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Abstract

Bayesian analysis of a stochastic volatility model with a generalized hyperbolic (GH)
skew Student’s t-error distribution is described where we first consider an asymmetric
heavy-tailness as well as leverage effects. An efficient Markov chain Monte Carlo estima-
tion method is described exploiting a normal variance-mean mixture representation of
the error distribution with an inverse gamma distribution as a mixing distribution. The
proposed method is illustrated using simulated data, daily TOPIX and S&P500 stock
returns. The model comparison for stock returns is conducted based on the marginal
likelihood in the empirical study. The strong evidence of the leverage and asymmetric
heavy-tailness is found in the stock returns. Further, the prior sensitivity analysis is
conducted to investigate whether obtained results are robust with respect to the choice
of the priors.

Key words: generalized hyperbolic skew Student’s t-distribution, Markov chain Monte
Carlo, Mixing distribution, State space model, Stochastic volatility, Stock returns.



1 Introduction

It has been argued that the financial time series data such as stock returns and foreign
exchange returns have several properties which depart from a normality assumption. Major
characteristics of return distributions for financial variables are the skewness, heavy-tailness
and volatility clustering with leverage effects. These properties are crucial not only for
describing return distributions but also for the asset allocation, option pricing, forecasting
and risk management.

As a promising approach to model the flexible skewness and heavy-tailness, the gener-
alized hyperbolic (GH) distribution proposed by Barndorff-Nielsen (1977) has recently at-
tracted attention in financial econometrics since it includes a very broad parametric class of
distributions such as normal, hyperbolic, normal inverse Gaussian (NIG) and skew Student’s
t-distributions and it is closed under an affine transformation, conditioning and marginaliza-
tion. Several studies have investigated the skewness and heavy-tailness of financial market
variables using the subclass of the GH distribution: the hyperbolic distribution (Eberlein
et al. (1998)), the GH diffusion process (Rydberg (1999)), GH skew Student’s t-distribution
(Hansen (1994), Fernández and Steel (1998), Aas and Haff (2006)) for the unconditional
return distribution.

On the other hand, regarding the volatility clustering, the stochastic volatility (SV)
model has been widely used to model a time-varying variance of time series in financial
econometrics (e.g., Ghysels et al. (2002), Shephard (2005)), and various extensions of the
simple SV model with a normal error (SV-Normal) have been discussed in the past literature.
For example, to describe the heavy-tailness of the asset return distribution in the SV context,
heavy-tailed errors are often incorporated using such as Student’s t-distribution (Chib et al.
(2002), Eraker et al. (2003), Berg et al. (2004), Yu (2005), Omori et al. (2007), Nakajima and
Omori (2009)) and NIG distribution (Barndorff-Nielsen (1997), Andersson (2001)). Also,
the SV model with jump diffusions for stock returns have been considered (Eraker (2004),
Chernov et al. (2003) and Raggi and Bordignon (2006)). The comparison of these models
using S&P500 and TOPIX daily returns in Nakajima and Omori (2009) showed that the SV
model with symmetric Student’s t-errors (SVt) model performs better than the SV model
with jumps or both jumps and Student’s t-errors.

This paper proposes, first in the literature to the best of our knowledge, an efficient
Bayesian estimation method of the SV model with both leverage and asymmetrically heavy-
tailed error using the GH skew Student’s t-distribution. It includes the SVt and SV-Normal
models with and without leverage as special cases. The GH skew Student’s t-distribution is
one of a subclass in the GH distribution, and well studied in literature (e.g., Prause (1999),
Jones and Faddy (2003), Aas and Haff (2006)). Although the GH skew Student’s t-density
itself can be easily estimated by the maximum likelihood estimation for a time-independent
model, it is difficult to implement for the SV model due to many latent volatility variables.
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It requires a computational burden to repeat the particle filtering many times to evaluate
the likelihood function for each set of parameters until we find the maximum. Alternatively,
we develop a novel Markov chain Monte Carlo (MCMC) algorithm for a precise and efficient
estimation of the SV model with leverage and asymmetrically heavy-tailed error using the
GH skew Student’s t-distribution.

There are various types of skew t-distributions in the literature (e.g., Hansen (1994),
Fernández and Steel (1998), Prause (1999), Jones and Faddy (2003), Azzalini and Capitanio
(2003), Aas and Haff (2006)). Among them, the GH skew Student’s t-error distribution is
simple, flexible and easy to be incorporated into the SV model for a Bayesian estimation
scheme using the MCMC algorithm that we develop in this paper. The key feature to
implement an efficient MCMC algorithm for our proposed model is to express the GH
skew Student’s t-distribution as a normal variance-mean mixture of the GIG distribution.
Specifically, we consider an inverse gamma distribution as a mixing distribution among the
class of GIG distribution to nest and extend various existing SV models. We also show that
the choice of the parameterization of the mixing distribution is important for an efficient
algorithm. The estimation scheme is illustrated using simulated data and daily stock return
data.

The rest of the paper is organized as follows. In Section 2, we describe an efficient
MCMC algorithm in detail for the SV model with leverage and asymmetrically heavy-
tailed error using GH skew Student’s t-distribution. Section 3 illustrates our proposed
method using simulated data. We also examine an alternative parameterization in the GH
skew Student’s t-distribution. In Section 4, the proposed model is applied to S&P500 and
TOPIX daily returns data and the model comparison is provided among the competing SV
models. Finally Section 5 concludes.

