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1 Introduction

In his seminal paper, Aumann (1964) established the equivalence between the core
and the set of competitive equilibrium allocations in an economy with a contin-
uum of traders. His core equivalence theorem is very general in that he assumed
a set of very weak conditions on traders’ preferences. In fact, in his proof, nei-
ther irreflexivity nor transitivity is assumed on traders’ preference relations. Our
purpose is to revisit his equivalence theorem under somewhat different or general
assumptions.

In very general economies, Hildenbrand (1968, 1974) showed that any core
allocation is a quasi-equilibrium with relaxing Aumann’s monotonicity assump-
tion of preferences to local non-satiation. In our Theorem 1, by applying one of
claims of Hildenbrand (1982), we first restate his theorem of Hildenbrand (1968,
1974).

While Aumann’s equivalence theorem is extended in our Theorem 3, it is eas-
ier to provide Theorem 3 by focusing on the relationship between competitive
equilibria and quasi-equilibria. Since any quasi-equilibrium is a competitive equi-
librium if each trader’s income is positive, and since any equilibrium allocation
belongs to the core, it suffices for establishing the equivalence theorem to show the
positivity of each trader’s income in quasi-equilibria. Taking this point into con-
sideration, we will consider alternative assumptions by which, in quasi-equilibria,
the positivity of each trader’s income is ensured.

The simplest condition ensuring the positive income of each trader is the posi-
tivity of each trader’s initial endowment of commodities. Other several conditions
are known to ensure the positivity of each trader’s income in quasi-equilibria. One
of the most general conditions is the irreducibility assumption that was initiated
by McKenzie (1959). A weaker version of the irreducibility assumption was intro-
duced by Debreu (1962) to prove an existence theorem of competitive equilibria
in finite economies. In our Theorem 2, under Debreu’s assumption, we show that
any quasi-equilibrium becomes a competitive equilibrium and thus establish the
equivalence between the core and the set of equilibrium allocations. The result
is consistent with the equivalence theorem of Yamazaki (1978) where a primitive
condition on initial income distributions is assumed.

In the economies under Debreu’s assumption, each trader’s income in a quasi-
equilibrium is positive and each trader participates in trade. On the other hand,
in the economy that Aumann (1964) considered, there might exist non-negligible
individuals who have no endowments and cannot participate in trade. To extend
Aumann’s equivalence theorem, we would like to look for some conditions which
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are weaker than both the monotonicity assumption and Debreu’s assumption. To
include Aumann’s economies, we will assume a somewhat weaker condition than
monotonicity, which is called the potential desirability of commodities defined by
Hara (2006) and introduce a weaker form of Debreu’s assumption which reflects
the potential desirability of commodities. Under the assumptions we will estab-
lish the second equivalence theorem which is an extension of Aumann’s theorem.
Thus, it should be noted that the monotonicity assumption is dispensable to Au-
mann’s equivalence theorem but it is just required that for each commodity there
is a non-null coalition of some traders for whom the commodity is desirable.1 In
addition, since our proof is a simple modification of Aumann’s proof, it is meant
that the technique of his proof is very general and useful.

In what follows, in section 2 we present a model of exchange economy with
a continuum of traders and state a well-known proposition that any equilibrium
allocation is a core allocation. In section 3, under a set of weaker assumptions on
preference relations, we prove that any core allocation is a quasi-equilibrium allo-
cation. In section 4, the first core equivalence theorem is obtained under Debreu’s
assumption which is weaker than irreducibility. In addition, under an assumption
which is related to the desirability of commodities, the second equivalence theo-
rem is established. Section 5 is devoted to concluding remarks, in which we refer
to the related results of Hildenbrand (1968, 1974).

2 The Model

There aren-types of commodities being traded in the economy. Acommodity
bundleis a point in the non-negative orthantRn

+ of Rn and theconsumption setof
each trader isRn

+. Let the set of traders be the closed unit intervalT = [0,1]. The
space of traders is an atomless measure space(T,T ,λ ) whereT is σ -algebra of
Borel subsets ofT = [0,1] andλ is the Lebesgue measure withλ (T) = 1.

