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Abstract

This paper considers the estimation problem of structural models for which empirical
restrictions are characterized by a fixed point constraint, such as structural dynamic discrete
choice models or models of dynamic games. We analyze the conditions under which the
nested pseudo-likelihood (NPL) algorithm converges to a consistent estimator and derive
its convergence rate. We find that the NPL algorithm may not necessarily converge to a
consistent estimator when the fixed point mapping does not have a local contraction property.
To address the issue of divergence, we propose alternative sequential estimation procedures
that can converge to a consistent estimator even when the NPL algorithm does not.
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1 Introduction

Empirical implications of economic theory are often characterized by fixed point problems. Upon
estimating such models, researchers typically consider a class of extremum estimators with a
fixed point constraint P = Ψ(θ, P ). For example, if P = {P (a|x)} is the conditional choice
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probabilities, and the sample data are {ai, xi}ni=1, then maximizing n−1
∑n

i=1 lnP (ai|xi) subject
to P = Ψ(θ, P ) gives the Maximum Likelihood Estimator (MLE, hereafter).

The fixed point constraint P = Ψ(θ, P ) summarizes the set of structural restrictions of
the model that is parametrized by a finite vector θ ∈ Θ.1 In principle, we may estimate the
parameter θ by the Nested Fixed Point (NFXP) algorithm (Rust, 1987), which repeatedly solves
all the fixed points of P = Ψ(θ, P ) at each parameter value to maximize the objective function
with respect to θ. The major obstacle of applying such an estimation procedure lies in the
computational burden of solving the fixed point problem for a given parameter.2

To reduce the computational cost, Hotz and Miller (1993) developed a simpler two-step
estimator that does not require solving the fixed point problem for each trial value of the
parameter. A number of recent papers in empirical industrial organization build on the idea
of Hotz and Miller (1993) to develop two-step estimators for models with multiple agents (e.g.,
Bajari, Benkard, and Levin, 2007; Pakes, Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-
Dengler, 2008; Bajari, Chernozhukov, Hong, and Nekipelov, 2009). These two-step estimators
may suffer from substantial finite sample bias, however, when the choice probabilities are poorly
estimated in the first step.

To address the limitations of two-step estimators, Aguirregabiria and Mira (2002)(2007,
henceforth AM07) developed a recursive extension of the two-step method of Hotz and Miller
(1993), called the nested pseudo likelihood (NPL) algorithm. With P = {P (a|x)} denoting the
vector of conditional choice probabilities, the NPL algorithm starts from an initial estimate P̃0

and iterates the following steps until j = k:

Step 1: Given P̃j−1, update θ by θ̃j = arg maxθ∈Θ n
−1
∑n

i=1 ln[Ψ(θ, P̃j−1)](ai|xi).

Step 2: Update P̃j−1 using the obtained estimate θ̃j : P̃j = Ψ(θ̃j , P̃j−1).

The estimator θ̃1 is a version of Hotz and Miller’s two-step estimator, called the pseudo maximum
likelihood (PML) estimator. As AM07 show, it is often the case that evaluating the mapping
Ψ(θ, P ) for a fixed value of P across different values of θ is computationally inexpensive and
implementing Step 1 of the NPL algorithm is easy. This recursive method can be applied
to models with unobserved heterogeneity, and the limit of the sequence of estimators is more
efficient than the two-step estimators if it converges to a consistent fixed point.3

1Examples of the operator Ψ(θ, P ) include, among others, the policy iteration operator for a single agent
dynamic programming model (e.g., Rust, 1987; Hotz and Miller, 1993; Aguirregabiria and Mira, 2002; Kasahara
and Shimotsu, 2008), the best response mapping of a game (e.g., Aguirregabiria and Mira, 2007; Pakes, Ostrovsky
and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008), and the fixed point operator for a recursive competitive
equilibrium (e.g., Aiyagari, 1994; Krusell and Smith, 1998).

2Su and Judd (2008) proposed a method that does not require solving all the fixed points of P = Ψ(θ, P ) at
each trial value of θ.

3Two-step estimators can be applied to models with unobserved heterogeneity when an initial consistent
estimator of the type-specific conditional choice probabilities are available. Kasahara and Shimotsu (2009) derived
sufficient conditions for nonparametric identification of a finite mixture model of dynamic discrete choices.
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While the NPL algorithm provides an attractive apparatus for empirical researchers, its
convergence is a concern, as recognized by AM07 (p. 19). Indeed, little is known about its
convergence properties except that, in some examples, the NPL algorithm converges to a point
distance away from the true value as shown in Pesendorfer and Schmidt-Dengler (2008)(2009,
henceforth PS09). In our simulations using the dynamic game model of AM07, we find that
the NPL algorithm diverges away from a consistent estimator when the degree of strategic
substitutability is high. In such cases, various two-step estimators can be used, but they may
suffer from a large finite sample bias. In view of this mixed evidence and its practical importance,
it is imperative that we understand the convergence properties of the NPL algorithm.

In the first of our two main contributions, this paper derives the conditions under which the
NPL algorithm converges to a consistent estimator when it is started from a neighborhood of
the true value. We show that a key determinant of the convergence of the NPL algorithm is the
contraction property of the mapping Ψ. Intuitively, the faster the mapping achieves contraction,
the closer the value obtained after one iteration is to the fixed point, and the NPL algorithm
works well if the mapping satisfies a good contraction property.

As our second contribution, we propose alternative sequential algorithms that are imple-
mentable even when the original NPL algorithm does not converge to a consistent estimator.
The first estimator replaces Ψ(θ, P ) in the NPL algorithm with Λ(θ, P ) = [Ψ(θ, P )]αP 1−α, which
has a better contraction property than Ψ under some conditions. The second algorithm decom-
poses the space of P into the unstable subspace and its orthogonal complement based on the
eigenvectors of ∂Ψ(θ, P )/∂P ′. It then constructs a contractive mapping by taking a Newton step
on the unstable subspace. The third algorithm defines a pseudo-likelihood function in terms of
multiple iterations of a fixed point mapping and, upon convergence, generates a more efficient
estimator.

In the rest of the paper, Section 2 introduces a class of models with a fixed point constraint,
and Section 3 analyzes the convergence properties of the NPL algorithm. Section 4 develops
alternative algorithms. Simulation results are reported in Section 5, and the conclusion follows.
The proofs are collected in the Appendix.

2 Maximum likelihood estimation

We consider a class of parametric discrete choice models of which restrictions are characterized
by fixed point problems. Let ai ∈ A denote the choice variable and xi ∈ X the conditioning
variable. Let P (ai|xi) denote the conditional choice probability, and define P = {P (a|x) :
(a, x) ∈ A × X}.4 The model is parametrized with a K-dimensional vector θ, and the fixed
point constraint P = Ψ(θ, P ) summarizes the restrictions of the model. For each θ, the operator

4The exact formulation of P (a|x) depends on the specifics of the model of interest. In the dynamic game, a
may represent actions of multiple players and P contains the conditional choice probabilities across all the players.
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Ψ(θ, P ) maps the space of conditional choice probabilities into itself. The true conditional choice
probability P 0 is one of the fixed points of the operator Ψ(θ, P ) evaluated at the true parameter
value θ0.

Upon estimating such models from the sample data {ai, xi}ni=1, researchers may consider the
MLE with a fixed point constraint:

θ̂MLE = arg max
θ∈Θ

{
max
P∈Mθ

n−1
n∑
i=1

lnP (ai|xi)

}
, (1)

where Mθ ≡ {P ∈ BP : P = Ψ(θ, P )} is the set of fixed points of Ψ(θ, P ) given the value of
θ ∈ Θ ⊂ RK . Here, BP represents the space of conditional choice probabilities, and Θ is the
parameter space.

As discussed in the introduction, if evaluating the mapping Ψ is costly, obtaining the MLE by
the NFXP algorithm could be extremely computationally intensive. One of the major issues in
estimating models with a fixed point constraint is to develop an estimator that is computationally
simple and has good finite sample properties as an alternative to the MLE.

3 The nested pseudo likelihood (NPL) algorithm

3.1 Asymptotic properties of the NPL estimator

This section reviews the properties of the PML estimator and the NPL estimator as discussed
in Aguirregabiria and Mira (2002, 2007). These are feasible alternatives to the MLE.

We assume that the support of (ai, xi) is finite, A×X = {a1, a2, . . . , a|A|}×{x1, x2, . . . , x|X|}.5

Accordingly, P is represented by an L vector, where L = |A||X|. Given θ, the Jacobian
∇P ′Ψ(θ, P ) is an L × L matrix, where ∇P ′ ≡ (∂/∂P ′). To save space, we denote the Jacobian
matrices evaluated at the true value (θ0, P 0) as ΨP ≡ ∇P ′Ψ(θ0, P 0) and Ψθ ≡ ∇θ′Ψ(θ0, P 0).
Let || · || denote the Euclidean norm.

We collect the assumptions employed in AM07. Define Q0(θ, P ) ≡ E ln Ψ(θ, P )(ai|xi),
θ̃0(P ) ≡ arg maxθ∈ΘQ0(θ, P ), and φ0(P ) ≡ Ψ(θ̃0(P ), P ). Define the set of population NPL
fixed points as Y0 ≡ {(θ, P ) ∈ Θ × BP : θ = θ̃0(P ) and P = φ0(P )}. See AM07 for details.
Denote the sth order derivative of a function f with respect to all of its parameters by ∇sf . Let
N denote a closed neighborhood of (θ0, P 0).

5It would be interesting to extend our analysis to models with continuously distributed variables. The asymp-
totic analysis of the NPL estimator in such models may become substantially complicated, however, because it
involves functional derivatives of mappings such as θ̃M (P ). We conjecture that, under suitable regularity con-
ditions, the NPL estimator is asymptotically normal and Lemma 1 holds if matrices such as ΨP and MΨθ are
replaced with corresponding operators. A detailed analysis is beyond the scope of this paper and left for future
research.
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Assumption 1 (a) The observations {ai, xi : i = 1, . . . , n} are independent and identically
distributed, and dF (x) > 0 for any x ∈ X, where F (x) is the distribution function of xi. (b)
Ψ(θ, P )(a|x) > 0 for any (a, x) ∈ A × X and any (θ, P ) ∈ Θ × BP . (c) Ψ(θ, P ) is twice
continuously differentiable. (d) Θ is compact and BP is a compact and convex subset of [0, 1]L.
(e) There is a unique θ0 ∈int(Θ) such that P 0 = Ψ(θ0, P 0). (f) (θ0, P 0) is an isolated population
NPL fixed point. (g) θ̃0(P ) is a single-valued and continuous function of P in a neighborhood of
P 0. (h) the operator φ0(P )− P has a nonsingular Jacobian matrix at P 0.

Assumption 1(b)(c) implies that E sup(θ,P )∈Θ×BP ||∇
2 ln Ψ(θ, P )(ai|xi)||r <∞ for any posi-

tive integer r. Assumption 1(g) corresponds to assumption (iv) in Proposition 2 of AM07.
The PML estimator is θ̂PML = arg maxθ∈Θ n−1

∑n
i=1 ln Ψ(θ, P̂0)(ai|xi), where P̂0 is an initial

consistent estimator of P 0. Proposition 1 of AM07 showed that the PML estimator is consistent
under Assumption 1. Also, when P̂0 satisfies

√
n(P̂0 − P 0) →d N(0,Σ), the PML estimator is

asymptotically normal with asymptotic variance VPML = (Ωθθ)−1 +(Ωθθ)−1ΩθPΣ(ΩθP )
′
(Ωθθ)−1,

with Ωθθ ≡ E[∇θ ln Ψ(θ0, P 0)(ai|xi)∇θ′ ln Ψ(θ0, P 0)(ai|xi)], and ΩθP ≡ E[∇θ ln Ψ(θ0, P 0)(ai|xi)
×∇P ′ ln Ψ(θ0, P 0)(ai|xi)].

As discussed in the introduction, Aguirregabiria and Mira (2002, 2007) developed a recursive
extension of the PML estimator called the NPL algorithm. Starting from an initial estimator of
P 0, the NPL algorithm generates a sequence of estimators {θ̃j , P̃j}kj=1, which we call the NPL
sequence. If the NPL sequence converges, its limit satisfies the following conditions:

θ̌ = arg max
θ∈Θ

n−1
n∑
i=1

ln Ψ(θ, P̌ )(ai|xi) and P̌ = Ψ(θ̌, P̌ ). (2)

A pair (θ̌, P̌ ) that satisfies these two conditions in (2) is called an NPL fixed point. There could
be multiple NPL fixed points. The NPL estimator, denoted by (θ̂NPL, P̂NPL), is defined as the
NPL fixed point with the highest value of the pseudo likelihood among all the NPL fixed points.

