W = (18 oM™ ™ = (6™ a6 )or ™, (19)
’yém) = 5;"1)0% ) and v; = 0for j > 3.
It is shown in the Appendix A that the autocovariances of the MA process in (18) are
™ = (14 62)02 + (1+ 6oy ™ + [T+ (05 — k1)? + 530207, (20a)
fy{m) = 6102 — nlaj(m) + (00 — Ky — K 002 4 n%ﬂ&m))az(m), (20b)
W = k160 7™, (20¢)
and ~; = 0 for j > 3. By equating the means of the MA processes in (17) and (18), we have
cg"l,) =cry + (1= k)™, (20d)

Given the ARMA(1, 2) model parameters, c%"‘l,), K1, 81, 09 and 02 we can calculate fy](m),
j = 0,1,2. Then, unknown parameters in the equations (20a)~(20d) are only the state space

form parameters, ¢y, 61, 0;27, cSZ”), 953”), Uz(m) and Ji(m). Observe that there are seven unknown
parameters and only four equations. Hence, we cannot uniquely identify these parameters from
these equations. In other words, for a given ARMA(1, 2) reduced form, there are infinitely many
sets of values of ¢y, 01, 02, o oglm az(m) and aj(m)
as the ARMA(1, 2) reduced form.

In view of (7) and (9), we obtain the following equations:

that give the same autocovariance structure

™ = 2mo?, (21a)

1+6m2)g20m) = 85252 4 92 — 1)w? + 4mo?, 21hb
u 3 € €

g



glm) g2(m) = 2 (21c)

Assuming that the MA parameter satisfies the invertibility condition, i.e., |01(Lm)\ < 1, we can solve

the equations (21a) ~ (21c) for c&m), 6™ and Uz(m) as:
2
™ = 2mo?, Ug(m) = ;(u;) and O™ = A — /A2 -1, (22)

2 2 4
where A = 47=3= + 2m — 1+ 2mZ5. The details of the calculation is given in the Appendix A.

Note that 0 < GQ(Lm) < 1 because A > 1.
From (3), (11) and (22), we see that c;v, 61, 0, cm gl Jg(m) and 0’3

functions of k;, 02, w?, 02 and w?.* To emphasize these relationships, we denote them as:

m
(M) are expressed as

CIV(K‘MO'2)7 61("':1)7 0'727('{17“}%)7 Cy (02)7 ggtm)(o'27ag7wg)a
(23)

07" (k1,07 w3) and 07" (0%, 02, 02).

Note that 6 is a function of only x; and hence can be assumed to be known (because k1 is identified
from the reduced form). Substituting the expressions in (23) into Equations (20a)~(20d), we have
four equations for the four unknown parameters o, wi, 02 and w?. Hence, the order condition for
identification is satisfied. However, this result does not imply that one can uniquely identify o2,
w?, 02 and w?.

To show the uniqueness of the identification, we explicitly derive the representations of o2, w?,
and w? in terms of cg"]/), k1, ™, j =0,..,2. In Appendix A, we show that, given cg"]/), K1,

j
vj(m), j=0,..,2 and (23), Equations (20a)~(20d) are uniquely® solved for 02, w7, 02 and w? as:

2
€

. m D m kY (m
, ™, (log k) kg™ + (14 kD™ 4 ]
We = ——, wyp = ) (243‘)
K1 (17!421)3(14'/{1)
m)2 m m . m
52— CEE{V) ~ (2m - 1)7; ) _ ’Y(g - 2Dwi — 275 ) (24b)
¢ 2m2(1 — k)2 2mkn 4m(1 + k?) ’
and
om)
ol = TR RV 2ma?, where D =B+ m(1+ H%)C, (24c)
~
1 1
kI —1— (14 k%) logk 2(H1m_1_10g'€1m)
B=1 1) 108 K1 and C = (24d)
(log r1)? (log #1)*

These results imply that the four parameters, 02, w?, 02 and w? are uniquely identified from the

ARMA(1, 2) reduced form in (17). Hence, in principle, we can estimate them. Again, it should
be emphasized that these results do mot imply that one can directly estimate the state space form
parameters but rather that one can estimate the above four parameters by replacing the state space
form parameters with the functions of the four parameters. The estimates of the state space form
parameters are obtained by substituting the estimates of the four parameters into these functions.

4.3 Estimation of model parameters

We illustrate how to estimate the four parameters. There are two possible approaches: direct and
indirect. Below, we illustrate first the indirect and then the direct approach. In both approaches,
we apply QML estimation assuming Gaussian innovations.

4They depend also on m, as the notation implies.
5More precisely, under the condition o2 > 0.



We showed in (24) that these four parameters have explicit expressions in terms of the ARMA(1,
2) reduced form parameters. This suggests the following indirect approach for estimating these
four parameters.

Summary of the indirect approach

Step 1 For a given m, calculate RVt*(m).
Step 2 Estimate the unrestricted ARMA(1, 2) model in (17) by QML estimation assuming Gaus-
sian innovations.

(m) oy g(m)

Step 3 Given the estimates of cgy/, K1, 55’”) 2

and o2 obtained in Step 2, calculate the first

three autocovariances of the MA process, namely, Wj(m), j=0~2asin (19).
Step 4 Given the estimates of cg"l,), k1 and fy](m), j = 0 ~ 2 obtained in Steps 2 and 3, estimate

w2, 02, w? and o? applying the results in (24a) (24d).