Following Aumann (1964), anassignmentis a functionfff : T → Rn
+ such that

fff (t) is a commodity bundle assigned to each tradert ∈ T and each component
of the assignment is Lebesgue integrable overT. Let eee : T → Rn

+ be a fixed
assignment in whicheee(t) denotes aninitial endowmentof each tradert ∈ T. The
sum of initial endowmentseee is defined by

∫
t∈T eee(t)dλ . For simplicity, we omit

the symbols oft anddλ in the integral, and so
∫
t∈T eee(t)dλ is denoted by

∫
T eee. An

allocation is an assignmentfff : T → Rn
+ with

∫
T fff =

∫
T eee.

1Hildenbrand (1982) mentioned that the monotonicity is not essential for Aumann’s proof.
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Let≻t be thepreference relationof each tradert ∈ T defined on the consump-
tion setRn

+, i.e.,≻t⊂ Rn
+×Rn

+ which satisfies the following property.

ASSUMPTION 1 (Measurability):For a pair of any two assignments( fff ,ggg), the set
{t | fff (t) ≻t ggg(t)} is Lebesgue measurable inT.

Note that in this section the measurability on preference relations is just as-
sumed. This assumption is a purely mathematical assumption with no economic
interpretation.

Next we state other notations and definitions. Acoalition of traders is a
Lebesgue measurable subset ofT. A coalition S with λ (S) > 0 can improved
uponan allocationfff : T → Rn

+ if there is an assignmentggg : T → Rn
+ such that

ggg(t) ≻t fff (t) for a.e. t ∈ S, and
∫

Sggg =
∫

Seee. Thecore is the set of all allocations
that no non-null coalition can improve upon. Acompetitive equilibriumis a pair of
aprice vector p∈ Rn with p ̸= 0 and anallocation fff such that for a.e.t ∈ T, fff (t)
is amaximalelement with respect to≻t in t ’s budget set{x∈Rn

+ | p·x≤ p·eee(t)}.
An equilibrium allocationis the allocationfff of the competitive equilibrium, and
an equilibrium price vectoris the price vectorp of the competitive equilibrium.
In the standard way it is shown that any equilibrium allocation is in the core. We
state the following well-known fact without proof.

PROPOSITION 1: Under Assumption 1, any equilibrium allocation belongs to the
core.

3 The Core and Quasi-Equilibrium Allocations

We define thequasi-equilibriumas follows.2 A quasi-equilibriumis a pair of a
price vector p∗ ∈ Rn with p∗ ̸= 0 and anallocation fff ∗ such that for a.e.t ∈ T,
fff ∗(t) is maximal with respect to≻t in t ’s budget set{x∈ Rn

+ | p∗ ·x≤ p∗ ·eee(t)}
and/orp∗ · fff ∗(t) = p∗ ·eee(t) = inf{p∗ ·x | x∈ Rn

+}. A quasi-equilibrium allocation
is the allocationfff ∗ of the quasi-equilibrium, and aquasi-equilibrium price vector
is the price vectorp∗ of the quasi-equilibrium.

Next we assume that for a.e.t ∈ T preference relation≻t satisfies the two
assumptions below.

ASSUMPTION2 (Local non-satiation):For a.e.t ∈ T, for anyx∈ Rn
+ and anyε > 0,

there exists a pointy∈ Rn
+ with ∥y−x∥ ≤ ε such thaty≻t x.

2The notion of quasi-equilibrium was first defined by Debreu (1962).
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ASSUMPTION3 (Continuity): For a.e.t ∈ T, for anyx∈ Rn
+, the upper contour set

{y∈ Rn
+ | y≻t x} is open inRn

+.

Note that we do not necessarily assume that the preference relation of almost
every trader satisfies reflexivity, completeness, transitivity, or convexity etc, which
are usually assumed in the existence theorems of competitive equilibria. In his
paper, Aumann (1964) assumed the following condition of monotonicity of pref-
erences and proved the core equivalence theorem.

Monotonicity: For a.e.t ∈ T, if y≥ x andy ̸= x theny≻t x.

Monotonicity implies local non-satiation, but the converse does not hold. In
this paper, instead of monotonicity, we assume the local non-satiation of prefer-
ence relations.

In order to obtain the core equivalence theorem without Monotonicity, first we
will restate the theorem of Hildenbrand (1968, 1974) that any core allocation is a
quasi-equilibrium allocation. The proof of the following theorem proceeds in the
following way. We first define some notations, secondly get a useful lemma by
applying one of claims of Hildenbrand (1982),3 and finally prove the theorem by
using a separating hyperplane theorem.