Proposition 2 of AM07 establishes the consistency of the NPL estimator θ̂NPL under As-
sumption 1. Thus, the NPL estimator is a consistent NPL fixed point. The NPL estimator is
asymptotically normal with asymptotic variance VNPL = [Ωθθ+ΩθP (I−ΨP )−1Ψθ]−1Ωθθ{[Ωθθ+
ΩθP (I −ΨP )−1Ψθ]−1}′. The NPL estimator does not depend on the initial estimator of P 0 and
is more efficient than the PML estimator especially when the initial estimator of P 0 is imprecise.

While AM07 illustrate that the estimator obtained as a limit of the NPL sequence performs
very well relative to the PML estimator in their simulation, they neither provide the conditions
under which the NPL sequence converges to a consistent NPL fixed point nor analyze how fast
the convergence occurs. On the other hand, PS09 present an example in which the NPL sequence
converges to a NPL fixed point that is a distance away from the true value. To date, little is
known about the conditions under which the NPL sequence converges to a consistent NPL fixed
point, i.e., the NPL estimator.
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3.2 Convergence properties of the NPL algorithm

We now analyze the conditions under which the NPL sequence locally converges to the NPL
estimator. In other words, we are concerned with whether the NPL algorithm produces the NPL
estimator when started from a neighborhood of the true value.

First, we state the regularity conditions. For matrix and nonnegative scalar sequences of
random variables {Xn, n ≥ 1} and {Yn, n ≥ 1}, respectively, we write Xn = Op(Yn) (or op(Yn)) if
||Xn|| ≤ CYn for some (or all) C > 0 with probability arbitrarily close to one for sufficiently large
n. When Yn belongs to a family of random variables indexed by τ ∈ T , we say Xn = Op(Yn(τ))
(or op(Yn(τ))) uniformly in τ if the constant C > 0 can be chosen the same for every τ ∈ T . For
instance, in Lemma 1 below, we take τ = P̃j−1 and Yn(τ) = ||P̃j−1 − P̂NPL||. For ε > 0, define
a neighborhood of P 0 by NP (ε) = {P : ||P − P 0|| < ε}.

Assumption 2 (a) Assumption 1 holds. (b) Ψ(θ, P ) is three times continuously differentiable
in N . (c) Ωθθ is nonsingular.

Let P 0
a,x denote an L× 1 vector whose elements are the probability mass function of (ai, xi)

arranged conformably with Ψ(a|x). Let ∆P ≡ diag(P 0)−2diag(P 0
a,x).6 With this notation,

we may write Ωθθ = Ψ
′
θ∆PΨθ and ΩθP = Ψ

′
θ∆PΨP . The following lemma states the local

convergence rate of the NPL algorithm and is one of the main results of this paper.

Lemma 1 Suppose Assumption 2 holds. Then, there exists c > 0 such that θ̃j − θ̂NPL =
Op(||P̃j−1 − P̂NPL||) and P̃j − P̂NPL = MΨθΨP (P̃j−1 − P̂NPL) + Op(n−1/2||P̃j−1 − P̂NPL|| +
||P̃j−1 − P̂NPL||2) uniformly in P̃j−1 ∈ NP (c), where MΨθ ≡ I −Ψθ(Ψ′θ∆PΨθ)−1Ψ′θ∆P .

Remark 1 In single-agent dynamic models, the Jacobian matrix ΨP is zero (Aguirregabiria and
Mira, 2002, Proposition 2). Consequently, P̃j − P̂NPL = Op(n−1/2||P̃j−1 − P̂NPL|| + ||P̃j−1 −
P̂NPL||2), which implies that the convergence rate is faster than linear and the NPL method is
always stable at (θ0, P 0). See Kasahara and Shimotsu (2008) for further details.

Lemma 1 provides important insights into the local convergence of the NPL sequence to the
NPL estimator. Define the spectral radius of A as ρ(A) ≡ max{|λ| : λ is an eigenvalue of A}.
Then (MΨθΨP )k → 0 as k →∞ if and only if ρ(MΨθΨP ) < 1 (Horn and Johnson, 1985, Theorem
5.6.12).7 Suppose ρ(MΨθΨP ) < 1 and ||P̃0−P 0|| is small. Because each NPL updating of (θ, P )
uses the same pseudo-likelihood function and the Op() terms are uniform in P̃j−1 ∈ NP (c),
we can recursively substitute for the P̃j ’s to show that (θ̃k, P̃k) converges to (θ̂NPL, P̂NPL) as
k →∞. The following Lemma formally states this convergence.

6In a multiplayer model of a dynamic game in which unobserved state variables are independent across players,
such as the model of AM07, ∆P is simplified as diag(P 0)−1diag(fx), where fx is an L× 1 vector whose elements
are the probability mass function of xi arranged conformably with P (a|x).

7ρ(A) ≤ ||A|| holds for any matrix A and any matrix norm || · ||. Therefore, ||MΨθΨP || < 1 is a sufficient but
not necessary condition for the convergence of (MΨθΨP )k to zero.
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Lemma 2 Suppose Assumption 2 holds and ρ(MΨθΨP ) < 1. Then, there exists c2 > 0 such
that Pr(limk→∞ P̃k = P̂NPL)→ 1 as n→∞ if ||P̃0 − P 0|| < c2.

When ρ(MΨθΨP ) > 1, an NPL updating moves some elements of P̃j further away from P̂NPL

on each iteration. Then the NPL sequence does not converge to P̂NPL even if P̃0 is very close
to P̂NPL unless P̃j − P̂NPL lies on a convergent hyperplane spanned by the eigenvectors corre-
sponding to the the eigenvalues of MΨθΨP lying inside the unit circle. Since such a hyperplane
has zero Lebesgue measure in RL, the probability that P̃j−1 − P̂ lies on a locally convergent
hyperplane approaches zero with the sample size if the limiting distribution of n1/2(P̃j−1 − P̂ )
is continuous. The case with ρ(MΨθΨP ) = 1 corresponds to a boundary case. The linear differ-
ence equation in Lemma 1 cannot fully characterize the local property of the fixed point, which
depends on the details of the model (see, for example, pp. 348-351 of Strogatz (1994)).

In general, given the nonlinear nature of the mapping Ψ, its local behavior may not fully
characterize its global convergence property. For instance, even when ρ(MΨθΨP ) > 1, the NPL
sequence may move away from the NPL fixed point initially and then move back to the NPL
fixed point or a convergent hyperplane from a distance away.8 When the NPL sequence diverges
away from the NPL estimator, an analysis of nonlinear dynamics (see, for example, Chapter
10 of Strogatz (1994)) suggests three representative possibilities. First, as PS09 illustrates, the
NPL sequence may converge to a NPL fixed point that is different from the NPL estimator.
Second, as our simulation suggests, it may converge to a stable cycle. Third, the NPL sequence
might never settle down to a fixed point or a period orbit.

The spectral radius of MΨθΨP is also closely related to the consistency of the NPL estimator.
Assumption 1(h), that the operator φ0(P ) − P has a nonsingular Jacobian matrix at P 0, is a
key assumption for the consistency of the NPL estimator and implies Assumption 1(f).9 The
following proposition shows that ρ(MΨθΨP ) < 1 is sufficient for Assumption 1(h).

Proposition 1 Suppose Assumption 1(a)-(e), (g) holds and ρ(MΨθΨP ) < 1. Then the operator
φ0(P )− P has a nonsingular Jacobian matrix at P 0. Hence, Assumption 1(f)(h) is satisfied.

3.3 The relation between ρ(MΨθΨP ) and ρ(ΨP )

The condition ρ(MΨθΨP ) < 1 plays an important role both for the convergence of the NPL
algorithm and for the consistency of the NPL estimator. Because ΨP is often closely related to
the characteristics of the economic model, we want to find a bound of ρ(MΨθΨP ) in terms of
ρ(ΨP ).10 In the following, we examine the relation between ρ(MΨθΨP ) and ρ(ΨP ).

8For this to occur with a nonnegligible probability, the NPL operator must map an area in RL with nonzero
Lebesgue measure to the NPL fixed point or a convergent hyperplane with zero Lebesgue measure. The likelihood
of this occurring depends on the specifics of the model of interest.

9See page 21 of AM07. Our Assumption 1(f)(h) corresponds to Conditions (v)(vii) of Proposition 2 of AM07,
respectively.

10The contraction property of Ψ may or may not be related to the stability of equilibria in the economic model.
Given a model, there are often multiple ways of formulating a fixed point mapping (e.g., Hotz and Miller, 1993;
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Since MΨθ is idempotent, MΨθ is diagonalizable as MΨθ = SDS−1, where the first L −K
diagonal elements of D are 1 and the other elements of D are zero. From the properties of
the eigenvalues, we have ρ(MΨθΨP ) = ρ(SDS−1ΨP ) = ρ(DS−1ΨPS). In our context, typically
L� K because the dimension of the state variable is much larger than the number of parameters.
Consequently, D is close to an identity matrix, and we expect that DS−1ΨPS ' S−1ΨPS,
which implies that the dominant eigenvalues of MΨθΨP and ΨP are close to each other.11 In
our dynamic game model with L = 144 and K = 2, we find that ρ(MΨθΨP ) is very similar to
ρ(ΨP ) (see Table 1).

3.4 Simplex restriction on P

Since P represents probabilities, the elements of P must satisfy a simplex-type restriction, and
this restriction needs to be imposed in parameterizing Ψ(θ, P ). Consider a model with J + 1
support points of a, then the elements of P corresponding to the (J + 1)th element must appear
in Ψ(θ, P ) only implicitly as one minus the sum of the other J elements.

We may express the updating formula in Lemma 1 in terms of a smaller space by exploiting
the simplex restriction as follows. Split P into P+ and P−, where P+ corresponds to the first
to Jth elements, whereas P− corresponds to the (J + 1)th element. Let 1k denote a k-vector
of ones, then the simplex restriction implies P− = 1dim(P−) − EP+ for a matrix E of zeros and
ones defined appropriately. Ψ(θ, P ) satisfies an analogous simplex restriction by its construction.
Split Ψ(θ, P ) analogously, and write P and Ψ(θ, P ) as

P =

(
P+

P−

)
=

(
P+

1dim(P−) − EP+

)
= P (P+), (3)

Ψ(θ, P ) = Ψ(θ, P (P+)) =

(
Ψ+(θ, P+)
Ψ−(θ, P+)

)
=

(
Ψ+(θ, P+)

1dim(P−) − EΨ+(θ, P+)

)
. (4)

Note from (4) that the derivative of Ψ(θ, P ) with respect to the (J + 1)th element of P is zero.
As shown in the following proposition, the restrictions (3)–(4) do not affect the validity of

Lemma 1, and the updating formula of P+ completely determines the updating formula of P .

Define Ψ+
θ ≡ ∇θ′Ψ

+(θ0, P 0+) and Ψ+
P ≡ ∇P+′Ψ+(θ0, P 0+). Define U = [Idim (P+)

...−E ′]′, so that
∇θ′Ψ(θ, P ) = U∇θ′Ψ+(θ, P+), and define ∆+

P ≡ U ′∆PU .

Proposition 2 Suppose P̃0 satisfies the simplex restriction (3). Then Lemma 1 holds, and the
updating formula for P is given by P̃+

j − P̂
+
NPL = M+

Ψθ
Ψ+
P+(P̃+

j−1 − P̂
+
NPL) + Op(n−1/2||P̃+

j−1 −
P̂+
NPL||+||P̃

+
j−1−P̂

+
NPL||2), where M+

Ψθ
= Idim(P+)−Ψ+

θ (Ψ+′
θ ∆+

PΨ+
θ )−1Ψ+′

θ ∆+
P , and P̃−j −P̂

−
NPL =

Arcidiacono and Miller, 2008) and its contraction property depends on which mapping a researcher chooses.
11If λ(A) is an algebraically simple eigenvalue of A, then λ(A+ ∆)/λ(A) = (yH∆x)/(yHAx) + (||∆||2), where x

and y are a right- and left- λ(A) eigenvector of A. See, for example, Theorem 6.3.12 of Horn and Johnson (1985).
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−E(P̃+
j − P̂

+
NPL). Further, MΨθΨP and M+

Ψθ
Ψ+
P+ have the same nonzero eigenvalues, and ΨP

and Ψ+
P+ have the same nonzero eigenvalues.

Therefore, in practice, it suffices to check the eigenvalues of M+
Ψθ

Ψ+
P+ to examine the convergence

property of the NPL algorithm. In the rest of the paper, we provide our theoretical results mainly
in terms of Ψ and P because of its notational simplicity.

3.5 Examples

The following two examples illustrate Lemma 1 and Proposition 2.

Example 1 (A Dynamic Discrete Game by PS09) PS09 present a game in which the global
behavior of the NPL mapping can be analytically derived. We apply our local analysis to their
model. We focus on Ψ(θ, P ) and suppress the details of their model; see PS09 for details.

