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1 Introduction

Generalized method of moments (GMM, Hansen (1982)) has been an essential tool for econo-
metricians, partly because of its straightforward application and fairly weak restrictions on the data
generating process. GMM estimation is widely used in applied economics to estimate and test as-
set pricing models (Hansen and Singleton (1982), Kocherlakota (1990), Altonji and Segal (1996)),
business cycle models (Christiano and Haan (1996)), models that use longitudinal data (Arellano
and Bond (1991), Ahn and Schmidt (1995)), as well as stochastic dynamic general equilibrium
models (Ruge-Murcia (2007)).

Despite the widespread use of GMM, there is ample evidence that the finite sample properties for
inference have been disappointing (e.g. the 1996 special issue of JBES); t-tests on parameters and
Hansen’s test of overidentifying restrictions (J-test, or Sargan test) for model specification perform
poorly and tend to be biased away from the null hypothesis. The situation is especially severe for
dependent data (see Clark (1996)). Consequently, inferences based on asymptotic critical values
can often be very misleading. From an applied perspective, this means that theoretical models may
be more frequently rejected than necessary due to poor inference rather than poor modeling.

Various attempts have been made to address finite sample size problems while allowing for de-
pendence in the data. Berkowitz and Kilian (2000), Ruiz and Pascual (2002), and Härdle, Horowitz,
and Kreiss (2003) review some of the techniques developed for bootstrapping time-series models,
including financial time series. Lahiri (2003) is an excellent monograph on resampling methods
for dependent data. Hall and Horowitz (1996) apply the block bootstrap approach to GMM and es-
tablish the asymptotic refinements of their procedure when the moment conditions are uncorrelated
after finitely many lags. Andrews (2002) provides similar results for the k-step bootstrap procedure
first proposed by Davidson and Mackinnon (1999).

Limited Monte Carlo results indicate the block-bootstrap has some success at improving in-
ference in GMM. More recent papers by Zvingelis (2003) and Inoue and Shintani (2006) attempt
refinements to Hall and Horowitz (1996) and Andrews (2002). The main requirement of these ear-
lier papers is that the data is serially uncorrelated after a finite number of lags. In contrast, Inoue
and Shintani (2006) prove that the block bootstrap provides asymptotic refinements for the GMM
estimator of linear models when the moment conditions are serially correlated of possibly infinite
order. Zvingelis (2003) derives the optimal block length for coverage probabilities of normalized
and Studentized statistics.

A complementary line of research has examined empirical likelihood (EL) estimators, or their
generalization (GEL). Rather than try to improve the finite properties of the GMM estimator di-
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rectly, researchers such as Kitamura (1997), Kitamura and Stutzer (1997), Smith (1997), and Im-
bens, Spady, and Johnson (1998) have proposed and/or tested new statistics, ones based on GEL-
estimators.1 A GEL estimator minimizes the distance between the empirical density and a synthetic
density subject to the restriction that all the moment conditions are satisfied. GEL estimators have
the same first-order asymptotic properties as GMM but have smaller bias than GMM in finite sam-
ples. Furthermore, these biases do not increase in the number of overidentifying restrictions in the
case of GEL. Newey and Smith (2004) provide theoretical evidence of the higher-order efficiency of
GEL estimators. Gregory, Lamarche, and Smith (2002) have shown, however, that these alternatives
to GMM do not solve the over-rejection problem in finite samples.

Brown and Newey (2002) introduce the empirical likelihood bootstrap technique for iid data.
Rather than resampling from the empirical distribution function, the empirical likelihood bootstrap
resamples from a multinomial distribution function, where the probability weights are computed by
empirical likelihood. Brown and Newey (2002) show that empirical likelihood bootstrap provides an
asymptotically efficient estimator of the distribution of t ratios and overidentification test-statistics.
The author’s Monte Carlo design features a dynamic panel model with persistence and iid error
structure. The results suggest that the empirical likelihood bootstrap is more accurate than the
asymptotic approximation, and not dissimilar to the Hall and Horowitz (1996) bootstrap.

In this paper, the approach of Brown and Newey (2002) is extended to the case of dependent
data, using the empirical likelihood (Owen (1990)). A number of researchers have implemented
this approach with some success in linear time-series models (Ramalho (2006)) as well as dynamic
panel data models (Gonzalez (2007)). With serially correlated data the idea is that parameters of
a model are initially estimated by GMM and then used to compute the empirical likelihood proba-
bility weights of the blocks of moment conditions, which serve as the multinomial distribution for
resampling. In this paper the first-order asymptotic validity of the proposed empirical likelihood
block bootstrap is proven using the results in Gonçalves and White (2004) and the approach of Ma-
son and Newton (1992), who analyze the consistency of generalized bootstrap (weighted bootstrap)
procedures. Our consistency results may be viewed as an extension of Mason and Newton (1992) to
block bootstrapping. We report on the finite-sample properties of t-ratios and overidentification test-
statistics. A series of Monte Carlo experiments show that the empirical likelihood block bootstrap
can reduce size distortions considerably and improve test sizes over first-order asymptotic theory
and frequently outperforms conventional block bootstrapping approaches.2 Furthermore, the empir-

1See Kitamura (2007) for a review of recent research on empirical likelihood methods.
2In addition to bootstrapping using empirical likelihood estimated weights it would seem natural to consider subsam-

pling using the same weights. Subsampling (Politis and Romano (1994), Politis, Romano, and Wolf (1999), and Hong
and Scaillet (2006)) is an alternative to bootstrapping where each block is treated as it’s own series and test-statistics are
calculated for each sub-series. This is left as future work.
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ical likelihood block bootstrap does not require solving the difficult saddle point problem associated
with GEL estimators. This is because estimation of the probability weights can be conducted by
plugging-in first-stage GMM estimates. Difficulties with solving the saddle point problem is a com-
mon argument amongst applied researchers for not switching from GMM to EL, even though the
latter is higher-order efficient.

In related work, Hall and Horowitz (1996) analyze an application of the block bootstrap to
GMM. Hall and Horowitz (1996) assume that the moment conditions are uncorrelated after finitely
many lags, and derive the higher-order improvements of the block bootstrap. The key insight of
Hall and Horowitz (1996) is that, when the number of moment conditions exceeds the number of
parameters, one needs to re-center the moment conditions because there is in general no parameter
value such that the resampled moment conditions will be exactly equal to zero in expectation. One
difference between our paper and Hall and Horowitz (1996) is that we do not assume that the
moment conditions are uncorrelated after finitely many lags. Further, in the empirical likelihood
block bootstrap one does not need to re-center the moment conditions by virtue of the EL weights.
However, we only derive the consistency of our proposed procedure, and do not derive its higher-
order properties.

The paper is organized as follows. Section 2 provides an overview of GMM and EL. Section
3 presents a discussion of how resampling methods might improve inference in GMM. Section
4 presents the asymptotic results. Section 5 presents the Monte Carlo design for both linear and
nonlinear models. Section 6 concludes. The technical assumption and proofs are collected at the
end of the paper in the mathematical appendix.

2 Overview of GMM and GEL

In this section we present an overview of GMM and EL to establish notation and framework.

2.1 GMM

Let Xt ∈ Rk, t = 1, . . .n, be a set of observations from a stochastic sequence. Suppose for some
true parameter value θ0 (p×1) the following moment conditions (m equations) hold and p≤m < n:

E [g(Xt ,θ0)] = 0, (1)
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where g : Rk×Θ→ Rm. The GMM estimator is defined as:

θ̂ = argminQn(θ), Qn(θ) =

(
n−1

n

∑
t=1

g(Xt ,θ)

)′
Wn

(
n−1

n

∑
t=1

g(Xt ,θ)

)
, (2)

where the weighting matrix Wn →p W . Hansen (1982) shows that the GMM estimator θ̂ is consistent
and asymptotically normally distributed subject to some regularity conditions. The elements of
{g(Xt ,θ)} and {∇g(x,θ)} are assumed to be near epoch dependent (NED) on the α-mixing sequence
{Vt} of size −1 uniformly on (Θ,ρ) where ρ is any convenient norm on Rp.

Define Σ = limn→∞var(n−1/2 ∑n
t=1 g(Xt ,θ0)). The standard kernel estimate of Σ is:

Sn(θ) =
n

∑
h=−n

k
(

h
m

)
Γ̂(h,θ), (3)

where k(·) is a kernel and Γ̂(h,θ)= n−1 ∑n
t=h+1 g(Xt ,θ)g(Xt+h,θ)′ for h≥ 0 and n−1 ∑n−h

t=1 g(Xt ,θ)g(Xt−h,θ)′

for h < 0. It is known that Sn(θ̃)→p Σ if θ̃ →p θ0 under weak conditions on the kernel and band-
width; see de Jong and Davidson (2000).

The optimal weighting matrix is given by Sn(θ̃)−1 with θ̃→p θ0. When the optimal weighting
matrix is used, the asymptotic covariance matrix of θ̂ is (G′Σ−1G)−1, where G = limn→∞ E(n−1 ∑n

t=1 ∇g(Xt ,θ0))
with ∇g(x,θ) = ∂g(x,θ)/∂θ′.

In terms of testing for model misspecification, the most popular test is Hansen’s J-test for overi-
dentifying restrictions:

Jn = Kn(θ̂n)′Kn(θ̂n)→d χm−r, (4)

where

Kn(θ) = S−1/2
n n−1/2

n

∑
t=1

g(Xt ,θ),

and Sn is a consistent estimate of Σ. Let θr denote the rth element of θ, and let θ0r denote the rth
element of θ0. The t-statistic for testing the null hypothesis H0 : θr = θ0r is:

Tnr =
√

n(θ̂nr−θ0r)
σ̂nr

→d N(0,1), (5)

where θ̂nr is the rth element of θ̂n, and σ̂2
nr is a consistent estimate of the asymptotic variance of θ̂nr.
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2.2 Empirical Likelihood

Empirical Likelihood (EL) estimation has some history in the statistical literature but has only
recently been explored by econometricians. One attractive feature is that while its first-order asymp-
totic properties are the same as GMM, there is an improvement for EL at the second-order (see Qin
and Lawless (1994) and Newey and Smith (2004)). For time-series models see Anatolyev (2005).
This suggests that there might be some gain for EL over GMM in finite sample performance. At
present, limited Monte Carlo evidence (see Gregory, Lamarche, and Smith (2002)) has provided
mixed results.