THEOREM 1: Under Assumptions 1, 2, and 3, any core allocation is a quasi-
equilibrium allocation.

PROOF: Let an allocationfff : T → Rn
+ be in the core. Define

PPP(t) = {x∈ Rn
+ | x≻t fff (t)} and FFF(t) = intPPP(t)−eee(t).

By Assumptions 2 and 3,FFF(t) is a non-empty open set. By Assumption 1, for
eachx∈ Rn we can define a measurable setFFF−1(x) by

FFF−1(x) = {t ∈ T | x∈ FFF(t)}.

Define

N = {r ∈ Rn | r : rational points,4 λ (FFF−1(r)) = 0}.

3This lemma is obtained by a simple modification of Lemma 4.1 in Aumann (1964).
4A rational point inRn is a vector whose all components are rational.
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SinceN is a denumerable set, we haveλ (
∪

r∈N FFF−1(r)) = 0. Let us define a
measurable setU by

U = T \
∪
r∈N

FFF−1(r),

which has full measure, i.e.,λ (U) = 1. If a rational pointr ∈ Rn belongs toFFF(t)
for somet ∈U , then the setFFF−1(r) is of positive measure. This property is used
in the proof of the following lemma.

Let us denote the convex hull of
∪

t∈U FFF(t) by ∆, i.e.,.

∆ = co
∪
t∈U

FFF(t)

LEMMA 1: ∆ is non-empty and0 /∈ ∆.5

PROOF: The non-emptiness follows from that ofFFF(t) for a.e. t ∈ T. Assume, on
the contrary, that 0∈ ∆. By the definition of∆, there are some finitely many points
in

∪
t∈U FFF(t) such that the origin is expressed as a convex combination of those

points, i.e., there are some tradersti ∈ U (i = 1,2, . . . ,k), xi ∈ FFF(ti), andβi > 0
such that∑k

i=1βi = 1 and∑k
i=1βixi = 0.

Let us choose a rational numberαi sufficiently close toβi for eachi = 2,3, . . . ,k
except 1 and define a numberα1 as follows.

α1 = 1−
k

∑
i=2

αi .

Sinceαi is a rational number sufficiently close toβi for eachi = 2,3, . . . ,k, α1 is
also a rational number close toβ1 andα1 > 0.

SinceFFF(ti) is an open set for eachi = 2, . . . ,k, there exist some rational points
r2, r3, . . . , rk such that each pointr i is sufficiently close toxi andr i ∈ FFF(ti) for each
i = 2,3, . . . ,k. Define a pointr1 ∈ Rn as follows.

r1 = − 1
α1

k

∑
i=2

αir i .

Sincer1 is a rational point close tox1 andFFF(t1) is an open set, we can assume that
r1 ∈ FFF(t1). Thus, the following property is satisfied.

r i ∈ FFF(ti) (i = 1,2, . . . ,k) and
k

∑
i=1

αir i = 0. (1)

5This lemma is obtained by a simple modification of Lemma 4.1 in Aumann (1964).
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Sinceti ∈ U , by definition ofU , ti /∈
∪

r∈N FFF−1(r). Therefore, for anyr ∈ N,
ti /∈ FFF−1(r), i.e., r /∈ FFF(ti). Thus, sincer i ∈ FFF(ti), r i /∈ N, which implies that
λ (FFF−1(r i)) > 0. Hence, there exist some setsS1,S2, . . . ,Sk and a positive number
δ such that

Si ⊂ FFF−1(r i), λ (Si) = δαi (i = 1,2, . . . ,k), and Si ∩Sj = /0 (i ̸= j).

Define a coalitionSand an assignmentggg : T → Rn
+ as follows.

S =
k∪

i=1

Si

ggg(t) =
{

r i +eee(t) if t ∈ Si

eee(t) if t /∈ S.

If t belongs toS, then there exists somei such thatt ∈ Si ⊂ FFF−1(r i) for whom

ggg(t) = r i +eee(t) ≻t fff (t).