In the model of PS09, there are two firms, and firm i’s choice is denoted by ai ∈ {0, 1}
for i = 1, 2, where ai = 1 indicates firm i is active. The model has no state variable, so the
conditional choice probability is summarized by a two-dimensional vector P+ = (P+

1 , P
+
2 )′, where

P+
i denotes firm i’s probability of being active. The model has one parameter, θ, and the true

parameter value θ0 is in the interior of the parameter space Θ = [−10,−1].
When P+ is in a neighborhood of the true value, the mapping Ψ+ of this model takes the

form

Ψ+(θ, P+) =

(
Ψ+

1 (θ, P+)
Ψ+

2 (θ, P+)

)
=

(
1 + θP+

2

1 + θP+
1

)
.

This model has a unique symmetric equilibrium, P+
1 = P+

2 = 1/(1 − θ). PS09 show there are
three NPL fixed points, one of which is the NPL estimator whereas the other two NPL fixed
points are inconsistent. Further, PS09 show that the NPL sequence converges to one of the
inconsistent NPL fixed points if the initial estimate does not satisfy P+

1 = P+
2 ; if the initial

estimate does satisfy P+
1 = P+

2 , then the NPL sequence converges to the NPL estimator in one
iteration.

Using the framework of Lemma 1 and Proposition 2, a direct calculation gives

Ψ+
P+ =

(
0 θ0

θ0 0

)
, M+

Ψθ
=

1
2

(
1 −1
−1 1

)
, M+

Ψθ
Ψ+
P+ =

θ0

2

(
−1 1
1 −1

)
.

The eigenvalues of Ψ+
P+ are θ0 and −θ0, and the eigenvalues of M+

Ψθ
Ψ+
P+ are 0 and −θ0. Because

all the eigenvalues of Ψ+
P+ are outside the unit circle, the fixed point mapping P+ = Ψ+(θ, P+)

has no convergent path. Multiplying M+
Ψθ

annihilates the eigenvector of Ψ+
P+ associated with θ0

but does not change the spectral radius of Ψ+
P+. Consequently, the NPL operator inherits the

instability of Ψ(θ, P ).

9



Since ρ(M+
Ψθ

Ψ+
P+) > 1, there does not exist a local convergent trajectory with nonzero

Lebesgue measure. The eigenvector corresponding to the zero eigenvalue is (1, 1)′, so that the
convergent trajectory is characterized by the 45 degree line P+

1 = P+
2 . From Lemma 1, the NPL

sequence diverges away from the NPL estimator in the neighborhood of (θ0, P 0) if the sequence
does not lie on the 45 degree line. On the other hand, if the initial estimate lies on the 45 degree
line, the zero eigenvalue implies that the NPL sequence converges to the NPL estimator at a
superlinear rate. These local results are weaker than the global results in PS09 but are consistent
with their findings. PS09 assume θ0 < −1. But if θ0 ∈ (−1, 0), then ρ(M+

Ψθ
Ψ+
P+) < 1 and the

NPL sequence locally converges to the NPL estimator. When θ0 = −1, then ρ(MΨθΨP ) = 1 and
we cannot apply our local stability analysis.12

Example 2 (Stationary Distribution) Let ai be a random variable following a first-order
Markov process, and let P denote the vector of the probability mass function of ai. There is
no conditioning variable, hence L = |A| and P is L × 1. Let M(θ) be the transition ma-
trix of ai, so that M(θ) is an L × L column stochastic matrix and each column of M(θ) be-
longs to a simplex. Then, the fixed point constraint for a stationarity restriction is written as
P = Ψ(θ, P ) = M(θ)P . As shown in Proposition 3 below, ∇P ′Ψ(θ, P ) 6= M(θ) once we take into
account the simplex restriction on P . Furthermore, if M(θ) is irreducible and aperiodic, all the
eigenvalues of ∇P+′Ψ+(θ, P+) are smaller than one in modulus. Consequently, the NPL algo-
rithm is convergent, provided that multiplying by MΨθ does not change the dominant eigenvalue
of ΨP considerably.

Proposition 3 Let M(θ) be an L×L column stochastic matrix, and define Ψ(θ, P ) = M(θ)P .

Partition M(θ) as [M1(θ)
...M2(θ)], where M2(θ) is L × 1. Then (a) ∇P ′Ψ(θ, P ) = [M1(θ) −

M2(θ)1′L−1

...0], (b) the eigenvalues of M(θ) are equal to the eigenvalues of ∇P+′Ψ+(θ, P+) and
one, and (c) if M(θ0) is irreducible and aperiodic, then all the eigenvalues of ∇P+′Ψ+(θ, P+)
are smaller than one in modulus.

4 Alternative sequential likelihood-based estimators

When Ψ(θ, P ) is not a contraction in a neighborhood of (θ0, P 0), the NPL algorithm may not
produce a consistent estimator. This section discusses alternative estimation algorithms that
are implementable even in such cases.

4.1 Locally contractive mapping with the relaxation method

Consider a class of mappings that are obtained as a log-linear combination of Ψ(θ, P ) and P :

[Λ(θ, P )](a|x) ≡ {[Ψ(θ, P )](a|x)}αP (a|x)1−α, (5)
12In the model of PS09, there exists a unique globally stable population NPL fixed point when θ0 = −1.
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for all (a, x) ∈ A × X, where α ∈ [0, 1]. This is called the relaxation method in numerical
analysis.13 P is a fixed point of Ψ(θ, P ) if and only if it is a fixed point of Λ(θ, P ). Further,
when the real part of every eigenvalue of ΨP is smaller than 1, we may choose the value of α so
that Λ(θ, P ) becomes locally contractive even when Ψ(θ, P ) is not locally contractive.14 Define
ΛP ≡ ∇P ′Λ(θ0, P 0).

Proposition 4 Suppose the real part of every eigenvalue of ΨP is smaller than 1. Then there
exists α ∈ (0, 1) such that ρ(ΛP ) < 1.

Consider the NPL algorithm using Λ(θ, P ) in place of Ψ(θ, P ). The advantage of this method
is its computational simplicity. Since ln Λ(θ, P ) = α ln Ψ(θ, P )+(1−α) lnP , n−1

∑n
i=1 ln Ψ(θ, P )(ai|xi)

and n−1
∑n

i=1 ln Λ(θ, P )(ai|xi) are maximized at the same value of θ for a given P . Thus, using
Ψ and Λ gives an identical estimator and, once an appropriate value of α is determined, the
NPL algorithm using Λ converges to the NPL estimator under weaker conditions than for the
original NPL algorithm at the same computational cost.15

4.2 Recursive Projection Method

In this subsection, we construct a mapping that has a better local contraction property than Ψ,
building upon the Recursive Projection Method (RPM) of Shroff and Keller (1993) (henceforth
SK).

First, fix θ. Let Pθ denote an element of Mθ = {P ∈ BP : P = Ψ(θ, P )} so that Pθ is one of
the fixed points of Ψ(θ, P ) when there are multiple fixed points. Consider finding Pθ by iterating
Pj = Ψ(Pj−1, θ) starting from a neighborhood of Pθ. If some eigenvalues of ∇P ′Ψ(θ, Pθ) are
outside the unit circle, this iteration does not converge to Pθ in general. Suppose that, counting
multiplicity, there are m eigenvalues of ∇P ′Ψ(θ, Pθ) that are larger than δ ∈ (0, 1) in modulus:

|λ1| ≥ · · · ≥ |λm| > δ ≥ |λm+1| ≥ · · · ≥ |λL|. (6)

Define P ⊆ RL as the maximum invariant subspace of ∇P ′Ψ(θ, Pθ) belonging to {λk}mk=1, and
let Q ≡ RL − P be the orthogonal complement of P. Let Πθ denote the orthogonal projector
from RL on P. We may write Πθ = ZθZ

′
θ, where Zθ ∈ RL×m is an orthonormal basis of P.

Then, for each P ∈ RL, we have the unique decomposition P = u+ v, where u ≡ ΠθP ∈ P and
v ≡ (I −Πθ)P ∈ Q.

13Başar (1987) applies the relaxation method to find a Nash equilibrium. Ljungqvist and Sargent (2004, p.
574) also suggest applying the relaxation method to the model of Aiyagari (1994).

14When all the eigenvalues of ΨP are real, the optimal α is given by Judd (1998, p. 80) as α∗ =
2/(2− λmax − λmin), where λmax and λmin are the largest and smallest eigenvalues of ΨP .

15To optimally choose the value of α, we need to evaluate the Jacobian matrix ΨP and all of its eigenvalues,
say, using the PML estimator. In practice, when the evaluation of ΨP is too costly, choosing a small positive
value of α leads to a locally contracting Λ from Proposition 4.
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Now apply Πθ and I −Πθ to P = Ψ(θ, P ), and decompose the system as follows:

u = f(u, v, θ) ≡ ΠθΨ(θ, u+ v),

v = g(u, v, θ) ≡ (I −Πθ)Ψ(θ, u+ v).

For a given Pj−1, decompose it into uj−1 = ΠθPj−1 and vj−1 = (I −Πθ)Pj−1. Since g(u, v, θ) is
contractive in v (see Lemma 2.10 of SK), we can update vj−1 by the recursion vj = g(u, vj−1, θ).
On the other hand, when the dominant eigenvalue of ΨP is outside the unit circle, the recursion
uj = f(uj−1, v, θ) cannot be used to update uj−1 because f(u, v, θ) is not a contraction in u.
Instead, the RPM performs a single Newton step on the system u = f(u, v, θ), leading to the
following updating procedure:

uj = uj−1 + (I −Πθ∇P ′Ψ(θ, Pj−1)Πθ)−1(f(uj−1, vj−1, θ)− uj−1) ≡ h(uj−1, vj−1, θ),

vj = g(uj−1, vj−1, θ). (7)

Lemma 3.11 of SK shows that the spectral radius of the Jacobian of the stabilized iteration (7)
is no larger than δ, and thus the iteration Pj = h(ΠθPj−1, (I − Πθ)Pj−1, θ) + g(ΠθPj−1, (I −
Πθ)Pj−1, θ) converges locally. In the following, we develop a sequential algorithm building upon
the updating procedure (7).

Let Π(θ, P ) be the orthogonal projector from RL onto the maximum invariant subspace of
∇P ′Ψ(θ, P ) belonging to its m largest (in modulus) eigenvalues, counting multiplicity. Define u∗,
v∗, h∗(u∗, v∗, θ), and g∗(u∗, v∗, θ) by replacing Πθ in u, v, h(u, v, θ), and g(u, v, θ) with Π(θ, P ),
and define

Γ(θ, P ) ≡ h∗(u∗, v∗, θ) + g∗(u∗, v∗, θ)

= Ψ(θ, P ) + [(I −Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ))−1 − I]Π(θ, P )(Ψ(θ, P )− P ). (8)

P 0 is a fixed point of Γ(θ0, P ), because all the fixed points of Ψ(θ, P ) are also fixed points of
Γ(θ, P ). The following proposition shows two important properties of Γ(θ, P ): local contraction
and the equivalence of fixed points of Γ(θ, P ) and Ψ(θ, P ).

Proposition 5 (a) Suppose I −Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ) is nonsingular and hence Γ(θ, P ) is
well-defined. Then Γ(θ, P ) and Ψ(θ, P ) have the same fixed points; i.e., Γ(θ, P ) = P if and only
if Ψ(θ, P ) = P . (b) ρ(∇P ′Γ(θ0, P 0)) ≤ δ0, where δ0 is defined by (6) in terms of the eigenvalues
of ∇P ′Ψ(θ0, P 0). Hence, Γ(θ, P ) is locally contractive.

Define an RPM fixed point as a pair (θ̌, P̌ ) that satisfies θ̌ = arg maxθ∈Θ n
−1
∑n

i=1 ln Γ(θ, P̌ )(ai|xi)
and P̌ = Γ(θ̌, P̌ ). The RPM estimator, denoted by (θ̂RPM , P̂RPM ), is defined as the RPM fixed
point with the highest value of the pseudo likelihood among all the RPM fixed points. Define
the RPM algorithm by the same sequential algorithm as the NPL algorithm except that it uses
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Γ(θ, P ) in place of Ψ(θ, P ).
Proposition 6 shows the asymptotic properties of the RPM estimator and the convergence

properties of the RPM algorithm. Define the RPM counterparts of θ̃0(P ), φ0(P ), and Ωθθ as
θ̃Γ

0 (P ) ≡ arg maxθ∈ΘE ln Γ(θ, P )(ai|xi), φΓ
0 (P ) = Γ(θ̃Γ

0 (P ), P ), and
ΩΓ
θθ ≡ E∇θ ln Γ(θ0, P 0)(ai|xi)∇θ′ ln Γ(θ0, P 0)(ai|xi). Define ΩΓ

θP analogously. Define ΓP ≡
∇P ′Γ(θ0, P 0) and Γθ ≡ ∇θ′Γ(θ0, P 0). We outline the assumptions first.