€ g

This approach is simple and easy to implement; however, it does not guarantee that the resulting
parameter estimates are positive because of the inevitable uncertainty of the ARMA model esti-
mation. For example, if ’yém) > 1, then the estimate of w? by this approach is negative because
k1 > 0 by assumption.

Alternatively, one can directly estimate these four parameters. In this approach, one calculates
the log-likelihood directly from the four parameters and maximizes it with respect to the four pa-
rameters. Thus, we can easily impose the positivity of the four parameters. Below, we summarize

how to obtain the QML estimates by this approach.

Summary of the direct approach

Step 1 For a given m, calculate RV;*(m).

m)

Step 2 Given ki, 02, w?, 02 and w?, calculate ¢y, 0y, 0727, c&m), Gflm), Jg(m) and 03(

to (3), (11) and (22).

according

Step 3 With the ¢;v, 61, 07, i glm) az(m) and aj(m) obtained in Step 2, calculate the Gaussian
log-likelihood of the state space form given in (16a) (16¢) for RV*.

Step 4 Maximize the log-likelihood obtained in Step 3 with respect to the five parameters &, o2,
w?, 0?2 and w? to obtain the QML estimates.

This approach provides consistent estimators for the four parameters.

Before closing this section, it should be noted that if we can obtain estimates properly by the
indirect approach, we do not need to proceed to the direct approach, because both approaches will
give the identical estimates in this case.

5 Empirical Analysis

In this section, we conduct an empirical analysis with exchange rate data using the proposed state
space method.

5.1 Data description

The yen/dollar spot exchange rate series we use are the mid-quote prices observed every one minute,
which are obtained from Olsen and Associates. The full sample covers the period from January 1,
2000 to December 31, 2006. Figure 1 plots the daily returns calculated from the price data over
the period.

Price data are not available for each minute. When price data are missing we apply the previous
tick method, i.e., we interpolate the most recent observed price. Furthermore, following Andersen,
Bollerslev, Diebold and Labys (2001), we remove the data of inactive trading days. Whenever we
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do so, we always remove from 21:01 GMT on one night to 21:00 the next evening. For details
on the motivation behind this definition of “day”, see Andersen, Bollerslev, Diebold and Labys
(2001), Andersen and Bollerslev (1998) and Bollerslev and Domowitz (1993). We cut the data
according to the following criteria, which are similar to the criteria adapted in Beine et al. (2007).
Specifically, we cut

(1) the days where there are more than 500 missing price observations,
(2) the days where, in total, there are more than 1000 minutes of zero returns
(3) the days where the price does not change for more than 35 minutes.

By these criteria, we could remove all weekend data. However, the days such as US holidays that
Andersen, Bollerslev, Diebold and Labys (2001) and Beine et al. (2007) remove are not necessarily
removed by these criteria. This is because even when the US market is closed, transactions are
made in other markets. Eventually, we are left with 1809 complete days, or 1809 x 1440 = 2604960
price observations, from which we calculate the one minute and five minute returns.

With these returns, we calculate two series of daily NCRV, namely, one-minute NCRV (m =
1440) and five-minute NCRV (m = 288). Table 1 reports the descriptive statistics of these two
series of NCRV, and Figure 2 plots them. The sample mean of the one-minute NCRV is greater
than that of the five minute NCRV. This is consistent with the existence of MN because the mean
of the NCRYV increases as the sampling frequency increases, or m — oo under the existence of MN
(see (20d) and (21a) ). The first order autocorrelations of these two series of NCRV are somewhat
lower than usually expected for variances of financial time series: they are 0.4794 for the one—
minute NCRV and 0.4177 for the five-minute NCRV. This may be because of the existence of MN.
In fact, in the next subsection, we show that estimates of the first order autocorrelation of the IV
are significantly higher than these values.

5.2 Estimation of parameters, IV and MN component

For these two series of the NCRV, we estimate the parameters of the one and two factor SV
models by the method described in Section 4.3 (and in Appendix B for the two—factor case).
Note that, in general, the values of these two NCRV series are different although they both are
estimates of the same IV series. Consequently, the estimates of the SV model parameters are
different, depending on which NCRYV series is used. We report only the results by the direct
approach because the indirect approach does not provide positive variance estimates. Table 2
displays the estimates of the SV model parameters. Naturally, the estimated values of the SV
model parameters for one-minute and five-minute NCRYV series are very similar. In both the one—
and two—factor cases, estimates with the five-minute NCRV series are slightly more efficient than
those with the one minute NCRV series according to the robust standard errors. The estimates
of the persistence parameters for two factor SV model (i.e., K1 and ko) imply that there are
two factors with significantly different levels of persistence. One of them is very persistent and
the other is moderately persistent, although their unconditional variances are not significantly
different. For the one—factor SV model, the persistence of these two factors must be captured by
only one parameter, k1. As a result, the estimate of k; in the one—factor case is somewhat lower
than that in the two factor case.

