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ON SOME PROPERTIES OF HOLOMORPHIC 
DIFFUSION PROCESSES 

TAKAHIKO FUJITA 

I. Introductron 

On a complex manifold we can well-define the notion of a holomorphic martingale (cf. 

Schwartz [7]), although on a manifold, there is no intrinsic notion of martingales unless 

some additional structures like connections are introduced (cf. Meyer [5]). Namely, we 

say that a continuous stochastic process on a complex manifold of dimension n is a holo-

morphic martingale if its coordinate process with respect to a holomorphic chart is a part 

of a C"-valued holomorphic martingale and this notion is independent of a choice of the local 

chart. If a diffusion process on a complex manifold is a holomorphic martingale, we say 

simply that it is a holomorphic dlffusion. The works by P. L6vy and S. Kakutani on one-di-

mensional holomorphic diffusions, i.e. holomorphic diffusions on Riemann surfaces are clas-

sical : In particular they are transformed each other by random time change and they are 

all sym,netric i,e. the transition semigroups are symmetric with respect to some measure 

on the manifold. Note that, for a diffusion process having the invariant measure, it is sym-

metric if and only if stationary diffusion process under the invariant measure is time re-

versible. In the case of higher dimensions, however, the situation will change considerably: 

They are no longer transformed each other by random time change and they are not neces-

sarily symmetric so that the time reversion with respect to the invariant measure does not 

necessarily coincide with the original one. 

Purpose of this note is to study the symmetry of higher dimensional holomorphic diffusion 

processes : In particular, ~e show that, for the existence of symmetric holomorphic diffusion 

processes on a manifo]d, there exists generally a topological obstruction on the manifold. 

The author expresses his hearty thanks to Professor S. Watanabe for his suggestion 
of this problem and his kind advice. 

II. Basic Notions and Notations 

Notations 
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a I r a a d.--"=dx ~1_V~Idx ) 2. *'* 2.-1 + VTI o'x2* ' =T¥ ax o' 

af o*f o = dz", a~f-- dz~", df=0'f+~f, d'f=11TI(~f-af) af 

az" az" 
where z"=x2.~1+1/- Ix2. (z.~C, x2.~1, x2~eR). 

Let some probability space and a filtration on it be fixed ; A11 the martingales below 

are refered to this system. 

, zt") taking values in C~ is called an n-Dej"7nition 2.1 A stochastic process Zt =(ztl . . . 

, n, are all dimensional holomorphic martingale if it is continuous and if zti, ztt.ztj, i, j= I , 2, . . 

complex valued local martingales. 
n are continuous local martingales Thus Zt is a holomorphic martingale if ztt, i=1, 2, . . . , 

. . . , n) (by following the notation of lkeda-Watanabe [4], with <zi,zj> =0 (i j=1 2, 
,
 

,
 
,
 

dzti'dztj=0). If ztj=xt'+1/ITyt/, it is equivalent to say that {xti,yti} are system of real 

contmuous local marnngales wrth <xi xj> <yt yj>t, <xi y'>t=0, i,i=1, 2, . . . , n 
(dxti'dxti =dytf .dytj, dxti 'dyt' =0). 

Example 2.1 (Complex Brownian Motion) 
Let (btl, bt2, . . . , bt2*) be a standard Brownian motion on R2~ and set z b 2j l+ 

1/-lbt2i, j=1, 2, . . . , n. Then clearly Zt =(ztl, . . . , Zt") is a holomorphic martingale which 

will be called n-dimensional complex BroTvnian motion. 

If Zt is an n-dimensional holomorphic martingale then, because of dzti'dzti=0, the It6 

formula is given in the following form: If u is a smooth C" function on C", 

au au I a2u (2.1) du(Zt)= o'zt dzti+ dz,i+T azialj d<zti,~tj>. 
azi 

In particular, if 17 is a C~-valued holomorphic function on C", 

(2.2) du*(Zt)= ad d.-ti 

*.t o' 

which shows that u'(Zt) is also an m-dimensional holomorphic martingale. 

Let M be a manifold. By dlffusion X=(Xt,P.), we mean as usual a time homogeneous. 

continuous and strong Markov process on M:P. denotes the probability law governing 
the paths starting at xeM. X is called smooth if the infinitesimal generator L restricted 

to smooth functions is a differential operator with smooth coefficients. X is called non-

degenerate if L is strictly elliptic. Finally X is called conservative if its life time is infinite. 