Assumption 3 (a) Assumption 1 holds. (b) Ψ(θ, P ) is four times continuously differentiable
in N . (c) I −Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ) is nonsingular. (d) Γ(θ, P ) > 0 for any (a, x) ∈ A×X
and (θ, P ) ∈ Θ×BP . (e) The operator φΓ

0 (P )− P has a nonsingular Jacobian matrix at P 0.

Assumption 3(c) is required for Γ(θ, P ) to be well-defined. It would be possible to drop As-
sumption 3(d) by considering a trimmed version of Γ(θ, P ), but for brevity we do not pursue it.
As shown in Proposition 1, Assumption 3(e) is implied by ρ(MΓθΓP ) < 1 which holds when a
sufficiently small value of δ is chosen.

Proposition 6 Suppose Assumption 3 holds. Then (a) P̂RPM−P 0 = Op(n−1/2) and n−1/2(θ̂RPM−
θ0)→d N(0, VRPM ), where VRPM = [ΩΓ

θθ+ΩΓ
θP (I−ΓP )−1Γθ]−1ΩΓ

θθ{[ΩΓ
θθ+ΩΓ

θP (I−ΓP )−1Γθ]−1}′.
(b) Suppose we obtain (θ̃j , P̃j) from P̃j−1 by the RPM algorithm. Then, there exists c > 0
such that θ̃j − θ̂RPM = Op(||P̃j−1 − P̂RPM ||) and P̃j − P̂RPM = MΓθΓP (P̃j−1 − P̂RPM ) +
Op(n−1/2||P̃j−1 − P̂RPM || + ||P̃j−1 − P̂RPM ||2) uniformly in P̃j−1 ∈ NP (c), where MΓθ ≡
I − Γθ(Γ′θ∆PΓθ)−1Γ′θ∆P .

Implementing the RPM algorithm is costly because it requires evaluating Π(θ, P ) and∇P ′Ψ(θ, P )
for all the trial values of θ. We reduce the computational burden by evaluating Π(θ, P ) and
∇P ′Ψ(θ, P ) outside the optimization routine by using a preliminary estimate of θ. This modifi-
cation has only a second-order effect on the convergence of the algorithm because the derivatives
of Γ(θ, P ) with respect to Π(θ, P ) and ∇P ′Ψ(θ, P ) are zero when evaluated at P = Ψ(θ, P ); see
the second term in (8). Let η be a preliminary estimate of θ. Replacing θ in Π(θ, P ) and
∇P ′Ψ(θ, P ) with η, we define the following mapping:

Γ(θ, P, η) ≡ Ψ(θ, P ) + [(I −Π(η, P )∇P ′Ψ(η, P )Π(η, P ))−1 − I]Π(η, P )(Ψ(θ, P )− P ).

Once Π(η, P ) and ∇P ′Ψ(η, P ) are computed, the computational cost of evaluating Γ(θ, P, η)
across different values of θ would be similar to that of evaluating Ψ(θ, P ).

Let (θ̃0, P̃0) be an initial estimator of (θ0, P 0). For instance, θ̃0 can be the PML estimator.
The approximate RPM algorithm iterates the following steps until j = k:

Step 1: Given (θ̃j−1, P̃j−1), update θ by θ̃j = arg maxθ∈Θ̄j
n−1

∑n
i=1 ln Γ(θ, P̃j−1, θ̃j−1)(ai|xi),

where Θ̄j ≡ {θ ∈ Θ : Γ(θ, P̃j−1, θ̃j−1)(a|x) ∈ [ξ, 1 − ξ] for all (a, x) ∈ A × X} for an
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arbitrary small ξ > 0. We impose this restriction in order to avoid computing ln(0).16

Step 2: Update P using the obtained estimate θ̃j by P̃j = Γ(θ̃j , P̃j−1, θ̃j−1).

The following proposition shows that the approximate RPM algorithm achieves the same
convergence rate as the original RPM algorithm in the first order. For ε > 0, define a neighbor-
hood of (θ0, P 0) by N (ε) = {P : max{||θ − θ0||, ||P − P 0||} < ε}.

Proposition 7 Suppose Assumption 3 holds and we obtain (θ̃j , P̃j) from (θ̃j−1, P̃j−1) by the
approximate RPM algorithm. Then, there exists c > 0 such that θ̃j − θ̂RPM = Op(||P̃j−1 −
P̂RPM ||+ n−1/2||θ̃j−1 − θ̂RPM ||+ ||θ̃j−1 − θ̂RPM ||2) and P̃j − P̂RPM = MΓθΓP (P̃j−1 − P̂RPM ) +
Op(n−1/2||θ̃j−1− θ̂RPM ||+ ||θ̃j−1− θ̂RPM ||2 +n−1/2||P̃j−1−P̂RPM ||+ ||P̃j−1−P̂RPM ||2) uniformly
in (θ̃j−1, P̃j−1) ∈ N (c).

By choosing δ sufficiently small, the dominant eigenvalue of MΓθΓP lies inside the unit
circle, and the approximate RPM algorithm can converge to a consistent estimator even when
the NPL algorithm diverges away from the true value. The following proposition states the local
convergence of the approximate RPM algorithm when ρ(MΓθΓP ) < 1.

Proposition 8 Suppose Assumption 3 holds, ρ(MΓθΓP ) < 1, and {θ̃k, P̃k} is generated by
the approximate RPM algorithm starting from (θ̃0, P̃0). Then, there exists c2 > 0 such that
Pr(limk→∞(θ̃k, P̃k) = (θ̂RPM , P̂RPM ))→ 1 as n→∞ if (θ̃0, P̃0) ∈ N (c2).

We emphasize that implementing the approximate RPM algorithm is substantially more
costly than the original NPL algorithm when the state space is large. This is because it requires
computing the Jacobian matrix ∇P ′Ψ(θ, P ) and its eigenvalues at least once. In the supple-
mentary appendix, we discuss how to implement the approximate RPM algorithm in detail,
including how to further reduce the computational burden.17

4.3 The q-NPL algorithm

When the spectral radius of ΛP or ΨP is smaller than but close to 1, the convergence of the NPL
algorithm could be slow and the generated sequence could behave erratically. Furthermore, in
such a case, the efficiency loss from using the NPL estimator compared to the MLE is substantial.
To overcome these problems, consider a q-fold operator of Λ as

Λq(θ, P ) ≡ Λ(θ, (Λ(θ, . . .Λ(θ,Λ︸ ︷︷ ︸
q times

(θ, P )) . . .))).

16In practice, we may consider a penalized objective function by truncating Γ(θ, P̃j−1, θ̃j−1) so that it takes a
value between ξ and 1− ξ, and adding a penalty term that penalizes θ such that Γ(θ, P̃j−1, θ̃j−1) /∈ [ξ, 1− ξ].

17In particular, one does not need to compute ∇P ′Ψ(θ, P ) and all its eigenvalues for every (θ̃j , P̃j). Given
(θ̃j , P̃j , θ̃j−1, P̃j−1), one can approximate Π(θ̃j , P̃j)∇P ′Ψ(θ̃j , P̃j)Π(θ̃j , P̃j) using Π(θ̃j−1, P̃j−1) and m finite differ-
ences of Ψ(θ̃j , P̃j).
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We may define Γq(θ, P ) and Ψq(θ, P ) analogously. Define the q-NPL (q-RPM) algorithm by
using a q-fold operator Λq, Γq, and Ψq in place of Λ, Γ, or Ψ in the original NPL (RPM)
algorithm. In the following, we focus on Λq but the same argument applies to Γq and Ψq.

If the sequence of estimators generated by the q-NPL algorithm converges, its limit satisfies
θ̌ = arg maxθ∈Θ n

−1
∑n

i=1 ln Λq(θ, P̌ )(ai|xi) and θ̌ = Λq(θ̌, P̌ ). Among the pairs (θ̂, P̂ ) that
satisfy these two conditions, the one that maximizes the value of the pseudo likelihood is called
the q-NPL estimator and denoted by (θ̂qNPL, P̂qNPL).

Since the result of Lemma 1 also applies here by replacing Ψ with Λq, the local con-
vergence property of the q-NPL algorithm is primarily determined by the spectral radius of
ΛqP ≡ ∇P ′Λq(θ0, P 0). When ρ(ΛP ) is less than 1, the q-NPL algorithm converges faster than
the NPL algorithm because ρ(ΛqP ) = (ρ(ΛP ))q. Moreover, the variance of the q-NPL estimator
approaches that of the MLE as q →∞.

Applying the q-NPL algorithm, as defined above, is computationally intensive because the
q-NPL Step 1 requires evaluating Λq at many different values of θ. We reduce the computational
burden by introducing a linear approximation of Λq(θ, P ) around (η, P ), where η is a preliminary
estimate of θ: Λq(θ, P, η) ≡ Λq(η, P ) +∇θ′Λq(η, P )(θ − η).

Given an initial estimator (θ̃0, P̃0), the approximate q-NPL algorithm iterates the following
steps until j = k:

Step 1: Given (θ̃j−1, P̃j−1), update θ by θ̃j = arg maxθ∈Θqj
n−1

∑n
i=1 ln Λq(θ, P̃j−1, θ̃j−1)(ai|xi),

where Θq
j ≡ {θ ∈ Θ : Λ̃q(θ, P̃j−1, θ̃j−1)(a|x) ∈ [ξ, 1 − ξ] for all (a, x) ∈ A × X} for an

arbitrary small ξ > 0.

Step 2: Given (θ̃j , P̃j−1), update P using the obtained estimate θ̃j by P̃j = Λq(θ̃j , P̃j−1).

Implementing Step 1 requires evaluating Λq(θ̃j−1, P̃j−1) and ∇θ′Λq(θ̃j−1, P̃j−1) only once outside
of the optimization routine for θ and thus involves much fewer evaluations of Λ(θ, P ) across
different values of P and θ, compared to the original q-NPL algorithm.18

Define the q-NPL counterparts of θ̃0(P ), φ0(P ), and Ωθθ as θ̃q0(P ) ≡ arg maxθ∈ΘE ln Λq(θ, P )(ai|xi),
φq0(P ) = Λq(θ̃q0(P ), P ), and Ωq

θθ ≡ E∇θ ln Λq(θ0, P 0)(ai|xi)∇θ′ ln Λq(θ0, P 0)(ai|xi), respectively.

Assumption 4 (a) Assumption 1 holds. (b) Ψ(θ, P ) is four times continuously differentiable
in N . (c) There is a unique θ0 such that Λq(θ0, P 0) = P 0. (d) I−(αΨP +(1−α)I)q and I−ΨP

are nonsingular. (e) The operator φq0(P )− P has a nonsingular Jacobian matrix at P 0.

Assumption 4(c) is necessary for identifying θ0 when the conditional probability is given by
Λq(θ, P ). This assumption rules out θ1 6= θ0 that satisfies Λq(θ1, P 0) = P 0 even if Λ(θ1, P 0) 6=
P 0. This occurs, for example, if Λ(θ1, P 0) = P 1 and Λ(θ1, P 1) = P 0 hold for θ1 6= θ0 and

18Using one-sided numerical derivatives, evaluating ∇θ′Λq(θ̃j , P̃j) requires (K + 1)q function evaluations of
Ψ(θ, P ).
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P 1 6= P 0. Assumption 4(d) is necessary for Ωq
θθ to be nonsingular. Since ΛqP = (αΨP +(1−α)I)q,

the first condition holds if ρ(ΛqP ) < 1 from 19.15 of Seber (2007).
The following proposition establishes that asymptotics of the q-NPL estimator and the con-

vergence property of the approximate q-NPL algorithm. Proposition 9(c) implies that, when
q is sufficiently large, the q-NPL estimator is more efficient than the NPL estimator, provided
that additional conditions in Assumption 4 hold. Proposition 9(d) corresponds to Lemma 2.

Proposition 9 Suppose that Assumption 4 holds. Then (a) P̂qNPL − P 0 = Op(n−1/2) and
n−1/2(θ̂qNPL − θ0) →d N(0, VqNPL), where VqNPL = [Ωq

θθ + Ωq
θP (I − ΛP )−1Λqθ]

−1Ωq
θθ{[Ω

q
θθ +

Ωq
θP (I − ΛP )−1Λqθ]

−1}′. (b) Suppose we obtain (θ̃j , P̃j) from (θ̃j−1, P̃j−1) by the approximate
q-NPL algorithm. Then, there exists c > 0 such that θ̃j − θ̂qNPL = Op(||P̃j−1 − P̂qNPL|| +
n−1/2||θ̃j−1−θ̂qNPL||+||θ̃j−1−θ̂qNPL||2) and P̃j−P̂qNPL = MΛqθ

ΛqP (P̃j−1−P̂qNPL)+Op(n−1/2||θ̃j−1−
θ̂qNPL||+||θ̃j−1−θ̂qNPL||2+n−1/2||P̃j−1−P̂qNPL||+||P̃j−1−P̂qNPL||2) uniformly in (θ̃j−1, P̃j−1) ∈
N (c), where MΛqθ

≡ I − Λqθ((Λ
q
θ)
′∆PΛqθ)

−1(Λqθ)
′∆P with Λqθ ≡ ∇θ′Λ

q(θ0, P 0). (c) If ρ(ΛP ) < 1,
then VqNPL → VMLE as q → ∞. (d) Suppose {θ̃k, P̃k} is generated by the approximate q-
NPL algorithm starting from (θ̃0, P̃0) and ρ(MΛqθ

ΛqP ) < 1. Then, there exists c2 > 0 such that
Pr(limk→∞(θ̃k, P̃k) = (θ̂qNPL, P̂qNPL))→ 1 as n→∞ if (θ̃0, P̃0) ∈ N (c2).