In addition, sinceS is the union of disjoint setsS1,S2, . . . ,Sk, we have∫
S
ggg =

k

∑
i=1

r iλ (Si)+
∫

S
eee

= δ
k

∑
i=1

αir i +
∫

S
eee

=
∫

S
eee

where the last equality follows from (1). This means that non-null coalitionScan
improve upon allocationfff . Thus, fff is not a core allocation, which is a contradic-
tion. �

By a separating hyperplane theorem, Lemma 1 implies that there exists a price
vectorp∈ Rn with p ̸= 0 such thatp·x≥ 0 for any x∈ ∆. Therefore, by defini-
tion of ∆, for eacht ∈U ,

p·y≥ p·eee(t) for any y∈ intPPP(t)

If y∈ PPP(t), then, by continuity, there existsy′ ∈ intPPP(t) sufficiently close toy such
thaty′ ≻t fff (t), which implies thatp·y′ ≥ p·eee(t). Since we can picky′ arbitrarily
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close toy, by lettingy′ go toy, we havep ·y≥ p ·eee(t). Hence, we conclude that
for eacht ∈U ,

y≻t fff (t) ⇒ p·y≥ p·eee(t). (2)

By local non-satiation of preference relations, for any smallε > 0 there existsy∈
Rn

+ with ∥y− fff (t)∥ ≤ ε such thaty≻t fff (t). From (2), it follows thatp·y≥ p·eee(t).
By lettingygo to fff (t), p· fff (t)≥ p·eee(t). If λ ({t ∈T | p· fff (t) > p·eee(t)}) > 0, then,
by integration of the inequality, we havep·

∫
T fff > p·

∫
T eee. This is a contradiction

to the premise thatfff is an allocation. Therefore, for eacht ∈U ,

p· fff (t) = p·eee(t). (3)

If p ·eee(t) > inf {p · x | x ∈ Rn
+} andy ≻t fff (t), we can show thatp · y > p ·eee(t).

Indeed, assume on the contrary thatp · y = p ·eee(t). By continuity, there existsy′

sufficiently close toy such thaty′ ≻t fff (t) and p · y′ < p ·eee(t), a contradiction to
(2). Thus,(p, fff ) is a quasi-equilibrium. This completes the proof of Theorem 1.

�

By W , C , andQ, we denote respectively the set of equilibrium allocations,
the core, and the set of quasi-equilibrium allocations. From Proposition 1 and
Theorem 1, it follows thatW ⊂ C ⊂ Q under Assumptions 1, 2, and 3. There-
fore, if W ⊃ Q, thenW = C , i.e., the core coincides with the set of equilibrium
allocations. One of the assumptions under whichW ⊃ Q holds is the following.

Positivity of initial endowments:eee(t) ≫ 0 for a.e.t ∈ T.6

In fact, eee(t) ≫ 0 implies thatp ·eee(t) > inf{p · x | x ∈ Rn
+} for any p ∈ Rn with

p ̸= 0. Therefore, by the definition of quasi-equilibrium, any quasi-equilibrium is
a competitive equilibrium. Thus, we have the following as a corollary of Theorem
1.

COROLLARY 1: In addition to Assumptions 1, 2, and 3, under the assumption of
Positivity of initial endowments, the core coincides with the set of equilibrium
allocations, i.e.,W = C .

6For x andy in Rn, x≫ y means thatxi > yi for all coordinatei.
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4 Irreducible Economies

The assumption that every trader has initially a positive amount of every commod-
ity is too strong. In what follows, we assume that the amount of each commodity
is positive in the whole economy.

ASSUMPTION4:
∫

T eee≫ 0.

As we have seen in the previous section, we can prove the equivalence be-
tween the core and the set of equilibrium allocations by showing that any quasi-
equilibrium is a competitive equilibrium. By the definition of quasi-equilibrium,
any quasi-equilibrium is a competitive equilibrium if all traders’ incomes in the
quasi-equilibrium are positive. More accurately, a quasi-equilibrium(p∗, fff ∗) is
a competitive equilibrium ifp∗ ·eee(t) > inf {p∗ · x | x ∈ Rn

+} for a.e. t ∈ T. The
following is a well-known condition to ensure the positivity of traders’ incomes.

Irreducibility: An economy isirreducibleif for any allocationfff : T →Rn
+ and

any measurable partition(S,S′) of T with 0 < λ (S) < 1, there is an assignment
ggg : T → Rn

+ such that∫
S′
(eee−ggg)+

∫
S

fff ∈
∫

S
{x∈ Rn

+ | x≻t fff (t)}.7

This primitive condition on economies originated with McKenzie (1959). Ir-
reducibility expresses the property that the initial endowments in any coalition are
desirable for every trader in its complementary coalition.

