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Abstract

We propose a (trend) stationarity test with a good finite sample size even when a process

is (trend) stationary with strong persistence; this is useful for distinguishing between a (trend)

stationary process with strong persistence and a unit root process. It could be considered as a

modified version of Leybourne and McCabeʼs test (1994, LMC), but with a different correction

method for serial correlation. A Monte Carlo simulation reveals that in terms of empirical size,

our test is closer to the nominal one than the original LMC test and is more powerful than the

LMC test with size-adjusted critical values.
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I. Introduction

The discrimination between the unit root and (trend) stationary hypotheses has been one of
the primary interests in both theoretical and empirical time series analyses. While various types
of unit root tests have been proposed following the seminal work of Dickey and Fuller (1979),
the null hypothesis of stationarity is favored in some cases. For example, if we consider
purchasing power parity (PPP), the null of PPP against the alternative of no PPP appears to be
a natural choice. The PPP hypothesis can be considered to be equivalent to the hypothesis that
the real exchange rate is stationary; hence, in this case, the null of stationarity becomes primary
interest. Stationarity tests are also used as a complementary tool for unit root tests. For
example, if unit root tests reject the null of a unit root for an economic variable while
stationarity tests accept the null of stationarity, we can confirm that the economic variable is
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well characterized as a stationary process.
The most widely used stationarity tests are Kwiatkowski et al. (1992) (KPSS) and

Leybourne and McCabe (1994) (LMC); the latter has been extended by Leybourne and McCabe
(1999) to improve the finite sample power. Both papers consider the local level model and
propose the Lagrange multiplier (LM) tests. The difference between these tests is that the KPSS
test uses a nonparametric method to correct a series for serial correlation, while the LMC test
considers a parametric correction. The advantage of the LMC test is that under the alternative,
the test statistic diverges to infinity at a rate faster than that in the KPSS test, thus making it
more powerful than the KPSS test. However, this does not necessarily imply that the LMC test
is always more favorable than the KPSS test. This is because the assumptions made in KPSS
are more general, which makes it applicable to a wide class of processes.

Since the asymptotic null distributions of the KPSS and LMC tests are free of nuisance
parameters, we can control the sizes of these tests at least asymptotically. However, according
to Caner and Kilian (2001), both the tests suffer from severe size distortions in finite samples
when a process is strongly serially correlated. Müller (2005) explains the theoretical reason for
the size distortion of the KPSS test, while Lanne and Saikkonen (2003) investigate the sources
of the size distortion of the LMC test. The latter paper also proposes a new method to test the
null of stationarity. Their method works better than the original LMC test when only a constant
is included in a model; however, it still suffers from size distortions when the first-order
autocorrelation exceeds 0.9 or when a model exhibits a linear trend. The size distortion problem
may be mitigated by using size-adjusted finite sample critical values, as employed by Cheung
and Chinn (1997), Rothman (1997), and Kuo and Mikkola (1999) among others; however,
Rothman (1997) and Caner and Kilian (2001) point out that the use of size-adjusted critical
values reduces the power of the tests, so that they have a tendency to fail to reject the null of
stationarity even when a true process has a unit root. Stationarity tests other than the KPSS and
LMC tests are proposed by Tanaka (1990), Saikkonen and Luukkonen (1993a, b), Choi (1994),
Arellano and Pantula (1995), and Jansson (2004) among others, while tests for parameter
constancy may also be considered as stationarity tests. See, for example, Nyblom and
Mäkeläinen (1983), Nyblom (1986, 1989), and Nabeya and Tanaka (1988). However, none of
these tests appear to be able to overcome the size distortion problem, and they tend to
decisively reject the null of stationarity when a process is strongly serially correlated.

As discussed in Caner and Killian (2001) among others, if economic theory holds, some
economic variables may be considered to be stationary but strongly serially correlated. Thus,
we need to develop stationarity tests that do not suffer from size distortions when a process is
strongly serially correlated and that have reasonable power against the alternative. In this paper,
we propose a new test that is robust to such a situation. Our test is obtained by modifying the
LMC test, and we will show that the size of the modified test is close to the nominal one under
the null hypothesis, while its empirical power is considerably greater than that of the original
LMC test with size-adjusted critical values. Thus, our test is useful for distinguishing between a
serially correlated stationary time series and a unit root process.

The rest of the paper is organized as follows. Section II reviews the LMC test and
investigates the sources of its size distortion. We show that the two important sources of the
size distortion are the variation in yt itself and the estimation error of the maximum likelihood
estimator (MLE) of the autoregressive (AR) parameter in a model. We propose a new test in
Section III and investigate its finite sample property in Section IV. Section V provides
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empirical examples, and Section VI concludes the paper.