The idea of EL is to use likelihood methods for model estimation and inference without having
to choose a specific parametric family or probability densities. The parameters are estimated by
minimizing the distance between the empirical density and a density that identically satisfies all of
the moment conditions. The main advantages over GMM are that it is invariant to linear transforma-
tions of the moment functions and does not require the calculation of the optimal weighting matrix
for asymptotic efficiency (although smoothing or blocking of the moment condition is necessary for
dependent data). The main disadvantage is that it is computationally more demanding than GMM
in that a saddle point problem needs to be solved.

The Generalized Empirical Likelihood Estimator solves the following Lagrangian:

maxL =
1
n

n

∑
t=1

h(·)−µ(
n

∑
t=1

πt −1)− γ′
n

∑
t=1

πtg(xt ,θ). (6)

Solving for πt gives

πt =
h1(δ′g(xt ,θ))

∑h1(δ′g(xt ,θ))
, h1(v) = ∂h(v)/∂v. (7)

In the case of EL, h(·) = log(πt). The presence of serially correlated observations necessitates a
modification of equation (6). Kitamura and Stutzer (1997) address the data dependency problem
by smoothing the moment conditions. Anatolyev (2005) provides conditions on the amount of
smoothing necessary for the bias of the GEL estimator to be less than the GMM estimator. Kitamura
(1997) and Bravo (2005) address serial correlation in the moment conditions by using averages
across blocks of data.

3 Improving Inference: Resampling Methods

This section presents an overview of block bootstrap methods typically used to improve infer-
ence in models estimated by GMM and follows up with a detailed proposal of a new method based
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on empirical likelihood.

3.1 The Block Bootstrap

The bootstrap amounts to treating the estimation data as if they were the population and gen-
erating bootstrap observations by resampling the estimation data. If the estimation data is serially
correlated, then blocks of data are resampled and the blocks are treated as the iid sample.

We implement two forms of the block bootstrap. The first approach implements the overlapping
bootstrap (MBB, Künsch (1989)). Let b be the number of blocks and ` the block length, such that
n = b`. The ith overlapping block is X̃i = {Xi, ...,Xi+`−1}, i = 1, ...,n− `+ 1. The MBB resample
is {X∗

t }n
t=1 = {X̃∗

1 , ..., X̃∗
b }, where X̃∗

i ∼ iid(X̃1, ..., X̃n−`+1). The GMM estimator is therefore:

θ∗∗MBB = argminQ∗∗
MBB,n(θ),

Q∗∗
MBB,n(θ) =

(
n−1 ∑n

t=1 g∗(X∗
t ,θ)

)′W ∗∗
n

(
n−1 ∑n

t=1 g∗(X∗
t ,θ)

)
,

where g∗(X∗
t ,θ) = g(X∗

t ,θ)− n−1 ∑n
t=1 g(Xt , θ̂n) and W ∗∗

n is a weighting matrix. That is, given a
weighting matrix W ∗∗

n , the GMM estimator that minimizes the quadratic form of the demeaned
block-resampled moment conditions is θ∗∗MBB.

Hall and Horowitz (1996) implement the nonoverlapping block bootstrap (NBB, Carlstein (1986)).
This approach is also considered (in addition to the MBB). Let b be the number of blocks and ` the
block length, and assume b` = n. We resample b blocks with replacement from {X̃i : i = 1, . . . ,b}
where X̃i = (X(i−1)`+1, . . . ,X(i−1)`+`). The NBB resample is {X∗

t }n
t=1. The NBB version of the GMM

problem is identical to the MBB version, except for the way one resamples the data. We consider
both MBB and NBB approaches because there is little known about the superiority of either method
in finite samples.3

As shown in Gonçalves and White (2004) (hereafter GW04), because the resampled b blocks
are (conditionally) iid, the bootstrap version of the long-run autocovariance matrix estimate takes
the form (cf. equation (3.1) of GW04):

S∗∗n (θ∗∗) = `b−1
b

∑
i=1

(
`−1

`

∑
t=1

g∗(X∗
(i−1)`+t ,θ

∗∗)

)(
`−1

`

∑
t=1

g∗(X∗
(i−1)`+t ,θ

∗∗)

)′
, (8)

where θ∗∗ denotes either θ∗∗MBB or θ∗∗NBB. The optimal weighting matrix is given by (S∗∗n (θ̃∗∗))−1,
where θ̃∗∗ is the first-stage MBB/NBB estimator. The bootstrap version of the J-statistic, J ∗∗MBB,n and

3It is only known that the MBB is more efficient than the NBB in estimating the variance (Lahiri (1999)).
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J ∗∗NBB,n, is defined analogously to Jn but using (S∗∗n (θ̃∗∗))−1/2 and n−1/2 ∑n
t=1 g∗(X∗

t ,θ).

Note that in Hall and Horowitz (1996), the recentering of the sample moment condition is nec-
essary in order to establish the asymptotic refinements of the bootstrap. This is because in general
there is no θ such that E∗g(x,θ) = 0 when there are more moments than parameters and the re-
sampling schemes must impose the null hypothesis. Recentering is not necessary for establishing
the first-order validity of the bootstrap version of θ̂n (see Hahn (1996)), but is necessary for the
first-order validity of the bootstrap J-test.

Operationally one needs to choose a block size when implementing the block-bootstrap. Härdle,
Horowitz, and Kreiss (2003) point out that the optimal block length depends on the objective of
bootstrapping. That is, the block length depends on whether or not one is interested in bootstrapping
one-sided or two-sided tests or whether one is concerned with estimating a distribution function.
Among others, Zvingelis (2003) solves for optimal block lengths given different scenarios. Prac-
tically, the optimal block lengths for each different hypothesis test are unlikely to be implemented
since practitioner’s are interested in a variety of problems across various hypotheses. Experimenta-
tion is done with fixed block lengths as well as data-dependent methods.

Following the literature we recommend using a data-dependent approach for selecting a block
length. We set the block length equal to the data-driven lag length for the Bartlett kernel using the
method proposed by Newey and West (1994). This is motivated by the asymptotic equivalence of
the bootstrap variance to a Bartlett kernel variance estimator (see Bühlmann and Künsch (1999),
equation (2.5)). Gonçalves and White (2004) use the automatic bandwidth selection procedure
proposed by Andrews (1991) in their simulation study for similar reasons. There may be some gain
in using a more advanced algorithm than the one we currently employ but given its simplicity and
availability in pre-packaged GMM software, we believe that most practitioners are likely to continue
using a Newey-West type lag-selection procedure.4 A number of approaches that are particular to
block bootstrapping, but under different conditions than our model, have been suggested. Berkowitz
and Kilian (2000) propose a two-step parametric approach for linear models and Politis and White
(2004) propose an automatic block-length selection procedure based on spectral estimation (Politis
and Romano (1995)), and which is appropriate for the circular and stationary bootstrap (Politis and
Romano (1994)).

4Note that in the case of covariance matrix estimation there is also the issue of smoothing, and therefore the choice
of the appropriate kernel. The block samples in our approach, however, are (conditionally) iid, therefore the choice of
kernel does not arise.
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3.2 Empirical Likelihood Bootstrap

In this section we develop the empirical likelihood (EL) approach to bootstrapping time-series
models. Two cases are considered: (i) the overlapping empirical likelihood block bootstrap (EMB),
and (ii) the non-overlapping empirical likelihood block bootstrap (ENB). The procedure for imple-
menting the empirical block bootstrap is straightforward and outlined in Section 7.

An advantage of the EL block bootstrap over the standard block bootstrap is that EL weighted
observations estimate the distribution function of the data more efficiently than non-weighted obser-
vations. We think this provides the EL block bootstrap with an improvement in test level accuracy
over the standard block bootstrap, although a rigorous proof by an Edgeworth expansion is beyond
the scope of the paper.

When Xt is iid, Theorem 1 of Brown and Newey (2002) shows that the empirical distribution
function of the EL-weighted Xt’s is a more efficient estimator of the population distribution function
of Xt than the ordinary empirical distribution function of the Xt’s. Brown and Newey (2002) combine
it with an Edgeworth expansion to show that the EL bootstrap improves test level accuracy over an
iid bootstrap for some cases, for example in a one-sided test of the null hypothesis of E[g(Xt ,θ0)] =
0.

In our case, we attach the EL weights to the blocks, instead of individual observations. By anal-
ogy to Brown and Newey (2002), using the EL weights would provide a more efficient estimate of
the distribution function of the blocks. Therefore, the EL block bootstrap would estimate the dis-
tribution of the sample moments more efficiently than the standard block bootstrap. Our simulation
results suggest that efficient estimation of the distribution of the blocks by the EL block bootstrap
contributes to improvements in test level accuracy, at least in some cases.

On the other hand, it is not clear whether an Edgeworth-expansion based analysis can demon-
strate a higher-order improvement of the EL block bootstrap over the first-order asymptotics. Inoue
and Shintani (2006) demonstrate that a higher-order analysis of the block bootstrap is handicapped
by the bias of the HAC covariance matrix estimator, unless one uses a kernel whose characteris-
tic exponent is greater than two. This excludes standard kernels such as the Bartlett, Parzen, and
quadratic spectrature kernel.

Another attractive feature of using the empirical likelihood bootstrap rather than the standard
bootstrap is that re-centering is not required, as is the case in Hall and Horowitz (1996). The EL
weights provide a probability measure under which the moment conditions hold exactly.
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3.2.1 EMB

First consider the overlapping bootstrap. Let N = n− `+ 1 be the total number of overlapping
blocks. Define the ith overlapping block of the sample moment as (o stands for “overlapping”):

T o
i (θ) = `−1

`

∑
t=1

g(Xi+t−1,θ), i = 1, . . . ,N,

and the Lagrangian as:

L =
N

∑
i=1

log(πo
i )+µ

(
1−

N

∑
i=1

πo
i

)
−Nγ′

N

∑
i=1

πo
i T o

i (θ).