The estimates of state space form parameters in (16) (and in (40) for the two factor case) are
computed from the estimates of the SV model parameters. They are shown in Table 3. Again, the
estimates of the common parameters, which do not depend on m, are very similar. We find that
at ), in one minute NCRYV series is

the estimates of the mean of the MN component, denoted by ¢, "

6To obtain the QML estimates of the SV model parameters, first, we calculate the QML estimates of the
transformed ones, such as g = log(c?), by applying an unconstrained maximization procedure. Then, the QML
estimate of, for example, o2 is obtained by log(fi), where fi is the QML estimate of p. The robust standard errors
of the SV model parameter estimates are calculated as follows. First, generate samples from the asymptotic normal
distribution of the estimators of the transformed parameters (such as i) with their robust asymptotic covariance
matrix estimates (and the mean being set to the estimates). Next, for each sample, calculate the estimates of the
SV model parameters. Lastly, calculate the sample standard deviations of these SV model parameter estimates,
which are our robust standard errors.
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greater than that in five-minute NCRV series, which implies that the one—-minute NCRV series has
a larger bias than the five minute NCRV series. This is consistent with the theory. The magnitude
of bias of the one minute NCRV is about four times larger than that of the five minute NCRV.

Table 4 reports the estimates of some important values including the autocorrelations of the
IV. In both the one— and two—factor cases, the estimates of the first order autocorrelation of IV are
significantly higher than those of the two NCRV series. This result suggests that the existence of
MN lowers the autocorrelations of the NCRV series. The estimates of the ratio of the unconditional
variance of the MN component to the unconditional variance of the NCRV imply that about half
of the aggregate fluctuations of the NCRV series is because of the MN component.

We display the estimates of the IV series by Kalman smoothing for the five-minute and one—

minute NCRV series in Figures 3(a) and (b), respectively. Figure 3(c) is the difference between
—~ (1440)  — (288 —(m
them, or IVE = IVE ), where IVE ) is the estimate of IV; with a given m. Note that these

estimates are the estimates of the same IV series and thus are very similar. The IV estimates in the
one factor case seem smoother than those in the two factor case. This is because of the result that
the (estimated) autocorrelations of the IV series are lower for the two—factor case and thus they are
relatively closer to white noise compared with the IV series obtained for the one—factor case. Figure
4 (a), (b) and (c) plot the smoothed estimates of the five minute and one minute MN component
series and their differences, respectively. We can see that the MN component occasionally takes
a large value. Figure 5 (a) and (b) display the estimates of the discretization errors by Kalman
smoothing for five-minute and one-minute NCRV, respectively. The discretization error estimates
for the one—minute NCRV series is quite small than those for the five-minute NCRV series, which
is again consistent with the theoretical result. Corresponding figures for the two—factor case are
given in Figures 6 8. They are very similar to those for the one factor case.

Finally, we calculate the ratios of the MN component to the NCRV R(™). They are given by
R(m) = ﬂgm)/RVt*(m), t =1,...,1809, where ﬂgm) is the estimate of ugm) by Kalman smoothing.
The results are shown in Table 5. In the one—factor (two—factor) case, the maximum and minimum
values of R(™) are, respectively, 0.8324 (0.6574) and —0.5804 (—3.7323) for the five-minute NCRV
series and 0.8357 (1.0454) and —0.5804 (—0.4192) for the one minute NCRV series. We also
calculate the average magnitude of the MN component as the mean of |R(™)| (the average of R("™)
is also reported in Table 5). In the one factor (two factor) case, the value of the mean is 0.4659
(0.2080) for the five-minute NCRV series and 0.4708 (0.4770) for the one—minute NCRV series.
From these results, we conclude that the average magnitude of the MN component in the daily
NCRV ranges from 21% to 48% of NCRV, depending on the sampling frequency.

6 Summary and Concluding Remarks

In this paper, we proposed a state space approach to estimating the IV and MN components
simultaneously. Our method is based on the result in Meddahi (2003), who shows that when
the true log-prices follow a general class of continuous time SV models, the IV follows an ARMA
process. We showed that under the existence of MN, the observed RV, or the NCRV, also follows an
ARMA process. We represented the NCRV by a state space form and established the uniqueness
of the identification of the state space form parameters. The proposed method was applied to
yen/dollar exchange rate data, where we found that the NCRV calculated with five-minute returns
is less biased than with one minute returns. The two series of IV estimates by the proposed method
with one minute and five minute returns are very similar. The method was also used for estimating
the MN component.

In the estimation, we constructed the log-likelihood using only either the one—minute or five—
minute NCRV series. It is more desirable to use both NCRV series for estimating the common
parameters. It would be possible to obtain more efficient estimators by combining the one and
five minute NCRV series. This is a subject for future research. It is also important to relax the
assumption that there is no leverage effect in order to apply our method to stock return data.
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Appendix A: Derivations of Equations

Hereafter, we suppress “(m)” in the notations rt(m), ugm) and egm), and let g; denote ¢(t) for

notational simplicity.
Derivation of (7)
Because var(e;) = 202 and r; is independent of e; by Assumption 1, we have:

E[Ut] 2

m
. . 2
£oli,

|:Tt71+7;—'j| E [6t71+

M=M=

E
1
2) B

N
m

] + mvar(e;)
i—1
= 2mo

-
Il

2
p

To derive var[uy] and cov[ug,u;—], we calculate covlrses, re;] and cov[e?,e?]. When t = s, we
have:

covlrie;, rie)] = E[rie}] — (E[rie])?
= B[] E[ri] — (E[n)*(Ble])?
= 202B[(f,_,,, o(s)dW (5))?] (25)
= 20§E2[ft71/m02(s)ds]