5 Monte Carlo experiments

We consider a dynamic game model of market entry and exit studied in Section 4 of AM07. We
set the number of firms N = 3. The profit of firm i operating in market m in period t is equal
to Π̃it(1) = θRS lnSmt − θRN ln(1 +

∑
j 6=i ajmt) − θFC,i − θEC(1 − aim,t−1) + εimt(1), whereas

its profit is Π̃it(0) = εimt(0) if the firm is not operating. We assume that {εimt(0), εimt(1)}
follow i.i.d. type I extreme value distribution, and Smt follows an exogenous first-order Markov
process fS(Sm,t+1|Smt).19 The discount factor is set to β = 0.96, and the parameter values are
given by θRS = 1.0, θEC = 1.0, θFC,1 = 1.0, θFC,2 = 0.9, and θFC,3 = 0.8. The parameter θRN
determines the degree of strategic substitutabilities among firms and is the main determinant
of the dominant eigenvalue of ΨP . All of the eigenvalues of ΨP are inside the unit circle for
θRN = 1 and 2 while the smallest eigenvalues are less than -1 for θRN = 4 and 6. We therefore
let θRN take on a value of 2 or 4 across experiments and examine the performance of different
estimators. We estimate θRS and θRN , leaving the other parameters fixed at the true values.

To generate an observation, we first randomly draw xm = {Sm1, a1m0, a2m0, a3m0} from the
steady-state distribution implied by the model. Then, given xm, we draw {a1m1, a2m1, a3m1}

19The state space for the market size Smt is {2, 6, 10}. The transition probability matrix of Smt is given by24 0.8 0.2 0.0
0.2 0.6 0.2
0.0 0.2 0.8

35 .
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from the equilibrium conditional choice probabilities. We replicate 1000 simulated samples for
each of n = 500, 2000, and 8000 observations.

As shown in Table 1, the spectral radius of MΨθΨP and MΛθΛP is very similar to that of
ΨP and ΛP , respectively. Thus, in view of Lemma 1, the convergence property of the NPL
algorithm is primarily determined by the dominant eigenvalue of ΨP and ΛP .

The first panel of Table 2 compares the performance of sequential estimators generated by
the following four sequential algorithms evaluated at k = 50 iterations: (i) the NPL algorithm
using Ψ, (ii) the NPL algorithm using Λ, (iii) the approximate RPM algorithm using Γ(θ, P, η)
with δ = 0.5, and (iv) the approximate q-NPL using Λq(θ, P, η) with q = 4. They are denoted
by “NPL-Ψ,” “NPL-Λ,” “RPM,” and “q-NPL-Λq,” respectively. The second panel of Table
2 reports the performance of two-step (PML) version of the above four estimators. These
estimators are included for reference; they do not need iteration but require a root-n consistent
initial nonparametric estimate of P . They are denoted by “PML-Ψ,” “PML-RPM,” and “PML-
Λq,” respectively.20 We report the bias and the root mean squared errors (RMSE, henceforth)
of θ̂RN and θ̂RS across different estimators.

For θRN = 2, the NPL-Ψ has substantially improved performance over the PML-Ψ across
different sample sizes, and the NPL-Λ and NPL-Ψ converge to the same estimate. On the
other hand, when θRN = 4 the NPL-Ψ performs substantially worse than the NPL-Λ, reflecting
divergence. Further, as the sample size increases from 500 to 8000, the RMSE of the NPL-Λ
decreases approximately at the rate of n1/2, but the RMSE of the NPL-Ψ decreases at a much
slower rate. For θRN = 4 and n = 8000, the RMSE of the NPL-Ψ is even larger than that of
the PML-Ψ.

Across different sample sizes and parameters, the RPM and the q-NPL-Λq outperform the
NPL-Ψ. The PML-RPM and the PML-Λq also perform substantially better than the PML-Ψ,
suggesting that our proposed alternative sequential methods are useful even when the researcher
wants to make just one NPL iteration rather than iterate the NPL algorithm until convergence.

The first four rows of Table 3 compare the RMSE across the estimators of θRN generated by
different algorithms after k = 2, 5, 10, . . . , 25 iterations when n = 8000. For θRN = 2, the RMSE
changes little after j = 5 iterations across all the algorithms, indicating their convergence. For
θRN = 4, the RMSE of the NPL-Ψ sequence increases with the number of iterations whereas our
proposed estimators converge after 10 iterations. The last two rows of Table 3 report the RMSE
of the first and the second differences of the NPL-Ψ sequence in order to examine its possible
convergence to a 2-period cycle. When θRN = 4, the NPL-Ψ sequence does not converge to a
NPL fixed point but they gradually converge every other iteration, suggesting its convergence
toward a 2-period cycle.

20We do not report PML-Λ because it is identical to PML-Ψ. See the paragraph following Proposition 4. The
PML-RPM and the PML-Λq take one RPM or approximate q-NPL step from the original PML estimator with Ψ
and, thus, they are three step estimators. Their asymptotic properties can be easily derived from Proposition 1
of AM07, apart from changes in regularity conditions.
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6 Concluding remarks and extension

This paper analyzes the convergence properties of the NPL algorithm to estimate a class of
structural models characterized by a fixed point constraint. We show that, when the fixed point
mapping has a local contraction property, the NPL algorithm converges to a consistent estimator
if started from a neighborhood of the true value.

In practice, the convergence condition may be violated. In such a case, the NPL algorithm
will not converge to a consistent estimator even if it is started from a neighborhood of the true
parameter value. We develop alternative sequential estimators that can be used even when
the original fixed point mapping is not locally contractive. As our simulations illustrate, these
alternative estimators work well even when the original fixed point mapping is not a contraction,
and their performance is substantially better than that of the two-step PML estimator.

Our convergence analysis is local. In a model with multiple NPL fixed points, whether the
sequential algorithms analyzed in this paper can be used to obtain a consistent NPL fixed point
depends on the initial value of P . Thus, when a reliable initial estimate is not available, it is
recommended to repeatedly apply the NPL algorithm with different initial values. A closely
related unresolved issue is the size of the domain of attraction for these sequential algorithms.
For instance, if the q-NPL algorithm has a smaller domain of attraction than the NPL algorithm,
then the finite sample properties of the q-NPL estimator may be worse than those of the NPL
estimator. Examining such a possibility is an important future topic.

In the supplementary appendix, we discuss further results including models with permanent
unobserved heterogeneity, sequential generalized method of moments estimators, an approximate
fixed point algorithm, and additional Monte Carlo results.
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Table 1: The Spectral Radius of ΨP and ΛP
θRN α ρ(ΨP ) ρ(ΛP ) ρ(MΨθΨP ) ρ(MΛθΛP )

1 0.9407 0.3365 0.2572 0.2916 0.2557
2 0.8830 0.6925 0.4945 0.5949 0.4936
4 0.8250 1.1839 0.8017 1.1799 0.8046
6 0.7730 1.4788 0.9161 1.4777 0.9153

The second column reports the optimal choice of α under which ΛP has the smallest spectral radius.

Table 2: Bias and RMSE

θRN = 2 θRN = 4
Estimator n = 500 n = 2000 n = 8000 n = 500 n = 2000 n = 8000

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
NPL-Ψ -0.0151 0.1347 -0.0002 0.0660 -0.0023 0.0323 -0.0095 0.0676 -0.0062 0.0490 -0.0005 0.0408
NPL-Λ -0.0151 0.1347 -0.0002 0.0660 -0.0023 0.0323 0.0028 0.0575 -0.0006 0.0294 -0.0003 0.0143
RPM -0.0174 0.1331 -0.0028 0.0642 -0.0027 0.0320 0.0029 0.0576 -0.0012 0.0284 0.0000 0.0136

θ̂RS q-NPL-Λq -0.0117 0.1240 0.0002 0.0606 -0.0018 0.0305 0.0015 0.0542 -0.0009 0.0277 0.0000 0.0136
PML-Ψ -0.2215 0.2698 -0.0717 0.1112 -0.0229 0.0474 -0.1280 0.1557 -0.0341 0.0514 -0.0082 0.0207
PML-RPM 0.1353 0.2380 0.0658 0.1072 0.0203 0.0403 0.1166 0.1823 0.0211 0.0457 0.0043 0.0176
PML-Λq -0.0133 0.1475 0.0016 0.0629 -0.0018 0.0307 0.0142 0.0783 -0.0035 0.0290 -0.0003 0.0141

NPL-Ψ -0.0467 0.4705 -0.0009 0.2339 -0.0095 0.1130 -0.1417 0.2572 -0.1414 0.2314 -0.0918 0.1612
NPL-Λ -0.0467 0.4705 -0.0009 0.2339 -0.0095 0.1130 0.0241 0.1424 -0.0001 0.0739 0.0013 0.0352
RPM -0.0544 0.4642 -0.0102 0.2274 -0.0111 0.1116 0.0249 0.1604 -0.0003 0.0841 0.0014 0.0342

θ̂RN q-NPL-Λq -0.0358 0.4280 0.0002 0.2131 -0.0079 0.1052 0.0228 0.1351 0.0000 0.0690 0.0014 0.0328
PML-Ψ -0.7895 0.9604 -0.2565 0.3949 -0.0828 0.1687 -0.7713 0.9094 -0.1964 0.2599 -0.0462 0.0937
PML-RPM 0.4523 0.8255 0.2232 0.3754 0.0687 0.1401 0.6101 0.7821 0.1282 0.1848 0.0335 0.0600
PML-Λq -0.0603 0.5177 0.0021 0.2215 -0.0083 0.1061 0.1619 0.2704 0.0044 0.0745 0.0035 0.0366

Table 3: RMSE of θ̂RN,k for k = 2, 5, 10, ..., 25 at n = 8000

θRN = 2 θRN = 4
k = 2 k = 5 k = 10 k = 15 k = 20 k = 25 k = 2 k = 5 k = 10 k = 15 k = 20 k = 25

NPL-Ψ 0.1196 0.1133 0.1130 0.1130 0.1130 0.1130 0.0713 0.0748 0.0807 0.1235 0.1299 0.1593
NPL-Λ 0.1227 0.1131 0.1130 0.1130 0.1130 0.1130 0.0651 0.0363 0.0353 0.0352 0.0352 0.0352

θ̃RN,k RPM 0.1401 0.1122 0.1120 0.1118 0.1117 0.1116 0.0600 0.0357 0.0350 0.0341 0.0343 0.0342
q-NPL-Λq 0.1061 0.1051 0.1052 0.1052 0.1052 0.1052 0.0366 0.0332 0.0328 0.0328 0.0328 0.0328

RMSE of (θ̃RN,k+1 − θ̃RN,k) 0.0532 0.0041 0.0003 0.0000 0.0000 0.0000 0.1272 0.1106 0.1551 0.2037 0.2410 0.2624

RMSE of (θ̃RN,k+2 − θ̃RN,k) 0.0505 0.0017 0.0001 0.0000 0.0000 0.0000 0.0310 0.0152 0.0157 0.0132 0.0101 0.0076

The last two rows report the RMSE of (θ̃RN,k+1 − θ̃RN,k) and (θ̃RN,k+2 − θ̃RN,k) for NPL-Ψ.
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7 Appendix: Proofs

Throughout the proofs, let “wpa1” abbreviate “with probability approaching one as n → ∞.”
The Op() terms in the proof such as Op(||P̃j−1 − P̂NPL||) are uniform, but we suppress the
reference to their uniformity for brevity.

7.1 Proof of Lemma 1

We suppress the subscript NPL from P̂NPL and θ̂NPL. Define ψ(θ, P ) ≡ n−1
∑n

i=1 ln Ψ(θ, P )(ai|xi)
and ψ(θ, P ) ≡ E ln Ψ(θ, P )(ai|xi). For ε > 0, define a neighborhood N (ε) = {(θ, P ) : max{||θ −
θ0||, ||P−P 0||} < ε}. Then, there exists ε1 > 0 such thatN (ε1) ⊂ N and sup(θ,P )∈N (ε1) ||∇θθ′ψ(θ, P )−1|| <
∞ because ∇θθ′ψ(θ, P ) is continuous and ∇θθ′ψ(θ0, P 0) is nonsingular.