II. Sources of Size Distortions

1. Review of the LMC Test

We consider the following local level model as used in LMC:

f(L)yt=m+et,
et=gt+et, gt=gt,1+vt, (1)

for t=1,…,T, where f (L)=1,f1L,…,fpL
p is the p-th order lag polynomial in the lag

operator L with all the roots of f(z)=0 outside the unit circle, {et}p i.i.d. (0,s2
e) with E[e4

t ]

<�, {vt}p i.i.d. (0,s2
v); {et} and {vt} are independent of each other. We assume that g0=0

because a constant term is included in the model. Since yt is stationary when s2
v=0 and it is a

unit root process when s2
v>0, the testing problem we consider is

H0：s2
v=0 v.s. H1：s2

v>0. (2)

It is well known that the model (1) is equivalent to the ARIMA (p,1,1) model up to the
second moment:

f(L)byt=(1,qL)ut, (3)

where b=1,L, {ut}p i.i.d.(0,s2
u) with s2

u=s2
e/q and q={r+2,(r2+4r)1/2}/2 with r=s2

v/s
2
e

being a signal-to-noise ratio. In order to identify the model, we assume throughout the paper

that f(z)=0 does not have a root at z=1/q. Note that q is equal to 1 under the null of s2
v=0

while q� (0,1) under the alternative. Then, the null hypothesis H0 may be interpreted as the
null of q=1 for the ARIMA model (3).

As shown in KPSS and LMC, the LM test statistic for the testing problem (2) when p=0

is given by ST=T
,26T

t=1(6
T
j=1 êj)

2/ŝ2
e, where êt is the regression residual of yt on a constant

and ŝ2
e=T

,16T
t=1 ê2

t . KPSS and LMC showed that under H0,

ST 	 @
1

0
V

2(r)dr (4)

where 	 denotes weak convergence and V(r) is a standard Brownian bridge. LMC also proved
that under H1, ST diverges to infinity at the rate of T.

When pB1, yt must be corrected for serial correlation. KPSS proposed to replace the

variance estimator ŝ2
e with a heteroscedasticity and autocorrelation-consistent long-run variance

estimator, while LMC considered a parametric approach. According to LMC, we first estimate
(3) by using the ML method and obtain f̃1,…,f̃p the MLEs of the AR coefficients. Then, by
defining

ỹt=yt,f̃1yt,1,…,f̃p yt,p, (5)

we obtain ẽt, the regression residual of ỹt on a constant. Finally, the LM test statistic, SLMC
T , is

constructed by replacing êt in ST with ẽt and it is defined by SLMC
T =T

,26T
t=1(6

T
j=1 ẽj)

2/ŝ2
e. LMC
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showed that SLMC
T has the same asymptotic property as ST.

2. Sources of Size Distortions

It is known that the size of ST is close to the nominal one when there is no AR structure
in yt (p=0) even for small samples such as T=30 (see, for example, Table 2 in KPSS). Then,
it is natural to conjecture that the size distortion of the LMC test when pB1 arises from the
estimation error of the AR parameter. Note that ỹt is expressed as

ỹt=m+et,rt where rt=(f̃1,f1)yt,1+…+(f̃p,fp)yt,p

as observed in Lanne and Saikkonen (2003). In this expression, rt is asymptotically negligible

because yt,i is stationary under the null hypothesis while f̃i is � T consistent for fi as shown
in McCabe and Leybourne (1998). However, since the estimation error of the AR parameter is
incorporated in rt, we can infer that rt may have a considerable effect on the test statistic in
finite samples and that the size distortion of the LMC test is mainly induced by the finite
sample behavior of rt.

In order to further investigate rt, we consider the AR(1) model here for ease of exposition.
In this case, rt is expressed as rt= (f̃1,f1) yt,1; then, the variation in rt arises from two
sources: The estimation error of the MLE of f1 and the variance of yt . First, we observe the

relation between the variance of yt and f1. For a given f1, the variance of yt is expressed as s2
e/

(1,f2
1) under H0; then, the variation in rt, which is caused by yt, increases as f1 approaches 1.

For example, the variance of yt is approximately 5s2
e, 10s2

e, and 50s2
e for f1=0.9, 0.95, and

0.99, respectively, while the variance for the i.i.d. case is s2
e. Then, when f1 is close to 1, the

size distortion of the LMC test is partly induced by large variance of yt . See also Lanne and
Saikkonen (2003).

We can also observe that the estimation bias of f̃1 and/or the variation in (f̃1,f1) also
lead to the large variation in rt . In order to observe the behavior of f̃1 in finite samples, a
simple Monte Carlo simulation is conducted. We consider the following simple data generating
process (DGP):

yt=0.95yt,1+et, {et}pi.i.d.N(0,1), t=1,…,100. (6)

We fit the ARIMA (1,1,1) model and estimate it by using the GAUSS-ARIMA routine. Section
IV contains a detailed explanation of the estimation.

Figure 1 shows the cumulative distribution function (cdf) of f̃1, which is obtained with
50,000 replications. We can observe that the empirical distribution of f̃1 has a thick left-hand
tail, which implies that it is severely biased, and the variation in f̃1,f1 is very large. This
poor behavior exhibited by f̃1 appears to be due to the lack of the identification of the model.
Note that the likelihood function is known to be relatively flat when the model has an MA unit
root. In addition, since the AR coefficient is close to the MA coefficient, both the AR and MA
lag polynomials nearly cancel out. As a result, it is difficult to identify the ARIMA model in
our situation. In fact, in our simulation, the pair of the estimates of the AR and MA coefficients
takes close values such as (0.96, 1) and (0.26, 0.45), even though their variations are large.
Undoubtedly, the identification problem is not tackled as the sample sizes increase, but sample
sizes such as 100 do not appear to be adequate to overcome this problem.
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III. Stationarity Tests with Less Size Distortions