The fourth equality comes from the Ito isometry. When ¢ # s, we have:

cov [rses,mier] =  Elrsesrier] — Erses| E [rieq]
= (Jf[eset] Elrs]Elr] — Ers] Ees] E [r] E[eq]

When t = s, we have:

vl fl = varlt]
= Ele;] — (Elef])
= E [5? —dede, 1 +6eje] . —deed  +e) o | — 4ol (26)
= 2E[e}] + 202
= 2w? + 4ol

When t = s + %, we have:

2 2 _ 2 2
cov [es,esii] = cov [eH# 63]
o 2 2 2 2
cov |:ES+# — 288+%Es +el,65 — 253687# + 887# (27)
= varle?]
w?.

When ¢ = s + - for i > 2, we have cov[es, es] = 0. Furthermore, we have cov[rse;, e2] = 0 for any
t and s because:

covlrie, €] =  Elrieie?] - Elrie;) Ele?] ‘
- OE[Tt]E[eteﬁ] — E[ry]Ele/] Ele}] (28)
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From (25) ~ (28), we have:

var[ut]—var{QZTt 14 €y +Zet i

=1 z 1
m m 9
= 4var §t1+z€t 144 |+ var leet i + 4cov 2 t1+i€t71+#’,;6t71+#
m m ! - ,
=43 ZCOV[Tt—1+#'et—1+#'7rt71+%6t71+%] +Z Zcov[ i 1+”et 1+]]
i=1j=1 i=1j=
m m 9
+4Z‘Z1 ]21 cov [Tt71+#6t71+%,6t71+%}
=8020% + m(2w? + 4o) + 2(m — 1)w?
=8020% + 2(2m — 1)w? + 4mo?,

and

m

m m
cov[ug, upy1] = cov {22@ 145 €y +Ze +#’2i;”+#et+v% +l;et2+%

=1
m m 9
2T 45614 L > Cipi
i=1 i=1 "

m
2 2
+ cov [26t1+i726t+i
1= 1=

+ 2cov

—4cov{2rt 145 €14 i ZTt+Let+:7'
i=1 i=1

+2cov ZereHz,Zet i

i=1
— 2 2
=cov|ej,e; 1

— 42
= w.

It is easy to check that cov|us,usq;] = 0 for i > 2, and hence we have (7).
Derivation of (20a)~(20c)

Here, we derive the autocovariances of the MA process in (18). They are given by

Yo = cov{n + 01 +di —ridi—1 + & F (Ou — K1)&—1 — K10u&—2,
e+ 6ime—1 +de — kideor + &+ (6 — I‘él)ft 1 — I<619 &0}

ol + 0700 + 05+ Kio5 + crg + (0 — K1)? cr£ + /@102

= (1+6])oy + (1 + kK)o + [1+ (0, — m) + %02]057

1= cov{m + b1 +di —kidi—1 + & 4 (0 — K1)&—1 — K10u&—2,
N1+ 01— +diq1 — Kide—o + &1+ (0u — K1)E—2 — K104E—3}
= 010727 — K105+ (0, — k1 — K162 + /@%GU)UE
Yo = cov{n + O01m_1 +dp — Kidi—1 + & + (0 — K1)&—1 — K10uEo,
Mo+ 013+ di—s — kidi—3+ &2+ (Ou — K1)&—3 — K16u&—a}
= k1,02
K1 uo'g-

Because it follows an MA(2) process, the autocovariances of the order greater than 2 is zero.
Derivation of (22)

From (21c), we have 0} = w?/6,,. Substituting this into (21b), we have:

w2
(1+62%) 05 =80%02 +2(2m — 1)w? + 4mo?.

Multiplying both sides by 6, /w? and rearranging, we have:

2 2 4
7% fom—t1+2m7 |6, +1=0.

E E

62 —2 |4
The two solutions of this quadratic equation for 6, are given by

= A+\/A2 1, where A=47

2 2 o
£ +2m71+2m—3.

£ £
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Because A > 1 for m > 1, we have A + VA2 —1 > 1. Assuming that 6, satisfies the invertibility
condition, we obtain 6, in (22).

Derivation of (24a) and (24c)

From (20c) and (21c), we have w? = — 22, which is the first result in (24a). From (3), (4) and (11),
we have

2Bw? 20"
7= Tagy M od= T amOu 2

where B and C are as given in (24d). From w? = 6,0¢ in (21c), we have:

(146, — 20uk1 + K7 + K70;)0f = @ + 0y — 261 + 5 +@0)

(30)
= |:(0L ) +I{/1)72K41:|w
and
(0u7n17n103+/{%0u)a§: (lf—fmﬂ -I-I‘él) 2 (31)
31
Substituting (29), (30) and (31) into (20a) and (20b), we have:
‘ 1+ k3 1 : :
7o :20wf+2ﬂa4 + [(0_ +9u> (1+ &7) —251} w2, (32a)
m u
and
_ 2 K1 4 1 2 2
vy =2Ewi —2—o0" — o +60, ) k1 — (14 k]| W, (32b)
m u
where D = B+ m(1+ k2)C, E = pB —mk;C and p = 61/(1 — 67). From (32), we have:
K10+ (1+ kD) = 2[kmD+ (1 +s}E]wl+ [(1+ k1) — 263 w?,
= 2[k1 4+ (1 +&])p] Bwi + (1 + £})w?, (33)