2 SV model with GH skew Student’s t-distribution

2.1 The model

A basic SV model with leverage and a normal error is given by

yt = εt exp(ht/2), t = 1, . . . , n,

ht+1 = µ + ϕ(ht − µ) + ηt, t = 0, . . . , n − 1,(
εt

ηt

)
∼ N(0, Σ), Σ =

(
1 ρσ

ρσ σ2

)
, (1)

where yt is an asset return, and ht is an unobserved log-volatility. We assume |ϕ| < 1 for a
stationarity of the log-volatility process, and the initial value, h1, is assumed to follow the
stationary distribution by setting h0 = µ, and η0 ∼ N(0, σ2/(1 − ϕ2)). The parameter ρ
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measures the correlation between εt and ηt. When ρ < 0, it refers to a so-called leverage
effect, a drop in the return followed by an increase in the volatility (Yu (2005), Omori et al.
(2007)).

To model the leverage and asymmetric heavy-tailness jointly, we replace a normal ran-
dom variable εt in (1) by a GH random variable wt. The random variable, wt, can be
written in the form of the normal variance-mean mixture as

wt = µw + βzt +
√

ztϵt, ϵt ∼ N(0, 1), zt ∼ GIG(λ, δ, γ). (2)

As pointed out in the previous literature (e.g., Prause (1999), Aas and Haff (2006)), the pa-
rameters of the GH distribution are difficult to estimate due to the flatness of the likelihood
function, and ‘. . . some parameters are hard to separate and the likelihood function may
have several local maxima’ (Aas and Haff (2006)) even for a subclass, a GH skew Student’s
t-distribution, where λ = −ν/2 (ν > 0) and γ = 0. Thus we assume δ =

√
ν, which yields

zt ∼ GIG(−ν/2,
√

ν, 0), or equivalently IG(ν/2, ν/2) where IG denotes the inverse gamma
distribution. Further, we assume E(wt) = 0, E(w2

t ) < ∞ by setting µw = −βµz where
µz ≡ E(zt) = ν/(ν − 2) and ν > 4. The validity of this assumption will be discussed in
Section 3.3 in comparison with an alternative parameterization.

Using this GH Skew Student’s t distribution, we propose the SV model (SVSKt model,
hereafter) formulated as

yt = {β(zt − µz) +
√

ztεt} exp(ht/2), t = 1, . . . , n, (3)

ht+1 = µ + ϕ(ht − µ) + ηt, t = 0, . . . , n − 1, (4)

zt ∼ IG(ν/2, ν/2), (5)

where (εt, ηt) follows (1). The ν > 4 is the degree of freedom and unknown to be estimated.
When β ≡ 0, the model reduces to the SV model with symmetric Student’s t-distribution
(denoted SVt model), which is widely analyzed in literature (e.g., Chib et al. (2002), Eraker
et al. (2003), Yu (2005), Omori et al. (2007)).

To interpret the parameters (β, ν) in relation to the skewness and heavy-tailness, the GH
skew Student’s t-densities are plotted using several combinations of the parameter values
in Figure 1. In Figure 1(i), the densities are drawn using β = 0, −1 and −2 with ν fixed
equal to 10. As mentioned, β = 0 corresponds to a symmetric Student’s t-density. The
lower value of β implies a more negative skewness or left-skewness as well as heavier tails.
Figure 1(ii) shows the densities using ν = 5, 10 and 15 with β fixed equal to −2. As ν

becomes larger, the density becomes less skewed and has lighter tails. Hence the skewness
and heavy-tailness are determined jointly by the combination of the parameter values of β

and ν.
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Figure 1: The GH skew Student’s t-distribution. (i) ν = 10 fixed; β = 0 (symmetric t), −1
and −2. (ii) β = −2 fixed; ν = 5, 10 and 15.

We note that there are several definitions for the skew t-distribution in the literature
(e.g., Hansen (1994), Fernández and Steel (1998), Prause (1999), Jones and Faddy (2003),
Azzalini and Capitanio (2003)). For example, Aas and Haff (2006) overviews other skew dis-
tributions with heavy tails including several definitions of the skew Student’s t-distributions.
We could incorporate other skew Student’s t-distributions or a more general class of the GH
distribution into the SV model. However, as we mentioned, introducing more parameters
would lead to an overparameterization since the second moment of the return distribution
is already modeled as a latent stochastic process in the SV model. Therefore, there would
be not so much room to obtain thoughtful estimates from additional parameters.

Our formulation (3) is not only simple but suitable for the Bayesian estimation scheme
using the MCMC algorithm that we propose in this paper. The key feature in our for-
mulation of the model is to express the skew Student’s t-distribution in the form of the
normal variance-mean mixture as stated in (2). We regard the variable zt following the
mixing distribution as a latent variable to accomplish a novel construction of the MCMC
algorithm in the context of Bayesian inference. The conditional posterior distribution of
each parameter reduces to much more tractable form conditional on zt than the case when
the model is considered in the direct likelihood form of the skew Student’s t-distribution.
Given other parameters, we can draw sample from the conditional posterior distribution of
zt for t = 1, . . . , n. The next section describes our MCMC algorithm in detail.
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2.2 MCMC algorithm