It is known that the solution for the probability weights are given by:

πo
i =

1
N

(
1

1+ γo(θ)′T o
i (θ)

)
,

where

γo(θ) = argmax
λ∈Λn(θ)

N

∑
i=1

log(1+ γ′T o
i (θ)). (9)

Solving out the Lagrange multipliers and the coefficients simultaneously requires solving a dif-
ficult saddle point problem outlined in Kitamura (1997). Instead, one can use the GMM estimate
of θ to compute πo

i and attach these weights to the bootstrapped (blocks of) samples. Given the
GMM estimate θ̂, compute γo(θ̂), which is a much smaller dimensional problem. Then solve for the
empirical probability weights:

π̂o
i =

1
N

(
1

1+ γo(θ̂)′T o
i (θ̂)

)
, (10)

which satisfy the moment condition ∑N
i=1 π̂o

i T o
i (θ̂) = 0. The EMB version of θ̂ is defined as:

θ∗MBB = argminQ∗
MBB,n(θ), Q∗

MBB,n(θ) =

(
b−1

b

∑
i=1

T o∗
i (θ)

)′
W ∗

MBB,n

(
b−1

b

∑
i=1

T o∗
i (θ)

)
,

where W ∗
MBB,n is a weighting matrix and {T o∗

i (θ)}b
i=1 are b iid samples (with replacement) from the

distribution with Pr(T o∗
i (θ) = T o

k (θ)) = π̂o
k for k = 1, . . . ,N. Note that E∗T o∗

i (θ̂) = ∑N
i=1 π̂o

i T o
i (θ̂) = 0.
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The long-run autocovariance matrix estimator for EMB takes the form:

S∗MBB,n(θ) = `b−1
b

∑
i=1

T o∗
i (θ)T o∗

i (θ)′, (11)

and the second-stage (optimal) weighting matrix is given by S∗MBB,n(θ̃∗MBB)−1, where θ̃∗MBB is the
first-stage EMB estimator. The overlapping block Wald tests are based on the long-run autocovari-
ance matrix S∗MBB,n(θ). The EMB version of the J-statistic, J ∗MBB,n, is defined analogously to Jn but
using (S∗MBB,n(θ̃∗MBB))−1/2 and n1/2b−1 ∑b

i=1 T o∗
i (θ).

3.2.2 ENB

The ENB uses b non-overlapping blocks rather than overlapping blocks. The ith non-overlapping
block is defined as:

Ti(θ) = `−1
`

∑
t=1

g(X(i−1)`+t ,θ), i = 1, . . . ,b,

and the Lagrange multiplier and empirical probability weights are given by:

γ(θ̂) = argmax
λ∈Λn(θ̂)

b

∑
i=1

log(1+ γ′Ti(θ̂)), π̂i =
1
b

(
1

1+ γ(θ̂)′Ti(θ̂)

)
. (12)

The ENB estimator is defined as:

θ∗NBB = argminQ∗
NBB,n(θ), Q∗

NBB,n(θ) =

(
b−1

b

∑
i=1

T ∗i (θ)

)′
W ∗

NBB,n

(
b−1

b

∑
i=1

T ∗i (θ)

)
,

where W ∗
NBB,n is a weighting matrix and {T ∗i (θ)}b

i=1 are b iid samples (with replacement) from
the distribution with Pr(T ∗i (θ) = Tk(θ)) = π̂k for k = 1, . . . ,b. The long-run autocovariance matrix
estimator for ENB is:

S∗NBB,n(θ) = `b−1
b

∑
i=1

T ∗i (θ)T ∗i (θ)′, (13)

and the optimal weighting matrix is given by S∗NBB,n(θ̃∗NBB)−1, where θ̃∗NBB is the first-stage ENB
estimator. The non-overlapping block Wald tests are based on the long-run autocovariance matrix,
S∗NBB,n(θ). The ENB version of the J-statistic, J ∗NBB,n, is defined analogously to J ∗MBB,n.

It may also be possible to attach EL weights to the blocks and draw iid bootstrap observations.
For example, in EMB, draw b iid samples from {π̂o

jT
o
j (θ) : j = 1, . . . ,N}. This variant of EL block

bootstrap will have the same first-order asymptotic property, but it is not clear whether this variant
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will have the same higher-order property. While Theorems 2.1 and 2.2 of Hall and Mammen (1994)
provide sufficient conditions for higher-order equivalence of weighted bootstraps in the iid case,5

applying these theorems to the EL bootstrap requires more detailed bounds on the EL weights than
those in this paper.

4 Consistency of the bootstrap-based inference

The following lemmas establish the consistency of the bootstrap-based inference. The proofs
are based on the results in Gonçalves and White (2004), hereafter referred to as GW04, and Mason
and Newton (1992). As in GW04, let P denote the probability measure that governs the behavior
of the original time-series and let P∗ be the probability measure induced by bootstrapping. For a
bootstrap statistic T ∗n we write T ∗n → 0 prob-P∗, prob-P (or T ∗n →P∗,P 0) if for any ε > 0 and any
δ > 0, limn→∞ P[P∗[|T ∗n |> ε] > δ] = 0. Also following GW04 we use the notation xn →d∗ x prob-P
when weak convergence under P∗ occurs in a set with probability converging to one.

Theorem 1 Let Assumptions A and B in the mathematical appendix hold. If `→∞, ` = o(n1/2−1/r),
and W ∗∗

n ,W ∗
MBB,n →P∗,P W, then for any ε > 0, Pr{supx∈Rp |P∗[√n(θ∗MBB− θ̂)≤ x]−P[

√
n(θ̂−θ0)≤

x]|> ε}→ 0 and Pr{supx∈Rp |P∗[√n(θ∗∗MBB− θ̂)≤ x]−P[
√

n(θ̂−θ0)≤ x]|> ε}→ 0.

Theorem 2 Let Assumptions A and B in the mathematical appendix hold. If `→∞, `= o(n(r−2)/2(r−1)),
and W ∗∗

n ,W ∗
NBB,n →P∗,P W, then for any ε > 0, Pr{supx∈Rp |P∗[√n(θ∗NBB− θ̂)≤ x]−P[

√
n(θ̂−θ0)≤

x]|> ε}→ 0 and Pr{supx∈Rp |P∗[√n(θ∗∗NBB− θ̂)≤ x]−P[
√

n(θ̂−θ0)≤ x]|> ε}→ 0.

Theorem 3 Let Assumptions A and B in the mathematical appendix hold. Assume Sn →P Σ. If
`→∞ and ` = o(n1/2−1/r), then the bootstrap-based inference using the Wald statistic is consistent.
Further, Jn →d χ2

m−p, and J ∗MBB,n, J ∗NBB,n, J ∗∗MBB,n, J ∗∗NBB,n →d∗ χ2
m−p prob-P.

5 Monte Carlo Experiments

In this section, a comparison of the finite sample performance differences of the standard block
bootstrapping approaches to the empirical likelihood block bootstrap approaches is undertaken in a
number of Monte Carlo experiments. The Monte Carlo design includes both linear and nonlinear
models. For each experiment we report actual and nominal size at the 1, 5, and 10 per cent level for

5Barbe and Bertail (1995) analyze the asymptotics of the generalized bootstrap of a large class of statistics including
Fréchet differentiable functionals.
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the t-test and J-test. Parameter settings are deliberately chosen to illustrate the most challenging size
problems. There are sample sizes: 100, 250, and 1000. Each experiment has 2000 replications and
499 bootstrap samples. This number of bootstrap samples does not lead to appreciable distortions
in size for any of the experiments.

5.1 Case I: Linear models

5.1.1 Symmetric Errors

Consider the same linear process as Inoue and Shintani (2006):

yt = θ1 +θ2xt +ut for t = 1, ...T, (14)

where (θ1,θ2) = (0,0), ut = ρut−1 + ε1t and xt = ρxt−1 + ε2t . The error structure, ε = (ε1,ε2)
are uncorrelated iid normal processes with mean 0 and variance 1. The approach is instrumental
variable estimation of θ1 and θ2 with instruments zt = (ι xt xt−1 xt−2). There are two overidentifying
restrictions. The null hypothesis being tested is: Ho : θ2 = 0. The statistics based on the GMM
estimator are Studentized using a Bartlett kernel applied to pre-whitened series (see Andrews and
Monahan (1992)). The bootstrap sample is not smoothed since the b blocks are iid. Both the non-
overlapping block bootstrap and the overlapping block bootstrap are considered in the experiment.

Results are reported in Table 1. The amount of dependence in the moment conditions is rela-
tively high, ρ = 0.9. The block length is set equal to the lag window in the HAC estimator, which
is chosen using a data-dependent method (Newey and West (1994)). One immediate observation is
that the asymptotic test-statistics severely over-reject the true null hypothesis. For example, with
100 observations the actual level for a 10% t-test is 42.25%. The actual level of the J-test is closer
to the nominal level, although there is still over-rejection. The block bootstrap, with block size
averaging from 1.96 for 100 observations to 4.48 for 1,000 observations, reduces the amount of
over-rejection of the t-test substantially. The greatest improvements for the t-test are with the stan-
dard bootstrap. For the J-test the empirical likelihood bootstrap produces actual size much closer to
the nominal size than the alternatives. Interestingly, the overlapping bootstrap has worse size than
the non-overlapping block bootstrap for the t-test.
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5.1.2 Heteroscedastic Errors

The subsequent DGP is the same as in the previous section with the addition of conditional
heteroscedasticity, modeled as a GARCH(1,1). The DGP is:

yt = θ1 +θ2xt +σtut for t = 1, ...T, (15)

where (θ1,θ2) = (0,0), xt = 0.75xt−1 + ε1t , and ut ∼ N(0,σt). σ2
t = 0.0001 + 0.6σ2

t−1 + 0.3ε2
2t−1

and ε∼ N(0, I). The unconditional variance is 1. The instrument set is zt = [ι xt xt−1 xt−2].