1. The Variance-based Test

As observed in the previous section, the size distortion of the LMC test is mainly induced
by the large variation in rt, which is due to the large variance of yt and the poor finite sample
behavior of the MLE of the AR parameter. Thus, if we could reduce the variation in rt from ỹt,
we would be able to construct a stationarity test with less size distortions. Lanne and Saikkonen
(2003) proposed to eliminate the large variation in rt by using the following expression:

ỹt=m+b(L)j(L)byt,1+wt+b(L)wt,1, (7)

where b(L) and j(L) are (p,1)-th order lag polynomials. Using the residual obtained by the

ML estimation of (7), they proposed to construct the LM test statistic SLS
T . This test statistic is

shown to be able to reduce the size distortion of the LMC test when the process is moderately
serially correlated. In fact, the size of their test is closer to the nominal one as compared with
the original LMC test when the AR coefficient is 0.8, as will be seen in Section IV. However,
their test still suffers from size distortions when the first order autocorrelation is closer to 1.
Hence, although their method works well in some cases, it is not a conclusive solution to the
size distortion problem of the stationarity tests.

Instead of eliminating the variation in rt from ỹt, we consider constructing a test statistic
that remains unaffected by one of the main sources of size distortions, the identification

problem. Here, we focus on the estimator of variance s2
u because it behaves relatively well even
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if some of the characteristic roots of the AR lag polynomial are close to those of the MA lag
polynomial. In order to observe this, let us consider a simple AR(1) Gaussian model for ease of
exposition. In this case, the vectorized form of (3) becomes L(f)by=L(q )u, where by=[y1,
by2,…, byT]', u=[u1,u2,…,uT]', and L(a) for a given a is defined as

L(a)=�
1 0

,a 1

� �

0 ,a 1
� .

Then, we can see that bypN(0,s2
u`(f,q )) where `(f,q )=L(f),1

L(q )L'(q )L'
,1(f). Note that

under the null hypothesis q=1, `(f,q)=`(f,1) becomes close to an identity matrix when f is

close to 1. In this case, the variance matrix of by is almost diagonal, s2
u IT, which implies that

{byt} seems like an uncorrelated series. Then, we can expect that the realization of byt is also
almost uncorrelated. As a result, f and q would be estimated so that ` (f,q ) is close to an
identity matrix, which implies that `(f̃,q̃ )oIT, irrespective of the difficulty of the identification

of f and q. Since s2
u is estimated by s̃2

u=T
,1

by'`(f̃,q̃ ),1
by, we can observe that s̃2

u is not

considerably affected by the identification problem of f and q.

In practice, the estimator of variance s̃2
u can be constructed by s̃2

u=T
,16T

t=1ũ
2
t , where ũt is

recursively obtained by

ũt=q̃ũt,1+ẽt,ẽt,1 with ũ1=ẽ1 (8)

and ẽt is the regression residual of ỹt on a constant, as defined in Section II.1. The recursive
formula (8) is obtained because the ARIMA model (3) is expressed as

ut,qut,1=f(L)byt

=(yt,m,f1yt,1,…,fp yt,p)
,(yt,1,m,f1yt,2,…,fp yt,p,1)

and the sample analogue of the term within parentheses is given by ẽt, which is the regression
residual of ỹt on a constant.

In order to construct the test statistic, we also use the least squares-based estimator of

variance of et, which is defined as ŝ2
e=T

,16T
t=1ê

2
t ; here, êt is the regression residual of yt on a

constant and yt,1,…,yt,p,

yt=m̂+f̂1yt,1+…+f̂p ŷt,p+êt. (9)

Note that et=et=ut under the null hypothesis; hence, Var(et)=s2
e=s2

u. The following lemma

gives the basic property of the two variance estimators.

Lemma1 Under H0, both s̃2
u and ŝ2

e converge in probability to s2
u=s2

e, while under H1,

s̃2
u

p
	
 s2

u and ŝ2
e

p
	
 g (0),g'p,1Γ

-1
p-1gp,1,

where
p

	
 denotes convergence in probability, g ( j)=Cov (byt,byt,j) for a given j, gp,1=

[g (1),g (2),…,g (p,1)] ' and Γp,1 is a (p,1) square matrix whose (i, j) element consists of

g (i,j) for i, j=1,…, p,1.The relation between the two probability limits under H1 is given by

g (0),g'p,1Γ
-1
p-1gp,1>s2

u. (10)

HITOTSUBASHI JOURNAL OF ECONOMICS [June92



This lemma shows that s̃2
u is consistent under both the null and the alternative hypothesis,

while ŝ2
e is consistent for s2

u only under the null hypothesis. Then, it appears natural to consider

constructing a test statistic by taking the difference between these two estimators:

VT=
T (s̃2

u,ŝ2
e)

s̃2
u

.

We can see that this test statistic basically has the same structure as the conventional F test
statistic. The asymptotic property of this statistic is given by the following theorem.

Theorem 1 (i) Under H0,

VT

d
	
 h2@

1

0
W̃ 2

0 (s)ds,2h@
1

0
W̃0 (s)dW0 (s)

+W2
0 (1)@

1

0
e
,2hs

ds,2W0 (1) W̃0 (1)+W 2
0 (1), (11)

where W0(r) is a standard Brownian motion, W̃0(r)=� r
0e

,sh
dW0(s), and ,h is the limiting

distribution of T(q̃,1), which is defined in the Appendix.
(ii) Under H1, VT 
,� at the rate of T.

