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Abstract: We characterize a mechanism for reducing pollution emissions in which coun-

tries, acting non-cooperatively, commit to match each others’ abatement levels and may

subsequently engage in emissions quota trading. The mechanism leads to an efficient level

of emissions, and if the matching abatements process includes a quota trading stage, the

marginal benefits of emissions are also equalized across countries. Given equilibrium match-

ing rates, the initial allocation of emission quotas (before trading) reflects each country’s

marginal valuation for lower pollution relative to its marginal benefit from emissions. These

results hold for any number of countries, in an environment where countries have different

abatement technologies and different benefits from emissions, and even if the emissions of

countries are imperfect substitutes in each country’s damage function. In a dynamic two-

period setting, the mechanism achieves both intra-temporal and inter-temporal efficiency.

We extend the model by assuming that countries are voluntarily contributing to an inter-

national public good, in addition to undertaking pollution abatements, and find that the

level of emissions may be efficient even without any matching abatement commitments,

and the marginal benefits of emissions may be equalized across countries even without

quota trading.
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1 Introduction

International agreements on pollution reduction targets are difficult to achieve and sustain

in the absence of a central authority with the ability to enforce the abatement objectives

of national governments. Cooperative initiatives also require that countries be able to

agree on the overall objectives of emissions reduction and on how abatement efforts should

be distributed across countries. This is particularly challenging given that the costs and

benefits of pollution abatement vary considerably across countries. Without cooperative

agreements, emission reductions rely essentially on the voluntary contributions of countries.

In this paper, we show that voluntary pollution abatement by countries behaving non-

cooperatively can lead to efficient outcomes provided that countries can commit to match-

ing the abatement efforts of each other at some announced rates. The efficiency of vol-

untary contributions to international public goods when countries can commit has been

established by Guttman (1978), Danziger and Schnytzer (1991), Varian (1994) and Boad-

way, Song and Tremblay (2007). We show how similar reasoning can be adapted to the

case of international pollution abatement when countries have different abatement tech-

nologies and may be able to engage in emissions quota trading. Remarkably, we also find

that efficiency can occur even in the absence of commitment provided that countries are

also contributing to an international public good.

Recently, a number of papers have proposed mechanisms for implementing efficient con-

tributions by countries to international public goods, such as pollution abatement. In

particular, Gersbach and Winkler (2007) and Gerber and Wichardt (2009) have proposed

schemes in which countries make up-front payments to a neutral institution as a way of

pre-committing to contributions. The payments are eventually refunded, at least in part,

if countries provide their intended contributions. The neutral institution’s ability to deny

refunds induces countries to act according to prior commitments. In principle, these mech-

anisms can be designed to implement any desired emission reduction objectives, although

they require some prior cooperative agreement to establish such objectives, and to de-

cide how to distribute the surplus across countries. In contrast, we take the commitment

ability of countries as given, but focus on a non-cooperative mechanism that can emerge
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and induce full efficiency in emission abatement when countries are making commitments

voluntarily and are acting in their own self-interest.

Altemeyer-Bartscher, Rübbelke and Sheshinski (2009) consider another form of commit-

ment mechanism whereby each of two countries voluntarily makes a take-it-or-leave-it offer

of a payment to the other country conditional on the tax rate that the latter imposes on a

polluting good. They show that such a mechanism can induce the efficient level of pollu-

tion. While their mechanism is based on side-payments between countries, the mechanism

we characterize relies on matching abatement commitments and, crucially, may allow emis-

sions quota trading. Both mechanisms can lead to efficient allocations, although they do

not generally result in the same distribution of net benefits across countries. Moreover, as

Altemeyer-Bartscher, Rübbelke and Sheshinski recognize, their mechanism does not easily

generalize to more than two countries, since any given country would receive take-it-or-

leave-it offers from all other countries simultaneously.

Our static one-period base case without quota trading resembles the case analyzed by

Guttman and Schnytzer (1992) who demonstrate the existence of a Pareto efficient equilib-

rium in a mechanism where two individuals are matching each others’ externality-producing

activities. The pollution reduction case that we study has some features that go beyond the

simple externality case. Countries have access to different pollution abatement technolo-

gies, which gives rise to the issue of the optimal allocation of emissions across countries. In

this case, the possibility of emissions quota trading provides an instrument for achieving

that optimal allocation alongside the use of a matching mechanism to influence to aggre-

gate level of abatements. We also extend the mechanism both to a multi-country setting

and to a dynamic two-period setting where emissions in one period determine the initial

stock of pollution in the next period.

Specifically, the pollution abatement process we consider works as follows. Each country

simultaneously (and non-cooperatively) announces a rate at which it will match the abate-

ment efforts of the other countries. Countries then choose their direct abatement efforts

simultaneously, taking the previously announced matching rates as given. After these two

stages of decisions, countries are committed to achieving a total emissions quota equal to
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their business-as-usual emissions minus the sum of their direct and matching abatement

efforts. However, these commitments may be contingent in the sense that once they are

determined, countries may trade emissions quotas at the competitively determined price.

The analysis shows that the subgame perfect equilibrium of this emission abatement pro-

cess is efficient. The efficient level of pollution abatement is achieved, and if the mechanism

allows for quota trading, the marginal benefits of emissions are equalized across countries.

The equilibrium displays other interesting properties. For one, the effective marginal cost

to a country from inducing an increase in world abatements is the same whether they do

so directly through their own abatements or indirectly through matching the other coun-

try’s abatements. For another, in equilibrium, a country’s total abatements, both direct

and matching, just equals its marginal valuation of pollution abatement times total world

abatements. Thus, the countries’ effective costs of abatement are the analogs of Lindahl

prices in the context of this model.

As mentioned, the non-cooperative mechanism that we consider is easily applicable to a

setup with any number of countries. Under a matching rate mechanism, the simultaneous

offers of several countries readily add up to an aggregate matching rate applying to the

abatement effort of an individual country. We also consider a dynamic two-period extension

and find that the mechanism achieves intra-temporal and inter-temporal efficiency: the

total level of emissions is efficient as well as its allocation between periods. And, we extend

the model by adding an international public good provided by the voluntary contributions

of countries. If contributions to the public good are made after the pollution abatement

process, we find that the level of emissions and their allocation across countries are efficient

even in the absence of matching abatement commitments and quota trading.

In the next section, we describe the main features of the model. We then characterize

the abatement process equilibrium in a simple two-country case. Various extensions of

the basic model are considered in Section 4, while contributions to an international public

good are added in Section 5. In Section 6, we show that the mechanism leads to efficient

levels of emissions even if countries’ emissions are imperfect substitutes in each countries’

damage function. Concluding remarks are provided in the last section.
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2 The Basic Two-Country Model

There are two countries denoted by i, j = 1, 2. In the absence of any abatement effort, the

business-as-usual level of emissions by country i is equal to ei. Both countries can undertake

costly abatements which will reduce actual emissions. In the basic model, country i chooses

a level of direct abatements ai, as well as committing to match the direct abatement of

country j at a rate mi.1 Therefore, country i’s total choice of abatements equals Ai =

ai + miaj . In some extensions of the basic model, we allow for emissions quota trading.

In these cases, the initial choice of abatements Ai is contingent since countries can then

trade emission quotas at market price p. In these cases, we can interpret county i’s initial

choice of emissions ei−Ai as its pre-trade emissions quota. The number of emission quotas

purchased by country i is denoted by qi, where q1 = −q2. Given the number of quotas

traded, the actual emissions of country i are ei = ei−Ai+qi. Note that aggregate emissions

by both countries are equal to the sum of their initial commitments before quota trading.

The latter simply reallocates emissions from one country to another.

The benefits of actual emissions to country i is given by the function Bi(ei), where B′
i > 0

and B′′
i < 0.2 The damage to country i is a function of the total emissions of both

countries, Di(e1+e2), with D′
i > 0 and D′′

i > 0. Hence, the emissions of both countries are

assumed to be perfect substitutes, although we later relax this assumption in an extension

of the basic model.

The analysis will characterize the equilibrium levels of abatement in a number of cases,

starting with the basic case where there are matching abatements but no emissions quota

trading. We then consider the various extensions of the basic model mentioned in the

Introduction.

1 In the real world, abatements ai will be chosen by private agents, and the government will
influence them indirectly by a tax or tradeable permit scheme. For simplicity, we suppress the
private sector from our analysis and let the government choose abatements directly. Nothing
of substance is lost by this simplification.

2 The marginal benefits of emissions can be viewed as the negative of a marginal cost of abatement
function, B′(e) = −C′(A). A cost of abatement function has been used by Roberts and Spence
(1976), for example.
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Before turning to the basic case without quota trading, it is useful to characterize the

social optimum. To do so, we solve a Pareto-optimizing problem whereby the emissions

of both countries are chosen to maximize the net benefits of one country, say country 1,

subject to the constraint that the net benefits of country 2 equals some fixed level Π2:

max
{e1,e2}

B1(e1)−D1(e1 + e2) + λ
[
B2(e2)−D2(e1 + e2)−Π2

]
The first-order conditions can be written as:

D′
1

B′
1

+
D′

2

B′
2

= 1 (1)

This condition is the analog of the Samuelson condition for public goods, but in the context

of a public bad. It says that efficient emissions in each country are such that the sum of

the two countries’ ratios of marginal damages to marginal benefits is equal to unity.