First, we assume (θ̃j , P̃j−1) ∈ N (ε1) and derive the stated representation of θ̃j− θ̂ and P̃j−P̂ .
We later show (θ̃j , P̃j−1) ∈ N (ε1) wpa1 if c is taken sufficiently small. The first order condition
for θ̃j is ∇θψ(θ̃j , P̃j−1) = 0. Expanding it around (θ̂, P̂ ) and using ∇θψ(θ̂, P̂ ) = 0 gives

0 = ∇θθ′ψ(θ̄, P̄ )(θ̃j − θ̂) +∇θP ′ψ(θ̄, P̄ )(P̃j−1 − P̂ ), (9)

where (θ̄, P̄ ) lie between (θ̃j , P̃j−1) and (θ̂, P̂ ). Write (9) as θ̃j−θ̂ = −∇θθ′ψ(θ̄, P̄ )−1∇θP ′ψ(θ̄, P̄ )(P̃j−1−
P̂ ), then the stated uniform bound of θ̃j − θ̂ follows because (i) (θ̄, P̄ ) ∈ N (ε1) wpa1 since
(θ̃j , P̃j−1) ∈ N (ε1) and (θ̂, P̂ ) is consistent, and (ii) sup(θ,P )∈N (ε1) ||∇θθ′ψ(θ, P )−1∇θP ′ψ(θ, P )|| =
Op(1) since sup(θ,P )∈N (ε1) ||∇θθ′ψ(θ, P )−1|| < ∞ and sup(θ,P )∈N ||∇2ψ(θ, P ) − ∇2ψ(θ, P )|| =
op(1), where the latter follows from Lemma 2.4 of Newey and McFadden (1994).

For the bound of P̃j − P̂ , first we collect the following results, which follow from the Taylor
expansion around (θ0, P 0), root-n consistency of (θ̂, P̂ ), and the information matrix equality.

∇θθ′ψ(θ̂, P̂ ) = −Ωθθ +Op(n−1/2), ∇θP ′ψ(θ̂, P̂ ) = −ΩθP +Op(n−1/2),
∇θ′Ψ(θ̂, P̂ ) = Ψθ +Op(n−1/2), ∇P ′Ψ(θ̂, P̂ ) = ΨP +Op(n−1/2).

(10)

Expand the right hand side of P̃j = Ψ(θ̃j , P̃j−1) twice around (θ̂, P̂ ) and use Ψ(θ̂, P̂ ) = P̂ and
θ̃j− θ̂ = Op(||P̃j−1− P̂ ||), then we obtain P̃j− P̂ = ∇θ′Ψ(θ̂, P̂ )(θ̃j− θ̂)+∇P ′Ψ(θ̂, P̂ )(P̃j−1− P̂ )+
Op(||P̃j−1−P̂ ||2) since sup(θ,P )∈N (ε1)∇3Ψ(θ, P ) <∞. Applying (10) and θ̃j−θ̂ = Op(||P̃j−1−P̂ ||)
to the right hand side gives

P̃j − P̂ = Ψθ(θ̃j − θ̂) + ΨP (P̃j−1 − P̂ ) +Op(||P̃j−1 − P̂ ||2) +Op(n−1/2||P̃j−1 − P̂ ||). (11)

We proceed to refine (9) to write θ̃j−θ̂ in terms of P̃j−1−P̂ and substitute it into (11). Expanding
∇θθ′ψ(θ̄, P̄ ) in (9) around (θ̂, P̂ ), noting that ||θ̄ − θ̂|| ≤ ||θ̃j − θ̂|| and ||P̄ − P̂ || ≤ ||P̃j−1 − P̂ ||,
and using θ̃j − θ̂ = Op(||P̃j−1 − P̂ ||), we obtain ∇θθ′ψ(θ̄, P̄ ) = ∇θθ′ψ(θ̂, P̂ ) + Op(||P̃j−1 − P̂ ||).
Further, applying (10) gives ∇θθ′ψ(θ̄, P̄ ) = −Ωθθ +Op(n−1/2) +Op(||P̃j−1 − P̂ ||). Similarly, we
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obtain ∇θP ′ψ(θ̄, P̄ ) = −ΩθP + Op(n−1/2) + Op(||P̃j−1 − P̂ ||). Using these results, refine (9) as
θ̃j − θ̂ = −Ω−1

θθ ΩθP (P̃j−1 − P̂ ) + Op(n−1/2||P̃j−1 − P̂ || + ||P̃j−1 − P̂ ||2). Substituting this into
(11) in conjunction with Ω−1

θθ ΩθP = (Ψ′θ∆PΨθ)−1Ψ′θ∆PΨP gives the stated result.
It remains to show (θ̃j , P̃j−1) ∈ N (ε1) wpa1 if c is taken sufficiently small. Let Nθ(ε1) ≡

{θ : ||θ − θ0|| < ε1} and define ∆ = ψ(θ0, P 0) − supθ∈Nθ(ε1)c∩Θ ψ(θ, P 0) > 0, where the last
inequality follows from information inequality, compactness of Nθ(ε1)c ∩ Θ, and continuity
of ψ(θ, P ). It follows that Pr(θ̃j /∈ Nθ(ε1)) ≤ Pr(ψ(θ0, P 0) − ψ(θ̃j , P 0) ≥ ∆). Further, ob-
serve that ψ(θ0, P 0)−ψ(θ̃j , P 0) ≤ ψ(θ0, P̃j−1)−ψ(θ̃j , P̃j−1) + 2 supθ∈Θ |ψ(θ, P 0)−ψ(θ, P̃j−1)|+
2 sup(θ,P )∈Θ×BP |ψ(θ, P )−ψ(θ, P )| ≤ 2 supθ∈Θ |ψ(θ, P 0)−ψ(θ, P̃j−1)|+2 sup(θ,P )∈Θ×BP |ψ(θ, P )−
ψ(θ, P )|, where the second inequality follows from the definition of θ̃j . From continuity of
ψ(θ, P ), there exists ε2(∆) > 0 such that the first term on the right is smaller than ∆/2 if
ε ≤ ε2(∆). The second term on the right is op(1) from Lemma 2.4 of Newey and McFad-
den (1994). Hence, Pr(θ̃j /∈ Nθ(ε1)) → 0 if ε ≤ ε2(∆), and setting c ≤ min{ε1, ε2(∆)} gives
Pr((θ̃j , P̃j−1) /∈ N (ε1))→ 0. �

7.2 Proof of Lemma 2

We suppress the subscript NPL from P̂NPL. Let b > 0 be a constant such that ρ(MΨθΨP )+2b <
1. From Lemma 5.6.10 of Horn and Johnson (1985), there is a matrix norm || · ||α such that
||MΨθΨP ||α ≤ ρ(MΨθΨP ) + b. Define a vector norm || · ||β for x ∈ RL as ||x||β = ||[x 0 . . . 0]||α,
then a direct calculation gives ||Ax||β = ||A[x 0 . . . 0]||α ≤ ||A||α||x||β for any matrix A. From
the equivalence of vector norms in RL (see, for example, Corollary 5.4.5 of Horn and Johnson
(1985)), we can restate Lemma 1 in terms of ||·||β as follows: there exists c > 0 such that P̃j−P̂ =
MΨθΨP (P̃j−1− P̂ )+Op(n−1/2||P̃j−1− P̂ ||β + ||P̃j−1− P̂ ||2β) holds uniformly in P̃j−1 ∈ {P : ||P −
P 0||β < c}. We rewrite this statement further so that it is amenable to recursive substitution.
First, note that ||MΨθΨP (P̃j−1−P̂ )||β ≤ ||MΨθΨP ||α||P̃j−1−P̂ ||β ≤ (ρ(MΨθΨP )+b)||P̃j−1−P̂ ||β.
Second, rewrite the Op term as Op(n−1/2 + ||P̃j−1− P̂ ||β)||P̃j−1− P̂ ||β. Set c < b, then this term
is smaller than b||P̃j−1 − P̂ ||β wpa1. Third, since P̂ is consistent, {P : ||P − P̂ ||β < c/2} ⊂ {P :
||P−P 0||β < c} wpa1. Consequently, ||P̃j−P̂ ||β ≤ (ρ(MΨθΨP )+2b)||P̃j−1−P̂ ||β holds wpa1 for
all P̃j−1 in {P : ||P − P̂ ||β < c/2}. Because each NPL updating of (θ, P ) uses the same pseudo-
likelihood function, we may recursively substitute for the P̃j ’s, and hence limk→∞ P̃k = P̂ wpa1
if ||P̃0 − P̂ ||β < c/2. The stated result follows from applying the equivalence of vector norms in
RL to ||P̃0 − P̂ ||β and ||P̃0 − P̂ || and using the consistency of P̂ . �

7.3 Proof of Proposition 1

Differentiating φ0(P ) gives

∇P ′φ0(P 0) = ∇θ′Ψ(θ̃0(P 0), P 0)∇P ′ θ̃0(P 0) +∇P ′Ψ(θ̃0(P ), P 0). (12)
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We proceed to derive a representation of ∇P ′ θ̃0(P 0) and substitute it into (12). The first order
condition for θ̃0(P ) implies ∇θE ln Ψ(θ̃0(P ), P )(ai|xi) = 0. Taking its derivative with respect
to P gives ∇θθ′E ln Ψ(θ̃0(P ), P )(ai|xi)∇P ′ θ̃0(P ) +∇θP ′E ln Ψ(θ̃0(P ), P )(ai|xi) = 0. Evaluating
this at P 0 and using θ̃(P 0) = θ0, we obtain ∇P ′ θ̃(P 0) = −(Ψ′θ∆PΨθ)−1Ψ′θ∆PΨP . Substituting
this representation of ∇P ′ θ̃0(P 0) into (12) and using θ̃(P 0) = θ0, we obtain ∇P ′φ0(P 0) =
(I − Ψθ(Ψ′θ∆PΨθ)−1Ψ′θ∆P )ΨP = MΨθΨP . Therefore, the Jacobian of φ0(P ) − P at P 0 equals
MΨθΨP − I. From 19.15 of Seber (2007), MΨθΨP − I is nonsingular if ρ(MΨθΨP ) < 1. �

7.4 Proof of Proposition 2

First, note that P̃j for j ≥ 1 satisfies restriction (3) because it is generated by Ψ(θ, P ). The
restrictions (3)–(4) do not affect the validity of Lemma 1 because (i) the fixed point constraint
in terms of Ψ(θ, P ) and of Ψ+(θ, P+) are equivalent, and (ii) the restrictions (3)–(4) do not
affect the order of magnitude of the derivatives of Ψ(θ, P ).

For the updating formula of P+ and P−, taking the derivative of (4) gives

∇P ′Ψ(θ, P ) =

(
∇P+′Ψ+(θ, P+) 0
−E∇P+′Ψ+(θ, P+) 0

)
=
(
U∇P+′Ψ+(θ, P+) 0

)
. (13)

Substituting this into MΨθΨP , using Ψθ = UΨ+
θ , and rearranging terms give MΨθΨP =

[UM+
Ψθ

Ψ+
P+

...0], and the stated updating formula follows. The equivalence of the eigenval-
ues follows from det(MΨθΨP − λIdim(P )) = det(M+

Ψθ
Ψ+
P+ − λIdim(P+)) det(−λIdim(P−)) and

det(ΨP − λIdim(P )) = det(Ψ+
P+ − λIdim(P+)) det(−λIdim(P−)). �

7.5 Proof of Proposition 3

Observe that, with the simplex restriction on P , Ψ(θ, P ) takes the form

Ψ(θ, P ) =
(
M1(θ) M2(θ)

)( P+

1− 1′L−1P
+

)
= M1(θ)P+ +M2(θ)(1− 1′L−1P

+).

Then part (a) follows straightforwardly.
For part (b), partition M(θ) and define a matrix E as

M(θ) =

(
M11 M12

M21 M22

)
, E ≡

(
IL−1 0

−1′L−1 1

)
,

where we suppress θ from the Mij(θ)’s, M11 is (L − 1) × (L − 1), and Ik is a k-dimensional
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identity matrix. Direct calculation and noting that ∇P+′Ψ+(θ, P+) = M11 −M121′L−1 gives

(M(θ)− λIL)E =

(
∇P+′Ψ+(θ, P+)− λIL−1 M12

M21 − (M22 − λ)1′L−1 M22 − λ

)
.

Since det(E) = 1, we have det((M(θ)− λIL)E) =det(M(θ)− λIL), and using properties of the
determinant of a partitioned matrix (see, for example, 14.1 of Seber, 2007) gives

det (M(θ)− λIL) = det
(
∇P+′Ψ+(θ, P+)− λIL−1

)
×B(λ),

where B(λ) = det(M22−λ− [M21− (M22−λ)1′L−1][∇P+′Ψ+(θ, P+)−λIL−1]−1M12). Note that
M21 = 1′L−1(IL−1−M11) and M22 = 1−1′L−1M12 because M(θ) is a column stochastic matrix.
It follows that B(1) = 0, giving part (b).