Let us assume the following for any quasi-equilibrium.

ASSUMPTION5: In a quasi-equilibrium(p∗, fff ∗), if p∗ · fff ∗(t) = inf{p∗ ·x | x∈ Rn
+}

occurs for some traders,8 then it occurs for almost every trader. (Equivalently, if
p∗ · fff ∗(t) > inf{p∗ ·x | x∈ Rn

+} occurs for some traders, then it occurs for almost
every trader.)

Assumption 5 is used by Debreu (1962) in order to guarantee the existence of
competitive equilibria in a private ownership economy with finite traders.

7The integral
∫

S{x∈ Rn
+ | x≻t fff (t)} denotes a set defined by

{
∫

S
hhh | hhh : T → Rn

+, hhh(t) ≻t fff (t) a.e. t ∈ T}.

8“Some traders” means that the set of such traders has a positive measure.
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It is easy to show that under Assumption 2 of local non-satiation, Irreducibility
implies Assumption 5. Indeed, let(p∗, fff ∗) be a quasi-equilibrium,Sbe a measur-
able subset ofT andS′ be its complement defined by

S = {t ∈ T | p∗ ·eee(t) > inf{p∗ ·x | x∈ Rn
+}},

and S′ = {t ∈ T | p∗ ·eee(t) = inf{p∗ ·x | x∈ Rn
+}}.

We show thatλ (S) > 0 impliesλ (S′) = 0. Assume on the contrary thatλ (S′) > 0.
Then, by Irreducibility, there is an assignmentggg : T → Rn

+ such that∫
S′
(eee−ggg)+

∫
S

fff ∗ ∈
∫

S
{x∈ Rn

+ | x≻t fff ∗(t)}.

By the definition of quasi-equilibrium, for eacht ∈ S, fff ∗ is maximal with respect
to≻t in t ’s budget set{x∈ Rn

+ | p∗ ·x≤ p∗ ·eee(t)}. Therefore,

p∗ ·
∫

S
fff ∗ ≤ p∗ ·

∫
S
eee< p∗ ·

∫
S
{x∈ Rn

+ | x≻t fff ∗(t)}.

Hence, we have 0< p∗ ·
∫

S′(eee− ggg). On the other hand, by definition ofS′, for
eacht ∈ S′, p∗ ·eee(t) ≤ p∗ ·ggg(t), andp∗ ·

∫
S′(eee−ggg) ≤ 0, a contradiction. Now, if

p∗ · fff ∗(t) > inf{p∗ · x | x ∈ Rn
+} occurs for some traders, thenλ (S) > 0 because

p∗ ·eee(t) ≥ p∗ · fff ∗(t). Therefore,λ (S′) = 0. In addition, by local non-satiation we
can show thatS′ = {t ∈ T | p∗ · fff ∗(t) = inf{p∗ ·x | x∈ Rn

+}}. Hence,p∗ · fff ∗(t) >
inf{p∗ · x | x ∈ Rn

+} occurs for every trader. This proves that, under Assumption
2, Irreducibility implies Assumption 5.

By using Assumption 5 instead of Monotonicity, we show that the core co-
incides with the set of equilibrium allocations which is equivalent to the set of
quasi-equilibrium allocations.

THEOREM 2: Under Assumptions 1, 2, 3, 4, and 5, the core coincides with the set of
equilibrium allocations, i.e.,W = C .

PROOF: By Proposition 1, the set of equilibrium allocations is a subset of the core.
To prove the converse, letfff : T → Rn

+ be a core allocation. Then, by Theorem 1,
there exists a price vectorp ̸= 0 such that(p, fff ) is a quasi-equilibrium.
CASE 1: If vectorp has some negative components, then inf{p·x | x∈ Rn

+}=−∞.
Therefore,p· fff (t) > −∞ = inf{p·x | x∈ Rn

+} for all t ∈ T.
CASE 2: If vectorp has no negative component, then inf{p·x | x∈ Rn

+}= 0. Also,
by Assumption 4,p·

∫
T fff = p·

∫
T eee> 0.
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Therefore,p· fff (t) > 0= inf{p·x | x∈ Rn
+} for somet ∈ T. Thus, by Assumption

5, p· fff (t) > inf{p·x | x∈ Rn
+} for all t ∈ T. Hence, in any case, by the definition

of quasi-equilibrium,fff (t) is maximal with respect to≻t in t ’s budget set{x ∈
Rn

+ | p·x≤ p·eee(t)} for eacht ∈ T, i.e., fff is an equilibrium allocation. �

Since Irreducibility implies Assumption 5, we have the following corollary of
Theorem 2.