Let θ = (ϕ, σ, ρ, µ, β, ν), y = {yt}n
t=1, h = {ht}n

t=1, z = {zt}n
t=1. For prior distributions of µ

and β, we assume

µ ∼ N(µ0, v
2
0), β ∼ N(β0, σ

2
0), (6)

and we let π(ϕ), π(ϑ), π(ν) denote prior probability densities of ϕ, ϑ ≡ (σ, ρ)′ and ν

respectively. We draw random samples from the posterior distribution of (θ, h, z) given y

for the SVSKt model using the MCMC method (e.g., Chib and Greenberg (1995), Tierney
(1994)) as follows:

1. Initialize θ, h and z.

2. Generate ϕ |σ, ρ, µ, β, ν, h, z, y.

3. Generate (σ, ρ) |ϕ, µ, β, ν, h, z, y.

4. Generate µ |ϕ, σ, ρ, β, ν, h, z, y.

5. Generate β |ϕ, σ, ρ, µ, ν, h, z, y.

6. Generate ν |ϕ, σ, ρ, µ, β, h, z, y.

7. Generate z | θ, h, y.

8. Generate h | θ, z, y.

9. Go to 2.

In the following subsections, we show each sampling step in detail.

2.2.1 Generation of the parameters (ϕ, σ, ρ, µ) (Steps 2-4)

Step 2. The conditional posterior probability density π(ϕ|σ, ρ, µ, β, ν, h, z, y) (≡ π(ϕ|·)) is

π(ϕ|·) ∝ π(ϕ)
√

1 − ϕ2 exp

{
−(1 − ϕ2)h̄2

1

2σ2
−

n−1∑
t=1

(h̄t+1 − ϕh̄t − ȳt)2

2σ2(1 − ρ2)

}

∝ π(ϕ)
√

1 − ϕ2 exp

{
−

(ϕ − µϕ)2

2σ2
ϕ

}
, (7)

where h̄t = ht − µ, ȳt = ρσ(yte
−ht/2 − βz̄t)/

√
zt, z̄t = zt − µz,

µϕ =
∑n−1

t=1 (h̄t+1 − ȳt)h̄t

ρ2h̄2
1 +

∑n−1
t=2 h̄2

t

, and σ2
ϕ =

σ2(1 − ρ2)
ρ2h̄2

1 +
∑n−1

t=2 h̄2
t

.
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To sample from this conditional posterior distribution, we implement the Metropolis-Hastings
(MH) algorithm (see e.g., Chib and Greenberg (1995)). We propose a candidate, ϕ∗ ∼
TN(−1,1)(µϕ, σ2

ϕ), where TN(a,b)(µ, σ2) denotes a normal distribution with mean µ and vari-
ance σ2 truncated on an interval (a, b). Then, we accept it with probability

min

{
π(ϕ∗)

√
1 − ϕ∗2

π(ϕ)
√

1 − ϕ2
, 1

}
.

Step 3. Since the joint conditional posterior probability density π(ϑ|ϕ, µ, ν, h, z, y) (≡
π(ϑ|·)) of ϑ = (σ, ρ)′ is given by

π(ϑ|·) ∝ π(ϑ)σn(1 − ρ2)
n−1

2 exp

{
−(1 − ϕ2)h̄2

1

2σ2
−

n−1∑
t=1

(h̄t+1 − ϕh̄t − ȳt)2

2σ2(1 − ρ2)

}
,

which is not easy to sample from, we conduct the MH algorithm based on a normal approx-
imation of the density around the mode. Since we have a constraint, R = {ϑ : σ > 0, |ρ| <

1}, for the parameter space of the posterior distribution, we consider a transformation ϑ to
ω = (ω1, ω2)′, where ω1 = log σ, and ω2 = log(1 + ρ) − log(1 − ρ), to generate a candidate
using a normal distribution. We first search ϑ̂ which maximizes (or approximately maxi-
mizes) π(ϑ|·), and obtain its transformed value ω̂. We generate a candidate ω∗ ∼ N(ω∗, Σ∗),
where

ω∗ = ω̂ + Σ∗
∂ log π̃(ω|·)

∂ω

∣∣∣∣
ω=ω̂

, Σ−1
∗ = − ∂ log π̃(ω|·)

∂ω∂ω′

∣∣∣∣
ω=ω̂

,

where π̃(ω|·) is a transformed conditional posterior density. Then, we accept the candidate
ω∗ with probability

min
{

π(ϑ∗|·)fN (ω|ω∗, Σ∗)|J(ϑ)|
π(ϑ|·)fN (ω∗|ω∗, Σ∗)|J(ϑ∗)|

, 1
}

,

where fN (x|µ,Σ) denotes a probability density function of a normal distribution with mean
µ and covariance matrix Σ, and J(·) is a Jacobian for the transformation. The values of
(ϑ, ϑ∗) are evaluated at (ω, ω∗) respectively.

Step 4. The conditional posterior probability density π(µ|ϕ, σ, ρ, β, ν, h, z, y) (≡ π(µ|·)) is
given by

π(µ|·) ∝ exp

{
−(µ − µ0)2

2v2
0

− (1 − ϕ2)h̄2
1

2σ2
−

n−1∑
t=1

{(ht+1 − µ) − ϕ(ht − µ) − ȳt}2

2σ2(1 − ρ2)

}
,
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and hence we generate µ|· ∼ N(µ̂, σ2
µ) where

σ2
µ =

{
1
v2
0

+
(1 − ρ2)(1 − ϕ2) + (n − 1)(1 − ϕ)2

σ2(1 − ρ2)

}−1

,

µ̂ = σ2
µ

{
µ0

v2
0

+
(1 − ρ2)(1 − ϕ2)h1 + (1 − ϕ)

∑n−1
t=1 (ht+1 − ϕht − ȳt)

σ2(1 − ρ2)

}
.