Definition 2.2 Let M be a complex manifold and X=(Xt,P.) ~e a conservative diffusion 

on M. We call X a 110lolnorpllic d,ffusion on M if, for any holomorphic chart (U~,p.) of M, 

{P'(XtA..),P*} is an n-dimensioanl holomorphic martingale for any xeEU. where t.= 
inf{t [ Xt ~ U.}. 

By (2.2) it is clear that this definition is well-defined independently of a particular choice 

of holomorphic charts. 
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In the following, we assume, for simplicity, that M is a compact complex mamfold of 

dimension n and we consider only smooth, non-degenerate and conservative holomorphic dif-

fusions on M. For such X, its time change is defined as follows ; Iet c(x) be a smooth, every-

where positive function on M and x(t)=X(A(t)) where A(t) is the inverse function of t-~ 
i
:
 
c(X(s))ds. Then (x(t),P*) is also a smooth, non-degenerate and conservative diffusion 

on M which is denoted by X' and is called the dlffusion obtainedfrom X by a time change 

determined by t/1e function c. It is obvious from Doob's optional sampling theorem that 

X" is also a holomorphic diffusion on M. Note that ifXis generated by the differential oper-

ator L, then Xc js generated by JL L. 

Let X=(X(t),P.) be a holomorphic diffusion on M. Then, since M is compact and X is 

nondegenerate, the unique invariant probability measure m(dx) of X exists and also the unique 
j
 
J
 

diffusion X=(fr(t),p.) exists such that M E.[f(X(t))]g(x)m(dx)= M ~.[g(X(t)]f(x)m(dx), for 

any continuous functions f and g on M (cf. Ikeda-Watanabe [4]). X is called the dual 

process of X with respect to the invariant measure m(dx) or the time-reversedprocess of X with 

respect to the invariant measure m(dx). Indeed if P(･)=fP,~(')m(dx) and p(.)=fpe(')m(dx) 
then, for any T>0 and 0<tl<t2< . . . <t~<T {X(tl)' ' ' " X(t~);P} and {fr(T-tl)' ' ' " 
~(T- t~) ; p} are equally distributed. 

Definition 2.3 X is called symmetric if X and fr coincide. 

It is easy to see that X is symmetric if and only if the transition probability p(t,x,y) with 

respect to the invariant measure m(dx), which always exists and is smooth in t>0 and x,ye 

M, satisfies that p(t,x,y)=p(t,y,x) for all t>0, x,yeM. It is also clear that if X is a sym-

metric conformal diffusion then its time change X' is also a symmetric holomorphic d'ff ' 
1 uslon. 

Note that if m(dx) is the invariant measure of X then a'c(x)m(dx) (a: the normalization 

constant) is the invariant measure of X'. 

III. Symmetry ofHolomorphic Dlffusions 

As stated in section 2, we only consider smooth, non-degenerate and conservative holo-

morphic diffusions Xt on a compact complex manifold M. 

Proposition 3.1 There is a one-to-one correspondence between a holomorphic diffusion Xt 

and a Hermitian metric g.~ on M in the sense that X, is generated by the differential oper-
a
2
 

l
 ator L = Tg"; o'z"a2; ' Here, as usual, (g"~) is the inverse of (g.;)-

Proof is almost obvious from the It6 formula (cf. Schwartz [7] for detaiis). 

Corollary 3.2 There always exists a holomorphic diffuslon on every compact complex man-

ifold M. 

It is not always true, however, that a symmetric holomorphic diffusion exists on M. In 

order to study this problem, we shall introduce the following subclass of symmetric holo-

morphic diffusions on M. 

Definition 3.3 A holomorphic diffusion X is called a holomorphic Brownian motion if it is 
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generated by the half Laplace-Beltrami operator ~ A(g) corresponding to the Hermitian 

metric (g*;)-

Thus if X is a holomorphic diffusion and if (g.~) is the Hermitian metric corresponding 

az 
to X by Prop. 3.1, then X is a conformal Brownian motion ifand only if g"B az"az; is the 

Laplace-Beltrami operator for the metric (g~;)･ Note that a holomorphic Brownian motion 
is symmetric and its invariant measure is given by the normalized Riemannian volume. 

Let (g.;) be a Hermitian metric and let Q be the real fundamental form corresponding 

to (g.;): 

11~I 
S2= 2 g.~dz Adzp 

The Hermitian metric (g.~) is called a Kdhler metric if dQ=0. 

Definition 3.4 A holomorphic diffusion X is called a Kdhler diffusion if the Hermitian metric 

(g.p) corresponding to X by Prop. 3.1 is a Kahler metric. 