The social optimum just defined is restrictive in the sense that the only instruments for

redistributing between countries are emissions e1 and e2. To understand the implications

of this, suppose we allow the possibility of a transfer T from country 2 to country 1, where

T R 0. The above Pareto optimizing problem then becomes:

max
{e1,e2,T}

B1(e1)−D1(e1 + e2) + T + λ
[
B2(e2)−D2(e1 + e2)− T −Π2

]
and the first-order conditions would give (1) above as well as:

B′
1(e1) = B′

2(e2) (2)

In effect, while (1) characterizes the efficient level of total emissions, (2) characterizes their

efficient allocation across countries. We can think of the solutions to the latter problem

for various values of Π2 as tracing out the first-best utility possibilities frontier, while

the solution to the problem without transfers traces out a restricted utility possibilities

frontier. The two would only coincide where T = 0 solves the latter problem. In the basic

model to which we turn next, it is the restrictive problem that is relevant. However, as we

shall see, outcomes on the first-best frontier can be achieved in some of our extensions.
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In the absence of international corrective action, country emissions would satisfy B′
1 = D′

1

and B′
2 = D′

2, and would not be optimal. A world government could achieve the restricted

social optimum by imposing Pigouvian taxes on the emissions in each country at the tax

rates t1 = D′
2 and t2 = D′

1. In the absence of transfers, these tax rates would generally dif-

fer. If the world government could also make inter-country transfers, the optimal Pigouvian

tax would be uniform across countries.3 Our analysis explores commitment mechanisms as

a way of achieving efficiency in the absence of a world government.

In what follows, we focus on the case where the socially optimal abatements of the two

countries are both interior. That is, the levels of emissions e∗1 and e∗2 corresponding with

the solution to the social optimum satisfy 0 < e∗1 < e1 and 0 < e∗2 < e2.

3 Matching Abatements without Quota Trading

In this section, we examine the basic case where two countries can commit to matching

the abatement efforts of each other, and where there is no quota trading. The timing

of decisions is the following. In Stage 1, both countries simultaneously choose the rate

mi at which they will match the direct abatements of the other country. Countries then

simultaneously choose direct abatement levels ai in Stage 2. We characterize the subgame

perfect equilibrium of this two-stage process by backward induction.4

Stage 2: Choosing Direct Abatements a1 and a2

Taking (m1,m2) as given from Stage 1, country 1 chooses a1 to solve the following:

max
{a1}

Π1 = B1 (e1 − a1 −m1a2)−D1

(
e1 − (1 + m2)a1 + e2 − (1 + m1)a2

)
The first-order condition, assuming an interior solution, is:

F 1(a1, a2,m1,m2) ≡ −B′
1(·) + (1 + m2)D′

1(·) = 0 or
D′

1(·)
B′

1(·)
=

1
1 + m2

(3)

3 This point is made by Sandmo (2006). He emphasizes the distinction between carbon prices in
high-and low-income countries when there are limited international transfers.

4 Multi-stage processes of matching contributions to public goods have been analyzed in Guttman
(1978), Danziger and Schnytzer (1991), Varian (1994) and Boadway, Song and Tremblay (2007),
among others.
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The solution to this first-order condition is country 1’s reaction function a1(a2;m1,m2).

For any a2, country 1 will choose its level of abatements such that the ratio of marginal

damage to marginal benefit equals the effective cost at which it can increase world abate-

ments by one unit, 1/(1 + m2). Differentiating (3), we have:

F 1
a1

= B′′
1 − (1 + m2)2D′′

1 < 0, F 1
a2

= m1B
′′
1 − (1 + m1)(1 + m2)D′′

1 < 0,

F 1
m1

= a2B
′′
1 − a2(1 + m2)D′′

1 < 0, F 1
m2

= −a1(1 + m2)D′′
1 + D′

1
>< 0

(4)

The problem of country 2 is analogous. Its reaction function is a2(a1;m1,m2), and

expressions similar to (4) apply. The slopes of the two countries’ reaction curves are

da2/da1 = −F 1
a1

/F 1
a2

< 0 for country 1 and the analog for country 2, −F 2
a1

/F 2
a2

< 0.

The simultaneous solution to both reaction functions gives the Nash equilibrium abate-

ments as functions of matching rates, a1(m1,m2) and a2(m1,m2) (with some abuse of

notation). For an interior Nash equilibrium in abatements to be stable, the slope of coun-

try 2’s reaction curve in (a1, a2)–space must be less negative than that of country 1, that is,

−F 2
a1

/F 2
a2

> −F 1
a1

/F 1
a2

. Equivalently, if we define H ≡ F 1
a1

F 2
a2
−F 2

a1
F 1

a2
, stability requires

that H > 0. Using (4) and its analog for country 2, we can derive

H = (1−m1m2)
[
B′′

1 B′′
2 − (1 + m1)B′′

1 D′′
2 − (1 + m2)B′′

2 D′′
1

]
(5)

Since the expression in the square brackets in (5) is positive, we have

H R 0 ⇐⇒ 1−m1m2 R 0

We can characterize different types of outcomes in Stage 2 with reference to the sign of H:

Case i) H > 0, m1m2 < 1

In this case, the Nash equilibrium, which we assume is interior, will be stable.

Case ii) H < 0, m1m2 > 1

An interior Nash equilibrium will be unstable, and any deviation from equilibrium would

tend to a stable corner equilibrium with either a1 = 0, a2 > 0 or a1 > 0, a2 = 0.
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Case iii) H = 0, m1m2 = 1

In this case, the slopes of the two reaction curves are identical. Moreover, using (4), the

slope of country 1’s reaction curve when m1m2 = 1 becomes

da2

da1
= −

F 1
a1

F 1
a2

= − B′′
1 − (1 + m2)2D′′

1

m1B′′
1 − (1 + m1)(1 + m2)D′′

1

= −1 + m2

1 + m1

An analogous calculation for country 2 reveals that the slope of its reaction curve is the

same. Thus, when m1m2 = 1, reaction curves are linear and parallel. There are three

possible equilibria in this case, depending on the values of m1 and m2. First, country 2’s

reaction curve might be outside country 1’s as shown in the dotted lines in Figure 1. In

this case, only country 2 undertakes abatements. Alternatively, county 1’s reaction curve

is outside country 2’s so only the former abates. Finally, the two reaction curves could

overlap, in which case a1 and a2 are indeterminate.

The latter case where the reaction curves overlap will be of special interest, so it is worth

mentioning a couple of relevant properties. First, there will be unique values of m1 and m2

such that the reaction curves coincide.5 Second, since the Stage 2 reaction curves coincide,

direct abatements (a1, a2) are indeterminate. However, total abatements by each country

5 To see this, note that in an interior solution (including at the boundary), country 1’s reaction
curve in (a1, a2)−space has the following properties (using the expressions in (4)):

da1

dm1
= −

F 1
m1

F 1
a1

6 0 (= 0 at a2 = 0);
da1

dm2
= −

F 1
m2

F 1
a1

>< 0 (= −D′
1/F 1

a1 > 0 at a1 = 0)

Analogous properties hold for country 2’s reaction curve. Consider an initial situation in which
which m1m2 = 1 and reaction curves coincide. Now suppose we first increase m1 by a small
amount, holding m2 constant. The properties above and the expression for the slopes of reaction
curves imply that 1) the reaction curves become flatter in the (a1-a2)–space, 2) the intercept
of country 1’s reaction curve is unchanged along the a1–axis, 3) the intercept of country 2’s
reaction curve along the a1–axis moves right, so the reaction curves are unambiguously further
apart, although the intercept of country 2’s reaction curve along the a2–axis can either go up or
down. Next, starting with these new reaction curves, consider decreasing m2 by a small amount,
holding m1 constant. 1) The reaction curves again become flatter, 2) the intercept of country
2’s reaction curve is unchanged along the a2–axis, 3) the intercept of country 1’s reaction curve
along the a2–axis goes down so the reaction curves again go further apart unambiguously,
although the intercept of country 1’s reaction curve along the a1–axis can increase or decrease.
The opposite will occur if we increase m2 and decrease m1. These imply that there is only one
pair of m1 and m2 such that m1m2 = 1 and the two reaction curves coincide.
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are determinate. That is, all combinations of a1 and a2 along the common reaction curve

yield the same levels of total abatement A1 and A2.6 The implication is that net benefits

for each of the two countries are constant along the common reaction curves:

Πi = Bi

(
ei −Ai

)
−Di

(
e1 −A1 + e2 −A2

)
i = 1, 2

Note finally that when m1m2 = 1, each country’s effective costs of direct and matching

abatements are equal. To see this, note first that the effective cost to country 1 of increasing

world abatement by one unit through an increase in its direct abatement a1 is equal to

1/(1 + m2), as mentioned earlier. On the other hand, the effective cost to country 1 of a

one unit increase in world abatement induced by an increase in the direct abatement of

country 2 is m1/(1 + m1).7 When m1m2 = 1, it follows that 1/(1 + m2) = m1/(1 + m1),

so the effective costs of direct and matching abatements are equal. The same holds for

country 2.