Results with 2,000 replications and 499 bootstrap samples are presented in Table 2. There are
three sample sizes: 100, 250, and 1000. The actual size of the asymptotic tests are close to the
nominal size for sample size 250 and greater. The moving block bootstrap tests have good size
and the empirical likelihood bootstrap performs best out of the bootstrap procedures. Using the
standard block bootstrap actually leads to more severe under-rejection of the true null hypothesis
than the asymptotic tests.

5.2 Case II: Nonlinear Models

Two experiments are considered. First the chi-squared experiment from Imbens, Spady, and
Johnson (1998). Second, the asset pricing DGP outlined in Hall and Horowitz (1996) and used by
Gregory, Lamarche, and Smith (2002). Imbens, Spady, and Johnson (1998) also consider this DGP.
In addition this section looks at the empirical likelihood bootstrap in a framework with dependent
data. It is the case of nonlinear models where the asymptotic t-test and J-test tend to severely
over-reject.

5.2.1 Asymmetric Errors

First consider a model with Chi-squared moments. Imbens, Spady, and Johnson (1998) provide
evidence that average moment tests like the J-test can substantially over-reject a true null hypothesis
under a DGP with Chi-squared moments. The authors find that tests based on the exponential tilting
parameter perform substantially better.

The moment vector is:

g(Xt ,θ1) = (Xt −θ1 X2
t −θ2

1−2θ1)′.

The parameter θ1 is estimated using the two moments.

14



Results for 2,000 replications and 499 bootstrap samples are presented in Table 3. There is se-
vere over-rejection of the true null hypothesis when using the asymptotic distribution. The bootstrap
procedures correct for this over-rejection; the empirical likelihood bootstrap performs very well for
the t-tests. For small sample sizes the standard and empirical likelihood bootstrap both outperform
the asymptotic approximation but there is still is an over-rejection.

5.2.2 Asset Pricing Example

Finally consider an asset pricing model with the following moment conditions.6:

E[exp(µ−θ(x+ z)+3z)−1] = 0, Ez[exp(µ−θ(x+ z)+3z)−1] = 0

.

It is assumed that

logxt = ρ logxt−1 +
√

(1−ρ2)εxt , zt = ρzt−1 +
√

(1−ρ2)εzt

, where εxt and εzt are independent normal with mean 0 and variance 0.16. In the experiment ρ = 0.6.

Results for 2,000 replications and 499 bootstrap samples are presented in Table 4. Again, the
asymptotic tests severely over-reject the true null hypothesis. The bootstrap procedures produce
tests with reasonable size, especially for the t-tests. As was the case in the model with asymmetric
errors, the empirical likelihood bootstrap performs best.

6 Conclusion

This paper extends the ideas put forth by Brown and Newey (2002) to bootstrap test-statistics
based on empirical likelihood. Where Brown and Newey (2002) consider bootstrapping in an iid
context, this paper provides a proof of the first-order asymptotic validity of empirical likelihood
block bootstrapping in the context of dependent data. Given the test-statistics considered, the size
distortions of those tests based on the asymptotic distribution are severe, especially in the case of
nonlinear moment conditions and substantial serial correlation. The empirical likelihood bootstrap
largely corrects for these size distortions and produces promising results. This is especially true
when the regression errors are non-spherical. The significance of using the empirical likelihood es-
timator is that it satisfies the moment conditions identically while supplying a probability measure

6Derivation of the example can be found in Gregory, Lamarche, and Smith (2002).
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under which these conditions hold. As highlighted by Brown and Newey (2002), the empirical like-
lihood bootstrap is the same as the conventional bootstrap, except that it is based on a more efficient
distribution estimator. Two possible avenues for future research include combining subsampling
methods with empirical likelihood probability weights and establishing higher order improvements
for the ENB and EMB.

7 Implementing the Block Bootstrap

The procedure for implementing the GMM overlapping (MBB) and empirical likelihood (EMB)
bootstrap procedures are outlined below. The procedure is similar for the non-overlapping bootstrap.

1. Given the random sample (X1, ...,Xn), calculate θ̂ using 2-stage GMM

2. For EMB calculate π̂o
i using equation (10)

3a. For EMB sample with replacement from {T o
j (θ̂) : j = 1, . . . ,N} with probability {π̂o

j : j =
1, . . . ,N}

3b. For MBB uniformly sample with replacement to get {X∗}n
t=1 = (X̃1, ..., X̃b)

4a. For EMB calculate the J-statistic (J ∗MBB,n) and t-statistic (T ∗nr)

4b. For MBB calculate J-statistic (J ∗∗MBB,n) and t-statistic (T ∗∗nr )

5. Repeat steps 3-4 B times, where B is the number of bootstraps.

6. Let q̂π
α be a (1−α) percentile of the distribution of T ∗nr or T ∗∗nr

7. Let qπ
α be a (1−α) percentile of the distribution of J ∗MBB,n or J ∗∗MBB,n

8. The bootstrap confidence interval for θ0r is θ̂nr± q̂π
αn−1/2σ̂nr

9. For the bootstrap J-test, the test rejects if Jn ≥ qπ
α
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8 Mathematical Appendix

Assumptions A and B are a simplified version of Assumptions A and B in Gonçalves and White
(2004), tailored to our GMM estimation framework. ||x||p denotes the Lp norm (E|Xnt |p)1/p. For a
(m× k) matrix x, let |x| denote the 1-norm of x, so |x|= ∑m

i=1 ∑k
j=1 |xi j|.

Assumption A

A.1 Let (Ω,F ,P) be a complete probability space. The observed data are a realization of a
stochastic process {Xt : Ω→Rk,k∈N}, with Xt(ω)=Wt(. . . ,Vt−1(ω),Vt(ω),Vt+1(ω), . . .),Vt :
Ω→ Rv, v ∈ N, and Wt : ∏∞

τ=−∞Rv → Rl is such that Xt is measurable for all t.

A.2 The functions g : Rk×Θ→ Rm are such that g(·,θ) is measurable for each θ ∈ Θ, a compact
subset of Rp, p ∈ N, and g(Xt , ·) : Θ→ Rm is continuous on Θ a.s.-P, t = 1,2, . . ..

A.3 (i) θ0 is identifiably unique with respect to Eg(Xt ,θ)′WEg(Xt ,θ) and (ii) θ0 is interior to Θ.

A.4 (i) {g(Xt ,θ)} is Lipschitz continuous on Θ, i.e. |g(Xt ,θ)− g(Xt ,θo)| ≤ Lt |θ− θo| a.s.-P,
∀θ,θo ∈Θ, where supt E(Lt) = O(1). (ii) {∇g(Xt ,θ)} is Lipschitz continuous on Θ.

A.5 For some r > 2 : (i) {g(Xt ,θ)} is r-dominated on Θ uniformly in t, i.e. there exists Dt :Rlt →R
such that |g(Xt ,θ)| ≤ Dt for all θ in Θ and Dt is measurable such that ||Dt ||r ≤ ∆ < ∞ for all
t. (ii) {∇g(Xt ,θ)} is r-dominated on Θ uniformly in t.

A.6 {Vt} is an α-mixing sequence of size −2r/(r−2), with r > 2.

A.7 The elements of (i) {g(Xt ,θ)} are NED on {Vt} of size −1 uniformly on (Θ,ρ), where ρ is
any convenient norm on Rp, and (ii) {∇g(Xt ,θ)} are NED on {Vt} of size −1 uniformly on
(Θ,ρ).

A.8 Σ≡ limn→∞var(n−1/2 ∑n
t=1 g(Xt ,θ0)) is positive definite, and G≡ limn→∞ E(n−1 ∑n

t=1 ∇g(Xt ,θ0))
is of full rank.

Assumption B

B.1 {g(Xt ,θ)} is 3r-dominated on Θ uniformly in t, r > 2.

B.2 For some small δ > 0 and some r > 2, the elements of {g(Xt ,θ)} are L2+δ−NED on {Vt} of
size −(2(r−1))/(r−2) uniformly on (Θ,ρ); {Vt} is an α -mixing sequence of size −((2 +
δ)r)/(r−2).
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The following two lemmas are required to prove Theorems 1-3.

Lemma 1 Suppose Assumption A in the mathematical appendix hold. Then θ̂− θ0 →P 0. If also
` → ∞ and ` = o(n), then θ∗∗MBB − θ̂ →P∗,P 0. If also Assumption B in Appendix hold and ` =
o(n1/2−1/r), then θ∗MBB− θ̂→P∗,P 0.

Lemma 2 Suppose Assumption A in the mathematical appendix hold, `→ ∞, and ` = o(n). Then
θ∗∗NBB − θ̂ →P∗,P 0. If also ` = o(n(r−2)/2(r−1)), then θ∗NBB − θ̂ →P∗,P 0. Note that ` must satisfy
` = o(n1/2) because (r−2)/2(r−1) < 1/2.

If we compare conditions on `, the condition with the NBB is slightly weaker because (r−2)/2(r−
1) = 1/2−1/2(r−1) and 2(r−1) > r.

8.1 Proof of Lemma 1

The proof follows the proof of Theorem 2.1 of GW04, with two differences: (i) the objec-
tive function is a GMM objective function, and (ii) in the case of EMB, the bootstrapped objec-
tive function depends on the probability weight π̂o

i . θ̂− θ0 →P 0 follows from applying Lemma
A.2 of GW04 to the GMM objective function, because conditions (a1)-(a3) in Lemma A.2 of
GW04 are satisfied by Assumption A. The consistency of θ∗∗MBB is proved by applying Lemma
A.2 of GW04. Their conditions (b1)-(b2) are satisfied by Assumptions A.2. Define Q̃n(θ) =
(n−1 ∑n

t=1 g(X∗
t ,θ))′W ∗

n (n−1 ∑n
t=1 g(X∗

t ,θ)), then their condition (b3) holds because supθ |Q∗∗
MBB,n(θ)−

Q̃n(θ)| →P∗,P 0 from a standard argument and supθ |Q̃n(θ)−Qn(θ)| →P∗,P 0 by Lemmas A.4 and
A.5 of GW04.