Since VT diverges to ,� under the alternative hypothesis, we reject the null hypothesis of
stationarity when VT takes smaller values.

The limiting distribution of VT is obtained by approximation using 1,000 observations with
50,000 replications, and the approximated limiting cdf is depicted in Figure 2. From the figure,
we can see that the limiting cdf is not continuous but has a mass at the origin; P (VT<0) is
approximately 0.025, and the cdf suddenly increases at 0 from 0.02 to 0.67. The mass of the
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cdf occurs because of the discontinuity of the limiting distribution of T(q̃,1). More precisely,
the distribution of the normalized MLE of q is known to have a mass at 0 and it is distributed
in a unimodal form for the range less than 0, as shown by Cryer and Ledolter (1981), Sargan
and Bhargava (1983), Davis and Dunsmuir (1996), and Tanaka (1996) . This implies that the
limiting distribution of T (q̃,1), ,h, takes a value equal to zero with positive probability.
When h=0, we have W̃0 (r)=W0 (r) and then VT=0. As a result, VT becomes equal to zero
with positive probability. Due to the mass of the limiting distribution of VT at 0, we cannot find
some critical points such as 5% and 10% points and hence we may not be able to control the
size of the test. Therefore, we cannot use VT as a test statistic.

2. The Modified Test Using Information from VT

Instead of using VT as a test statistic, we regard it as an indicator to show whether the
process appears stationary or nonstationary. In other words, the process may be considered to
be stationary if VTBc for a given value of c and nonstationary otherwise. From Figure 2, the
natural candidate for the value of c may be 0. In this case, limT→�P(VTB0) is approximately
0.98 under the null hypothesis, while it is zero under the alternative. Then, the process is
asymptotically correctly specified as stationary with probability 0.98, while it is consistently
identified as a nonstationary process under the alternative.

Using the indicator function I (·), we propose to use the following estimator of the AR
parameter in order to correct yt for serial correlation:

f*
i=f̂i I (VTB0)+f̃i I (VT<0)

for i=1,…, p, where f̂i is the least squares estimator (LSE) of fi for the levels AR model (9),

while f̃i is the MLE of the ARIMA model (3). In other words, f*
i is equal to the LSE of fi

when VTB0, and it becomes equal to the MLE when VT<0. This estimator is motivated from
the fact that the LSE does not suffer from the identification problem, so that the finite sample
behavior of the LSE is better than the MLE under the null hypothesis when some of the roots
of f(z)=0 are close to unity. Therefore, as far as the size of the test is concerned, it is more
plausible to use the LSE of fi to correct yt for serial correlation. However, it is known that the
test statistic based on the LSE is inconsistent; hence, in order for the test to be consistent, serial
correlation should be corrected not by the LSE but by the MLE of fi under the alternative.
From the asymptotic distributional property, we can expect that VT tends to take positive values

under the null hypothesis even in finite samples and then f*
i becomes equal to f̂i with high

probability. Thus, the size of the stationarity test would be improved using f*
i . On the other

hand, VT tends to take negative values under the alternative from Theorem 1 (ii), which implies

that it is often the case that f*
i equals f̃i, so that the test with f*

i is expected to have non trivial

power.
It is also possible to construct an estimator in a more general form such that

f+
i =f̂i f (VT ;J)+f̂i (1,f (VT ;J))

where f (·;J) is a function of VT that depends on the parameter J. For example, we may choose
a smooth transition type function as f (·;J) . In this paper, we chose f (VT ;J)=I (VTB0) just
because it is a very simple form and can be easily applied in practice.
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Using f*
i , we correct yt for serial correlation and modify the LM test statistic as follows:

S*
T=

1
T

2

6T
t=1(6

T
j=1e

*
j )

2

s*2
e

,

where e*
t is the regression residual of y*

t=yt,f*
1yt,1,…,f*

pyt,p on a constant and s*2
e =T

,1

6T
t=1 e*2

t . We term the test based on S*
T as the modified LM test. The asymptotic property of S*

T

is given in the following theorem.

Theorem 2 S*
T has the same limiting distribution as the LMC test statistic under the null

hypothesis, while S*
T is Op(T ) under the alternative.

From this theorem, we can see that our test has the same asymptotic property as the
original LMC test. However, as shown in the next section, our test performs better than the
LMC test in finite samples when the process is strongly serially correlated.

3. Extension to the trend stationary process

The modified LM test that is investigated in the previous subsection can be extended to
the test for the null hypothesis of trend stationarity. The model is expressed as

f(L)yt=m0+m1t+et, et=gt+et, gt=gt,1+vt,

and (3) becomes

f(L)byt=m1+(1,qL)ut. (12)

As in the previous subsections, we estimate (12) by using the ML method and obtain the
estimated residual ẽt by regressing ỹt=yt,f̃1 yt,1,…,f̃p yt,p on a constant and a linear

trend. We construct s̃2
u in exactly the same way as in the previous subsection by using ũt,

which is recursively obtained by (8). Further, we calculate ŝ2
e from the regression residual of yt

on a constant, a linear trend, and yt,1,…, yt,p . Then, we can construct VT for the trend
stationarity case. Once again, our preliminary simulation unfortunately shows that the limiting
distribution of VT has a mass at 0; therefore, we cannot use VT as a test statistic. Hence, we

construct f*
i as in the previous subsection and obtain the test statistic S*

T from e*
t , the regression

residual of y*
t=yt,f*

1yt,1,…,f*
p yt,p on a constant and a linear trend.