Stage 1: Choosing Matching Rates m1 and m2

At this stage, both countries anticipate the subsequent Nash equilibrium choices of direct

abatements. Country 1 chooses its matching rate m1 to maximize its net benefit, taking

as given m2 and taking account of the Nash equilibrium solution a1(m1,m2), a2(m1,m2).

Country 1’s net benefit can be written as:

Π1 ≡ B1

(
e1 − a1(m1,m2)−m1a2(m1,m2)

)
−D1

(
e1 − (1 + m2)a1(m1,m2) + e2 − (1 + m1)a2(m1,m2)

)
6 Thus, along the common reaction curves, ∆a2/∆a1 = −(1 + m2)/(1 + m1). Since A1 =

a1 + m1a2 and using m1m2 = 1,

∆A1 = ∆a1 + m1∆a2 =
(
1−m1

1 + m2

1 + m1

)
∆a1 = 0

The same demonstration applies for A2.

7 To see this, note that since A = (1+m2)a1+(1+m1)a2, a change of a2 equal to ∆a2 = 1/(1+m1)
will cause an increase in A of ∆A = 1. The cost to country 1 will be m1∆a1 = m1/(1 + m1).
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Differentiating this expression with respect to m1 gives:

dΠ1

dm1
= −B′

1

[
∂a1

∂m1
+ a2 + m1

∂a2

∂m1

]
+ D′

1

[
(1 + m2)

∂a1

∂m1
+ a2 + (1 + m1)

∂a2

∂m1

]
(6)

Assume first an interior solution in abatements in Stage 2, so F 1(·) = 0 and F 2(·) = 0 by

(3). Differentiating these expressions, we obtain:

∂a1

∂m1

∣∣∣∣
m2

=
−F 1

m1
F 2

a2
+ F 2

m1
F 1

a2

H
, and

∂a2

∂m1

∣∣∣∣
m2

=
−F 1

a1
F 2

m1
+ F 2

a1
F 1

m1

H
(7)

Using (3), (7) and the expressions for F i
ai

, F i
aj

, F i
mi

, F i
mj

in (4), (6) can be written:

dΠ1

dm1
= −

(1−m1m2)D′
1D

′
2F

1
a1

H
(8)

This implies that dΠ1/dm1 > 0 if m1m2 6= 1 and the Stage 2 equilibrium is interior. The

same holds for country 2.

Using this result and the characterization of Stage 2 above, it can be shown that the

subgame-perfect equilibrium will be such that m1m2 = 1 and the two reaction curves

coincide. As long as at least one country contributes in the absence of any matching

contributions, this Nash equilibrium in matching rates will be unique. The demonstration

is provided in the Appendix. As explained above, there will be unique values of m1 and

m2 for which m1m2 = 1 and reaction curves coincide, the values of a1 and a2 will be

indeterminate along the common reaction curve but total abatements, A1 and A2, will be

uniquely determined.

Properties of the Equilibrium

A few other properties of the equilibrium are noteworthy. First, the equilibrium is efficient.

The two Stage 2 first-order conditions together give:

D′
1 (e1 −A1 + e2 −A2)

B′
1 (e1 −A1)

+
D′

2 (e1 −A1 + e2 −A2)
B′

2 (e2 −A2)
=

1
1 + m2

+
1

1 + m1
= 1 (9)

using m1m2 = 1 in the last step. This is condition (1) characterizing the efficient levels of

emissions by the two countries derived in Section 2.
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Second, the direct cost at which country 1 can abate emissions, 1/(1+m2), which is equal

to D′
1/B′

1 by the first-order condition in Stage 2, is the analog of a Lindahl price in the

context considered here: it is the price per unit of abatement that country 1 would be

willing to pay for the total abatements A1 +A2. To see this, simply note that the product

of this price and total world abatements equals the total direct and matching abatement

of country 1 (using m1 = 1/m2):

1
1 + m2

(A1 + A2) =
(1 + m2)a1 + (1 + m1)a2

1 + m2
= a1 +

1 + m1

1 + m2
a2 = a1 + m1a2 = A1

Thus, country 1’s direct and matching abatements A1 equals its marginal valuation for

reduced pollution relative to its marginal valuation of the benefits of emissions, D′
1/B′

1,

applied to the world’s total abatements, (A1 +A2). The same applies for country 2. Thus,

the total abatement each country makes can be seen as its quasi-Lindahl abatement effort.8

Finally, in equilibrium, countries 1 and 2 are indifferent between making direct abatements

and matching abatements. As explained earlier, the effective cost to country 1 of direct

abatements is 1/(1+m2), whereas its effective cost of matching abatements is m1/(1+m1).

When m1m2 = 1, 1/(1 + m2) = m1/(1 + m1) and 1/(1 + m1) = m2/(1 + m2). Thus,

the cost to either country of reducing the world’s pollution by one unit through direct

abatement efforts or through matching abatement efforts are equal. If country 1 were

to increase its matching rate, starting from an equilibrium with m1m2 = 1, it would be

reducing emissions indirectly at a cost higher than the cost at which it can reduce emissions

directly. The same would apply for country 2. Therefore, neither country would want to

increase their matching rate beyond m1m2 = 1. By the same token, when m1m2 < 1,

1/(1 + m2) > m1/(1 + m1). It will be cheaper for country 1 to match the abatement of

country 2 than to reduce emissions through its own direct abatements, so it will increase

m1. The same holds for country 2.

8 Danziger and Schnytzer (1991) have shown that the Lindahl equilibrium in a public good con-
tributions game can be implemented through a process where players can voluntarily subsidize
the contributions of each other. Recently, Nishimura (2008) characterized the properties of the
Lindahl equilibrium in the context of international emissions reduction, and examined different
implementation mechanisms.
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The main results of this section are summarized in the following proposition.

Proposition 1. Assuming a1 > 0 and/or a2 > 0 when m1 = m2 = 0, the subgame perfect

equilibrium of the abatement process is unique and has the following properties:

i. Direct abatements (a1, a2) are indeterminate, but matching rates (m1,m2) and total

abatements (A1, A2) are uniquely determined;

ii. Matching rates satisfy m1m2 = 1 and countries are indifferent between direct and

indirect contributions to abatements;

iii. The levels of emissions are Pareto efficient; and

iv. The effective cost of abatement faced by each country is the analog of a Lindahl price.

4 Extensions to the Basic Case

In this section, we consider three extensions to the basic case. First, we investigate the

consequences of adding emissions quota trading. Then, we extend our model to a setting

with more than two countries. Finally, we characterize the equilibrium of the abatement

process in a dynamic two-period setting. In each case, the analysis is a straightforward

extension of the basic case, so detailed analysis is not necessary.

4.1 The Mechanism with Emissions Quota Trading

With quota trading, the abatement mechanism involves three stages. The matching rates

and the direct abatements chosen in the first two stages determine the emission quotas

to which countries are committed. In the third stage, countries can trade these quotas

at the equilibrium price, which we assume is competitively determined.9 Note that in

the absence of a central government with the authority to administer a quota trading

system, the three-stage abatement process with quota trading requires a stronger form of

commitment from countries than the two-stage process of the previous section. Again, we

9 Although we are considering a two-country model, we assume that countries take the price of
quotas as given so as to abstract from issues of market power which is not the focus of our
analysis. The model is extended to a multi-country setting in the next section.
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characterize the subgame perfect equilibrium by backward induction, starting with Stage

3.

Stage 3: Emissions Quota Trading

Direct abatements (a1, a2) and matching rates (m1,m2), and therefore total abatement

commitments (A1, A2), have been determined in the previous two stages. The demand for

emission quotas by country 1 at price p solves (assuming an interior solution and assuming

that both countries are price-takers):

max
{q1}

B1(e1 −A1 + q1)− pq1

where, recall, A1 = a1 + m1a2. Since the total level of emission abatements for the two

countries is fixed, the damage function can be left out of the problem. The first-order

condition to this problem gives B′
1(e1 − A1 + q1) = p, whose solution is the demand for

emissions quotas, q1(p, A1). Differentiating the first-order condition B′
1(·) = p yields

∂q1

∂a1
=

∂q1

∂A1
= 1,

∂q1

∂m1
= a2,

∂q1

∂a2
= m1 (10)

Similarly, the demand for quotas by country 2 satisfies B′
2(e2−A2 +q2) = p and is denoted

by q2(p, A2). In equilibrium, q1(p, A1) + q2(p, A2) = 0, and the price satisfies

p(A1, A2) = B′
1(e1 −A1 + q1) = B′

2(e2 −A2 + q2)

Therefore, quota trading leads to an equalization of the marginal benefits of emissions,

which is condition (2) for an efficient allocation of abatements across countries.