For part (c), note that the spectral radius of M(θ) is 1 from Theorem 8.1.22 of Horn and
Johnson (1985). Since M(θ0) is irreducible and aperiodic, it follows 9.58 of Seber (2007) and
Definition 8.5.0 of Horn and Johnson (1985) that only one eigenvalue of M(θ0) has modulus
one, and part (c) follows. �

7.6 Proof of Proposition 4

Let λ = r cos θ + ir sin θ be an eigenvalue of ΨP . Then, the corresponding eigenvalue of ΛP is
λ(α) = αr cos θ + iαr sin θ + (1 − α). Let f(α) = |λ(α)|2, then the stated result holds because
f(0) = 1 and ∇αf(0) = 2(r cos θ − 1) < 0. �

7.7 Proof of Proposition 5

For part (a), write Γ(θ, P ) − P as Γ(θ, P ) − P = A(θ, P )(Ψ(θ, P ) − P ), where A(θ, P ) ≡
(I − Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ))−1Π(θ, P ) + (I − Π(θ, P )). Let Z(θ, P ) denote an orthonormal
basis of the column space of Π(θ, P ), so that Z(θ, P )Z(θ, P )′ = Π(θ, P ) and Z(θ, P )′Z(θ, P ) =
Im. Suppress (θ, P ) from Π(θ, P ), Z(θ, P ), and ∇P ′Ψ(θ, P ). A direct calculation gives (I −
Π∇P ′ΨΠ)−1Π = Z(I−Z ′∇P ′ΨZ)−1Z ′, so we can writeA(θ, P ) asA(θ, P ) = Z(I−Z ′∇P ′ΨZ)−1Z ′+
(I−Π). The stated result follows sinceA(θ, P ) is nonsingular because rank[Z(I−Z ′∇P ′ΨZ)−1Z ′] =
m, rank(I −Π) = N −m, and Z(I − Z ′∇P ′ΨZ)−1Z ′ and I −Π are orthogonal to each other.

For part (b), define ΓP ≡ ∇P ′Γ(θ0, P 0) and Π0 ≡ Π(θ0, P 0). Define P with respect to
ΨP ≡ ∇P ′Ψ(θ0, P 0). Computing ∇P ′Γ(θ, P ) and noting that Ψ(θ0, P 0) = P 0, we find ΓP =
Π0 + (I − Π0ΨPΠ0)−1Π0(ΨP − I) + (I − Π0)ΨP . Observe that ΓPΠ0 = (I − Π0)ΨPΠ0 =
0, where the last equality follows because ΨPΠ0P ∈ P for any P ∈ RL by the definition of
Π0. Hence, ΓP = ΓP (I − Π0). We also have (I − Π0)ΓP = (I − Π0)ΨP because a direct
calculation gives (I − Π0ΨPΠ0)−1Π0 = Z0(I − (Z0)′ΨPZ

0)−1(Z0)′ where Z0 = Z(θ0, P 0), and
hence (I −Π0)(I −Π0ΨPΠ0)−1Π0 = 0. Then, in conjunction with ΓP = ΓP (I −Π0), we obtain
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(I−Π0)ΓP = (I−Π0)ΨP (I−Π0). Since ΓP (I−Π0) has the same eigenvalues as (I−Π0)ΓP (see
Theorem 1.3.20 of Horn and Johnson, 1985), we have ρ(ΓP ) = ρ(ΓP (I−Π0)) = ρ((I−Π0)ΓP ) =
ρ[(I − Π0)ΨP (I − Π0)] ≤ δ0, where the last inequality follows from Lemma 2.10 of SK: P , Q,
and F ∗u in SK correspond to our Π0, I −Π0, and ΨP . �

7.8 Proof of Proposition 6

The stated results follow from Proposition 2 of AM07 and our Lemma 1 if Assumptions 1(b)-(c)
and 1(e)-(h) and Assumptions 2(b)-(c) hold when Ψ(θ, P ) is replaced with Γ(θ, P ).

We check Assumptions 2(b)-(c) first because they are used in showing the other conditions.
First, note that Chu (1990, Section 4.2, in particular line 17 on page 1377) proved the following: if
a matrix A(t) is ` times continuously differentiable with respect to t, and if X(t) spans the invari-
ant subspace corresponding to a subset of eigenvalues of A(t), then X(t) is also ` times continu-
ously differentiable with respect to t. Consequently, Π(θ, P ) is three times continuously differen-
tiable in N (we suppress “in N” henceforth) since ∇P ′Ψ(θ, P ) is three times continuously differ-
entiable from Assumption 3(b). Further, I−Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ) is nonsingular and three
times continuously differentiable from Assumptions 3(b)-(c), and hence Assumption 2(b) holds
for Γ(θ, P ). For Assumption 2(c), a direct calculation gives ΩΓ

θθ = Ψ′θA(θ0, P 0)′∆PA(θ0, P 0)Ψθ,
where A(θ, P ) is defined in the proof of Proposition 2 and shown to be nonsingular. Since
rank(Ψθ) = K from nonsingularity of Ωθθ = Ψ′θ∆PΨθ, positive definiteness of ΩΓ

θθ follows.
We proceed to confirm Assumptions 1(b)-(c) and 1(e)-(h) hold for Γ(θ, P ). Assumption

1(b) for Γ(θ, P ) follows from Assumption 3(d). Assumption 1(c) holds because we have already
shown that Γ(θ, P ) is three times continuously differentiable. Assumption 1(e) holds because
Ψ(θ, P ) and Γ(θ, P ) have the same fixed points by Proposition 5. As discussed in page 21 of
AM07, Assumption 1(f) is implied by Assumption 3(e). Assumption 1(g) for θ̃Γ

0 (P ) follows from
the positive definiteness of ΩΓ

θθ and by the implicit function theorem applied to the first order
condition for θ. Assumption 1(h) follows from Assumption 3(e). �

7.9 Proof of Proposition 7

Write the objective function as γ(θ, P, η) ≡ n−1
∑n

i=1 ln Γ(θ, P, η)(ai|xi), and define
γ(θ, P, η) ≡ E ln Γ(θ, P, η)(ai|xi). Define ΩΓ

θP ≡ E∇θ ln Γ(θ0, P 0)(ai|xi)∇P ′ ln Γ(θ0, P 0)(ai|xi).
For ε > 0, define a neighborhood N3(ε) = {(θ, P, η) : max{||θ − θ0||, ||P − P 0||, ||η − θ0||} < ε}.
Then, there exists ε1 > 0 such that (i) N (ε1) ⊂ N , (ii) sup(θ,P,η)∈N3(ε1) ||∇θθ′γ(θ, P, η)−1|| <
∞, and (iii) sup(θ,P,η)∈N3(ε1) ||∇3γ(θ, P, η)|| < ∞ because Γ(θ0, P 0, θ0)(a|x) = P 0(a|x) > 0,
Γ(θ, P, η) is three times continuously differentiable (see the proof of Proposition 6), and∇θθ′γ(θ0, P 0, θ0) =
∇θθ′γ(θ0, P 0) is nonsingular.

First, we assume (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) and derive the stated representation of θ̃j − θ̂ and
P̃j− P̂ . We later show (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) wpa1 if c is taken sufficiently small. Henceforth,
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we suppress the subscript RPM from θ̂RPM and P̂RPM . Expanding the first order condition
∇θγ(θ̃j , P̃j−1, θ̃j−1) = 0 around (θ̂, P̃j−1, θ̃j−1) gives

0 = ∇θγ(θ̂, P̃j−1, θ̃j−1) +∇θθ′γ(θ̄, P̃j−1, θ̃j−1)(θ̃j − θ̂), (14)

where θ̄ ∈ [θ̃j , θ̂]. Writing θ̄ = θ̄(θ̃j), we obtain sup(θ̃j ,P̃j−1,θ̃j−1)∈N3(ε1) ||∇θθ′γ(θ̄(θ̃j), P̃j−1, θ̃j−1)−1|| =
Op(1) because (i) ||θ̄(θ̃j) − θ0|| < ε1 wpa1 since ||θ̃j − θ0|| < ε1 and θ̂ is consistent, and (ii)
sup(θ,P,η)∈N3(ε1) ||∇θθ′γ(θ, P, η)−1|| = Op(1) since sup(θ,P,η)∈N3(ε1) ||∇θθ′γ(θ, P, η)−1|| < ∞ and
sup(θ,P,η)∈N3(ε1) ||∇2γ(θ, P, η) − ∇2γ(θ, P, η)|| = op(1). Therefore, the stated representation of
θ̃j − θ̂ follows if we show

∇θγ(θ̂, P̃j−1, θ̃j−1) = −ΩΓ
θP (P̃j−1 − P̂ ) + rnj , (15)

where rnj denotes a generic remainder term that is Op(n−1/2||θ̃j−1 − θ̂|| + ||θ̃j−1 − θ̂||2 +
n−1/2||P̃j−1 − P̂ ||+ ||P̃j−1 − P̂ ||2) uniformly in (θ̃j−1, P̃j−1) ∈ N (ε1).

We proceed to show (15). Expanding∇θγ(θ̂, P̃j−1, θ̃j−1) twice around (θ̂, P̂ , θ̂) gives∇θγ(θ̂, P̃j−1, θ̃j−1) =
∇θγ(θ̂, P̂ , θ̂)+∇θP ′γ(θ̂, P̂ , θ̂)(P̃j−1−P̂ )+∇θη′γ(θ̂, P̂ , θ̂)(θ̃j−1−θ̂)+Op(||θ̃j−1−θ̂||2+||P̃j−1−P̂ ||2).
For the first term on the right, the RPM estimator satisfies ∇θγ(θ̂, P̂ , θ̂) = 0 wpa1 because
∇θ′γ(θ̂, P̂ ) = 0 from the first order condition, and Proposition 5(a) implies Ψ(θ̂, P̂ ) = P̂ wpa1
and hence ∇θ′Γ(θ̂, P̂ , θ̂) = ∇θ′Γ(θ̂, P̂ ) wpa1. For the second and third terms on the right,
we have E∇θP ′ ln Γ(θ0, P 0, θ0)(ai|xi) = −ΩΓ

θP and E∇θη′ ln Γ(θ0, P 0, θ0)(ai|xi) = 0 by the in-
formation matrix equality because Γ(θ0, P 0, θ0) = Γ(θ0, P 0), ∇θ′Γ(θ0, P 0, θ0) = ∇θ′Γ(θ0, P 0),
∇P ′Γ(θ0, P 0, θ0) = ∇P ′Γ(θ0, P 0), and ∇η′Γ(θ0, P 0, θ0) = 0 from P 0 = Ψ(θ0, P 0). Therefore,
(15) follows from the root-n consistency of (θ̂, P̂ ).

For the representation of P̃j − P̂ , first we have

P̃j = P̂ + Γθ(θ̃j − θ̂) + ΓP (P̃j−1 − P̂ ) + rnj , (16)

by expanding P̃j = Γ(θ̃j , P̃j−1, θ̃j) around (θ̂, P̂ , θ̂) and using Γ(θ̂, P̂ , θ̂) = P̂ . Next, refine (14)
as 0 = ∇θγ(θ̂, P̃j−1, θ̃j−1)− ΩΓ

θθ(θ̃j − θ̂) + rnj by expanding ∇θθ′γ(θ̂, P̃j−1, θ̃j−1) in (14) around
(θ̂, P̂ , θ̂) to write it as∇θθ′γ(θ̂, P̃j−1, θ̃j−1) = −ΩΓ

θθ+Op(n
−1/2)+Op(||θ̃j−1−θ̂||)+Op(||P̃j−1−P̂ ||)

and using the bound of θ̃j − θ̂ obtained above. Substituting this into (15) gives

θ̃j − θ̂ = −(ΩΓ
θθ)
−1ΩΓ

θP (P̃j−1 − P̂ ) + rnj . (17)

The stated result follows from substituting this into (16) in conjunction with (ΩΓ
θθ)
−1ΩΓ

θP =
(Γ′θ∆PΓθ)−1Γ′θ∆PΓP .

It remains to show (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) wpa1 if c is taken sufficiently small. We first
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show that

sup
(θ,η,P )∈Θ̄j×N

|γ(θ, P, η)− γ(θ, P, η)| = op(1), γ(θ, P, η) is continuous in (θ, η, P ) ∈ Θ̄j ×N .