(1-k)*A+K1) 4y 2
= ].
(log 51)2 Wi + ( + K‘l)wsa

where, to obtain the third equality, we use the alternative expression of p explained below (11).
From (33), we have:

o (logk1)?[k1v0 + (1 + kD7 — (14 k])w?]

wi =
! (17!421)3(14-/{1)
Substituting w? = —:2, we obtain the second result in (24a). Next, note that from (22), we have:
1 1+6;
Sy, = L u
b " o
+(4- - 1)?

A— \/ -1 (34)
A4+VA2 -1+ (A- VA2 - 1)2(A+ VA2 - 1)

(A— A2 —1)(A+/A2 1)

From (20d) and (21a), we have:

s crv —(1— K1)o?

crv = (1 — k1) (0% 4+ 2mo?), or o= 30— r1)m (35)
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Substituting o2 in (35) into A in (22), we have:

o2 (crv—(1—k1)o? m [ crv—(1—k1)o> 2
24= 2 [4 ( R;(—1£n1)nz ) +2m -1+ 3% (—RS(lim)nﬁ ) }

i i
w? we

_ 2cpy o> 254 2y —2(1—k1)ervo’+(1—r1)%a?
= 2 |:(1711~:Smw? T mw? +2m — 1+ = 2(17n111‘)/2mw3 j|
(36)
4cpy o’ 40° 7 2cry o> gt
= Tongmw? —mer T20m =D+ o000 — aoafmer T mer
_ 2CRV0'2 o 30’4 + 2(2 o 1) + C%{V
— (1—k1)muw? mw? m (1-r1)2mw?2 "
From (32a), (34) and (36), we have:
2 2
Y= 2Dw?— (1+ "@1)04 + 2(1+ ”1)CRV02
m (1 —k1)m
+2(2m — 1)(1 + k?)w? + (A4 mi)chy 2K w? o7
1 € (1 o I{l)Qm 1We -
Multiplying both sides in (37) by m/(1 + k) and rearranging, we have:
plymng y 1 ging,
2¢ 2 m — 2Dw? + 2k w?
ot - SRV 52 CRv 5+ (o 12 1) —2m(2m — w2 = 0.
1—r (1 —k1) 1+ k7
Solving this quadratic equation for 2, we have:
. 2c2 — 2Dw? + 2Kk w?
o= By [ TRV o 1) - 0 T 2D 2R (38)
1— Ky (1 — k1) (14 &7)

From o2 > 0, k1 < 1 and (35), we must have ETVl > ¢2. Hence, the sign of the second term in

(38) is negative. From (35) and (38), we have:

2 1 25y

m (yg — 2Dw? + 2k w2
O = 5~ =+ 2m(2m — 1)w?2 — (0 wy + leg).
2m\l (1 — k)2

(1 + K2)

(39)

From (38) and (39), we obtain (24b) and (24c).
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Appendix B: Results for the Two—factor Case

Let, ¢1 = K1 + K2, ¢2 = —Kiks, ™1 = 1+ (Zﬁ + QS%, Ty = ¢1(1 — ¢2) and W 75 0 throughout
Appendix B.

Let n; and & be denoted by the state variables a; and [;, respectively. From (8), (12) and
(15), we can express the NCRV in the following state space form:

Observation equation

A
IV, 4
RVy= [1 0100 0] " |+d, (40a)
it
(o7
Bt
State equation
1V crv o1 2 0 6 6, O IV 10
IV, 0 1 0 0 0 0 0 IV, 0 0
Uy _ Cu 0O 0 0 0 0 46, Up_1 0 1 Tt
or |1 0 Tl 0o 000 0 0 v | T1 0 {gt , (40b)
[e 7] 0 0 0 0 1 0 0 [6 T} 0 0
Bt 0 0 0 0 0 0 0 Be—1 0 1

where the mean vector and variance matrix of (d¢,n:,&)" are as given in (16¢).

Autocovariance functions

In the two factor case, by applying the results in Granger and Morris (1976), we can show that
the NCRV follows an ARMA(2, 3) process:

(1 — ¢1L — ¢2L2)R‘/;* = CRV + (1 + (SlL + 62L2 + 53L3)Tt7 Tt ~ I/I/]V(O7 0'72_) (41)
The same RV,* can alternatively be expressed as:

(1=¢1L— ¢ L> )RV, = cry +me+601me1 + om0 +dy — prdy—1 — dpadi
+(1 =1 — d2)cu + &+ (Ou — d1)& 1 (42)
(P2 + 010u)&—2 — $20,& 3,

The autocovariance functions of the MA process in (41) are given as:

Yo = (1+5%+6%+6§)0’72_, Y1 = (61+6162+6263)0’72_,
(43)
Y2 = (62 + 6163)0';2_, Y3 = 630';2_,

and v; = 0, for j > 4. Furthermore, some calculations lead us to the following autocovariance
functions of the MA process in (42):