COROLLARY 2: In addition to Assumptions 1, 2, 3, and 4, under the assumption
of Irreducibility, the core coincides with the set of equilibrium allocations, i.e.,
W = C .

The following is an example of economies which do not satisfy Irreducibility,
but Assumption 5.

EXAMPLE 1: Let n= 2 and(S0,S1) be a measurable partition ofT such thatλ (S0) =
λ (S1) = 0.5. For each tradert, initial endowmenteee(t) and utility functionUt

which corresponds to preference relation≻t are defined by the following:

eee(t) =
{

(1,3) for t ∈ S0

(1,0) for t ∈ S1 and Ut(x1,x2) =
{

min{x1,x2} for t ∈ S0

x1 for t ∈ S1

A pair (p∗, fff ∗) of a price vector and an allocation defined by

p∗ = (1,0) and fff ∗(t) =
{

(1,3−y) for t ∈ S0

(1,y) for t ∈ S1 (where 0≤ y≤ 2)

is a competitive equilibrium as well as a quasi-equilibrium.

In the economy of Example 1, every trader has a positive income in quasi-
equilibrium (p∗, fff ∗) for anyy with 0≤ y≤ 2, and therefore Assumption 5 is satis-
fied. However, Irreducibility is not satisfied. In fact, lety= 2 and, in the definition
of Irreducibility, put fff = fff ∗, S= S0, andS′ = S1. Then, to make traders inS0 bet-
ter off, both commodities are needed, while traders inS1 have only commodity
1.

Next, we would like to consider an assumption which is weaker than Mono-
tonicity and to introduce the concept ofpotential desirability of commoditiesde-
fined by Hara (2006). The intuition of the potential desirability is that for any
commodity there exists a group of traders with influential power for whom the
commodity is desirable. Note that the potential desirability does not require that
any small amount of each commodity is desirable for a group, but just that some
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constant amount of the commodity are desirable for the group. Let us define the
potential desirability and introduce an assumption of potential desirability as fol-
lows.

DEFINITION: Commoditym is potentially desirablefor a coalitionS⊂ T with re-
spect to a constant numberα > 0 if x+α1m ≻t x for all x∈ Rn

+ and for allt ∈ S.9

ASSUMPTION6: For each commoditym= 1,2, . . . ,n, there exists a coalitionSm ⊂
T with λ (Sm) > 0 and a numberαm > 0 such that commoditym is potentially
desirable for coalitionSm with respect toαm.

This assumption says that for each commodity there are some traders for
whom the commodity is desirable, but the commodity is not necessarily desir-
able for all traders. It also says that a particular positive amount of the commodity
is desirable for the traders.

Moreover, we add the following assumption which reflects both properties of
Assumptions 5 and 6.

ASSUMPTION 7: In a quasi-equilibrium(p∗, fff ∗), if p∗ · fff ∗(t) > inf{p∗ · x | x ∈
Rn

+} occurs for some traders, then it occurs for some traders inSm for all m =
1,2, . . . ,n.10

Clearly, Monotonicity implies Assumption 6, whereas the converse is not true.
Note that it is possible for a trader to be included in more than one coalition
of S1,S2, . . . ,Sn. Under Monotonicity, every trader belongs toSm for all m =
1,2, . . . ,n. Thus, Monotonicity implies Assumption 7.

Now let us consider economies in which Assumption 7 is satisfied while As-
sumption 5 is not. The following is an example of such economies.

EXAMPLE 2: Let n = 2 and(S0,S1,S2) be a measurable partition ofT such that
λ (S1) = λ (S2) > 0. For each tradert, the initial endowmenteee(t) and the pref-
erence relation≻t which is depicted by a utility functionUt are defined by the
following:

eee(t) =


(0,0) for t ∈ S0

(0,1) for t ∈ S1,
(1,0) for t ∈ S2

Ut(x1,x2) =


x1 +x2 for t ∈ S0

x1 for t ∈ S1

x2 for t ∈ S2

Here, commodity 1 is desirable for traders inS1, commodity 2 is desirable for
9By 1m we denote a vector whosem-th coordinate is 1 and whose other coordinates are 0.