Stage 2: Choosing Direct Abatements a1 and a2

We assume that countries correctly anticipate the price of quotas in Stage 3 and take it

as given when making their abatement commitments. Given (m1,m2) from Stage 1, the

problem of country 1 is:

max
{a1}

Π1 = B1

(
e1 −A1 + q1(p, A1)

)
−D1

(
e1 + e2 −A1 −A2

)
− pq1(p, A1)

13



The first-order condition, using p = B′
1, and assuming an interior solution, is:

F 1(a1, a2,m1,m2) ≡ −B′
1

(
e1−A1+q1(p, A1)

)
+(1+m2)D′

1

(
e1+e2−A1−A2

)
= 0 (11)

or,
D′

1(·)
B′

1(·)
=

1
1 + m2

Condition (11) has the same form as condition (3) characterizing the choice of direct

abatement in the previous case without quota trading. Its solution gives country 1’s

reaction function, a1(a2;m1,m2), and an analogous derivation for country 2 gives F 2(·)

and a2(ai;m1,m2).

In an interior solution (including at the boundary), differentiating F 1(·) and F 2(·) and

using (10) yields the following properties of the two countries’ reaction functions:

da1(a2,m1,m2)
da2

= −1 + m1

1 + m2
,

da2(a1;m1,m2)
da1

= −1 + m2

1 + m1

Thus, the reaction curves for the two countries are linear and their slopes in (a1, a2)−space

are the same regardless of the values of m1 and m2. That is, Figure 1 applies for all values

of m1 and m2. The fact that reaction curves are parallel for any matching rates implies

that either there will be a corner solution in Stage 2, or the curves will overlap in the

interior so the solution is indeterminate.

Stage 1: Choosing Matching Rates m1 and m2

In Stage 1, both countries simultaneously choose their matching rates, m1 and m2, antic-

ipating the outcomes of Stages 2 and 3. The equilibrium has the same form as in the case

without quota trading, so there is no need to go through its derivation in detail. Equilib-

rium matching rates will be such that m1m2 = 1 and Stage 2 reaction curves will coincide.

In contrast to the case without quota trading, since Stage 2 reaction curves are parallel for

any set of matching rates in this case, the equilibrium in direct abatements will be a corner

solution whenever the reaction curves do not coincide. However, it is straightforward to

show that if either m1m2 < 1 or m1m2 > 1, countries would have incentives to change

their matching rates in ways that would cause the Stage 2 reaction curves to move closer
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together until they coincide and m1m2 = 1. The demonstration that such matching rates

constitute an equilibrium in the presence of a quota trading system is provided in the

Appendix.

The equilibrium has all the properties of the equilibrium without quota trading. In partic-

ular, using the first-order conditions of the countries’ Stage 2 problem, and m1m2 = 1, we

obtain D′
1/B′

1 + D′
2/B′

2 = 1, so the levels of emissions are Pareto efficient. However, with

quota trading, the allocation of emissions across countries is also such that the marginal

benefits of emissions are equalized, B′
2 = B′

1, which does not necessarily hold in the ab-

sence of quota trading. In terms of our discussion of the social optimum earlier, quota

trading combined with matching abatement commitments results in an allocation along

the first-best utility possibilities frontier, unlike with matching abatements in the absence

of quota trading.

Hence, we have the following proposition:

Proposition 2. With emissions quota trading, the equilibrium of the abatement process

satisfies the properties in Proposition 1, and the marginal benefits of emissions are equalized

across countries, B′
2 = B′

1.

4.2 The Mechanism with More than Two Countries

In this section, we show that all the results of the basic two-country model with quota

trading can be generalized to the case where there are more than two countries. To do

so, let us now assume that there are n countries denoted by i, j = 1, ..., n, and let mij be

the matching rate offered by country i on the direct abatement commitment of country j.

Thus, countries can commit to matching the direct abatements of all other countries at

different rates. As in the two-country case, countries simultaneously choose their matching

rates in Stage 1, then set their direct abatement commitments in Stage 2. Finally, countries

trade emission quotas in Stage 3.

Stage 3: Emissions Quota Trading

At this stage, the total abatement commitment of country i is Ai = ai +
∑n

j=1 mijaj .
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The demand for emission quotas by country i maximizes Bi (ei −Ai + qi)−pqi. The first-

order condition is B′
i (ei −Ai + qi) = p, and the solution is country i’s demand for emission

quotas qi(p, Ai), for i, j = 1, ..., n and i 6= j. In equilibrium,
∑

i qi(p, Ai) = 0, and the

price is such that p(Ai, ..., An) = B′
i(ei − Ai + qi) for all i. Quota trading therefore leads

to an equalization of the marginal benefits of emissions across all n countries.

Stage 2: Choosing Direct Abatements ai

Matching rates are determined at this stage, and all countries take the price of quotas as

given. The direct abatement commitment of country i solves the following:

max
{ai}

Πi = Bi(ei −Ai + qi(p, Ai))−Di

( n∑
j=1

(ej −Aj)
)
− pqi(p, Ai)

The first-order condition, using p = B′
i from the emissions quota trading equilibrium, is:

F i(a1, ..., an,mi1, ...,min) ≡ −B′
i(·) +

(
1 +

n∑
j 6=i

mji

)
D′

i(·) = 0, or
D′

i(·)
B′

i(·)
=

1
1 +

∑n
j 6=i mji

(12)

The effective cost at which country i can increase world abatements by one unit depends

on the total rate at which its direct abatement will be matched by all other countries.

Country i chooses ai to equalize this effective cost to the ratio of marginal damages and

marginal benefits of emissions.

Stage 1: Choosing Matching Rates mij

The equilibrium matching rates turn out to satisfy similar properties as in the two-country

case. In fact, with n countries, matching rates are such that mijmji = 1 and mkimijmjk =

1 (or equivalently mkimij = mkj). Since the equilibrium is analogous to that in the two-

country case, we need not go through its full derivation. We show in the Appendix that a

set of matching rates satisfying these conditions constitute an equilibrium in Stage 1.

The other properties of the equilibrium matching rates derived in the two-country case

apply here as well. In particular, with matching rates satisfying mijmji = 1 and
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mkimijmjk = 1, it is also the case that

n∑
i=1

1
1 +

∑n
j 6=i mji

=
n∑

i=1

D′
i(·)

B′
i(·)

= 1

Thus, equilibrium abatements are efficient and the marginal benefits of emissions are equal-

ized across all countries.

The total abatements of each country are again quasi-Lindahl abatement efforts. To see

this, note that country i’s quasi-Lindahl price D′
i/B′

i is equal to 1/(1+
∑n

j 6=i mji) by (12).

Using Ai = ai +
∑n

j=1 mijaj , mijmji = 1 and mkimij = mkj , country i’s quasi-Lindahl

abatement effort simplifies to the following after straightforward simplification:

1
1 +

∑n
j 6=i mji

(A∗
1 + · · ·+ A∗

n) = ai +
n∑

j 6=i

mijaj = A∗
i

Thus, country i’s marginal rate of substitution, 1/(1+
∑n

j 6=i mji), multiplied by the world’s

total abatements,
∑n

j=1 A∗
j , equals its total abatement before quota trading, A∗

i .

Finally, when mijmji = 1 and mkimij = mkj , 1/(1+
∑n

j 6=i mji) = mik/(1+
∑n

j 6=k mjk) for

all i and k. Each country faces equal direct and indirect costs of reducing the world’s emis-

sions by one unit. Each country is therefore indifferent between making direct abatements

or matching abatements.

The analysis of this section leads to the following:

Proposition 3. When there are n countries that can commit to matching the abatement

efforts of each other at country-specific rates, and emissions quota trading exists, the equi-

librium matching rates satisfy mijmji = 1 and mkimijmjk = 1 for i, j, k = 1, ..., n, parts i,

iii and iv of Proposition 1 hold, and the marginal benefits of emissions are equalized across

all n countries.

4.3 A Two-Period Model

In this section, we extend the analysis to a two-period setting and show that the three-

stage abatement process can induce full efficiency even in a dynamic context where current

emissions increase the stock of pollution that will exist in the future. For simplicity,
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we return to the two-country case. We assume that, in each period, countries can offer

to match each other’s abatement commitments in the current period before engaging in

emissions quota trading. Matching rates and direct abatement commitments determine

the number of period-specific emission quotas that each country holds. Trading takes

place in each period and countries are not permitted to transfer emission quotas across

periods. Therefore, the three-stage process of the one-period model is undertaken in each

period, and in the first period, both countries anticipate the impact of their decisions on

the second-period equilibrium.

In what follows, superscripts will denote time periods and subscripts will denote countries.

We normalize the initial stock of pollution to S0. In period 1, the actual emissions of

country 1 and country 2 are e1
1 and e1

2, respectively, while the initial stock S0 decays at

the rate γ, with 0 < γ < 1. Therefore, the stock of pollution at the end of period 1 is:

S1 = (1− γ)S0 + e1
1 + e1

2

Similarly, the stock of pollution at the end of period 2 is:

S2 = (1− γ)S1 + e2
1 + e2

2 = (1− γ)
[
(1− γ)S0 + e1

1 + e1
2

]
+ e2

1 + e2
2

The levels of emissions in the absence of any abatements are assumed to be constant in both

periods and equal to e1 and e2. Before characterizing the equilibrium of the abatement

process, let us briefly examine the social optimum in this two-period case.