. oy . 1 .
v = (1467 + 95)05 +mos+ [m (0— + 0u> - 27@} 9u0'§7 (44a)
. . 1 .
Y = (01 + 0102)0’5 — 7T20'(21 + |:7T1 - ¢2 — T <0— + 9u>:| Guoé, (44b)
2 2 1 2
Yo = 020'77 — ¢20’d — |:(Z52 <0— + 9u> + 7T2:| GUU£= (44(3)
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Vs = —$20,0%, (44d)

and v; = 0, for j > 4. By equating the means of the MA processes on the right hand sides in (41)
and (42), we obtain:

crv = crv + (1 — ¢1 — ¢2)cu. (44e)

As in the one—factor case, the number of state space form parameters is greater than the number
of ARMA reduced form parameters. This implies that the state space form in (40) is not iden-
tified. However, we show that the state space form parameters are expressed as functions of the
underlying continuous SV model parameters o2, w?, w?, 02 and w?, which are uniquely identified

from the ARMA reduced form in (41).

Identification of state space form parameters

Here we show that the parameters o2, w?, w3, 02 and w? are uniquely identified from the re-

duced form parameters cry, K1, k2, and «y; for j =0~ 3.
As in the one—factor case, we can uniquely solve Equations (44a)~(44e) with respect to o2, w?,

2 2 2 a.
wy, o7 and w? as:

G ) o _ (logk1)?[(@180 — aoBr) — Ka(aodi + azf)]

w. = — 5 Wi = 5 45a
ST T e k(e — axfh) o
o (logka)?[(e1 By — awfr) — k1 (@ndr + azfo)] 45h
Wy = 1— 2 _ ) ( )
(1= K2)?(k2 — K1) (11 + 281)
2 1 204 om(am - 1)w? + H (45¢)
ol = —y | — 48— - ,
To2m (1 g1 ¢2)? : '
and
CRV 2
0=——""—""——2mo;, 45d
1—¢1 — o e (45d)
where
ag = my +my — [m(m = ¢2) = 2m3wl,  an =m(l+ ¢F — ¢2) — 273,
Qaz = 2¢amy + P17, (46)
Bo = mays — dami + (67 + d2)(1 + @5 — do)w?, fr =5 — ¢ — P2,
m [ : 2 2-|
H = ™ Y2 + Z(2¢2CLJ + ¢1Caj — C3 5 + 2mp2Cy j)wj + maw? |, (47)
e |
k; —logk; — 1 (1 k)2 k(1 — K;)?
Cj=-"1 - = A A VA d
YT Qg M T (g M T (ogy)?
1 1 (48)
2(k —logr —1
Cy,j = (5; g; ) for j=1,2.
(log k;)
In what follows, we derive the results in (45a) (45c).
From 6,07 = w? in (21c) and 73 = —¢20,07 in (44d), we have w? = — 3%, which is the first
result in (45a). Furthermore, from (3), (4) and (13), after some calculations, it follows that:
2B;w? 2Byw? 204
2 _ 1% 2%9 2 _ 2 2
oy = 7 Ty R g and o; = g +2mCy 1wy + 2mCy pws, (49)
where
Bj = 7T1017j — 71'2027]‘ — ¢2037]' for ] = 172. (50)
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Substituting (49) into the autocovariance functions in (44) and rearranging, we have:

. . 1 .
Yo = 2D1wf + 2D2w§ + 220'4 + |:71'1 (9_ + 0u> — 271'2:| wi (513)
m u
. . . 1 .
Y1 = 2E1wf + 2E2w§ - 220’4 — |:7T2 <0— + 9u> — (7T1 — (;52):| wi (51b)
m u
_ 2 2 ¢2 4 1 2
Yo = 2F wi + 2Fhw; —2—0" — | ¢ o + 0, | +me|ws, (51c)
m u

where D]’ = Bj + m7r104,j, E]' = plBj — m7r2047j, Fj = pr]’ — m¢2047j fOI“j =12 p =
(61 +60102)/(1 + 67 +603) and ps = 62/(1 + 67 + 63). Hence, we have

oo + M = (12 + p1m1) (2B1w] + 2Baw?) + [11 (11 — ¢2) — 273 ]w?, (52a)
and

T2 — a1 = (pam2 — prop2) (2B1wi + 2Baw3) — [ha(m1 — ¢2) + m3]wl. (52b)
Noting that p; and p2 can be expressed as in (14) (see the explanations below (14)), we have:

*7T2V3,I‘[I‘/t] + (]. + QS% — ¢2)COV[I‘/1;7 I‘/tfl] — ¢1COV[I‘/,5, I‘/t,Q]