10Sm is the non-null coalition defined in Assumption 6 for eachm= 1,2, . . . ,n.
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those inS2, both are desirable for those inS0. A pair (p∗, fff ∗) of a price vector and
an allocation defined by

p∗ = (1,1) and fff ∗(t) =


(0,0) for t ∈ S0

(1,0) for t ∈ S1

(0,1) for t ∈ S2

is a competitive equilibrium as well as a quasi-equilibrium that is unique.

In the above example, Assumption 6 is satisfied. Moreover, Assumption 7 is
satisfied for quasi-equilibrium (p∗, fff ∗), while Assumption 5 isn’t ifλ (S0) > 0.

From now on, in order to obtain a core equivalence theorem for economies
which satisfy Assumptions 1, 2, 3, 4, 6 and 7, we show the following lemmas.

LEMMA 2: Under Assumption 6, for any quasi-equilibrium(p∗, fff ∗), p∗ ≥ 0 with
p∗ ̸= 0.

PROOF: Suppose thatp∗m < 0 for somem. Then, by Assumption 6, for allt ∈ Sm,

fff ∗(t)+αm1m ≻t fff ∗(t) and p∗ · ( fff ∗(t)+αm1m) < p∗ · fff ∗(t) ≤ p∗ ·eee(t),

i.e., fff ∗(t) is not maximal with respect to≻t in t ’s budget set{x ∈ Rn
+ | p∗ · x ≤

p∗ ·eee(t)}.
On the other hand,p∗ · fff ∗(t) >−∞ = inf{p∗ ·x | x∈ Rn

+} for all t ∈ T. There-
fore, by the definition of quasi-equilibrium,fff ∗(t) is maximal with respect to≻t

in t ’s budget set for allt ∈ T, a contradiction. �

LEMMA 3: Under Assumptions 4, 6, and 7, for any quasi-equilibrium(p∗, fff ∗),
p∗ ≫ 0.

PROOF: Sincep∗ ≥ 0 by Lemma 2, inf{p·x | x∈ Rn
+}= 0. Also, by Assumption 4,

p∗ ·
∫

T fff ∗ = p∗ ·
∫

T eee> 0. Therefore,p∗ · fff ∗(t) > 0 = inf{p·x | x∈ Rn
+} for some

t ∈ T. Thus, by Assumption 7, for eachm = 1,2, . . . ,n, p∗ · fff ∗(t) > inf{p · x |
x ∈ Rn

+} for somet ∈ Sm. Therefore, by the definition of quasi-equilibrium, for
eachm= 1,2, . . . ,n, fff ∗(t) is maximal with respect to≻t in t ’s budget set for some
t ∈ Sm.

Now, supposep∗m = 0 for somem. Then, by Assumption 6, for allt ∈ Sm,

fff ∗(t)+αm1m ≻t fff ∗(t) and p∗ · ( fff ∗(t)+αm1m) = p∗ · fff ∗(t) ≤ p∗ ·eee(t),

i.e., fff ∗(t) is not maximal with respect to≻t in t ’s budget set, a contradiction.�
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By using Lemmas 2 and 3, we can get the following theorem.

THEOREM 3: Under Assumptions 1, 2, 3, 4, 6, and 7, the core coincides with the set
of equilibrium allocation, i.e.,W = C . Moreover, every equilibrium price vector
is strictly positive.

PROOF: By Theorem 1, any core allocation is a quasi-equilibrium allocation. By
Lemma 3, the price vector associated with any quasi-equilibrium is strictly pos-
itive. Let fff : T → Rn

+ be a core allocation. Then, there existsp ≫ 0 such that
(p, fff ) is a quasi-equilibrium. Note that inf{p·x | x∈ Rn

+} = 0.
CASE 1: Fort ∈ T with p ·eee(t) > 0, by the definition of quasi-equilibrium,fff (t) is
maximal with respect to≻t in t ’s budget set, sincep·eee(t) > inf{p·x | x∈ Rn

+}.
CASE 2: Fort ∈ T with p ·eee(t) = 0, clearlyeee(t) = fff (t) = 0. Suppose thatfff (t) is
not maximal with respect to≻t in t ’s budget set. Then, 0≻t fff (t), sincet ’s budget
set contains only the origin 0 ofRn

+. If the setSof traderst for whom this happens
has positive measure, thenScan improve uponfff via eee, contradicting thatfff is a
core allocation. Thus, the setS is null and can be ignored.