We prove the consistency of θ∗MBB by approximating the EMB sample moment condition with an
uncentered MBB moment condition, namely, by showing supθ |b−1 ∑b

i=1 T o∗
i (θ)−n−1 ∑n

t=1 g(X∗
t ,θ)|→P∗,P

0 for suitably chosen T o∗
i (θ)’s and X∗

t ’s. Then the consistency of θ∗MBB follows from the proof of
the consistency of θ∗∗MBB. We will use the following result, which we prove later:

Nπ̂o
i = 1+δni, max

1≤i≤N
|δni|= oP(1). (16)

Partition the interval [0,1] into A1, . . . ,AN , where Ai = [π̂o
0 + · · ·+ π̂o

i−1, π̂
o
0 + · · ·+ π̂o

i ] with
π̂o

0 = 0. Partition the interval [0,1] into N sets, B1, . . . ,BN , where the Bi’s are chosen such that
µ(Bi) = 1/N and max1≤i≤N µ(Di) = o(N−1), where µ denotes the Lebesgue measure on [0,1], and
Di = (Ai−Bi)∪ (Bi−Ai), i.e., the symmetric difference between Ai and Bi. Such a construction
of B1, . . . ,BN is possible by virtue of (16). One way to construct {T o∗

k (θ)}b
k=1 and {X̃∗

k }b
k=1 is
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to draw iid uniform[0,1] random variables U1, . . . ,Ub and set T o∗
k (θ) = T o

i (θ) if Uk ∈ Ai and set
X̃∗

k = X̃i if Uk ∈ Bi. Then we may write b−1 ∑b
i=1 T o∗

i (θ) = b−1 ∑b
k=1 ∑N

i=1 1{Uk ∈ Ai}T o
i (θ) and

|b−1 ∑b
i=1 T o∗

i (θ)−n−1 ∑n
t=1 g(X∗

t ,θ)|= b−1 ∑b
k=1 ∑N

i=1 1{Uk ∈Di}|T o
i (θ)|. Taking the bootstrap ex-

pectation of its supremum over θ gives E∗ supθ b−1 ∑b
k=1 ∑N

i=1 1{Uk ∈Di}|T o
i (θ)| ≤E∗b−1 ∑b

k=1 ∑N
i=1 1{Uk ∈

Di}supθ |T o
i (θ)| = E∗∑N

i=1 1{U1 ∈ Di}supθ |T o
i (θ)| ≤ max1≤i≤N µ(Di)∑N

i=1 supθ |T o
i (θ)| = oP(1).

Therefore, supθ |b−1 ∑b
i=1 T o∗

i (θ)− n−1 ∑n
t=1 g(X∗

t ,θ)| = oP∗,P(1), and the consistency of θ∗MBB fol-
lows.

It remains to show (16). First we show γo(θ̂) = OP(`n−1/2). In view of the argument in pp. 100-
101 of Owen (1990) (see also Kitamura (1997)), γo(θ̂)= OP(`n−1/2) holds if (a) `N−1 ∑N

i=1 T o
i (θ̂)T o

i (θ̂)′→P

Σ, (b) `N−1 ∑N
i=1 T o

i (θ̂) = OP(`n−1/2), and (c) max1≤i≤N |T o
i (θ̂)| = oP(n1/2`−1). For (a), using a

mean value expansion and Assumption A.5 gives

∣∣∣∣∣`N−1
N

∑
i=1

T o
i (θ̂)T o

i (θ̂)′− `N−1
N

∑
i=1

T o
i (θ0)T o

i (θ0)′
∣∣∣∣∣

≤ |θ̂−θ0|2`N−1
N

∑
i=1

sup
θ
|∇T o

i (θ)||T o
i (θ)|= OP(n−1/2`) = oP(1).

Define Ḡ∗
n = n−1 ∑n

t=1 g(X∗
t ,θ0), then we have (cf. Lahiri (2003), p. 48) `N−1 ∑N

i=1 T o
i (θ0)T o

i (θ0)′ =
var∗(

√
nḠ∗

n) + `T̄nT̄ ′n , where T̄n = N−1 ∑N
i=1 T o

i (θ0). var∗(
√

nḠ∗
n)−Σ →P 0 from Corollary 2.1 of

Gonçalves and White (2002) (hereafter GW02). T̄n is equal to X̄γ,n defined in p. 1371 of GW02 if we
replace their Xt with g(Xt ,θ0). GW02 p.1381 shows X̄γ,n = oP(`−1), and hence `T̄ 2

n = oP(1). There-
fore, `N−1 ∑N

i=1 T o
i (θ0)T o

i (θ0)′ →P Σ, and (a) follows. (b) follows from expanding T o
i (θ̂) around

θ0 and using N−1 ∑N
i=1 T o

i (θ0) = n−1 ∑n
t=1 g(Xt ,θ0) + Op(n−1`) (cf. Lemma A.1 of Fitzenberger

(1997)), and applying the central limit theorem. (c) holds because max1≤i≤N |T o
i (θ̂)| = Oa.s.(N1/r)

from Lemma 3.2 of Künsch (1989) and ` = o(n1/2−1/r). Therefore, we have

γo(θ̂) = OP(`n−1/2), max
1≤i≤N

|γo(θ̂)′T o
i (θ̂)|= oP(1). (17)

(16) follows from expanding Nπo
i = (1+ γo(θ̂)′T o

i (θ̂))−1 around γo(θ̂)′T o
i (θ̂) = 0. ¤

8.2 Proof of Lemma 2

In view of the proof of Lemma 1, the consistency of θ∗∗NBB holds because condition (b3) of
Lemma A.2 of GW04 holds because supθ |Q̃n(θ)−Qn(θ)| →P∗,P 0 by Lemmas 3 and 4.

19



In view of the proof of the consistency of θ∗MBB in Lemma 1, θ∗NBB is consistent if

γ(θ̂) = OP(`n−1/2), max
1≤i≤b

|γ(θ̂)′Ti(θ̂)|= oP(1). (18)

Equation (18) holds if (a) `b−1 ∑b
i=1 Ti(θ̂)Ti(θ̂)′ →P Σ, (b) `b−1 ∑b

i=1 Ti(θ̂) = OP(`n−1/2), and (c)
max1≤i≤b |Ti(θ̂)| = oP(n1/2`−1). (a) follows from expanding Ti(θ̂) around θ0 and using Corollary
2. (b) follows from expanding Ti(θ̂) around θ0 and applying the central limit theorem. (c) follows
because max1≤i≤b |Ti(θ̂)|= Oa.s.(b1/r) and ` = o(n(r−2)/2(r−1)). ¤

8.3 Proof of Theorem 1

Define H = (G′WG)−1G′WΣWG(G′WG)−1, then the stated result follows from Polya’s theorem
if we show

√
n(θ̂− θ0)→d N(0,H),

√
n(θ∗MBB− θ̂)→d∗ N(0,H) prob-P, and

√
n(θ∗∗MBB− θ̂)→d∗

N(0,H) prob-P. The limiting distribution of
√

n(θ̂−θ0) follows from a standard argument.

The proof of the asymptotic normality of θ∗MBB and θ∗∗MBB uses Theorem 2.1 of Mason and
Newton (1992), who prove the consistency of generalized bootstrap (weighted bootstrap) proce-
dures. We first derive the asymptotics of the EMB estimator. The first order condition for the EMB
estimator is 0 = b−1 ∑b

i=1 ∇T o∗
i (θ∗MBB)′W ∗

MBB,nb−1 ∑b
i=1 T o∗

i (θ∗MBB). Expanding b−1 ∑b
i=1 T o∗

i (θ∗MBB)
around θ̂ and approximating b−1 ∑b

i=1 ∇T o∗
i (θ) by n−1 ∑b

i=1 ∇g(X∗
t ,θ) as in the proof of Lemma 1

gives n1/2(θ∗MBB− θ̂) =−(G̃′
nW ∗

MBB,nG̃n)−1G̃′
nW ∗

MBB,nn1/2b−1 ∑b
i=1 T o∗

i (θ̂), where G̃n is a generic no-
tation for G+oP∗,P(1). We proceed to rewrite n1/2b−1 ∑b

i=1 T o∗
i (θ̂) so that we can apply the results

in Mason and Newton (1992). For i = 1, . . . ,N, let wNi be the number of times T o
i (θ) appears in a

bootstrap sample {T o∗
k (θ)}b

k=1. Conditional on X1, . . . ,Xn, an N-vector wN = (wN1, . . . ,wNN)′ fol-
lows a multinomial distribution such that wN ∼Mult(b; π̂o

1, . . . , π̂
o
N). Using wNi in conjunction with

∑N
i=1 π̂o

i T o
i (θ̂) = 0 and b` = n, we may rewrite n1/2b−1 ∑b

i=1 T o∗
i (θ̂) = N−1/2 ∑N

i=1(N/b)1/2(wNi−
bπ̂o

i )`
1/2T o

i (θ̂).

Therefore, the asymptotic normality of θ∗MBB follows if we show

N−1/2
N

∑
i=1

(N/b)1/2(wNi−bπ̂o
i )`

1/2T o
i (θ̂)→d∗ N(0,Σ) prob-P. (19)

We apply Theorem 2.1 of Mason and Newton (1992) to the left hand side of (19) with two minor
changes. First, the weights in Theorem 2.1 of Mason and Newton (1992) do not depend on the
data, whereas our wN depends on the data through π̂o

i . As Mason and Newton (1992) discuss on p.
1618, their Theorem 2.1 holds if the weights are exchangeable given the data. Second, in Mason
and Newton (1992), condition (2.4) and result (2.7) hold P-almost surely. We can weaken both to
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hold in P-probability because xn → x in probability if and only if every subsequence of {xn} has a
further subsequence that converges almost surely to x (see, for example, Theorem 6.2 in p. 46 of
Durrett (2005)).