= (1+ 67 + 63)02 —_
; a
Sii[-2mChj+ (14 @3 — ¢2)Caj — ¢1Cs jJw?
B 2B 1w} + 2Byws ’
and
_ —¢ovar[IV;] — ¢ycov[IVy, IV 1] + cov[IV;, IV} o]
P2 = (1462 +62)02
2 2 (53b)
> i=1(=202C1 j — $1Cs j + Cy j)w;
B 2Bw?} + 2Baw3 '
Substituting B, in (50), p1 and p, in (53) into (52), we have:
2 G
moYo +min = 2w Y. (mChj —mCyj — ¢203,1)w;
j=1
2
11 Y [2mChj + (1+ @7 — d2)Caj — 103 5]w7
=1 . 54
+[mi(m = ¢2) — 275 ]w? (54)
2
= Y A[-2m + m(1+ @7 — ¢2)]Cs5 — (2pams + ¢1m1)C3 5 }wF
j=1
+mi(m — do) — 2m3w,
and
2
ToY2 — ay1 = T2 Z (*2¢2C1,j - ¢1C2,j + CB,j)WJQ‘
j=1
2
—¢2 Y [2mCj + (14 ¢ — ¢2)Caj — 105 j]w]
j=1
—[pa(m1 — o) + 73 ]w?
(55)

= S dimr b1 ¢ 8)|Co + (mat r2)Ca Y
=1

—[po(m1 — o) + w3 ]w?
2

= Zl{(¢§ — &1 — $2)Caj + 105, }w]
=

—(¢1 + 62)(43 — b2 + 1w?.
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We can regard (54) and (55) as the following system of two equations for w? and w3:

Qp = (a10271 - 0420371)40% + (a102,2 - 04203,2)w§

56
Bo = (B1C2,1 + ¢1C51)wi + (B1C22 + ¢1C5 2)w3, (56)
where ag, a1, as, By and f; are as given in (46). Solving (56), we have
w2 — (18 — apBi)C22 — (a280 + ap91)Cs3 2
! (101 + @281)C22C5 1 — (11 + @281)C21C5.2
_ (log £1)?[(a1 Bo — anfr) — K2(awBo + o))
(1~ K1)*(k1 — K2)(Q1¢1 + @2f1) ’
and
w2 = (apB1 — a1B0)Ca1 + (od1 + a2f0)C3 1
’ (a1 + a281)C22C51 — (a1 + a21)C32C5 4
(log k2)*[(oB1 — a1Bo) + K1 (a1 + a2 0)]
(1 = k2)2(k1 — Ka) (a1 01 + aafr)
From (44e) and (21a), we have:
1 2
52 _ CRV (1—¢1 — ¢2)o (57)
: 2(1 = ¢1 — ¢2)m
Substituting o2 in (57) into A in (22), we have:
203\/0’2 30'4 C%-?,V
2A = — 22m —1 . 58
0o — gy mwz T2 D+ G (58)
From (34), (51c¢) and (58), we have:
Yo = QW%(prl — m¢204,1) + 2w§(p2B2 — m¢204,2) — 20’4%
2 4 2
{0 [ty — o+ 20m - ) + g s | + e f 2
= p2(2B1w} + 2Baw}) — ¢2(2mwiCy 1 + 2mw3Cy o)
: c : 2c7 P
+o' T — o S — 20wl (2m — 1) — g — ma? (59)

2
= Z (_2¢2017j - ¢1027]' + 03’]' - 2m(;5204,]')w;
j=1

2 pacs
+ot 2 o P 2o (2m 1) — gt T — MWl

Multiplying both sides in (59) by m /¢, and rearranging, we have:
4 2RV Chv

— — — 2 — —
1—¢1 — ¢2U (1— 1 — ¢2)? Zwem(2m —1) — H,

where H is as given in (47). Solving the quadratic equation for o2, and by the same argument as
used in (39), we have:

ag

5 CRV 2chy
o° = — > +2m(2m — 1)w? + H, 60
1—¢1 = 2 \/(1—¢1—¢2)2 ( ) (90
and
21 26y +2m(2m — w2 + H (61)
0f = — | ———8V _ ]
To2m\ (1—¢1—¢2)? :
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From (60) and (61), we have (45¢) and (45d).
Finally, we summarize direct and indirect approaches for estimating the parameters in the two
factor case.

Summary of the indirect approach

Step 1 For a given m, calculate RV;*(m).
Step 2 Estimate the unrestricted ARMA(2, 3) model in (41) by QML estimation assuming Gaus-
sian innovations.

Step 3 Given the estimates of cg"l,), K1, K2," 5£m), 5§m), 6§m) and o2 obtained in Step 2, calculate

the first four autocovariances of the MA process, namely, fy](m), j=0~3asin (43).

(m)

Step 4 Given the estimates of cy,/, k1, k2 and 7(.m), j = 0 ~ 3, obtained in Steps 2 and 3,

j
estimate w?, 02, w}, w3 and o?, applying the results in (45a) — (45c¢).

Summary of the direct approach

Step 1 For a given m, calculate RVt*(m).

(m)

. 2 2
Step 2 Given k1, Ky, 0%, w7, w3, 02 and w?, calculate ¢y, 61, 63, 02, o glm) ag(m) and o,

according to (3), (13) and (22).

Step 3 With the cv, 61, 62, 02, ¢, 87", 02 and o™ obtained in Step 2, calculate the
Gaussian log-likelihood of the state space form in (40a) — (40b), for RV,*.

Stpe 4 Maximize the log-likelihood obtained in Stpe 3 with respect to the seven parameters, 1,
Ko, 02, wi, w3, 02 and w? to obtain the QML estimates.