It is well-known that if (g~F) is a Kahler metric, the corresponding Laplace-Beltrami 

operator is of the form A(g)=g"~ aza;ip 
(cf. Morrow-Kodaira [6D and consequently, 

a Kahler diffusion is always a holomorphic Brownian motion. Thus we have the following 

diagram : 

{Kahler diffusions (K.D.)} c {Holomorphic Brownian motions (H.B.M.)} c {Symmetric holo-

morphic diffusions (S.H.D.)} c {Holomorphic diffusions (H.D.)}. If M is of complex dimen-

sion l, it is well known that {K.D.}={H.B.M.}={S.H.D.}={H.D.} because every Hermitian 

metric is a Kahler metric. 

From now on we consider the higher dimensional case. Then we need following 
pro positions. 

Proposition 3.5 Let the complex dimension of M be greater than l. If X is a symmetric 
holomorphic diffusion on M, er can find uniquely the function c such that X' is a holomorphic 

Brownian motion. 

Proof Let (g.;) be the Hermitian metric corresponding to X and m(dr) be the invariant 

measure of X. Then there exists a smooth positive function r(x) such that m(dx)=r(x) 

v(g)(dx), where v(g) is the Riemannian volume with respect to the metric (g.;)･ The gen-

l a2 erator of X' is c g"~ az'azp and the Invanant measure of X Is c m c r v(g) Then we 
can determine c such that c'r'v(g)=v(c~lg), i.e. c=r "~1 and noting the fact that a sym-

metric A(g)+b-diffusion with the invariant Riemannian volume must be the Brownian motion 

with respect to (g) (cf. Ikeda-Watanabe [3], p. 280), X' is the Brownian motion with respect 

to (c~1g). (Q.E.D.) 

Corollary 3.6 If the complex dimension of M is greater than l, 

{H.B.M.} ~ {S.H.D.} 



19931 ON SOME PROPERTJES OF HOLOMORPHIC DIFFUSION PROCESSES 87 

(3. I ) 

Proposition 3. 7 

a
2
 g"; 

For every Hermitian metric (g.;) on M, the following formula holds: 

az"a2; - 
(g)=g";(69)~ a +g";(69). ~ 

az" ai~ 
where aQ =(a9).dz" + (aQ);dz~p. 

Proof First we prove the following integration by parts formula (3.2); 

(3 . 2) 

where 

J
 

(ftd'h, a~)1 = dfAd'hA * p +2J j"Lhdv(g) 

H H 

L:=; 

l
 
_
 2 g"; 

a
2
 

az"a2; 

Since d(fd'h)A * 9 =dfAd'hA * 9 + f.dd'hA * !2, we get 

(3 . 3) J d(fd'h)A * Q=Jf dfAd'hA * 9 +J f'dd'hA * 9. 

H H ,f 

Here, L.H.S. of (3.3)=(d(fd'h),9)2=(ftd'h,6!2)1 where we denote the inner product on dif-

ferential forms of degree k by ( , )k. From now, we calculate R.H.S, of (3.3). It is well 

known that a Hermitian metric (g.p) can be decomposed by the following; g~~=~k a.k(Jk; 

where ek;=cF~F~, crk~=a~h. Ifwe set ~)h=a.kdz", then (3k=~~~dz~;=a~kdz~p=ck;dz~p. Sog.~dz"Adz~p= 

~k a.zak;dz"Adz~p=~ (okA(5k (cf. Goldberg [3], p. 159, p. 165). 

' a 2h J f'ddchA * 9=(21/ - l'f. dz"/¥dz~p, 12)2 
az"a~ p 

H 
k~m (1/IT.f' a2h (c; i)~1(a~~)~1 e)'A(3~, 1/ - I e)hA(5k)2 

, , az"a2~ " ' 
k~m JH V･-･'~~1 'f' a2h (a.:)~1(c;~~)~le)lA(~~ * (1/--･~1 (DkA(Vk) 

az"a2p 

k ~m JH f a2h 
' (T ~)~1((T~;)~16hl6k~dv(g) 
az"a2p " 

a2h 

= . az"aZ; " 

* h J
 
= ' o (g.~)~Id v(g) r az"aZp 

a 2h r
 

J dv(g) =2J j"Lhdv(g). 
= 'g"; az"a2 p 
H H 

Here we used the fact: (1Fle)lA(51)A(VIle)2A(52) A . . . 

(V~Ie)1 A (l~) A * (1/~i:e)k A (5k)=6kt~k~dv(g). 

This completes the proof of (3.2). 