For simplicity, we assume T o
i (θ) to be a scalar without loss of generality. Note that our

{N, `1/2T o
i (θ̂),(N/b)1/2(wNi − bπ̂o

i )} correspond to {kn,Xn,k,Yn,k} in Mason and Newton (1992).
From Theorem 2.1 of Mason and Newton (1992), (19) follows if we show (recall ∑n

i=1(wNi−bπ̂o
i ) =

0 by construction)

N−1
N

∑
i=1

(`1/2T o
i (θ̂)− `1/2T̄ o(θ̂))2 →P Σ, N−1

N

∑
i=1

((N/b)1/2(wNi−bπ̂o
i ))

2 →P∗,P 1, (20)

where T̄ o(θ̂) = N−1 ∑N
i=1 T o

i (θ̂), and, for all τ > 0,

(a) max
1≤i≤N

U2
Ni →P 0, (b) max

1≤i≤N
V 2

Ni →P∗,P 0, (21)

DN(τ) =
N

∑
i=1

N

∑
j=1

U2
NiV

2
N j1{NU2

NiV
2
N j > τ}→P∗,P 0, (22)

where

UNi =
`1/2T o

i (θ̂)− `1/2T̄ o(θ̂)
(∑N

i=1(`1/2T o
i (θ̂)− `1/2T̄ o(θ̂))2)1/2

, VNi =
(N/b)1/2(wNi−bπ̂o

i )
(∑N

i=1((N/b)1/2(wNi−bπ̂o
i ))2)1/2

.

We proceed to check (20)-(22). The first part of (20) holds because (a) and (b) in the proof
of Lemma 1 show `N−1 ∑N

i=1 T o
i (θ̂)2 →P Σ and T̄ o(θ̂) = OP(N−1/2). The second part of (20)

follows from applying Lemma 5 to the left hand side with r = 2 because wN satisfies the as-
sumptions in Lemma 5. (a) of (21) follows from the first part of (20), T̄ o(θ̂) = OP(N−1/2), and
max1≤i≤N |T o

i (θ̂)| = oP(N1/2`−1), which is shown in (c) in the proof of Lemma 1. (b) of (21)
follows from Theorem 1 of Hoeffding (1951) in conjunction with the second part of (20) and
Lemma 5 with r = 4. Finally, (22) can be be shown by a similar argument to Corollary 2.2
of Mason and Newton (1992). For any ε ∈ (0,1), from (b) of (21) we have, for sufficiently
large N, with prob-P∗, prob-P greater than 1− ε, DN(τ) ≤ ∑N

i=1 ∑N
j=1U2

NiV
2
N j1{NU2

Ni > τ/ε} =

∑N
i=1U2

Ni1{NU2
Ni > τ/ε}. From the first part of (20) and the order of T̄ o(θ), this is bounded by

Σ−1N−1 ∑N
i=1 `T o

i (θ0)21{NU2
Ni > τ/ε}+ oP(1). Consequently, choosing ε sufficiently small gives

Dn(τ)→P∗,P 0 from E`|T o
i (θ0)|2 = O(1) (see Lemmas A.1 and A.2 of GW02) and the dominated

convergence theorem.

For the standard bootstrap estimator, expanding the first order condition and applying a routine
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argument gives n1/2(θ∗∗MBB− θ̂) = −(G̃′
nW ∗∗

n G̃n)−1G̃′
nW ∗∗

n n−1/2 ∑n
t=1 g∗(X∗

t , θ̂). For i = 1, . . . ,N, let
w∗Ni be the number of times X̃i appears in a bootstrap sample {X̃∗

k }b
k=1. Conditional on X1, . . . ,Xn, an

N-vector w∗N =(wN1, . . . ,wNN)′ follows Mult(b;1/N, . . . ,1/N). Using N−1 ∑N
i=1 T o

i (θ̂)= n−1 ∑n
t=1 g(Xt , θ̂)+

OP(n−1`) (cf. Lemma A.1 of Fitzenberger (1997)), we may write n−1/2 ∑n
t=1 g∗(X∗

t , θ̂)
= N−1/2 ∑N

i=1(N/b)1/2(w∗Ni−b/N)`1/2T o
i (θ̂)+oP(1). Since w∗N satisfies the assumptions in Lemma

5, repeating the proof for the EMB estimator with replacing wN by w∗N gives N−1/2 ∑N
i=1(N/b)1/2(w∗Ni−

b/N)`1/2T o
i (θ̂)→d∗ N(0,Σ) prob-P, and the stated result follows. ¤

8.4 Proof of Theorem 2

The proof closely follows the proof of Theorem 1. Because we sample from b blocks, instead
of N, we use Corollary 1 in place of Lemma 5.

We first derive the asymptotics of the ENB estimator. Expanding the first order condition for the
ENB estimator gives n1/2(θ∗NBB− θ̂) =−(G̃′

nW ∗
NBB,nG̃n)−1G̃′

nW ∗
NBB,nn1/2b−1 ∑b

i=1 T ∗i (θ̂), where G̃n is
a generic notation for G+oP∗,P(1). The required result follows if we show n1/2b−1 ∑b

i=1 T ∗i (θ̂)→d∗

N(0,Σ) prob-P. For i = 1, . . . ,b, let wbi be the number of times Ti(θ) appears in a bootstrap sample
{T ∗k (θ)}b

k=1. Conditional on X1, . . . ,Xn, an b-vector wb = (wb1, . . . ,wbb)′ follows Mult(b; π̂1, . . . , π̂b).
Using ∑b

i=1 π̂iTi(θ̂)= 0 and b`= n, we may rewrite n1/2b−1 ∑b
i=1 T ∗i (θ̂)= b−1/2 ∑b

i=1(wbi−bπ̂i)`1/2Ti(θ̂).
From Theorem 2.1 of Mason and Newton (1992), b−1/2 ∑b

i=1(wbi−bπ̂i)`1/2Ti(θ̂)→d∗ N(0,Σ) prob-
P follows if we show

b−1
b

∑
i=1

(`1/2Ti(θ̂)− `1/2T̄ (θ̂))2 →P Σ, b−1
b

∑
i=1

(wbi−bπ̂i)2 →P∗,P 1, (23)

where T̄ (θ̂) = b−1 ∑b
i=1 Ti(θ̂), and, for all τ > 0,

(a) max
1≤i≤b

U2
bi →P 0, (b) max

1≤i≤b
V 2

bi →P∗,P 0, (24)

Db(τ) =
b

∑
i=1

b

∑
j=1

U2
biV

2
b j1{bU2

biV
2
b j > τ}→P∗,P 0, (25)

where Ubi =(`1/2Ti(θ̂)−`1/2T̄ (θ̂))(∑b
i=1(`

1/2Ti(θ̂)−`1/2T̄ (θ̂))2)−1/2 and Vbi =(wbi−bπ̂i)(∑N
i=1(wbi−

bπ̂i)2)−1/2.

We proceed to check (23)-(25). The first part of (23) holds because (a) and (b) in the proof of
Lemma 2 show `b−1 ∑b

i=1 Ti(θ̂)2 →P Σ and T̄ (θ̂) = OP(n−1/2). The second part of (23) follows from
applying Corollary 1 with r = 2. (a) of (24) follows from the first part of (23), T̄ (θ̂) = OP(n−1/2),
and max1≤i≤b |Ti(θ̂)| = oP(n1/2`−1), which is shown in (c) in the proof of Lemma 2. (b) of (24)
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follows from Theorem 1 of Hoeffding (1951) in conjunction with the second part of (23) and Corol-
lary 1 with r = 4. Finally, (25) is shown by repeating the argument of the proof of (22) since
U2

bi = b−1`Ti(θ0)2(Σ−1 +oP∗,P(1)), and we derive the asymptotics of θ∗NBB. The proof for the stan-
dard bootstrap estimator θ∗∗NBB is very similar and omitted. ¤

8.5 Proof of Theorem 3

The validity of the bootstrap Wald test is proven if we show S∗∗n (θ∗),S∗MBB,n(θ∗),S∗NBB,n(θ∗)→P∗,P

Σ for any root-n consistent θ∗. Using a similar argument to the consistency proof of θ∗MBB, we can
show S∗MBB,n(θ∗) is asymptotically equivalent in distribution to S∗∗n (θ∗) that is constructed from a
standard MBB sample. S∗∗n (θ∗) →P∗,P Σ then follows from result (iii) in the proof of Theorem
3.1 of GW04. Similarly, S∗NBB,n(θ∗) is asymptotically equivalent in distribution to S∗∗n (θ∗) that is
constructed from a standard NBB sample, which converges to Σ from Corollary 2.

Jn →d χ2
m−p if Wn →P Σ−1 and n−1/2 ∑n

t=1 g(Xt ,θ0)→d N(0,Σ), which follows from Assump-
tions A and B and a standard argument. J ∗MBB,n→d∗ χ2

m−p prob-P because S∗MBB,n(θ̃∗MBB)→P∗,P Σ and
n1/2b−1 ∑b

i=1 T o∗
i (θ̂)→d∗ N(0,Σ) prob-P. J ∗∗MBB,n→d∗ χ2

m−p prob-P follows because S∗∗n (θ∗∗MBB)→P∗,P

Σ and we have shown in the proof of Theorem 1 that n−1/2 ∑n
t=1 g∗(Xt , θ̂)→d∗ N(0,Σ) prob-P. The

convergence of J ∗NBB,n and J ∗∗NBB,n are proven by a similar argument. ¤

9 Auxiliary results

Lemma 3 (NBB uniform WLLN). Let {q∗nt(·,ω,θ)} be an NBB resample of {qnt(ω,θ)} and assume:
(a) For each θ ∈ Θ⊂ Rp, Θ a compact set, n∑n

t=1(q
∗
nt(·,ω,θ)−qnt(ω,θ))→ 0, prob-P∗n,ω, prob-P;

and (b) ∀θ,θ0 ∈Θ, |qnt(·,θ)−qnt(·,θ0)| ≤ Lnt |θ−θ0| a.s.-P, where supn{n−1 ∑n
t=1 E(Lnt)}= O(1).

Then, if ` = o(n), for any δ > 0 and ξ > 0,

lim
n→∞

P

[
P∗n,ω

(
sup
θ∈Θ

n−1

∣∣∣∣∣
n

∑
t=1

(q∗nt(·,ω,θ)−qnt(ω,θ))

∣∣∣∣∣ > δ

)
> ξ

]
= 0.