"These can be obtained from the estimates of ¢1 and ¢2. See footnote 2.
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Table 1: Descriptive statistics of the NCRV

One minute NCRV  Five minute NCRV

m 1440 288
Mean 0.5317 0.4039
Variance 0.0629 0.0620
SD 0.2507 0.2490
AC(1) 0.4794 0.4177
AC(2) 0.3628 0.3292
AC(3) 0.3261 0.2819
AC(4) 0.3294 0.2595
AC(5) 0.3246 0.2577

Note: The table reports the sample mean (Mean), sample variance (Variance) and sample standard
deviation (SD) of the RV series calculated with different m, where m is the number of intervals for
each NCRV series. AC(k) denotes the sample autocorrelation of order k.

Figure 1: Daily returns of the yen/dollar exchange rate

Daily Return (%0)
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Table 2: Estimates of SV model parameters

One factor case Two factor case
One minute Five minute One minute Five minute

K1 0.9301 0.8849 0.9825 0.9798
(0.0415) (0.0410) (0.0187) (0.0143)
Ko - - 0.3241 0.6113
- - (0.2321) (0.1435)
o2 0.2857 0.3466 0.2960 0.3445
(0.0247) (0.0178) (0.0417) (0.0325)
w? 0.0300 0.0279 0.0229 0.0145
(0.0111) (0.0083) (0.0146) (0.0064)
w2 - - 0.0271 0.0192
(0.0213) (0.0067)

52 0.0000861  0.0001002  0.0000839  0.0001043
(0.0000100)  (0.0000029)  (0.0000157)  (0.0000062)
&2 0.0000059  0.0000296  0.0000039  0.0000263
(0.0000009)  (0.0000043)  (0.0000019)  (0.0000048)
L 240.06713  181.18724  262.11225  193.84332

Note: L is the log-likelihood. The robust standard errors are in parentheses.

Table 3: Estimates of state space model parameters

One factor case Two factor case
One min Five minute One minute Five minute
Zrv 0.0200 0.0399 0.0035 0.0027
o1 0.9301 0.8849 1.3066 1.5911
bo - - -0.3184 -0.5989
0, 0.2679 0.2677 -0.6280 -0.6512
8, - - 0.2196 -0.2421
52 0.0025 0.0038 0.0159 0.0081
m 1440 288 1440 288
M 0.2479 0.0577 0.2417 0.0601
o™ 0.0002 0.0009 0.0002 0.0009
Ge"™ 00340 0.0343 0.0228 0.0305
2™ 0.0002 0.0010 0.0002 0.0011
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Table 4: Estimates of some important, values

One factor case Two factor case
One-minute Five-minute One-minute Five-minute

—

var[IV;] 0.0293 0.0268 0.0420 0.0308

cort[IV;, TV; 1] 0.9531 0.9225 0.7675 0.8502
cort[IV;, TV ] 0.8865 0.8163 0.6011 0.6900
varfu{™)] 0.0340 0.0343 0.0305 0.0305

varl IV var RV, ™) 0.4618 0.4313 0.6467 0.4941
var/[u,ﬁ\m)] /var[E—\‘/t*(m)] 0.5358 0.5521 0.3504 0.4890
52/(32 + ("% + 5™ 0.0686 0.0962 0.4097 0.2047
5" (@2 + 5+ 5y 0.9271 0.8775 0.5854 0.7686

— — —
— (

Note: var[RV,""™)] = var[IV;] + var[u{™] + var[d{"™].

Table 5: Mean, max and min of the ratios of MN components to NCRV

One—factor case Two—factor case
One-minute Five-minute One-minute Five-minute

mean of B\™ 0.4646 0.4594 0.4755 0.0753
mean of [R\™)|  0.4708 0.4659 0.4770 0.2080
max{R\"™} 0.8357 0.8324 1.0454 0.6574
min{R{"™} -0.5804 -0.5848 -0.4192 -3.7323
max{|R"™ |} 0.8357 0.8324 1.0454 3.7323
min{|R\"|} 0.00398 0.00053 0.00773 0.00003
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Figure 2: 1-minute and 5—minute NCRV
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Note: Figure 2(c) displays 1-minute NCRV series minus 5—minute NCRV series.
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Figure 3: Smoothed series of IV in the one—factor case
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Note: Figure 3(c) displays 1-minute IV series minus 5—minute IV series.
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Figure 4: Smoothed series of MN component in the one—factor case
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Note: Figure 4(c) displays 1 minute MN component series minus 5 minute MN component series.
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Figure 5: Smoothed series of discretization error in the one—factor case

(2) 5-min discretization error series
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Figure 6: Smoothed series of IV in the two—factor case
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Note: Figure 6(c) displays 1-minute IV series minus 5—minute IV series.
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Figure 7: Smoothed series of MN component in the two—factor case
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Note: Figure 7(c) displays 1 minute MN component series minus 5 minute MN component series.
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Figure 8: Smoothed series of discretization error in the two—factor case

(2) 5-min discretization error series

0’06 C T T T T .
004 ]
002 || )

0
-0.02 1 1 L 1 1 1 1 .
2000.7 2001.7 2002.7 2003.7 20047 2005.7 2006.7
YEAR
(h) 1-min discretization error series
006 [ 7
004 [ )
002 [ )
0 “u t i ' l hidd
_0.02 C 1 1 1 L 1 1 1 -
2000.7 2001.7 2002.7 2003.7 20047 2005.7 2006.7
YEAR

33