IV. Finite Sample Properties

In this section, we investigate the finite sample property of the modified LM test that is
considered in the previous section by using a Monte Carlo simulation. The data are generated
according to the following system:

yt=fyt,1+m0+m1t+gt+εt, gt=gt,1+vt,

where {et}pi.i.d.N(0,1), {vt}pi.i.d.N (0,s2
v ), and they are independent of each other. We set m0

=m1=0, g0=0, f=0.8, 0.9, 0.95, 0.99, s2
v=0, 0.01, 0.1, 1, and the sample sizes are 100 and

200 (the first 100 observations are discarded). The level of significance is 0.05, and the number
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of replications is 1,000. For the estimation of the ARIMA model, the GAUSS-ARIMA routine
is used throughout the simulation. As in LMC and Caner and Kilian (2001), the likelihood
function is evaluated for a grid of initial values for q ranging from 0 to 1 in increments of 0.05,
with the initial value of f being fixed at q,0.1, in addition to the default values given by the
GAUSS-ARIMA routine. Furthermore, as recommended by Lanne and Saikkonen (2003), we
estimate the AR parameter by the generalized least squares method for each starting value of q,
and using a given q and the estimate of f as the initial values, we maximize the likelihood
function based on the Kalman filter algorithm by using the GAUSS-Optmum routine. The
estimates obtained by this procedure are also used as the initial values for the GAUSS-ARIMA
routine.

Table 1 reports the simulation results of the LMC test, the Lanne and Saikkonen (LS) test,
and the modified LM test when only a constant is included in the model. As is observed in
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T＝100

SLMC
T SLS

T S*
T

1

0 0.9

0 0.8

ρ φ

(b) nominal power of the tests

0 0.99

0 0.95

T＝200

SLMC
T SLS

T S*
T

TABLE 1. SIZE AND POWER OF THE STATIONARITY TESTS (Constant Mean)

0.321 0.244 0.062

0.099 0.051 0.0510.148 0.081 0.045

(a) size of the tests

0.181 0.113 0.066

0.710 0.673 0.130

0.345 0.276 0.0530.502 0.460 0.098

0.710 0.664 0.122

0.755 0.635 0.2670.613 0.500 0.110

0.136 0.001 0.768

0.01

0.193 0.004 0.855

1.000 0.996 0.909

0.887 0.829 0.3110.831 0.778 0.273

1

0.1 0.8

0.990 0.963 0.846

1.000 0.995 0.983

0.992 0.963 0.7750.925 0.836 0.598

0.765 0.721 0.1120.730 0.686 0.128

1

0.1 0.9

0.01

0.999 0.974 0.947

1

0.999 0.981 0.935

0.829 0.767 0.3340.757 0.680 0.209

0.1 0.95

0.01

0.950 0.838 0.733

(c) size-adjusted power of the tests

1.000 0.989 1.000

1.000 0.997 0.9980.994 0.962 0.975

1 0.991 0.891 0.985

0.999 0.996 0.909

0.867 0.829 0.3090.719 0.715 0.278

0.715 0.634 0.2650.484 0.434 0.116

1

0.1 0.8

0.01

0.919 0.937 0.850

1

0.908 0.915 0.769

0.693 0.685 0.1000.401 0.407 0.098

0.1 0.9

0.01

0.362 0.262 0.565

0.509 0.334 0.933

0.304 0.251 0.3320.216 0.193 0.072

0.976 0.985 0.9810.608 0.529 0.935

0.1 0.95

0.01

0.132 0.031 0.449

0.046 0.000 0.745

0.010 0.004 0.2630.022 0.017 0.089

0.663 0.583 0.9980.370 0.112 0.7621

0.01

0.1 0.99 0.019 0.001 0.506

0.881 0.763 0.6220.01 0.717 0.590 0.284

0.993 0.954 0.9810.1 0.99 0.952 0.734 0.786



panel (a), the size of the LMC test is greater than the nominal size, 0.05; it is 14.8% for f=0.8
and it becomes greater than 50% for fB0.95. The size of the LS test is relatively close to the
nominal size for f=0.8, but it suffers from size distortions for fB0.9. On the other hand, the
modified LM test proposed in this paper has good finite sample size; the size of the modified
test is close to 5% for fC0.9 when T=100 and for fC0.95 when T=200. Although none of
the tests have size close to 0.05 for f=0.99, the modification proposed in this paper improves
the finite sample performance of the stationarity tests under H0.

Panel (b) reports the nominal powers of the three tests. Although the LMC and LS tests
appear to be more powerful than the modified LM test, the powers of the former tests are
mainly due to large size distortions.