The Social Optimum

The socially efficient levels of emissions of each country in each period can be characterized

by maximizing the discounted sum of country 1’s benefits net of damages over both periods,

subject to the constraint that the discounted sum of country 2’s net benefits equals some

given level Π2. As in Section 2, we allow lump-sum transfer of T from country 2 to country

1 in order to characterize efficient points along the first-best utility possibilities frontier.

The transfer is assumed to take place in the first period, although it makes no difference.

The social optimum is the solution to the following problem:

max
{e1

1,e1
2,e2

1,e2
2,T}

B1(e1
1)−D1(S1) + T + δ(B1(e2

1)−D1(S2))
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+λ
[
B2(e1

2)−D2(S1)− T + δB2(e2
2)− δD2(S2)−Π

2
]

where δ is the common discount factor and S1 and S2 are given by the expressions defined

above. The first-order conditions imply the following:

D′
1(S

2)
B′

1(e
2
1)

+
D′

2(S
2)

B′
2(e

2
2)

= 1,
D′

1(S
1) + δ(1− γ)D′

1(S
2)

B′
1(e

1
1)

+
D′

2(S
1) + δ(1− γ)D′

2(S
2)

B′
2(e

1
2)

= 1

B′
1(e

1
1) = B′

2(e
1
2), B′

1(e
2
1) = B′

2(e
2
2)

In period 2, efficient emissions are such the sum of the ratios of marginal damages to

marginal benefits of the two countries is equal to one. Efficient emissions in period 1

are such that the sum of the two countries ratios of period 1 marginal damages plus the

discounted and decay-adjusted period 2 marginal damages, over period 1 marginal benefits,

is equal to one. As well, marginal benefits of emissions are equalized across countries in

each period.

The Two-Period Equilibrium

In period 1, countries 1 and 2 offer matching rates m1
1 and m1

2 and make direct abatement

commitments a1
1 and a1

2, and similarly in period 2. Their actual emissions are:

e1
1 ≡ e1 − a1

1 −m1
1a

1
2 + q1

1 , e1
2 ≡ e2 − a1

2 −m1
2a

1
1 + q1

2

e2
1 ≡ e1 − a2

1 −m2
1a

2
2 + q2

1 , e2
2 ≡ e2 − a2

2 −m2
2a

2
1 + q2

2

These actual emissions result in stocks of pollution in each period given by:

S1 ≡ (1− γ)S0 + e1
1 + e1

2 = (1− γ)S0 + (e1 − a1
1 −m1

1a
1
2) + (e2 − a1

2 −m1
2a

1
1)

S2 ≡ (1− γ)S1 + e2
1 + e2

2 = (1− γ)[(1− γ)S0 + e1
1 + e1

2] + e2
1 + e2

2

= (1−γ)[(1−γ)S0++(e1−a1
1−m1

1a
1
2)+(e2−a1

2−m1
2a

1
1)]+(e1−a2

1−m2
1a

2
2)+(e2−a2

2−m2
2a

2
1)

We characterize the two-period equilibrium by backward induction starting with period 2.
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Period 2

Since emission quotas cannot be transferred across periods, the decisions in the first period

(a1
1, a1

2, m1
1, m1

2) will only affect the period 2 equilibrium through their effects on the

pollution stock at the end of the first period, S1. It is straightforward to see that, for

a given level of S1, the three-stage abatement process that countries face in period 2 is

essentially the same as in the basic one-period case, and the equilibrium will have the same

characteristics. In particular, the equilibrium in period 2 will be fully efficient, given the

pollution stock S1. Denote the efficient total abatements in the second period by A2∗
1 and

A2∗
2 , where A2∗

1 = a2
1 + m2

1a
2
2 and A2∗

2 = a2
2 + m2

2a
2
1. The demand for quotas by countries

1 and 2 satisfy B′
1(e1 − A2∗

1 + q2
1) = p2 and B′

2(e2 − A2∗
2 + q2

2) = p2, with ∂q2
i /∂A2

i = 1

and ∂q2
i /∂A2

j = 0 for i, j = 1, 2, and can be written as q2
1(p2, A2∗

1 ) and q2
2(p2, A2∗

2 ). In

equilibrium, q2
1(·) + q2

2(·) = 0 and p2(A2∗
1 , A2∗

2 ) = B′
1(e1 −A2∗

1 + q2
1) = B′

2(e2 −A2∗
2 + q2

2).

Given that the outcome in period 2 is fully efficient, the marginal effect of the period 1

pollution stock on total abatements in period 2 can be derived from the condition that

characterizes the social optimum:

f(·) ≡ D′
1(S

2)
B′

1(e
2
1)

+
D′

2(S
2)

B′
2(e

2
2)

≡
D′

1

(
(1− γ)S1 + e1 −A2∗

1 + e2 −A2∗
2

)
B′

1 (e1 −A2∗
1 + q2

1(·))
+

D′
2

(
(1− γ)S1 + e1 −A2∗

1 + e2 −A2∗
2

)
B′

2 (e2 −A2∗
2 + q2

2(·))
= 1

Differentiating the above and using ∂q2
i /∂A2

i = 1 and ∂q2
i /∂A2

j = 0 for i, j = 1, 2, we have:

fA2
1

= fA2
2

= −D′′
1 (S2)

B′
1(e

2
1)

− D′′
2 (S2)

B′
2(e

2
2)

, fS1 =
(1− γ)D′′

1 (S2)
B′

1(e
2
1)

+
(1− γ)D′′

2 (S2)
B′

2(e
2
2)

from which we obtain:
∂A2∗

i

∂S1
= − fS1

fA2∗
i

= 1− γ

Consequently, the change in the net benefit of country 1 in period 2 resulting from a change

in the stock of pollution at the end of period 1 is given by (using p2 = B′
1(e

2
1)):

d(B1(e2
1)−D1(S2)− p2q2

1)
dS1

= −(1− γ)
[
B′

1(e
2
1)−D′

1(S
2)
]

< 0
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A similar expression holds for country 2. An increase in the stock of pollution in period

1, of which a proportion (1 − γ) will remain in period 2, will induce an increase in the

total abatement of country 1 in period 2, reducing the period 2 net benefit of country 1 by

an amount equal to the difference between its benefit from emission and its own damages

from pollution
(
B′

1(e
2
1)−D′

1(S
2)
)
. Let Π2

1 (S1) and Π2
2 (S1) denote the second period net

benefits of countries 1 and 2, respectively.

Period 1

Since quota trading in the third stage does not affect the stock of pollution at the end of

period 1, the quota trading process has no impact on the second period. Therefore, the

quota trading equilibrium has the same properties as in the static one-period case, and

there is no need to characterize it again.

In Stage 2, country 1 chooses its direct abatement a1
1, taking matching rates (m1

1,m
1
2) and

country 2’s direct abatement a1
2 as given and anticipating the effect of a1

1 on the second-

period equilibrium, in order to maximize the discounted sum of its net benefits over both

periods. Thus, it solves the following:

max
{a1

1}
B1(e1

1)−D1(S1)− p1q1
1 + δΠ2

1 (S1)

for which the first-order condition is

F (·) ≡ −B′
1(e

1
1) + (1 + m1

2)D
′
1(S

1) + δ(1− γ)
[
−B′

1(e
2
1) + D′

1(S
2)
] [
−(1 + m1

2)
]

= 0

This condition can be written as

D′
1(S

1)
B′

1(e
1
1)
−

δ(1− γ)
[
D′

1(S
2)−B′

1(e
2
1)
]

B′
1(e

1
1)

=
1

1 + m1
2

The second term in the expression above is the discounted reduction in country 1’s second-

period net benefits resulting from higher first-period pollution as a ratio of the marginal

benefit of first period emissions. Country 1 chooses its level of direct abatement such

that the sum of this discounted cost and of the ratio of first-period marginal damages

to marginal benefits of emissions equals the effective cost to country 1 of reducing world
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emissions by one unit, given that its own abatements are matched at the rate m1
2 by

country 2. The solution to this condition gives the reaction function of country 1, which

can be shown to satisfy the following:

da1
1

da1
2

= −
Fa1

2

Fa1
1

= −1 + m1
1

1 + m1
2

The analog holds for country 2. Hence, as in the one-period case, reaction curves are linear

and parallel in the (a1, a2)–space for any matching rates (m1
1,m

1
2). As in the one -period

model, we could again show that the equilibrium matching rates in Stage 1 are such that

m1
1m

1
2 = 1, and that the subgame perfect equilibrium has same properties as in the one-

period case. Hence, the equilibrium replicates the social optimum derived earlier, so both

intra-temporal efficiency and inter-temporal efficiency are achieved. Total emissions are

efficient, and they are efficiently allocated across periods.

The results of this section are summarized below.

Proposition 4. In a two-period setting where both countries can commit to match each

others abatements and engage in emissions quota trading in both periods, the subgame

perfect equilibrium is such that:

i. The properties listed in Proposition 1 apply in each period;

ii. The marginal benefits of emissions are equalized across countries in both periods;

iii. Inter-temporal efficiency is achieved: emissions are efficiently allocated across periods.