2.2.2 Generation of skew-t parameters (β, ν, z) (Steps 5-7)

Step 5. The posterior probability density π(β|ϕ, σ, ρ, µ, ν, h, z, y) (≡ π(β|·) is given by

π(β|·) ∝ exp

{
−(β − β0)2

2σ2
0

−
n∑

t=1

(yt − βz̄te
ht/2)2

2zteht
−

n−1∑
t=1

{h̄t+1 − ϕh̄t − ρσ(yte
−ht/2 − βz̄t)/

√
zt}2

2σ2(1 − ρ2)

}
,

and we generate β|· ∼ N(µβ , σ2
β) where

σ2
β =

{
1
σ2

0

+
1

1 − ρ2

n−1∑
t=1

z̄2
t

zt
+

z̄2
n

zn

}−1

,

µβ = σ2
β

{
β0

σ2
0

+
1

1 − ρ2

n−1∑
t=1

ytz̄t

zteht/2
+

ynz̄n

znehn/2
− ρ

σ(1 − ρ2)

n−1∑
t=1

(h̄t+1 − ϕh̄t)z̄t√
zt

}
.

Step 6. Since, as in Step 3, the posterior probability density of ν

π(ν|·) ∝ π(ν)
n∏

t=1

(ν/2)ν/2

Γ(ν/2)
z
−ν/2
t exp

(
− ν

2zt

)

× exp

{
−

n∑
t=1

(yt − βz̄te
ht/2)2

2zteht
−

n−1∑
t=1

(h̄t+1 − ϕh̄t − ȳt)2

2σ2(1 − ρ2)

}
, ν > 4,

is not easy to sample from, we draw a sample of ν using the MH algorithm based on the
normal approximation of the posterior probability density. We generate a candidate ν∗

using a normal distribution truncated on (4,∞).

Step 7. The conditional posterior probability density of the latent variable zt is

π(zt|θ, h, y) ∝ g(zt) × z
−( ν+1

2
+1)

t exp
(
− ν

2zt

)
,

g(zt) = exp

{
−(yt − βz̄te

ht/2)2

2zteht
− (h̄t+1 − ϕh̄t − ȳt)2

2σ2(1 − ρ2)
I(t < n)

}
,

where I(·) is an indicator function. Using the MH algorithm, we generate a candidate
z∗t ∼ IG((ν + 1)/2, ν/2) and accept it with probability min{g(z∗t )/g(zt), 1}.
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2.2.3 Generation of volatility latent variable h (Step 8)

Step 8. An efficient strategy is to sample from the conditional posterior distribution of
h = {ht}n

t=1 by dividing it into several blocks and sampling each block given other blocks.
This idea, called the block sampler or multi-move sampler, is developed by Shephard and
Pitt (1997), and Watanabe and Omori (2004) in the context of the state space modeling.
They show the sampler can produce efficient draws from the target conditional posterior
distribution in comparison with a single-move sampler which primitively samples one state,
say ht, at a time given others, hs (s ̸= t). For the SV model with leverage, Omori and
Watanabe (2008) develop the associated multi-move sampler and show it produces efficient
samples (see also Takahashi et al. (2009)). We extend their method for sampling h in the
SVSKt model. The detail of the multi-move sampler is described in Appendix.

3 Simulation study

3.1 Setup

To illustrate our proposed estimation method, we estimate the SVSKt model using simulated
data. We generate 3,000 observations from the SVSKt model given by equations (1) and
(3)–(5) with specified parameter values ϕ = 0.95, σ = 0.15, ρ = −0.5, µ = −9, β = −0.5,
and ν = 15. The following prior distributions are assumed:

ϕ + 1
2

∼ Beta(20, 1.5), σ−2 ∼ Gamma(2.5, 0.025), ρ ∼ U(−1, 1),

µ ∼ N(−10, 1), β ∼ N(0, 1), ν ∼ Gamma(16, 0.8) I(ν > 4),

The beta prior distribution for (ϕ+1)/2 implies that mean and standard deviation are (0.86,
0.11) for ϕ. The means and standard deviations of Gamma(2.5, 0.025) and Gamma(16,0.8)
are (100, 63.2) and (20, 5), respectively. We use these prior distributions to reflect empirical
results in the past literature.

We draw 20,000 samples after the initial 2,000 samples are discarded as a burn-in period,
which is selected using time series plots of the marginal averages of samples for each parame-
ter. We compute the inefficiency factor to check the efficiency of the MCMC algorithm. The
inefficiency factor is defined as 1 + 2

∑∞
s=1 ρs where ρs is the sample autocorrelation at lag

s. It measures how well the MCMC chain mixes (see e.g., Chib (2001)). It is the estimated
ratio of the numerical variance of the posterior sample mean to the variance of the sample
mean from uncorrelated draws. When the inefficiency factor is equal to m, we need to draw
MCMC samples m times as many as uncorrelated samples. In the following analyses, we
compute the inefficiency factor using Parzen window with a bandwidth bw = 1,000.
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3.2 Estimation results

Figure 2 shows the sample autocorrelation functions, the sample paths and the posterior
densities for each parameter. The sample paths look stable and the sample autocorrelations
decay quickly, which implies that our sampling method is efficient.