(18)
Take N sufficiently small, then it follows from the consistency of (θ̃j−1, P̃j−1) and the continuity
of Γ(θ, P, η) that Γ(θ, P, η)(a|x) ∈ [ξ/2, 1 − ξ/2] for all (a, x) ∈ A × X and (θ, P, η) ∈ Θ̄j ×
N wpa1. Observe that (i) Θ̄j × N is compact because it is an intersection of the compact
set Θ and |A||X| closed sets, (ii) ln Γ(θ, P, η) is continuous in (θ, P, η) ∈ Θ̄j × N , and (iii)
E sup(θ,P,η)∈Θ̄j×N | ln Γ(θ, P, η)(ai|xi)| ≤ | ln(ξ/2)| + | ln(1 − ξ/2)| < ∞ because of the way we
choose N . Therefore, (18) follows from Lemma 2.4 of Newey and McFadden (1994).

Finally, we show (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) wpa1 under (18) by applying the argument in the
proof of Lemma 1. Define ∆ = γ(θ0, P 0, θ0) − supθ∈Nθ(ε1)c∩Θ γ(θ, P 0, θ0) > 0, where the last
inequality follows from the information inequality because γ(θ, P 0, θ0) is uniquely maximized at
θ0 andNθ(ε1)c∩Θ is compact. It follows that Pr(θ̃j /∈ Nθ(ε1)) ≤ Pr(γ(θ0, P 0, θ0)−γ(θ̃j , P 0, θ0) ≥
∆). Proceeding as in the proof of Lemma 1, we find that, if c is taken sufficiently small, then
γ(θ0, P 0, θ0)− γ(θ̃j , P 0, θ0) ≤ ∆/2 + op(1) and hence Pr((θ̃j , P̃j−1, θ̃j−1) /∈ N (ε1))→ 0. �

7.10 Proof of Proposition 8

The proof closely follows the proof of Lemma 2. We suppress the subscript RPM from θ̂RPM and
P̂RPM . Let ζ̃j = (θ̃′j , P̃

′
j)
′ and ζ̂ = (θ̂′, P̂ ′)′. Let b > 0 be a constant such that ρ(MΓθΓP )+2b < 1.

Define

D =

(
0 −(ΩΓ

θθ)
−1ΩΓ

θP

0 MΓθΓP

)
. (19)

Note that ρ(D) = ρ(MΓθΓP ) and there exists a matrix norm || · ||α such that ‖D‖α ≤ ρ(D) +
b = ρ(MΓθΓP ) + b. We define the vector norm for x ∈ Rk+L as ||x||β = ||[x 0 . . . 0]||α, then
||Ax||β ≤ ||A||α||x||β for any matrix A.

From the representation of P̃j − P̂ and θ̃j − θ̂ in Proposition 7 and (17), and the equivalence
of vector norms in Rk+L, there exists c > 0 such that ζ̃j − ζ̂ = D(ζ̃j−1 − ζ̂) + Op(n−1/2||ζ̃j−1 −
ζ̂||β+ ||ζ̃j−1− ζ̂||2β)) holds uniformly in ζ̃j−1 ∈ {ζ : ||ζ−ζ0||β < c}. The stated result then follows
from repeating the proof of Lemma 2. �

7.11 Proof of Proposition 9

Part (a) follows from Proposition 2 of AM07 if Assumptions 1(b)-(c) and 1(e)-(h) and Assump-
tions 2(b)-(c) hold when Ψ(θ, P ) is replaced with Λq(θ, P ). Similar to the proof of Propo-
sition 7, we check Assumptions 2(b)-(c) first. Assumption 2(b) holds for Λq(θ, P ) because
Ψ(θ, P ) is three times continuously differentiable in N from Assumption 4(b). For Assumption
2(c), a direct calculation gives Ωq

θθ = (∇θ′Λq(θ0, P 0))′∆P∇θ′Λq(θ0, P 0) = Λ′θ(I − (ΛP )q)′(I −

27



Λ′P )−1∆P (I −ΛP )−1(I − (ΛP )q)Λθ = Ψ′θ(I − (αΨP + (1−α)I)q)′(I −Ψ′P )−1∆P (I −ΨP )−1(I −
(αΨP+(1−α)I)q)Ψθ, where the second equality follows from∇θ′Λq(θ0, P 0) = (

∑q−1
j=0(ΛP )j)Λθ =

(I−ΛP )−1(I−(ΛP )q)Λθ, and the third equality follows from Λθ = αΨθ and ΛP = αΨP +(1−α)I.
Since rank(Ψθ) = K from nonsingularity of Ωθθ = Ψ′θ∆PΨθ, positive definiteness of Ωq

θθ follows
from Assumption 4(d).

The proof of part (a) is completed by confirming that Assumptions 1(b)-(c) and 1(e)-(h)
hold for Λq(θ, P ). Assumptions 1(b)-(c) hold for Λq(θ, P ) because Assumptions 1(b)-(c) hold
for Ψ(θ, P ). Assumption 1(e) for Λq(θ, P ) follows from Assumption 4(c). As discussed in page
21 of AM07, Assumption 1(f) for Λq(θ, P ) is implied by Assumption 4(e). Assumption 1(g) for
θ̃q0(P ) follows from the positive definiteness of Ωq

θθ and applying the implicit function theorem to
the first order condition for θ. Assumption 1(h) follows from Assumption 4(e). This completes
the proof of part (a).

We proceed to prove part (b). Define the objective function and its limit as Qqn(θ, P, η) ≡
n−1

∑n
i=1 ln Λq(θ, P, η)(ai|xi) and Qq(θ, P, η) ≡ E ln Λq(θ, P, η)(ai|xi). For ε > 0, define a neigh-

borhood N3(ε) = {(θ, P, η) : max{||θ − θ0||, ||P − P 0||, ||η − θ0||} < ε}. Then, there exists
ε1 > 0 such that (i) N (ε1) ⊂ N , (ii) sup(θ,P,η)∈N3(ε1) ||∇θθ′Qq(θ, P, η)−1|| < ∞, and (iii)
sup(θ,P,η)∈N3(ε1) ||∇3Qq(θ, P, η)|| < ∞ because Λq(θ0, P 0, θ0)(a|x) = P 0(a|x) > 0, Λq(θ, P, η) is
three times continuously differentiable, and ∇θθ′Qq(θ0, P 0, θ0) = ∇θθ′Qq(θ0, P 0) is nonsingular.

First, we assume (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) and derive the stated representation of θ̃j − θ̂ and
P̃j− P̂ . We later show (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) wpa1 if c is taken sufficiently small. Henceforth,
we suppress the subscript qNPL from θ̂qNPL and P̂qNPL. The proof is similar to the proof of
the updating formula of Proposition 7. For the representation of θ̃j − θ̂, expanding the first
order condition 0 = ∇θQqn(θ̃j , P̃j−1, θ̃j−1) around (θ̂, P̃j−1, θ̃j−1) gives 0 = ∇θQqn(θ̂, P̃j−1, θ̃j−1) +
∇θθ′Qqn(θ̄(θ̃j), P̃j−1, θ̃j−1)(θ̃j − θ̂), which corresponds to (14) in the proof of Proposition 7. Pro-
ceeding as in the proof of Proposition 7, we obtain sup(θ̃j ,P̃j−1,θ̃j−1)∈N3(ε1) ||∇θθ′Q

q
n(θ̄(θ̃j), P̃j−1, θ̃j−1)−1|| =

Op(1). Therefore, the stated representation of θ̃j − θ̂ follows if we show ∇θQqn(θ̂, P̃j−1, θ̃j−1) =
−Ωq

θP (P̃j−1 − P̂ ) + rnj , where rnj denotes a remainder term of Op(n−1/2||θ̃j−1 − θ̂|| + ||θ̃j−1 −
θ̂||2 + n−1/2||P̃j−1 − P̂ ||+ ||P̃j−1 − P̂ ||2) uniformly in (θ̃j−1, P̃j−1) ∈ N (ε1). This representation
corresponds to (15) in the proof of Proposition 7 and follows from the same argument. Namely,
expanding ∇θQqn(θ̂, P̃j−1, θ̃j−1) twice around (θ̂, P̂ , θ̂) and noting that (i) the q-NPL estimator
satisfies ∇θQqn(θ̂, P̂ , θ̂) = 0, (ii) Λq(θ0, P 0, θ0) = Λq(θ0, P 0), ∇θ′Λq(θ0, P 0, θ0) = ∇θ′Λq(θ0, P 0),
∇P ′Λq(θ0, P 0, θ0) = ∇P ′Λq(θ0, P 0), and∇η′Λq(θ0, P 0, θ0) = 0, and using the information matrix
equality and the root-n consistency of (θ̂, P̂ ) gives the required result.

The proof of the representation of P̃j − P̂ follows from the proof of Proposition 7, because
(i) P̃j = P̂ + Λqθ(θ̃j − θ̂) + ΛqP (P̃j−1 − P̂ ) + rnj , which corresponds to (16) in the proof of
Proposition 7, from expanding Λq(θ̃j , P̃j−1) twice around (θ̂, P̂ ) and using P̂ = Λq(θ̂, P̂ ), (ii)
∇θθ′Qqn(θ̂, P̃j−1, θ̃j−1)(θ̃j− θ̂) = −Ωq

θθ(θ̃j− θ̂)+rnj from expanding ∇θθ′Qqn(θ̂, P̃j−1, θ̃j−1) around
(θ̂, P̂ , θ̂) and using the bound of θ̃j−θ̂ obtained above, and (iii) (Ωq

θθ)
−1Ωq

θP = ((Λqθ)
′∆PΛqθ)

−1(Λqθ)
′∆PΛqP .
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The proof of part (b) is completed by showing (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) wpa1 if c is taken
sufficiently small. First, observe that (18) in the proof of Proposition 7 holds with γ(θ, P, η)
and γ(θ, P, η) replacing Qqn(θ, P, η) and Qq(θ, P, η) if we take N sufficiently small. Therefore,
(θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) wpa1 follows from repeating the argument in the last paragraph of the
proof of Proposition 7 if we show that θ0 uniquely maximizes Qq(θ, P 0, θ0). Note that

Qq(θ, P 0, θ0)−Qq(θ0, P 0, θ0) = E ln(∇θ′Λq(θ0, P 0)(θ − θ0) + P 0)(ai|xi)− E lnP 0(ai|xi)

= E ln
(
∇θ′Λq(θ0, P 0)(ai|xi)(θ − θ0)

P 0(ai|xi)
+ 1
)
. (20)

Recall that ln(y + 1) ≤ y for all y > −1 where the inequality is strict if y 6= 0. Since
rank(∇θ′Λq(θ0, P 0)) = K from the positive definiteness of Ωq

θθ, it follows that ∇θ′Λq(θ0, P 0)ν 6=
0 for any K-vector ν 6= 0. Therefore, ∇θ′Λq(θ0, P 0)(ai|xi)(θ − θ0) 6= 0 for at least one
(ai, xi) for all θ 6= θ0. Consequently, the right hand side of (20) is strictly smaller than
E[∇θ′Λq(θ0, P 0)(ai|xi)(θ−θ0)/P 0(ai|xi)] for all θ 6= θ0. Because E[∇θ′Λq(θ0, P 0)(ai|xi)/P 0(ai|xi)] =
0, we have Qq(θ, P 0, θ0) − Qq(θ0, P 0, θ0) < 0 for all θ 6= θ0. Therefore, θ0 uniquely maximizes
Q(θ, P 0, θ0), and we complete the proof of part (b).

We prove part (c). From the proof of part (a) in conjunction with the relation ΛP =
αΨP +(1−α)I, we may write Ωq

θθ as Ωq
θθ = Ψ′θ(I−(ΛP )q)′(I−Ψ′P )−1∆P (I−ΨP )−1(I−(ΛP )q)Ψθ.

Similarly, using the relation ∇P ′Λq(θ0, P 0) = (ΛP )q, we obtain Ωq
θP = Λ′θ(I − (ΛP )q)′(I −

Λ′P )−1∆P (ΛP )q. Therefore, if ρ(ΛP ) < 1, then Ωq
θθ → Ψ′θ(I − Ψ′P )−1∆P (I − ΨP )−1Ψθ and

Ωq
θP → 0 as q → ∞, and it follows that VqNPL → (Ψ′θ(I − Ψ′P )−1∆P (I − ΨP )−1Ψθ)−1 as

q → ∞. This limit is the same as VMLE = (E[∇θ lnP (θ0)(ai|xi)∇θ′ lnP (θ0)(ai|xi)])−1, where
P (θ) ≡ arg maxP∈Mθ

E lnP (ai|xi) with Mθ ≡ {P ∈ BP : P = Ψ(θ, P )}, because ∇θ′P (θ) =
(I −∇P ′Ψ(θ, P (θ)))−1∇θ′Ψ(θ, P (θ)) holds in a neighborhood of θ = θ0.

We omit the proof of part (d) because it is identical to the proof of Proposition 8 except
that θ̂RPM , P̂RPM , (ΩΓ

θθ)
−1ΩΓ

θP , and MΓθΓP are replaced with θ̂qNPL, P̂qNPL, (Ωq
θθ)
−1Ωq

θP , and
MΛqθ

ΛqP , respectively. �
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