5 Adding Contributions to an International Public Good

In this section, we explore how the introduction of an international public good provided

through the voluntary contributions of countries will affect the pollution abatement pro-

cess. For ease of exposition, we return to the basic one-period two-country case. Let the

level of provision of the international public good be denoted by G and the contributions

of each country by g1 and g2. Contributions are assumed to be perfect substitutes, so

G = g1 + g2.

Utility in country i is ui(G, xi), where xi is private consumption net of the benefits and
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damages of emissions. Utility is increasing and quasi-concave in both arguments. Both G

and xi are assumed to be normal, and the latter is given by

xi = wi − gi + Bi

(
ei − ai −miaj + qi

)
−Di

(
e1 − (1 + m2)a1 + e2 − (1 + m1)a2

)
− pqi

where wi is the initial endowment of country i. This formulation assumes that the benefits

of emissions, net of damages, as well as the revenues from emissions quota trading are

perfect substitutes for consumption.

The timing of decisions is important. We assume that countries choose their level of

pollution abatement first, and then contribute to the international public good. With this

order of decisions, we find that even without matching commitments and quota trading, the

levels of emissions are efficient and the marginal benefits of emissions are equalized across

countries. Although we will not go through the analysis of the case where contributions to

the public good are determined first, it is straightforward to show that, in this case, the

equilibrium of the abatement process will only be efficient if countries are making matching

rate commitments and are engaging in emission quota trading, as in the basic case without

contributions to a public good.

As will become apparent, with contributions to the public good determined after abatement

decisions, commitments to matching abatements and emission quota trading turn out to

be irrelevant so we can ignore them. The sequence of decisions is then simply as follows. In

Stage 1, the two countries simultaneously choose emission abatements ai. Both countries

then set their contributions to the international public good gi in Stage 2. We consider

Stage 2 first.

Stage 2: Choosing Contributions to the International Public Good gi

At the beginning of this stage, the wealth of the two countries are w1 + B1(e1 − a1) −

D1(e1 − a1 + e2 − a2) and w2 + B2(e2 − a2) − D2(e1 − a1 + e2 − a2), given the levels of

abatements (a1, a2) chosen in the previous stage. Country i chooses its contribution to

maximize ui(g1+g2, wi−gi +Bi(·)−Di(·)), taking the contribution of the other country as

given. Assuming an interior solution to public good contributions, gi is such that ui
G/ui

x =
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1. The provision of the public good is inefficiently low given that efficient contributions

would satisfy u1
G/u1

x + u2
G/u2

x = 1. More importantly, the well-known Neutrality Theorem

(Shibata, 1971; Warr, 1983; Bergstrom, Blume, and Varian, 1986) implies that the net

private consumptions of the two countries x1 and x2 and the level of public good provision

G will depend only on aggregate wealth, and not on its distribution across the two countries.

Aggregate wealth here is w1 + w2 + I, where

I ≡ B1(e1 − a1)−D1(e1 − a1 + e2 − a2) + B2(e2 − a2)−D2(e1 − a1 + e2 − a2)

Thus, the two countries’ utilities after the second stage can be written as u1[G(I), x1(I)]

and u2[G(I), x2(I)], since w1 +w2 is constant. Given that G, x1, and x2 are normal goods,

and that utilities are increasing in both arguments, maximizing I will also maximize the

utility of each country. As a result, the objectives of the two countries in Stage 1 will be

perfectly aligned.

Stage 1: Choosing Emission Abatements ai

In this stage, the countries choose their abatement efforts, anticipating the outcome

of Stage 2. The problem of country i consists in choosing ai, given aj , to maximize

ui[G(I), xi(I)], and the first-order condition implies that

−B′
i(ei − ai) + D′

i(e1 − a1 + e2 − a2) + D′
j(e1 − a1 + e2 − a2) = 0, i, j = 1, 2

It is immediately clear that the first-order conditions for the two countries taken together

coincide with the condition characterizing the social optimum derived in Section 2, i.e.

D′
1/B′

1 + D′
2/B′

2 = 1, as well as the condition that B′
1 = B′

2. Remarkably, the equilibrium

is such that the levels of emissions are efficient and the marginal benefits of emissions are

equalized across countries, despite the fact that countries do not commit to match each

other’s abatements and there is no emission quota trading. Moreover, it can readily be

shown that even if countries are able to commit to matching the abatement efforts of each

other, they cannot derive any gain from making such commitments.

The main results of this section are stated below.
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Proposition 5. If countries make voluntary contributions to pollution abatement and then

contribute voluntarily to an international public good, the equilibrium has the following

properties:

i. If contributions to the public good are strictly positive for both countries, the levels

of emissions are efficient and the marginal benefits of emissions are equalized across

countries without any matching rate commitments and quota trading;

ii. Countries cannot gain by offering strictly positive matching rates;

ii. Contributions to the public good are inefficient.

6 Imperfect Substitutability of Emissions in Damage Functions

In this section, we show that the matching mechanism may also achieve efficiency in

abatements even if the emissions of each country are not perfect substitutes in the dam-

age functions. To do so, we go back to the basic setting of Section 3, but assume that

the damage function of country i is given by Di(e1, e2). We first characterize the social

optimum in this case.

The Social Optimum

Efficient emissions will solve the following Pareto optimization problem:

max
{e1,e2}

B1(e1)−D1(e1, e2) + λ
[
B2(e2)−D2(e1, e2)−Π2

]

Combining the first-order conditions, we get

D1
1(e1, e2)
B1

1(e1)
+

D2
2(e1, e2)
B2

1(e2)
+

D1
2(e1, e2)D2

1(e1, e2)−D1
1(e1, e2)D2

2(e1, e2)
B1

1(e1)B2
1(e2)

= 1 (13)

The last term on the left side of the condition above will be negative if countries suffer

higher marginal damages from their own emissions than from the emissions of the other

country, and will tend to zero as emissions become perfect substitutes.
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The Decentralized Equilibrium

In Stage 2, each country chooses its level of abatements, taking matching rates as given.

The problem of country 1 is the following:

max
{a1}

Π1 = B1(e1 − a1 −m1a2)−D1(e1 − a1 −m1a2, e2 − a2 −m2a1)

The first-order condition is

F 1 ≡ −B1
1(e1 −A1) + D1

1(e1 −A1, e2 −A2) + m2D
1
2(e1 −A1, e2 −A2) = 0 (14)

The problem of country 2 is analogous. In an interior solution (including at the boundary),

country 1’s reaction curve in (a1, a2)−space satisfies the following (differentiating the first-

order condition above):

da1

da2
= −

F 1
a2

F 1
a1

= −m1B
1
11 −m1D

1
11 − (1 + m1m2)D1

12 −m2D
1
22

B1
11 −D1

11 − 2m2D1
12 −m2

2D
1
22

Note that if m1m2 = 1, we have F 1
a1

= m2F
1
a2

, and:

da1

da2
= −1 + m1

1 + m2

Similarly, when m1m2 = 1, the slope of country 2’s reaction function is:

da2

da1
= −1 + m2

1 + m1

Therefore, the slopes of the two reaction curves in (a1, a2)−space are the same when

m1m2 = 1. As in the basic model analyzed in Section 3, matching rates for which Stage

2 reaction curves coincide and m1m2 = 1 will constitute a subgame perfect equilibrium,

provided that

H R 0 ⇐⇒ 1−m1m2 R 0.

The condition under which this will hold is derived in the Appendix.

We can readily verify that, when m1m2 = 1 and reaction curves coincide, the first-order

conditions from the Stage 2 problems of both countries together yield condition (13) char-

acterizing the Pareto efficient levels of emissions. Moreover, the properties of the subgame
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perfect equilibrium derived in Section 3 will all apply in the current case where emissions

are imperfect substitutes in the damage functions.

7 Concluding Remarks

Our purpose in this paper has been to characterize a process of pollution emissions re-

duction in which countries can commit to match each others’ abatement efforts and may

subsequently engage in emissions quota trading. The mechanism that we considered is

non-cooperative in the sense that each country, acting in its own self-interest, voluntarily

offers to match the emission abatements of the other country’s at some announced rates,

anticipating the subsequent abatement equilibrium and the outcome of emissions quota

trading. The analysis has shown that this mechanism leads to an efficient outcome. The

level of emissions is efficient, and quota trading leads to an equalization of the marginal

benefits of emissions across countries. This result holds independently of the number of

countries involved, and in an environment where countries have different abatement tech-

nologies as well as different benefits from emissions. Efficient levels of emissions also occur

even if countries’ emissions are imperfect substitutes in the damage function of each coun-

try. In a dynamic setting where the quality of the environment depends on cumulative

emissions over two periods, the mechanism is found to achieve both intra-temporal and

inter-temporal efficiency.

The mechanism also has appealing distributional implications. The initial allocation of

emission quotas across countries (before trading) emerges endogenously without central

coordination and reflects each country’s net marginal benefits from reducing pollution.

This result also implies that all countries will find it in their own interest to participate.

Countries with relatively low net marginal valuations for pollution reduction will face

relatively low effective costs of abatement, given the set of equilibrium matching rates.

We extended the model by considering the case where countries are voluntarily contribut-

ing to an international public good in addition to undertaking pollution abatement. We

found that if public good contributions are determined after abatement efforts, the level

of emissions is efficient even in the absence of any matching abatement commitments. In
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fact, the incentive for countries to match the abatements of each other vanishes entirely.