Table 1 shows posterior means, standard deviations, the 95% credible intervals and
inefficiency factors. All the posterior means are close enough to the true values such that
the corresponding 95% credible intervals include true values. The inefficiency factors in
Table 1 are found to be almost the same magnitude as those in Omori and Watanabe
(2008) for the basic SV model with leverage using a multi-move sampler. This suggests
that we are successful in extending their method to the SVSKt model without a loss of
sampling efficiencies.
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Figure 2: MCMC estimation result of the SVSKt model for simulated data. Sample auto-
correlations (top), sample paths (middle) and posterior densities (bottom).

Parameter True Mean Stdev. 95% interval Inefficiency
ϕ 0.95 0.9450 0.0099 [0.9233, 0.9624] 79.5
σ 0.15 0.1644 0.0146 [0.1386, 0.1958] 168.5
ρ -0.5 -0.5425 0.0680 [-0.6694, -0.4042] 75.3
µ -9.0 -8.9209 0.0620 [-9.0434, -8.8003] 22.5
β -0.5 -0.7059 0.2349 [-1.2268, -0.3048] 122.2
ν 15.0 21.104 4.2843 [14.682, 31.325] 254.4

Table 1: MCMC estimation result of the SVSKt model for simulated data.

In the MH algorithms, the average acceptance rates are 97.6% for ϕ, 97.5% for (σ, ρ),
99.0% for ν and 86.4% for zt in this experiment. As for the acceptance rates of the AR-MH
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algorithm in the multi-move sampler for the volatility h are 90.0% and 90.6% in the AR step
and the MH step respectively. These results suggest that our proposed algorithm would
work well in practice.

3.3 Alternative parameterization

As we mentioned in Section 2.1, we investigate whether our proposed parameterization for
the GH skew Student’s t-distribution is appropriate. An alternative parameterization is
explored in the following example using simulated data. The model is formulated by (1),
(3) and (4) but we replace (5) by

zt ∼ GIG(−ν/2, δ, 0), or zt ∼ IG(ν/2, δ2/2),

where δ > 0. Since there are two parameters, (ν, δ), to determine first and second moments
of zt, we set µ ≡ 0 to identify the parameter for the second moment of the return distri-
bution. We generate 3,000 observations from the alternative model with parameter values
ϕ = 0.95, σ = 0.08, ρ = −0.4, β = −0.3, ν = 14 and δ = 4. In addition to the previous
experiment, we assume the prior distribution as δ ∼ Gamma(4, 0.4), which implies mean
and standard deviation are (10.0, 15.8).

Table 2 reports the correlations of the posterior samples, and Figure 3 shows scatter plots
of the posterior samples of (β, ν) for the SVSKt model and (δ, ν) for the alternative model.
Evidently, the correlation between δ and ν is extremely high (0.98), while that between β

and ν is moderate (−0.69). This suggests that we need to sample under the narrow state
space when we use the alternative parameterization, which would result in the inefficient
sampling. Thus, although we could model the GH skew Student’s t-distribution in other
ways, alternative models could lead to either the inefficient MCMC sampling or the over-
parameterization. This example shows that our proposed parameterization is appropriate
for the SV model with the GH skew Student’s t-distribution.

(i) SVSKt model (ii) Alternative model
ϕ σ ρ µ β ν ϕ σ ρ β ν δ

ϕ 1 -.67 -.10 -.01 -.00 -.02 ϕ 1 -.33 -.10 -.06 .04 .05
σ 1 .13 -.04 -.17 .16 σ 1 -.13 .01 .01 .01
ρ 1 -.01 .07 .00 ρ 1 .01 -.04 -.04
µ 1 .26 .15 β 1 -.68 -.60
β 1 -.69 ν 1 .98
ν 1 δ 1

Table 2: Correlation matrix of posterior samples of (i) the SVSKt model and (ii) the
alternative model for simulated data.

11



−1.0 −0.5 0.0

10

15

20

25

30

SVSKt model (β,ν) ν

ν

β

ν

3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Alternative model (δ,ν)

δ

Figure 3: Scatter plots of posterior samples of (β, ν) for the SVSKt model (left) and (δ, ν)
for the alternative model (right).

4 Application to stock returns data

4.1 Data

This section applies our proposed model to daily stock returns data. We consider the
S&P500 index from January 1, 1970 to December 31, 2003, and the TOPIX (Tokyo stock
price index) from January 5, 1970 to December 30, 2004. The returns are computed as
log-difference, yt = log Pt − log Pt−1 where Pt is the closing price on day t. The sample size
is 8,869 for S&P500 and 9,376 for TOPIX.

Figure 4 shows the time series plots of the stock returns and Table 3 summarizes the
descriptive statistics. Both series are negatively skewed where the skewness is -1.3778 for
S&P500 and -0.4833 for TOPIX. The kurtosis is as huge as 37 for S&P500 and 16 for TOPIX.
This is partly due to the largest negative return corresponding the crash in October, 1987.
If we remove it from the observations, the skewness and kurtosis reduce to (-0.0642, 7.9835)
for S&P500 and (-0.0633, 10.404) for TOPIX. However, these figures still imply the negative
skewness and heavy-tailness of empirical returns distribution of the data.
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Figure 4: Time series plots for S&P500 (1970/1/1 - 2003/12/31) and TOPIX (1970/1/5 -
2004/12/30) daily returns.