Proof The proof closely follows that of Lemma 8 of Hall and Horowitz (1996). ¤

Lemma 4 (NBB pointwise WLLN). For some r > 2, let {qnt : Ω×Θ → Rm : m ∈ N} be such that
for all n, t, there exists Dnt : Ω → R with |qnt(·,θ)| ≤ Dnt for all θ ∈ Θ and ||Dnt ||r ≤ ∆ < ∞. For
each θ ∈ Θ let {q∗nt(·,ω,θ)} be an NBB resample of {qnt(ω,θ)}. If ` = o(n), then for any δ > 0,
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ξ > 0 and for each θ ∈Θ,

lim
n→∞

P

[
P∗n,ω

(
n−1

∣∣∣∣∣
n

∑
t=1

(q∗nt(·,ω,θ)−qnt(ω,θ))

∣∣∣∣∣ > δ

)
> ξ

]
= 0.

Proof Fix θ ∈ Θ, and we suppress θ and ω henceforth. Since q∗nt is a NBB resample, E∗q∗nt =
n−1 ∑n

t=1 qnt = q̄n and hence ∑n
t=1 (q∗nt −qnt) = ∑n

t=1 (q∗nt −E∗qnt). From the arguments in the proof
of Lemma A.5 of GW04, the stated result follows if ||var∗(n−1/2 ∑n

t=1 q∗nt)||r/2 = O(`) for some
r > 2. Define Uni = `−1 ∑`

t=1 qn,(i−1)`+t , the average of the ith block. Since the blocks are indepen-
dently sampled, we have (cf. Lahiri (2003), p.48) var∗(n−1/2 ∑n

t=1 q∗nt) = b−1`∑b
i=1(Uni− q̄n)(Uni−

q̄n)′ = b−1`−1 ∑b
i=1[∑

`
t=1(qn,(i−1)`+t− q̄n)∑`

s=1(qn,(i−1)`+s− q̄n)′] = Rn(0)+b−1 ∑b
i=1 ∑`−1

τ=1(Rni(τ)+
R′ni(τ)), where Rn(0)= n−1 ∑n

t=1(qnt− q̄n)(qnt− q̄n)′, and Rni(τ)= `−1 ∑`−τ
t=1(qn,(i−1)`+t− q̄n)(qn,(i−1)`+t+τ−

q̄n)′, τ = 1, . . . , `− 1. Applying Minkowski and Cauchy-Schwartz inequalities gives ||Rn(τ)||r/2 =
O(1), τ = 0, . . . , `−1, and ||var∗(n−1/2 ∑n

t=1 q∗nt)||r/2 = O(`) follows. ¤

Lemma 5 Suppose wN =(wN1, . . . ,wNN)′ follows a multinomial distribution such that wN ∼Mult(b; p1, . . . , pN).
Assume further max1≤i≤N |N pi−1| → 0 and N/b2 → 0 as N → ∞. Then, for r = 2,4, as N → ∞,

N−1
N

∑
i=1
|(bpi)−1/2(wNi−bpi)|r →P lim

N→∞
N−1

N

∑
i=1

E|(bpi)−1/2(Z(bpi)−bpi)|r,

where Z(c) is a Poisson random variable with mean c. The limit on the right hand side exists
because EZ(c) = c, E(Z(c)− c)2 = c, and E(Z(c)− c)4 = 3c2 + c.

Corollary 1 Suppose wb =(wb1, . . . ,wbb)′ follows wb∼Mult(b; p1, . . . , pb). Assume further max1≤i≤b |bpi−
1|→ 0 as b→∞. Then, for r = 2,4, as b→∞, b−1 ∑b

i=1 |wbi−bpi|r →P limb→∞ b−1 ∑b
i=1 E|(Z(bpi)−

bpi)|r, where Z(c) is a Poisson random variable with mean c.

Proof The proof closely follows that of Lemma 4.1 of Mason and Newton (1992). Their {n, j,Mn, j}
correspond to our {N, i,wNi}. We need to adjust the proof of Mason and Newton (1992) because we
assume wN follows a multinomial distribution (b; p1, . . . , pN) whereas Mason and Newton (1992)
assume nMn follows a multinomial distribution (n;1/n, . . . ,1/n).

Let U1,U2, . . . be a sequence of iid U [0,1] random variables. Similar to Mason and Newton
(1992), define Gb(t) = ∑b

k=1 1{Uk ≤ t} and G∗
b(t) = ∑N(b)

k=1 1{Uk ≤ t}, where N(t) is a Poisson process
independent of Uk’s. We can then write wNi = {Gb(p1 + · · ·+ pi)−Gb(p1 + · · ·+ pi−1)} with
p0 = 0 for 1 ≤ i ≤ N. Further, analogously to M∗

n, j in (4.3) of Mason and Newton (1992), define
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w∗Ni = {G∗
b(p1 + · · ·+ pi)−G∗

b(p1 + · · ·+ pi−1)}, then the elements of w∗N = (w∗N1, . . . ,w
∗
NN)′ are

independent Poisson(bpi) random variables. Consequently, it follows from the weak law of large
numbers, max1≤i≤N |N pi− 1| → 0, and N−1 ∑N

i=1 |(bpi)−1/2(bpi− b/N)|r → 0 that, as in (4.4) of
Mason and Newton (1992),

N−1
N

∑
i=1
|(bpi)−1/2(w∗Ni−w∗N)|r →p lim

N→∞
N−1

N

∑
i=1

E|(bpi)−1/2(Z(bpi)−bpi)|r,

where w∗N = N−1 ∑N
i=1 w∗Ni. The stated result follows from replacing Sn and Tn in Mason and Newton

(1992) with SN = N−1 ∑N
i=1 |(bpi)−1/2(w∗Ni−w∗N−wNi +bpi)|r and TN = E(N−1 ∑N

i=1 |(bpi)−1/2(w∗Ni−
w∗N−wNi +bpi)|r|N(b)) and repeating their argument in conjunction with N−1 ∑N

i=1 |(bpi)−1/2(bpi−
b/N)|r → 0 and n/b2 → 0.

The proof of Corollary 1 follows from repeating the above argument with replacing N with b.
¤

Lemma 6 (Consistency of NBB conditional variance). Assume {Xt} satisfies EXt = 0 for all t,
||Xt ||3r ≤ ∆ < ∞ for some r > 2 and all t = 1,2, . . .. Assume {Xt} is L2-NED on {Vt} of size−(2(r−
1))/(r−2), and {Vt} is an α-mixing sequence of size−(2r/(r−2)). Let {X∗

t } be an NBB resample
of {Xt}. Define X̄n = n−1 ∑n

t=1 Xt , X̄∗
n = n−1 ∑n

t=1 X∗
t , Σn =var(

√
nX̄n), and Σ̂n =var∗(

√
nX̄∗

n ). Then,
if `→ ∞ and ` = o(n1/2), Σn− Σ̂n →P 0.

Corollary 2 Assume Xt satisfies the assumptions of Lemma 6. Define Ui = `−1 ∑`
t=1 X(i−1)`+t , the

average of the ith non-overlapping block. Then, if `→∞ and ` = o(n1/2), b−1`∑b
i=1UiU ′

i −Σn →P 0.

Proof For simplicity, we assume Xt to be a scalar. The extension to the vector-valued Xt is straight-
forward, see GW02. Define Ui = `−1 ∑`

t=1 X(i−1)`+t , the average of the ith block. Since the blocks
are independently sampled, we have

Σ̂n = b−1`
b

∑
i=1

U2
i − `X̄2

n

= b−1`−1
b

∑
i=1

[
`

∑
t=1

X(i−1)`+t

`

∑
s=1

X(i−1)`+s

]
− `X̄2

n (26)

= b−1
b

∑
i=1

R̂i(0)+2b−1
b

∑
i=1

`−1

∑
τ=1

R̂i(τ)− `X̄2
n . (27)

where R̂i(τ) = `−1 ∑`−τ
t=1 X(i−1)`+tX(i−1)`+t+τ, τ = 0, . . . , `−1. First we show E(Σ̂n)−Σn = o(1). For

the third term on the right of (27), E|`X̄2
n |= o(1) holds because if follows from Lemmas A.1 and A.2
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of GW02 that E(X̄2
n ) = n−2E|∑n

t=1 Xt |2 ≤ n−2E(max1≤ j≤n |∑ j
t=1 Xt |2) ≤Cn−2(∑n

t=1 c2
t ) = O(n−1),

where ct are (uniformly bounded) mixingale constants of Xt . Define Ri(τ)= `−1 ∑`−τ
t=1 E(X(i−1)`+tX(i−1)`+t+τ)

and Ri j = `−1 ∑`
t=1 ∑`

s=1 E(X(i−1)`+tX( j−1)`+s) so that E(R̂i(τ)) = Ri(τ), then Σn = b−1 ∑b
i=1 Ri(0)+

2b−1 ∑b
i=1 ∑`−1

τ=1 Ri(τ) + b−1 ∑b
i=1 ∑b

j 6=i Ri j, and E(Σ̂n)− Σn = b−1 ∑b
i=1 ∑b

j 6=i Ri j. From Gallant and

White (1988) (pp.109-110), E(XtXt+τ) is bounded by |EXtXt+τ| ≤ ∆(5α1/2−1/r
[τ/4] +2v[τ/4])≤Cτ−1−ξ

for some ξ ∈ (0,1), where vm is the NED coefficient. Therefore, for |i− j|= k≥ 2, we have |Ri j| ≤
C`−1 ∑`

t=1 ∑`
s=1((k−1)`)−1−ξ = O((k−1)−1−ξ`−ξ), and |Ri,i+1| ≤C`−1 ∑`

t=1 ∑`
s=1 |`+s− t|−1−ξ ≤

C`−1 ∑`−1
h=−`+1(`− |h|)|` + h|−1−ξ = O(`−ξ), where the last equality follows from evaluating the

sums with h > 0 and h < 0 separately. It follows that b−1 ∑b
i=1 ∑b

j 6=i Ri j = O(`−ξ + b−1 ∑b−1
k=2(b−

k)(k−1)−1−ξ`−ξ) = O(`−ξ), and we establish E(Σ̂n)−Σn = o(1).