Moreover, the marginal benefits of emissions are equalized across countries even in the

absence of emissions quota trading.

Throughout, our analysis has assumed that all countries were able to commit to match the

other countries’ abatements. It would be interesting to extend the analysis to characterize

the pollution abatement process when only a subset of countries are able to commit. In this

case, different forms of commitment could emerge as well as different distributions of the

gains from achieving more efficient allocations. What determines the commitment ability

of countries remains an open question. The recent papers of Gersbach and Winkler (2007)

and Gerber and Wichardt (2009) suggest potential mechanisms to address that issue.
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Appendix

Equilibrium Matching Rates in the Two-Country Case

We show here that the subgame-perfect equilibrium in the basic two-country case will be

such that m1m2 = 1 and the two stage 2 reaction curves coincide. We consider separately

outcomes with m1m2 <,>,= 1, in each case allowing for both corner and interior solutions

in stage 2. When corner solutions apply, we consider the case where country 2’s reaction

curve is outside 1’s so a2 > 0, a1 = 0, with D′
2/B′

2 = 1/(1+m1) and D′
1/B′

1 < 1/(1+m2).

It is apparent that the same results extend to the case where a1 > 0, a2 = 0.

Case i) m1m2 < 1

If the stage 2 equilibrium is interior, m1m2 < 1 implies that H > 0 by (5). By (8), both

countries will want to increase m1 so this cannot be an equilibrium.

Suppose the equilibrium is at a corner with a2 > 0, a1 = 0. There is no cost to country 2 of

increasing m2 until country 1’s stage 2 first-order condition is just binding. At this point

we have an interior solution. If this occurs while m1m2 < 1, both countries will want to

increase mi. Thus, m1m2 < 1 cannot be an equilibrium. If country 1’s stage 2 first-order

condition does not bind before m1m2 > 1, then the outcome falls into Case ii) below.

Case ii) m1m2 > 1

If the stage 2 equilibrium is interior, m1m2 > 1 implies that H < 0 by (5), so again

both countries will want to increase mi by (8). Note that, since interior stage 2 equilibria

are unstable, an increase in either matching rate will lead to a stable corner solution in

which only one country commits to ai > 0. Therefore, an interior stage 2 equilibrium with

m1m2 > 1 cannot occur.

Suppose the equilibrium is at a corner with a2 > 0, a1 = 0. Then, D′
1/B′

1 < 1/(1 + m2) <

m1/(1 + m1), where the latter inequality follows from m1m2 > 1. Country 1 wants to

reduce abatements, and since it cannot do so directly, it will do so indirectly by decreasing

m1. Formally, abatements are determined by the first-order condition on country 2’s choice

of a2, given m1. Using A = (1 + m1)a2, we can write this as D′
2(e1 + e2 − A)/B′

2(e2 −
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A/(1 + m1)) = 1/(1 + m1). Differentiating with respect to m1, we obtain:

dA

dm1
=

(1 + m1)B′ −AB′′

(1 + m1)2D′′ − (1 + m1)B′′ > 0

Country 1’s net benefit can be written in terms of A as Π1 = B1(e1 −m1A/(1 + m1)) −

D1(e1 + e2 −A). Differentiating with respect to m1:

dΠ1

dm1
=
(
− m1

1 + m1
B′

1 + D′
1

)
dA

dm1
−B′

1

A

(1 + m1)2
< 0

since as we mentioned D′
1/B′

1 < m1/(1 + m1). Therefore, country 1 will want to reduce

m1 so this cannot be an equilibrium.

Case iii) m1m2 = 1

Begin with the case where there is a corner solution with a2 > 0, a1 = 0. Using m1m2 =

1, we have D′
1/B′

1 < 1/(1 + m2) = m1/(1 + m1). Country 1 would like to reduce its

contribution, and can do so only by decreasing m1. Using the same argument as in Case

ii) above, a reduction in m1 when country 2 is the only contributor will reduce A and

increase Π1. Specifically, the above expression again yields dΠ1/dm1 < 0 since D′
1/B′

1 <

m1/(1 + m1). Thus, this cannot be an equilibrium.

Finally, consider the case where reaction curves overlap with m1m2 = 1. We can show

that neither country will want to change its matching rate. Suppose first that country

1 increases m1 by a small amount. Country 2’s reaction curve will then be everywhere

outside that of country 1, so a1 = 0, a2 > 0. This is so because, first, from (4) and similar

expressions for country 2, the a1−intercept of country 1’s reaction curve does not change

(since da1/dm1|F 1=0 = 0 at a2 = 0), while the a1−intercept of country 2’s reaction curve

increases (since da2/dm1|F 2=0 > 0 at a2 = 0). Second, with m1m2 > 1, at any interior

solution the slope of 2’s reaction curve is steeper than that of 1’s, because H < 0 in (5)

and an interior solution is unstable. Therefore, given that 2’s intercept on the horizontal

axis is greater than 1’s, the reaction curves cannot cross in the interior (even though the

reaction curves are no longer linear).

Next, we can show in three small steps that country 1 is worse off than before the deviation.

First, to compare country 1’s payoffs before and after the unilateral increase in m1, we
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can think of country 1 as starting from the corner where a1 = 0, a2 > 0, m1m2 = 1 and

the reaction curves overlap and increasing its matching rate by a small amount. This is

because, when m1m2 = 1 and the reaction curves overlap, each combination of a1 and a2

along the common reaction curve yields the same payoff to a country, as we have shown

before, and it does not matter for the purpose of welfare comparison which combination

we choose as a reference. At this corner allocation, to examine the effect of an increase in

m1 on a2, we can use only country 2’s first-order condition to do comparative statics: a1

is already zero in this corner allocation, where F 1 = 0 just holds, and a1 remains zero as

m1 increases and F 1 becomes negative; however, a2 is always positive and F 2 = 0 always

holds as m1 increases. In other words, at the corner where a1 = 0, a2 > 0, m1m2 = 1

and the reaction curves overlap, and where country 1 is considering an increase in m1, m1

already has no effect on a1.

Second, as we showed in the corner equilibrium under Case ii) above, total abatements

rise with m1: dA/dm1 > 1.

Third, country 1 is made worse off from an increase in m1 starting at m1m2 = 1 and

a1 = 0. As above, country 1’s net benefit can be written, using m1a2 = Am1/(1 + m1) as

Π1 = B1(e1 −m1A/(1 + m1)) −D1(e1 + e2 − A). Differentiating with respect to m1, we

obtain, using m1/(1 + m1) = 1/(1 + m2),

dΠ1

dm1
=
(
− B′

1

1 + m2
+ D′

1

)
dA

dm1
−B′

1

A

(1 + m1)2
= −B′

1

A

(1 + m1)2
< 0

since B′
1/(1 + m2) = D′

1 at the starting point. Therefore, an upward deviation makes

country 1 worse off.

Finally, consider a reduction in m1 by country 1. First, note that by reasoning similar

to the above, country 2’s reaction curve will be everywhere inside that of country 1, so

a1 > 0, a2 = 0 after a downward deviation. To see this, note that with m1m2 < 1,

at any interior solution the slope of 2’s reaction curve is flatter than that of country 1.

Therefore, given that 2’s intercept on the horizontal axis is smaller than 1’s, the reaction

curves cannot cross in the interior (even though they are nonlinear). After the deviation,

country 1’s direct abatement remains the same, since the a1-intercept of its reaction curve
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does not change. Country 1’s total abatement A1 = a1 and the world’s total abatement

A = (1 + m2)a1 are the same as before. Thus, country 1 is just as well off as before the

deviation.

Therefore, country 1 has no incentive to change m1 starting from an allocation with

m1m2 = 1 and overlapping Stage 2 reaction curves. The same will apply for country

2. The allocation is therefore an equilibrium. Since there are unique values on m1 and m2

for which m1m2 = 1 and the reaction curves overlap, as explained in the characterization

of Stage 2 in Section 3, the equilibrium is unique.

Equilibrium Matching Rates with Quota Trading

Analogously to the basic setting without quota trading, we now show that matching rates

for which m1m2 = 1 and reaction curves coincide also constitute an equilibrium in the

presence of a quota trading system. To see this, consider first a small increase in m1 starting

with m1m2 = 1 and overlapping reaction curves. By differentiating (11) and the analogous

condition for country 2, the a1-intercept of country 1’s reaction curve remains unchanged,

since da1/dm1|F 1=0 = −F 1
m1

/F 1
a1

= −a2/(1 + m1) which is equal to zero at a2 = 0, and the

a1-intercept of country 2’s reaction curve moves right, since da2/dm1|F 2=0 = −F 2
m1

/F 2
a2

=

−a2/(1 + m1) − D′
2/F 2

a2
(= −D′

2/F 2
a2

> 0 at a2 = 0). Given that the reaction curves

remain parallel, country 2’s reaction curve necessarily moves outside that of country 1.