S&P500 (1970/1/1 - 2003/12/31)
Obs. Mean Stdev. Skewness Kurtosis Min. Max.
8,869 0.0003 0.0101 -1.3778 37.246 -0.2283 0.0871

TOPIX (1970/1/5 - 2004/12/30)
Obs. Mean Stdev. Skewness Kurtosis Min. Max.
9,376 0.0002 0.0100 -0.4833 16.644 -0.1581 0.0912

Table 3: Summary statistics for S&P500 and TOPIX returns.

4.2 Parameter estimates

We assume the same prior distributions as in Section 3 for the parameters. The number of
MCMC iterations and discarding initial samples are also taken as in Section 3. Figure 5
shows the estimation results for S&P500 data where the sample paths look stable and the
proposed estimation scheme works well.

Table 4 reports the estimation result of the posterior estimates for the S&P500 and
TOPIX data. The posterior means of ϕ are close to one, which indicates the well-known
high persistence of volatility in stock returns. The ρ’s are estimated to be negative, implying
that there exist the leverage effects. Regarding the skewness, the posterior means of β are
-0.0946 for S&P500 and -0.3901 for TOPIX data. Although the 95% credible interval of
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β barely contains zero for S&P500 data, its posterior distribution is mostly located in the
negative range as shown in Figure 5. For TOPIX data, the posterior probability that β is
negative is greater than 0.95, and the negativity of β is credible. This supports the strong
evidence that there are skewnesses in both data. On the other hand, the posterior means
of ν’s are around 13 for the S&P500 and 30 for the TOPIX returns, which indicates a
heavy-tailness in the stock return distributions especially for S&P500 data.

0 500 1000

0

1 φ

0 500 1000

0

1 σ

0 600

0

1 ρ

0 500 1000

0

1 µ

0 500 1000

0

1 β

0 500 1000

0

1 ν

0 20000

0.985

0.990

φ

0 20000

0.11

0.12

0.13

0.14

0.15 σ

0 20000

−0.6

−0.5

−0.4

−0.3

ρ

0 20000

−10.00

−9.75

−9.50

µ

0 20000

−0.3

−0.2

−0.1

0.0

0.1 β

0 20000

10.0

12.5

15.0

17.5

ν

0.98 0.99

100

200 φ

0.10 0.15

25

50
σ

−0.6 −0.4

5

10
ρ

−10.0 −9.5

2

4
µ

−0.5 0.0

2.5

5.0

7.5 β

10 15 20

0.1

0.2

0.3 ν

Figure 5: MCMC estimation result of the SVSKt model for S&P500 data. Sample autocor-
relations (top), sample paths (middle) and posterior densities (bottom).

(i) S&P500
Parameter Mean Stdev. 95% interval Inefficiency

ϕ 0.9865 0.0021 [0.9821, 0.9904] 64.6
σ 0.1253 0.0072 [0.1117, 0.1407] 162.6
ρ -0.4786 0.0397 [-0.5548, -0.3975] 86.2
µ -9.7455 0.0929 [-9.9287, -9.5637] 11.2
β -0.0946 0.0558 [-0.2093, 0.0097] 55.6
ν 12.513 1.4522 [10.122, 15.623] 292.2

(ii) TOPIX
Parameter Mean Stdev. 95% interval Inefficiency

ϕ 0.9742 0.0032 [0.9675, 0.9802] 123.6
σ 0.2641 0.0149 [0.2396, 0.2945] 272.1
ρ -0.3577 0.0315 [-0.4186, -0.2966] 25.3
µ -9.8653 0.1057 [-10.241, -9.6263] 9.4
β -0.3901 0.1225 [-0.6517, -0.1615] 42.6
ν 29.791 4.4430 [21.766, 38.512] 269.2

Table 4: Estimation result of the SVSKt model for stock return data.
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4.3 Model comparison

In this subsection, we compare the SVSKt model with two alternative models discussed in
the past literature:

(i) Model SV: the basic SV model with a normal error distribution (zt ≡ 1 for all t and
β = 0).

(ii) Model SVt: the SV model with a symmetric Student-t error distribution (β = 0).

Note that all models are allowed to have the leverage effect (ρ is not set equal to 0 in
equation (1)). In a Bayesian framework, we compare several competing models using their
posterior probabilities to select the one supported by the data. The posterior probability
of each model is proportional to the prior probability of the model times the marginal
likelihood. The ratio of two posterior probabilities is also well-known as a Bayes factor.
If the prior probabilities are assumed to be equal, we choose the model which yields the
largest marginal likelihood.

The marginal likelihood is defined as the integral of the likelihood with respect to the
prior density of the parameter. Following Chib (1995), we estimate the logarithm of the
marginal likelihood m(y), as

log m(y) = log f(y|Θ) + log π(Θ) − log π(Θ|y). (8)

where Θ is a parameter, f(y|Θ) is a likelihood, π(Θ) is a prior probability density and
π(Θ|y) is a posterior probability density. The equality holds for any Θ, but we usually use
the posterior mean of Θ to obtain a stable estimate of m(y). The prior probability density
is easily calculated, though the likelihood and posterior part need a simulation evaluation.