A (V-la)*A(~~)=dv(g) i.e. 
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Since 

af af ah dz all 1/-l ( " ( -"- dz")A ( ' ~P) )
 
A 1/-~l dfAd'hA * p= dz"+ dz~ * 2 g';dz A dz az" a2" a2" az" 

1 af o'h af ah 
= 
g ( + azp az" dv(g) 

)
 
,
 *; 

az" a~~ 

(3.2) is equivalent to 

1 .~ af ah af ah (f.d'h, 60)1=JMTg ( az" a~~ + azp az" dv(g)+2J fiL/Idv(g) )
 H 

Combining this with Green's formula: 

r I .pl af ah af o'h 
J
 
,
 ) f A(g)(h)ds (g) =0, dv(g) + ' JHTg ~ az" a2p + a2p az" M 

we immediately obtain (3.1). (Q.E.D.) 

Corollary 3.8 X is a holomorphic Brownian motion on M if and only if ap=0 where 9 rs 

the real fundamental form corresponding to (g.;)-

Remark 3.9 If X is a holomorphic Brownian motion, the corresponding Dirichlet form is 
r
 
l
 

given by J dfAd'hA 2 * g2. Fukushima and Okada (cf. [2]) obtained a similar expression 
lr 

for Dirichlet forms corresponding to symmetric conformal diffusions on C" by generalizing 

; * p to a closed positive current of type (n- l, n- 1). 

T/1eorem 3.10 On every compact manifold of the complex dimension 2, {H.B.M.}= 
{K.D.}, {H.B.M.}~{S.H.D.} hold. And for every symmetricholomorphic diffusion X, there 
uniquely exists a function c such that X' is a holomorphic Brownian motion. 

Proof If n=2, we get *(e)lA(5D=c02A(52, *(a)2A(~2)=e)lA(51' Then recalling !2= 

1/-1 (Q)lA(51+e)2A(52), * S2=Q is easily obtained. Hence ~=- * .d･ * shows that 612= 
2
 
O ifand only if dQ=0. By Proposition 3.7, if X is a holomorphic Brownian motion on M, X 

must be a Kahler diffusion. The second statement of this proposition follows immediately 

from Proposition 3.5 and Corollary 3.6. 

Corol!ary 3.11 If {H.C.D.}~c, then {K.D.}~c for every compact complex manifold M 
of the complex dimension 2. 

Corollary 3.12 There exists a compact complex manifold of the complex dimension 2 whlch 

has no symmetric holomorphic diffusion. 

Proof By Corollary 3.ll, every non Kahler manifold of the complex dimension 2 gives 

this example. (Q.E.D.) 
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Indeed the next example is well known. 

Examp!e 3.13 (Hopf manifold: An example of non Kahler manifold) 

M=C2-{(0,0)}/- where (zl'z2)-(14'1'w2) means zl=2"vvl' z2=2"w2 for certain in-
teger n. It is well known that this manifold M is non Kahler because its second Betti num-

ber vanishes. For more details refer to (Chern [1]). 

Finally we consider the case of the complex dimension 3. 

Proposition 3.14 There exists a non Kahler compact complex manifold of the complex 
dimension 3 which had a holomorphic Brownian motion, i.e. M exists for which {K.D.}~ c 

but {H.B.M.}~ c. 

Proof By Prop. 3.8, it is sufficient that we give an example of a non Kahler manifold with 

the real fundamental form Q which satisfies ~Q=0. Indeed the next example shows this 

one. 

Example 3.15 

Let 

(Iwasawa manifold (cf. Chern tl], Morrow-Kodaira [6])) 

1' zl' z2 {( I I } 
G= o' 'z3jlzl' z2' z3EC 
O' O' l 

and 

_{!1' wl' w2jl 

D- 
:, ;' wl'ilwl' wg' w3ez+VTrz} 

The quotient manifold M G/D (the quotrent by an equrvalence relation g -g defined 
by gl=g2'll, for some heED) is a compact complex manifold called lwasawa man:fold. It 

is well known that M is non Kahler because M has a holomorphic form p (p=dz2-z3dzl) 
which satisfies dp~0 (cf. [6]). Let g2=1/~Tdzl A d21 + 1/-1(dza~z8dzl) A (dz~2- 23d21) + 

11~Idz3 A dz~3' By 9 A p=2 * p we can get easily a9=0. So a holomorphic diffusion X cor-

responding to _o_ is a holomorphic Brownian motion. Concretely X is given by 

l' ztl' zt -]: 81 2 zs 3d z 

Xt:=Tr O' 1'zt3 

O' O' l 

Brownian motion (EX.2,1) and 1~ is the 

where (zt ' tZ2, z 3) rs a three dimensronal 

natural map from G to M. 

com plex 
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