It remains to show var(Σ̂n) = o(1). It suffices to show that the variance of

b−1
b

∑
i=1

(
R̂i(0)−Ri(0)

)
+2b−1

b

∑
i=1

`−1

∑
τ=1

(
R̂i(τ)−Ri(τ)

)
(28)

is o(1). Following the derivation in GW02 leading to their equation (A.4), we obtain var(R̂i(τ)) ≤
`−2 ∑`−τ

t=1 var(X(i−1)`+tX(i−1)`+t+τ)+2`−2 ∑`−τ
t=1 ∑`−τ

s=t+1 | cov(X(i−1)`+tX(i−1)`+t+τ,X(i−1)`+sX(i−1)`+s+τ)| ≤
C`−1{∆+∑∞

k=1 α1/2−1/r
[k/4] +∑∞

k=1 v[k/4]+∑∞
k=1 v(r−2)/2(r−1)

[k/4] }+C`−1(τα1−2/r
[τ/4] +τv2

[τ/4]+2τα1/2−1/r
[τ/4] v[τ/4])=

O(`−1). Observe that, when |i− j| ≥ 7, from Lemma 6.7(a) of Gallant and White (1988) we have, for
some ξ∈ (0,1), cov(R̂i(τ), R̂ j(τ))≤ `−2 ∑`−τ

t=1 ∑`−τ
s=1 |cov(X(i−1)`+tX(i−1)`+t+τ,X( j−1)`+sX( j−1)`+s+τ)| ≤

`−2 ∑`−τ
t=1 ∑`−τ

s=1(α
1/2−1/r
[(|i− j|−6)`/4]+v(r−2)/2(r−1)

[(|i− j|−6)`/4])= O(`−2 ∑`−τ
t=1 ∑`−τ

s=1[(|i− j|−6)`/4]−1−ξ)≤C(`|i− j|)−1−ξ.
Define Br = {1≤ i≤ b : i = 7k+ r, k ∈N} for r = 1, . . . ,7, so that all i ∈ Br are at least 7 apart from
each other. Rewrite (28) as ∑7

r=1 b−1 ∑i∈Br(R̂i(0)−Ri(0))+ 2∑7
r=1 ∑`−1

τ=1 b−1 ∑i∈Br(R̂i(τ)−Ri(τ)).
Then, for τ = 0, . . . , `−1, we have var(b−1 ∑i∈Br(R̂i(τ)−Ri(τ)))= b−2 ∑i∈Br ∑ j∈Br cov(R̂i(τ), R̂ j(τ))=
O(b−1`−1+`−1−ξb−2 ∑b

i=1 ∑b
j 6=i |i− j|−1−ξ)= O(b−1`−1+`−1−ξb−2 ∑b−1

h=1(b−h)h−1−ξ)= O(b−1`−1).
Therefore, the variance of (28) is O(`b−1) = O(`2n−1) = o(1), giving the stated result. Corollary 2
follows because b−1`∑b

i=1UiU ′
i = Σ̂n +oP(1) from (26). ¤
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Table 1: Linear Model - symmetric errors
Replications=2000; Bootstraps=499; auto-selection block length

yt = θ1 +θ2xt +ut ; ut = 0.9ut−1 + ε1t ;
xt = 0.9xt−1 + ε2t ; zt = (ι xt xt−1 xt−2)
(θ1,θ2) = (0,0); [ε1t ,ε2t ]∼ N(0, I2)

T-Test Sargan Test
10 05 01 10 05 01

100
Asymptotic 0.4225 0.3420 0.2335 0.1360 0.0735 0.0245

SNB 0.2725 0.2070 0.1085 0.1505 0.0945 0.0320
SMB 0.3760 0.2885 0.1640 0.1330 0.0755 0.0255

ENB 0.2265 0.1830 0.1150 0.0675 0.0460 0.0220
EMB 0.2290 0.2260 0.1120 0.0775 0.0560 0.0250
250

Asymptotic 0.3485 0.2755 0.1625 0.1225 0.0745 0.0235

SNB 0.2090 0.1460 0.0720 0.1320 0.0840 0.0310
SMB 0.3255 0.2390 0.1320 0.1315 0.0790 0.0260

ENB 0.1385 0.0990 0.0455 0.0815 0.054 0.0260
EMB 0.1500 0.1250 0.0500 0.1140 0.0830 0.0480
1000

Asymptotic 0.2735 0.1945 0.0955 0.0925 0.0460 0.0075

SNB 0.1675 0.1140 0.0425 0.0930 0.0505 0.0090
SMB 0.2550 0.1815 0.0830 0.0970 0.0450 0.0070

ENB 0.0995 0.0605 0.0230 0.0875 0.0480 0.0145
EMB 0.0960 0.0590 0.0020 0.1045 0.0560 0.0180
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Table 2: Linear Model - GARCH(1,1) errors
Replications=2000; Bootstraps=499; auto-selection block length

yt = θ1 +θ2xt +σtut ; ut ∼ N(0,σt),σ2
t = 0.0001+0.6σ2

t−1 +0.3ε1t−1;
xt = 0.75xt−1 + ε2t , where ε1t ∼ N(0,1); zt = (ι xt xt−1 xt−2)

(θ1,θ2) = (0,0); ε1t ∼ N(0,1)
T-Test Sargan Test

10 05 01 10 05 01
100

Asymptotic 0.1420 0.0840 0.0280 0.070 0.0240 0.0040

SNB 0.0820 0.0340 0.0060 0.0530 0.0180 0.0050
SMB 0.0920 0.0480 0.0060 0.0590 0.0160 0.0050

ENB 0.0875 0.0405 0.0006 0.0730 0.0300 0.0040
EMB 0.1405 0.0870 0.0200 0.1100 0.0600 0.0100
250

Asymptotic 0.1150 0.0580 0.0150 0.0840 0.0270 0.0040

SNB 0.0630 0.0300 0.0060 0.0820 0.0230 0.0030
SMB 0.0830 0.0370 0.0080 0.0760 0.0260 0.0040

ENB 0.0995 0.0410 0.0065 0.0845 0.0330 0.0035
EMB 0.1130 0.0570 0.0210 0.1510 0.0950 0.0140
1000

Asymptotic 0.1050 0.0560 0.0150 0.0880 0.0390 0.0060

SNB 0.0700 0.0340 0.0070 0.0840 0.0420 0.0050
SMB 0.0910 0.0470 0.0110 0.0860 0.0410 0.0060

ENB 0.0995 0.0490 0.0090 0.0885 0.0370 0.0090
EMB 0.1000 0.0560 0.0090 0.0900 0.0490 0.0100

Note: The mean block length is 1.96 when T = 100, 2.84 when T = 250, and 4.48 when T = 1000.
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Table 3: Nonlinear Model - Chi-Square Moment Conditions
Replications=2000; Bootstraps=499; auto-selection block length

g(Xt ,θ1) = (Xt −θ1 X2
t −θ2

1−2θ1)′.
T-Test Sargan Test

10 05 01 10 05 01
100

Asymptotic 0.1845 0.1250 0.0625 0.2655 0.2065 0.1195

SNB 0.1535 0.1000 0.0380 0.1895 0.1505 0.0870
SMB 0.1800 0.0875 0.0070 0.1825 0.1465 0.0780

ENB 0.1175 0.0575 0.0100 0.2135 0.1470 0.0750
EMB 0.1100 0.0620 0.0090 0.2000 0.1550 0.0700
250

Asymptotic 0.1245 0.0700 0.0250 0.1990 0.1560 0.0840

SNB 0.1095 0.0585 0.0200 0.1615 0.1290 0.0790
SMB 0.1240 0.0710 0.0175 0.1520 0.1225 0.0695

ENB 0.1050 0.0560 0.0120 0.1720 0.1200 0.0420
EMB 0.1040 0.0610 0.0110 0.1780 0.1280 0.0380
1000

Asymptotic 0.0975 0.0515 0.0100 0.1325 0.0835 0.0400

SNB 0.0985 0.0620 0.0205 0.1335 0.0985 0.0580
SMB 0.0795 0.0395 0.0075 0.1180 0.0870 0.0430

ENB 0.0965 0.0480 0.0095 0.1120 0.0695 0.0240
EMB 0.0940 0.0400 0.0060 0.1340 0.0700 0.0400

Note: The mean block length is 1.29 when T = 100, 1.99 when T = 250, and 3.33 when T = 1000.
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Table 4: Nonlinear Model - Asset Pricing Model
Replications=2000; Bootstraps=499; auto-selection block length
g = (exp(µ−θ(x+ z)+3z)−1 z[exp(µ−θ(x+ z)+3z)−1]),
logxt = ρ logxt−1 +

√
(1−ρ2)εxt , zt = ρzt−1 +

√
(1−ρ2)εzt ,

where εxt and εzt are independent normal with mean 0 and variance
0.16. In the experiment ρ = 0.6.

T-Test Sargan Test
10 05 01 10 05 01

100
Asymptotic 0.4010 0.3235 0.2195 0.3080 0.2350 0.1460

SNB 0.1550 0.0985 0.0400 0.1880 0.1260 0.0385
SMB 0.1540 0.1015 0.0435 0.1930 0.1300 0.0420

ENB 0.1300 0.0780 0.0245 0.1250 0.0700 0.0150
EMB 0.1360 0.0825 0.0260 0.1880 0.0810 0.0200
250

Asymptotic 0.3005 0.2275 0.1240 0.2470 0.1850 0.0995

SNB 0.1270 0.0755 0.0290 0.1435 0.1005 0.0510
SMB 0.1285 0.0780 0.0290 0.1430 0.0985 0.0535

ENB 0.1200 0.0620 0.0140 0.1210 0.0670 0.0180
EMB 0.1290 0.0600 0.0210 0.1245 0.0650 0.0270
1000

Asymptotic 0.2205 0.1440 0.0545 0.1975 0.1335 0.0685

SNB 0.1440 0.0825 0.0280 0.1005 0.0715 0.0220
SMB 0.1420 0.0820 0.0250 0.1040 0.0660 0.0220

ENB 0.1180 0.0600 0.0220 0.1300 0.0695 0.0210
EMB 0.1160 0.0560 0.0160 0.1090 0.0700 0.0150

Note: The mean block length is 1.51 when T = 100, 2.62 when T = 250, and 4.96 when T = 1000.
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