The likelihood is estimated using the auxiliary particle filter (e.g., Pitt and Shephard
(1999), Chib et al. (2002), Omori et al. (2007)) with 10,000 particles. It is replicated 10
times to obtain the standard error of the likelihood estimate. The posterior probability
density at Θ is evaluated by the method of Chib (1995) and Chib and Jeliazkov (2001)
through the additional but reduced MCMC runs. The number of iterations for the reduced
run is set 5,000.

We use six series of daily return data for the model comparison as considered in Nakajima
and Omori (2009). In addition to the datasets used for the previous estimation, we use the
datasets of the S&P500 series from 1970 to 1985 and from 1990 to 2003, and the TOPIX
series from 1970 to 1985 and from 1990 to 2004, i.e., we consider two long-period (about
thirty years) data and four short-period (about fifteen years) data. We select these short
periods such that the crash of October 1987 is excluded, because the huge negative return
could affect the model selection among the competing models.
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Table 5 reports the logarithm of estimated marginal likelihoods, their standard errors
and rankings. Overall, the SVSKt model outperforms other models for all dataset regard-
less of sample periods. Taking account of the standard errors, we can see that the GH
skew Student’s t-error distribution in the SV model clearly is successful to describe the
distribution of the daily stock returns data.

We also report the posterior estimates of the skewness parameter β for each dataset in
Table 5. It is interesting to observe that the posterior distribution of β is estimated negative
for S&P500 of 1970-2003 and 1994-2003, TOPIX of 1970-2004 and 1970-1985, while it is
centered around zero for the TOPIX of 1992-2004, and moreover, almost positive for the
S&P500 of 1970-1985. The skewness of the empirical return distributions seems to change
depending on the sample periods. However, the SVSKt model is still favoured over other
symmetric error SV models in every period.

S&P500 1970-2003 1970-1985 1994-2003
Model Log-ML Ranking Log-ML Ranking Log-ML Ranking
SV 29605.67 (1.54) 3 14198.89 (0.39) 3 8406.06 (0.37) 3
SVt 29657.41 (1.62) 2 14205.03 (0.47) 2 8417.55 (0.43) 2
SVSKt 29666.51 (1.42) 1 14206.97 (0.40) 1 8419.35 (0.23) 1
Posterior of β
Mean (Stdev.) -0.0946 (0.0558) 0.2699 (0.1775) -0.3942 (0.1977)
95% interval [-0.2093, 0.0097] [-0.0460, 0.6599] [-0.8165, -0.0460]

TOPIX 1970-2004 1970-1985 1992-2004
Model Log-ML Ranking Log-ML Ranking Log-ML Ranking
SV 32461.14 (1.50) 3 17626.79 (0.54) 2 9738.27 (0.22) 3
SVt 32483.03 (1.55) 2 17641.75 (0.49) 3 9743.49 (0.32) 2
SVSKt 32490.13 (0.72) 1 17665.91 (0.52) 1 9746.98 (0.31) 1
Posterior of β
Mean (Stdev.) -0.3901 (0.1225) -0.5979 (0.1790) -0.0163 (0.1109)
95% interval [-0.6517, -0.1615] [-0.9643,-0.2730] [-0.2068, 0.2344]

*standard errors of the Log-ML in parentheses.

Table 5: Estimated marginal likelihoods on a logarithmic scale (log-ML) and the parameter
estimates of β for S&P500 (top) and TOPIX (bottom) returns data.

4.4 Prior sensitivity analysis

To check the robustness of the model comparison, we assess the sensitivity of our results
to the choice of prior distributions. Since we assumed the values commonly used in the
previous literature for the prior distributions of (ϕ, σ, ρ, µ), we focus on the parameters of
GH skew Student’s t-distribution, i.e., the skewness and heavy-tailness parameters (β, ν).

Let Prior #1 denote the prior distribution with hyper-parameters assumed in the pre-
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vious estimation. Three alternative priors are considered:

Prior #1: β ∼ N(0, 1), ν ∼ Gamma(16, 0.8)I(ν > 4),

Prior #2: β ∼ N(0, 4), ν ∼ Gamma(16, 0.8)I(ν > 4),

Prior #3: β ∼ N(0, 1), ν ∼ Gamma(24, 0.6)I(ν > 4),

Prior #4: β ∼ N(0, 4), ν ∼ Gamma(24, 0.6)I(ν > 4),

Prior #5: β ∼ N(0, 1), ν ∼ Gamma(1.2, 0.03)I(ν > 4),

where we note that the mean and standard deviation are (40, 8) for Gamma(24,0.6) and
(40, 36.5) for Gamma(1.2, 0.03), respectively. The Prior #5 for ν is rather flat compared
to Priors #1–#4. First, the SVSKt model is estimated using the S&P500 data (1994-2003)
under alternative priors. The estimates for (ϕ, σ, ρ, µ) are found to be almost the same
under all priors. Table 6 shows the parameter estimates and inefficiency factors for β and
ν. The estimates for (β, ν) are not affected by changing the prior for β from Prior #1 to
Prior #2 (or from Prior #3 to Prior #4).