As in the case without quota trading, when m1m2 = 1, each country’s net benefit is the

same for any combination of a1 and a2 along the common reaction curve. Therefore, we can

assume that we are initially at an allocation with a1 = 0 and a2 > 0, so that A = (1+m1)a2

and abatements are determined by country 2’s Stage 2 first-order condition. In this case,

country 1’s level of abatement is m1a2 = Am1/(1 + m1) and its net benefit is

Π1 = B1

(
e1 −

m1A

1 + m1
+ q1(p, A1)

)
−D1

(
e1 + e2 −A

)
− pq1(p, A1)

Differentiating with respect to m1, using ∂q1/∂m1 = a2 and p = B′
1 from the quota

trading equilibrium in Stage 3, and B′
1/(1+m2) = D′

1 from Stage 2 where m1/(1+m1) =
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1/(1 + m2), we obtain,

dΠ1

dm1
=
(
− m1B

′
1

1 + m1
+ D′

1

)
dA

dm1
−B′

1

A

(1 + m1)2
=

dΠ1

dm1
= −B′

1

A

(1 + m1)2
< 0

The increase in country 1’s matching rate will reduce its net benefit.

If country 1 were to reduce m1, starting with m1m2 = 1 and overlapping reaction curves,

its reaction curve would move outside that of country 2 and both reaction curves would

remain parallel. The Stage 2 equilibrium would be such that a1 > 0 and a2 = 0, with

A = (1 + m2)a1. Moreover, as shown above, a change in m1 leaves unchanged the a1-

intercept of country 1’s reaction curve. As a result, the reduction in m1 by country 1

would have no effect on either countries’ total abatements or net benefits.

This demonstration also holds for a change in country 2’s matching rate. Therefore, when

m1m2 = 1 and reaction curves coincide, neither country has any incentive to change its

matching rate and the allocation is an equilibrium.

The Multi-Country Case

Start by examining how changes in one country’s matching rates affect all countries’ reac-

tion functions. Differentiating country i’s Stage 2 first-order condition (12), we obtain:

dai

dak

∣∣∣∣
F i=0

= −
1 +

∑
j 6=k mjk

1 +
∑

j 6=i mji
,

dai

dmik

∣∣∣∣
F i=0

= − ak

1 +
∑

j 6=i mji
(= 0 at ak = 0)

dai

dmki

∣∣∣∣
F i=0

= −
D′

i − ai(1 +
∑

j 6=i mji)D′′
i

(1 +
∑

j 6=i mji)2D′′
i

(> 0 at ai = 0)

For expositional convenience, consider the case of three countries. Suppose that matching

rates satisfy mijmji = 1 and mkimij = mkj , for i, j, k = 1, 2, 3, and that reaction functions

coincide. Figure 2 depicts the countries’ reaction functions. They coincide in the interior

and correspond to the triangle PQS. Analogously to the two-country case with quota

trading, reaction functions are parallel planes in the interior for any set of matching rates.

If matching rates are such that reaction functions do not coincide, the country with the

reaction function that is furthest from the origin will be the only one to undertake direct

abatement, which will equal the own-axis intercept of its reaction function.
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Starting with matching rates for which mijmji = 1 and mkimij = mkj and reaction func-

tions coincide, suppose country 1 increases one of its matching rates, say m12. For coun-

try 1’s reaction function, da1/da2|F 1=0 increases and da1/da3|F 1=0 remains unchanged;

da1/dm12|F 1=0 = 0 at a2 = 0, so the segment PS in Figure 2 remains part of country 1’s

reaction function. Thus, country 1’s new reaction function will move to a position such

as PQ′′S in the interior. For country 2, da2/da1|F 2=0 and da2/da3|F 2=0 both decrease;

da2/dm12|F 2=0 > 0 at a2 = 0, so country 2’s reaction function shift outwards from seg-

ment PS. The own-axis intercept of country 2’s reaction function may increase or decrease.

Thus, country 2’s new reaction function will move to a position such as P ′QS′ or P ′Q̃S′

in the interior. Finally, for country 3, da3/da2|F 3=0 increases and da3/da1|F 3=0 remains

unchanged; da3/dm12|F 3=0 = 0 at a2 = 0, so the segment PS is still part of the reaction

function. In fact, country 3’s new reaction function continues to coincide with that of

country 1, at a position such as PQ′′S. Overall, the increase in m12 results in country 2’s

reaction function moving above those of countries 1 and 3, while all three remain parallel.

The new Stage 2 equilibrium will be at country 2’s new a2-intercept where a1 = a3 = 0.

Note that if country 1 were to increase m13 as well, reaction functions would shift in an

analogous fashion. In this case, the country for which the reaction function would shift

out the furthest (i.e. the one that would face the largest matching rate increase) would be

the country undertaking direct abatements in the subsequent Stage 2 equilibrium.

Suppose now that country 1 decreases m12. The effects on the countries’ reaction functions

would be the opposite to those described above. The reaction functions of countries 1 and

3 would continue to coincide and would move to a position such as PQ′S, while country

2’s reaction function would move to a position such as either P ′′Q̃S′′ or P ′′QS′′. The

new Stage 2 equilibrium could be anywhere on segment PS, along which a2 = 0 and the

abatements and net benefits of each country are the same as before the change in m12.

If country 1 were to reduce m13 as well, then the reaction functions of countries 2 and

3 would move everywhere below country 1’s reaction function. The Stage 2 equilibrium

would be at the a1-intercept of country 1’s reaction function where the abatements and

net benefits of all countries remain unchanged.
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Finally, if country 1 were to increase one matching rate, say m12, and reduce the other,

m13, country 2’s reaction function would move everywhere above that of country 1 while

country 3’s reaction function would move everywhere below. The Stage 2 equilibrium

would move to the new a2-intercept of country 2’s reaction function with a1 = a3 = 0.

As in the two-country case, no country can make itself better off by changing any matching

rate when reaction functions coincide. To see this in the n-country case, note first that

the Stage 2 equilibrium is indeterminate when mijmji = 1 and mkimij = mkj . Therefore,

let us characterize the effect of an increase in mik by using as an initial allocation the case

where only country k is making direct abatements, so ak > 0 and ai = 0 for all i = 1, ..., n,

i 6= k. As shown in the three-country case, country k will remain the only one making

direct abatements after the increase in mik. In this case, country i’s abatement is mikak

and total world abatement is A =
(
1 +

∑n
j 6=k mjk

)
ak. The abatement of country k can

therefore be written as ak = A/
(
1 +

∑n
j 6=k mjk

)
.

Consider country i’s net benefit which is given by the following:

Πi = Bi

(
ei −

mikA

1 +
∑n

j 6=k mjk
+ qi(p, Ai)

)
−Di

 n∑
j=1

ej −A

− pqi(p, Ai)

Differentiating with respect to mik and using p = B′
i, we obtain:

dΠi

dmik
=
−B′

iA
(
1 +

∑n
j 6=k mjk −mik

)
(
1 +

∑n
j 6=k mjk

)2 +

 −B′
imik(

1 +
∑n

j 6=k mjk

) + D′
i

 dA

dmik

Noting that when mijmji = 1 and mkimij = mkj , we have mik/(1 +
∑n

j 6=k mjk) =

1/(1 +
∑n

j 6=i mji), the above can be rewritten as

dΠi

dmik
=
−B′

iA
(
1 +

∑n
j 6=k mjk −mik

)
(
1 +

∑n
j 6=k mjk

)2 +

 −B′
i(

1 +
∑n

j 6=i mji

) + D′
i

 dA

dmik

Given that (12) holds at the initial allocation, the above reduces to

dΠi

dmik
=
−B′

iA
(
1 +

∑n
j 6=k mjk −mik

)
(
1 +

∑n
j 6=k mjk

)2 < 0
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Therefore, no country would have an incentive to increase its matching rate. Finally, as

shown above for the three-country case, when mijmji = 1 and mkimij = mkj , a reduction

in any country’s matching rate would leave each country’s total abatement and net benefit

unchanged. Hence, the set of matching rates satisfying these conditions constitute an

equilibrium.

Imperfectly Substitutable Emissions

By differentiating equation (14), we can show that H = F 1
a1

F 2
a2
−F 1

a2
F 2

a1
= (1−m1m2)K,

where

K = B1
11B

2
11 −B1

11D
2
12 −m1B

1
11D

2
22 −D1

11B
2
11 + D1

11D
2
12 + m1D

1
11D

2
22 −m2D

1
12B

2
11

−D1
12D

2
11 + (m2 −m1)D1

12D
2
12 + m1m2D

1
12D

2
22 −m2D

1
22D

2
11 −m1m2D

1
22D

2
12 R 0

in general. If K > 0, H will have the same sign as (1−m1m2). Then, as in the basic case

with perfectly substitutable emissions, interior Stage 2 equilibria will be stable if m1m2 < 1

and unstable if m1m2 > 1. In this case, the demonstration that we used earlier, to show

that matching rates for which m1m2 = 1 and Stage 2 reaction curves coincide is the unique

subgame perfect equilibrium in the basic case of Section 3, will also apply with emissions

that are imperfectly substitutable in each country’s damage function. However, if K < 0,

that demonstration may not hold.
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Figure 1. Stage 2 reaction curves
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Figure 2. Stage 2 reaction curves with three countries
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