Further, we investigate the size-adjusted power of the tests; the results of this investigation
are summarized in panel (c). For f=0.8, the size-adjusted powers of the LMC and LS tests are
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T＝100

SLMC
T SLS

T S*
T

T＝200

SLMC
T SLS

T S*
T

0 0.95

0 0.99

(b) nominal power of the tests

ρ φ

0 0.8

0 0.9

1

TABLE 2. SIZE AND POWER OF THE STATIONARITY TESTS (Linear Trend)

0.183 0.207 0.067 0.093 0.086 0.043

0.079 0.082 0.046 0.055 0.049 0.043

(a) size of the tests

0.453 0.470 0.136 0.477 0.491 0.146

0.317 0.341 0.127 0.191 0.216 0.063

0.442 0.416 0.185

0.105 0.002 0.989 0.161 0.004 1.000

0.231 0.240 0.0990.01

1.000 1.000 0.9790.997 0.981 0.9031

0.807 0.793 0.3570.681 0.670 0.2820.1 0.8

1.000 1.000 0.9980.999 0.991 0.9751

0.994 0.984 0.8520.921 0.870 0.624

0.437 0.458 0.139 0.512 0.513 0.129

0.1 0.9

0.01

1

1.000 0.989 0.9670.954 0.906 0.760

0.645 0.634 0.256 0.820 0.785 0.400

0.1 0.95

0.01

(c) size-adjusted power of the tests

1.000 0.995 1.0001.000 0.954 0.992

0.997 0.981 0.987 1.000 0.999 0.999

1

1.000 1.000 0.9790.968 0.964 0.9071

0.802 0.794 0.3750.629 0.628 0.298

0.187 0.185 0.114 0.427 0.420 0.211

0.1 0.8

0.01

1

0.957 0.976 0.8550.284 0.216 0.608

0.235 0.255 0.122 0.481 0.486 0.137

0.1 0.9

0.01

0.313 0.083 0.9640.072 0.033 0.6930.1 0.95

0.277 0.244 0.3630.183 0.165 0.152

0.515 0.410 0.975 0.996 0.999 0.998

0.01

0.024 0.000 0.9760.011 0.001 0.7290.1 0.99

0.023 0.016 0.5150.062 0.057 0.188

1 0.282 0.043 0.980 0.541 0.362 0.998

0.01

0.888 0.829 0.6400.728 0.676 0.311

0.942 0.857 0.782 0.998 0.983 0.987

0.01

0.1 0.99



higher than that of the modified LM test. However, for fB0.9, the modified LM test is more
powerful than the other two tests except in the case where the signal-to-noise ratio is very

small, r= s2
v =0.01. The size-adjusted powers of the LMC and LS tests are very low for

fB0.95, which implies that if we use size-adjusted critical values for these tests, we rarely
reject the null hypothesis of stationarity. This result is consistent with those found in Rothman
(1997) and Caner and Kilian (2001).

When a linear trend is included, the size distortions of the tests are not as severe as those
in the non-trending case. Overall, the relative performance of the tests is similar to the case in
which only a constant is included in the model.

V. Empirical Examples

In this section, we apply the stationarity test proposed in the previous section to two
macroeconomic data sets. The first data set comprises of the monthly yen/dollar real exchange
rate measured in logarithms from January 1973 to December 2004. The sample size T is 384.
The nominal exchange rate is obtained from the Bank of Japan, while the US and Japanese
consumer price indices (CPI) are taken from the IMFʼs International Financial Statistics.

The results are summarized in Table 3. Only a constant is included in the model because
the real exchange rate is not a trending series. The lag length p is selected using the modified
Akaike information criterion proposed by Ng and Perron (2001), which is robust to the
existence of a large negative MA root. Since the first-order autocorrelation of the demeaned
series is 0.993, we expect that the LMC and LS tests suffer from size distortions. In fact, these
two tests reject the null of stationarity at the 1% significance level, while the modified LM test
statistic is insignificant. Further, we check the hypothesis in the opposite direction using the
ADF-GLS test proposed by Elliott, Rothenberg, and Stock (1996), and the null of a unit root is
not rejected by this test. This is consistent with the results obtained by the LMC and LS tests,
but the rejection of the latter two tests might be due to size distortions. Since the null of
stationarity cannot be rejected by the modified LM test, we should not conclude that the PPP
hypothesis does not hold for the yen/dollar real exchange rate.

The second data set includes the annualized quarterly inflation rates calculated from the
CPI for industrial and developing countries, which are obtained from the IMFʼs International

Financial Statistics. The inflation rates are calculated by taking the logged differences, and they
range from the first quarter in 1969 to the third quarter in 2004 (T=143) . Again, these two
series are highly persistent and then we need to carefully interpret the results of the stationarity
tests. For industrial countries, the ADF-GLS test cannot reject the null of a unit root, while all
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ADF-GLS

−0.459

Stationarity tests

SLS
T

Unit root tests

SLMC
T

pSeries

CPI(industrial)

CPI(developing)

Notes: The symbols *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

TABLE 3. EMPIRICAL RESULTS

14.450***17.114***384Yen-dollar

143 10.353*** 10.502*** 0.414*

S*
T

2

9

5

−0.477

Corr

0.957

0.993 0.119

−0.803

0.983

143 2.629*** 2.133*** 0.343



the three stationarity tests reject the null hypothesis, although the modified LM test rejects the
hypothesis of stationarity only at the 10% significance level. Then, judging from these results,
the CPI for industrial countries is well characterized as a unit root process.