This proves that (p, fff ) is a competitive equilibrium wherep≫ 0. �

Note that Assumptions 6 and 7 are weaker than Monotonicity. This fact means
that the assumption of Theorem 3 is weaker than that of Aumann’s theorem, i.e.,
Theorem 3 is an extension of Aumann’s equivalence theorem.

Since Example 2 satisfies all the assumptions in Theorem 3, we can apply the
theorem to the example and conclude thatfff ∗ is a unique core allocation. Under
the assumptions of Theorem 3, the core might be smaller than the set of quasi-
equilibrium allocations. However, the example suggests the following corollary.

COROLLARY 3: Let the preference relation of almost every trader be irreflexive.
Under Assumptions 1, 2, 3, 4, 6, and 7, the following three sets of allocations: (i)
the core, (ii) the set of equilibrium allocations, (iii) the set of quasi-equilibrium
allocations are equivalent, i.e.,W = C = Q.

PROOF: The argument in the proof of Theorem 3 can be applied not only to any
core allocation, but also to any quasi-equilibrium allocation, since the assertion of
Case 2 is obviously true under the irreflexivity assumption. �

EXAMPLE 3: Everything is the same as Example 2 except for the preference re-
lations of traders inS0. For t ∈ S0, let ≻t be a relation such that0 ≻t x for all
x ∈ R2

+. Namely, traders inS0 prefer nothing but the origin0 of R2
+. Note that

their preference relations are not irreflexive since0≻t 0.
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In Example 3, ifλ (S0) > 0, the pair (p∗, fff ∗) defined in Example 2 is a unique
quasi-equilibrium, while it is not a competitive equilibrium. Since Assumption
7 is satisfied for (p∗, fff ∗), Theorem 3 holds. However, sincefff ∗ is not a core
allocation, in this case both the core and the set of equilibrium allocations are
empty. On the other hand, ifλ (S0) = 0, this is a case of Corollary 3, andfff ∗ is a
core allocation as well as an equilibrium allocation.

With respect to the non-emptiness of the core, it is shown by Hara (2006) that,
under Assumptions 1, 2, 3, and 6,11 there is a competitive equilibrium in exchange
economies with the following additional assumptions:

(i) Positivity of initial endowments, i.e.,eee(t) ≫ 0 for almost everyt ∈ T,

(ii) Preference-indifference relation of each trader is complete and transitive.

By Hara’s existence theorem, we can simply guarantee the non-emptiness of the
core.

5 Conclusion

As we have shown, the monotonicity of preferences is not essential for Aumann’s
equivalence theorem. On the other hand, general equivalence theorems have been
established by Hildenbrand (1968, 1974). In his paper (1968) he presented a coali-
tion production economy and proved an equivalence theorem in a very general
measure-theoretic framework by using powerful mathematical theorems such as
Liapunov’s Theorem and the Measurable Selection Theorem. Especially, he al-
lowed consumption sets to vary with traders and proved a theorem that any core
allocation is a quasi-equilibrium. The theorem is more general than Theorem
1 in this paper, since the coalition production economy includes our exchange
economy as a special case. However, in asserting that the equivalence theorem
holds, he assumed the monotonicity of preference relations. Furthermore, in his
book (1974) he proved an equivalence theorem in an atomless exchange economy
by assuming some regular conditions on preference relations such as irreflexiv-
ity, transitivity, and monotonicity.12 Thus, his equivalence theorems are not more

11With respect to the potential desirability, in his paper, Hara (2006) just assumes that for each
commoditym a numberαm depends on each tradert ∈ Sm.

12In Problem 9 of Hildenbrand (1974, p.143), he claimed that it is possible to prove an equiva-
lence theorem for an irreducible exchange economy by using an analogous argument to Theorem
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general than Theorems 2 and 3 in this paper, which hold even for some reducible
economies without Monotonicity such as those in Examples 1 and 2. This is the
first significance of this note. As the second significance of this note, we should
note that our proof of the equivalence theorem is very elementary by virtue of
both Aumann’s technique and Hildenbrand’s one, and we do not require a general
approach of measure theory.
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