On the other hand, the results of the CPI for developing countries are mixed. The LMC
and LS tests reject the null hypothesis but the modified LM test supports the stationarity of the
CPI; on the other hand, the ADF-GLS test does not reject the unit root hypothesis. Thus, in this
example, we cannot conclude whether the CPI for developing countries is well characterized as
a unit root or stationary process.

VI. Conclusion

In this paper, we investigate how to construct stationarity tests with less size distortions.
First, we propose to construct a variance-based test that is not affected by the identification
problem. However, we find that we cannot control the size of the test because the pdf of the
test statistic has a mass. Instead, we regard the variance-based test statistic as an indicator to
show whether the process appears as a stationary or a unit root process. We propose the
correction of serial correlation using either the least squares estimator of the AR parameter for
the levels AR model or MLE of the AR parameter for the ARIMA model, depending on the
indicator based on VT . A Monte Carlo simulation shows that the modified LM test performs
fairly well in finite samples. Although our simulation settings are limited, it appears that the
modified LM test proposed in this paper is useful in distinguishing between a stationary process
with strong persistence and a unit root process.

APPENDIX: Mathematical Proofs

Lemma A.1 Under H0, for 0CrC1,

T (q̃,1) 	 ,h, (A.1)

1

se� T
6
[Tr]

t=1

et 	 W0(r), (A.2)

1

se� T
6
[Tr]

t=1

q̃ t,jej 	 @
r

0
e
,sh

dW0(s)6W̃0(r), (A.3)

1

s2
eT
6

T

t=1
r6

t-1

j=1

q̃ t-j-1e j� e t 	 @
1

0
W̃0(s)dW0(s), (A.4)

where [a] denotes the largest integer Ca and h is a global maximizer of

Z(h*)=6
�

k=1

h*2

k2p2
+h*2W

2
k (1)+6

�

k=1

ln r
k2p2

k2p2
+h*2 �

with {Wk (r)}
�
k=0 as sequence of independent standard Brownian motions.

Proof of Lemma A.1: McCabe and Leybourne (1998) showed that q̃ has the same limiting
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property as the MLE for the case where the AR parameter is known. Then, T (q̃,1) has the
same limiting distribution as the normalized MLE for the ARIMA (0, 1, 1) model, and the
limiting distribution of the latter is given by Theorem 2.2 in Davis and Dunsmuir (1996).

(A.2) holds by the functional central limit theorem. From Proposition A2 in Davis and
Dunsmuir (1996), we can observe that Wk (r) for kB1 are the limits of

Uk,T=�
2

T+16
T

j=1

e j

se

cos r
jkp

T+1 �+op (1)

and the joint convergence and independence of W0 (r) and Wk (r) for kB1 are established by
Theorem 2.2 in Chan and Wei (1988).

From (A.1) and the continuous mapping theorem, we have

q̃ [Tr]
=r1+

T (q̃,1)

T �
[Tr]

	 e-rh.

Since h is a function of {Wk (r)}
�
k=1 by definition, it is independent of W0(k). This implies that

q̃ is asymptotically independent of the partial sum of et and hence we obtain (A.3) and (A.4) by
using Theorem 4.1 in Hansen (1992).

A.1 Proof of Lemma 1

We first consider the probability limit of s̃2
u. Under the null hypothesis, yt can be expressed

as

yt=f(L),1(m+et)=c+xt, where c=f(1),1m and xt=f,1(L)et.

We can also see that ẽt=ỹt,ỹ̄, where ỹ̄t=T
,16T

t=1 ỹt, because ẽt is the regression residual of ỹt

on a constant. Since byt=bxt and ỹt=m+et,(f̃1,f1)yt,1,…,(f̃p,fp)yt,p, equation (8)
becomes

ũt,q̃ũt,1 = ẽt,ẽt,1

= ỹt,ỹt,1

= bet,(f̃1,f1)byt,1,…,(f̃p,fp)byt,p

= bet,(f̃,f)'bzt,1

for tB2, where f̃=[f̃1,…,f̃p]', f=[f1,…,fp]', and zt,1=[xt,1,…,xt,p]' with initial values ũ1

=ẽ1. This equation is expressed in the matrix form as

L(q̃)ũ=L(1)e,L(1) z (f̃,f)+r
*, (A.5)

where ũ=[ũ1,…,ũT] ', e=[e1,…,eT] ', z=[z0,…,zT,1] ', and r
*
=[r*

1,0,…,0] with r*
1=ẽ1,e1+

(f̃,f) ' z0. Thus, ũ=L
,1(q̃)L (1)e,L

,1(q̃)L (1) z (f̃,f)+L
,1(q̃) r* and we can observe that

ũt is expressed as

ũt=et+(q̃,1)6
t-1

j=1

q̃ t,j,1ej,(f̃,f)' zt,1,(q̃,1)(f̃,f)'6
t-1

j=1

q̃ t,j,1
zj,1+q̃ t,1

r*
1 (A.6)

for tB2 and ũ1=ẽ1 . Here, note that ẽt=et,ē, (f̃,f) ' (zt,1,z̄), where ē and z̄ are the
sample means of et and zt,1, respectively. Then, since (f̃,f) =Op (T,1/2) as shown by
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McCabe and Leybourne (1998), we can observe that r*
1=,ē+Op (T

,1) . In addition, since

6 t-1
j=1q̃

t,j,1
zj,1 is shown to be Op(T

,1/2) in the same way as (A.3), the second-last term in

(A.6) is Op(T
,1). Using these results and Lemma A.1, we have
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T

t=1

q̃ t,1t6
t-1

j=1

q̃ t,j,1ej	+Op(T
,1/2). (A.7)

Since the first term on the right-hand side of (A.7) dominates the other terms, we can observe

that s̃2
u is consistent under the null hypothesis.

Under the alternative, it is well known that both (q̃,q) and (f̃,f) are Op (T,1/2);

subsequently, the consistency of s̃2
u is proved in a similar manner.

Next, we investigate the variance estimator ŝ2
e, which is estimated by the least squares

method for the levels AR model. The consistency of ŝ2
e under the null hypothesis is a well

known result. In order to show the probability limit of ŝ2
e under the alternative, we first express

(1) as

byt=m+(r,1) yt,1+y'wt,1+et,

where r=f1+…+fp, y=[y1,…,yp,1]' with yj=,6p
i=j+1fi for j=1,…,p,1, and wt,1=

[byt,1, …, byt,p+1]'. By standard linear regression algebra, the normalized least squares
estimator is expressed as
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T-16T

t=1 ŷ t-1bŷ t

T-16T
t=1 ŵ t-1bŷ t�,

where ŷt,1, ŵt,1, and bŷt are the regression residuals of yt,1, wt,1, and byt on a constant.

Since yt is a unit root process while byt is stationary, we can see that T
,26T

t=1 ŷ
2
t-1=Op (1),

T
,16T

t=1ŷt,1ŵ't,1=Op(1), T
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,16T

t=1ŷt,1bŷt=Op(1), and T
,16T

t=1

ŵt,1bŷt=Op(1). Then, the first matrix on the right-hand side of the above equation takes the
form of an asymptotic upper block diagonal matrix, so that

T(r̂,1)=Op(1) and ŷ=sT-16
T
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t-1


-1

T-16
T
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The regression residual êt is then expressed as

êt=bŷt,ŷ' ŵt,1,(r̂,1) ŷt,1

=bŷt,ŷ' ŵt,1+Op (T
,1/2),

where the last equality holds because (r̂,1)=Op (T
,1) from (A.8) and ŷ[Tr]=Op (T

1/2) for
0CrC1. Then, we have
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bŷ2
t,2ŷ' T

,16
T

t=1
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 sT,16
T

t=1
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where the second equality is established using (A.8) and the convergence in probability holds
because byt is a stationary process with mean zero.

Note that (A.9) is asymptotically equivalent to the normalized sum of squared residuals
that are obtained from the regression of bŷt on bŷt,1,…,bŷt,p+1. Since bŷt is expressed in an
AR(�) form as

(1,qL),1f(L)bŷt=ût

from expression (3), we have

1
T6

T

t=1

ê2
tB

1
T6
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t=1

ê2
t, p̄ (A.11)

for any p̄Bp, where êt, p is the regression residual of bŷt on bŷt,1,…,bŷt,p̄. Note that the left-
hand side of (A.11) converges in probability to (A.10), while the right-hand side of (A.11)

converges in probability to s2
u when p̄→� at a suitable rate as T→�. Then, we have the

inequality (10) . Further, we note that the limit of ŝ2
e can be considered as the mean squared

error of the best linear prediction (see, for example, Brockwell and Davis, 1991), which

coincides with innovation variance s2
u if and only if byt is expressed as an AR(p,1) process.

Since it is assumed that f (z)=0 does not have a root at z=1/q, (A.11) asymptotically becomes
a strict inequality.□

A.2 Proof of Theorem 1

Note that under the null hypothesis,

yt=m+f1yt,1+…+fp yt,p+et

=m*+f'zt,1+et,

where m*=m+cr. Then, êt is numerically equal to the regression residual of yt on a constant
and zt,1. By denoting the LSEs of m* and f as m̂* and f̂, we have

êt=et,(m̂*,m),(f̂,f)'zt,1.

Using this expression, we can observe that
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The limiting distribution of the test statistic is obtained by taking the difference between

(A.7) and (A.12). Here, note that � T (f̃,f) has the same limiting distribution of the MLE of f
for a known q as proved by McCabe and Leybourne (1998), which implies that f̃ has the same

asymptotic property as the MLE of f for the levels AR(p) model. Then, we can see that � T

(f̃,f) has the same limiting distribution as � T (f̂,f). Hence, the terms associated with f̃ and
f̂ are canceled out from the difference between (A.7) and (A.12), so that
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Since it is shown from standard econometric theory that T
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(ii) is obtained from the result in Lemma 1.□

A.3 Proof of Theorem 2

Note that the � T consistency of the LSE of f is a well known result, while McCabe and

Leybourne (1998) showed that the MLE of f is � T consistent. As a result, we can see that f*

is also � T consistent. Following LMCʼs demonstration that the � T consistency of the AR
parameter is sufficient for the test statistic to have the same limiting distribution as ST under H0,
we have the first result.

Regarding to the second result, we have the asymptotic inequality given by (10) under the
alternative; thus, f* is equal to f̃ with a probability approaching 1. On the observation that f̃ is

� T consistent under the alternative, we have S*
T=Op(T) as shown in LMC.□
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