On the other hand, the estimates of (β, ν) are largely affected by altering the prior
for ν from Prior #1 to Prior #3 (or from Prior #2 to Prior #4). The estimates of β

become smaller (from −0.4 to −0.6) and the posterior means of ν get larger (from 22 to
40), implying more skewness and less heavy-tailness. The posterior standard deviations
also become larger reflecting the increase in the dispersion of the prior distribution for ν.
Also, as suggested by 95% credible intervals, the posterior distribution of ν (β) moves to
right (left). Under less informative situation for ν as described by Prior #5, the estimate
of β is similar to those obtained by using Priors #3 and #4, while the posterior mean of ν

is around 36 and its standard deviation and credible intervals indicate the flatter posterior
distribution.

SVSKt model
Prior #1 Prior #2 Prior #3 Prior #4 Prior #5

-0.3867 (0.1943) -0.3813 (0.1980) -0.6046 (0.2999) -0.6766 (0.3243) -0.5686 (0.3221)
β [-0.8167, -0.0460] [-0.7976, -0.0357] [-1.2432, -0.0133] [-1.3762, -0.0991] [-1.3896, -0.0839]

76.05 76.16 66.86 91.8 150.65
21.432 (4.4932) 21.985 (4.4399) 38.492 (7.9765) 40.915 (7.1658) 36.457 (13.847)

ν [15.316, 33.162] [14.723, 31.495] [25.499, 53.776] [27.192, 57.732] [16.533, 68.380]
223.49 209.46 186.16 194.65 285.08

The first row: posterior mean and standard deviation in parentheses.

The second row: 95% credible interval in square brackets.

The third row: inefficiency factor.

Table 6: Prior sensitivity analysis for the SVSKt model. Parameter estimates of β and ν
for S&P500 data (1994-2003).
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Nakajima and Omori (2009) found the posterior estimate of ν is rather sensitive to
the choice of the prior distribution for ν than other parameters in the SV model with a
symmetric Student’s t-error, which is also observed in our prior sensitivity analysis. In
addition, our result indicates that the posterior estimate of β is also sensitive to the choice
of the prior distribution for ν. This may be because the skewness and heavy-tailness in the
GH skew Student’s t-distribution are determined by β and ν simultaneously rather than
individually. Our main findings are that the prior distribution of ν with a higher mean value
results in its higher posterior means and that it would even lead to the lower posterior mean
of β so as to keep some skewness and heavy-tailness of the empirical return distribution as
shown in Figure 1 of Section 2.1.

Finally, we investigate the prior sensitivity of the marginal likelihoods for the SVt and the
SVSKt models using S&P500 data (1994-2003). Table 7 reports the logarithm of estimated
marginal likelihoods under alternative priors. For the SVSKt model, all priors yield almost
the same marginal likelihoods, which is quite reasonable. Although the marginal likelihoods
of Priors #1 and #2 are slightly larger than those of Priors #3–#5 for the SVt model, the
SVSKt models still remains favoured over the SVt model regardless of the choice of the
prior.

Model Prior #1 Prior #2 Prior #3 Prior #4 Prior #5
SVt 8417.16 (0.35) 8417.77 (0.39) 8413.69 (0.11) 8413.84 (0.12) 8412.46 (0.34)
SVSKt 8420.95 (0.32) 8419.53 (0.25) 8420.03 (0.42) 8418.16 (0.34) 8417.89 (0.36)

*standard errors of the Log-ML in parentheses.

Table 7: Prior sensitivity analysis. Estimated marginal likelihoods on a logarithmic scale
for S&P500 data (1994-2003).

5 Conclusion

This paper proposes a Bayesian estimation of the SV model with leverage and the GH
skew Student’s t-error distribution to assess the asymmetrically heavy-tailed distributions
of stock returns. The efficient MCMC estimation method is developed using the normal
variance-mean mixture representation of the GH skew Student’s t-distribution where the
mixing distribution is the inverse gamma distribution. We illustrate our proposed method
using simulated data and applied to daily stock returns data. The model comparison is
conducted based on the marginal likelihood and the estimation results show the strong
evidence of the skewness and heavy-tailness. The proposed model is found to outperform
other SV models. The prior sensitivity analysis shows that our results are robust except
parameter estimates of (β, ν) which are affected by the choice of the prior distribution of ν.
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Appendix. Multi-move sampler for sampling h in the SVSKt

model

Extending Omori and Watanabe (2008), we describe the multi-move sampler for sampling
the volatility variable h in the SVSKt model. Defining αt = ht − µ, for t = 0, . . . , n and
γ = exp(µ/2), we consider the state space model with respect to {αt}n

t=1 as

yt = {βz̄t +
√

ztεt} exp(αt/2)γ, t = 1, . . . , n,

αt+1 = ϕαt + ηt, t = 0, . . . , n − 1.

To sample a block (αr+1, . . . , αr+d) from its joint conditional posterior density using MH
algorithm, (r ≥ 0, d ≥ 1, r + d ≤ n), we consider sampling disturbances

(ηr, . . . , ηr+d−1) ∼ π(ηr, . . . , ηr+d−1|Θ̃)

∝
r+d∏
t=r

1√
2πσ̃t

exp
{
−(yt − µ̃t)2

2σ̃2
t

}
×

r+d−1∏
t=r

f(ηt) × f(αr+d),

where

µ̃t =

{ {
βz̄t + ρ

√
zt(αt+1 − ϕαt)/σ

}
exp(αt/2)γ (if t < n)

βz̄n exp(αn/2)γ (if t = n),

σ̃2
t =

{
(1 − ρ2)zt exp(αt)γ2 (if t < n)

zn exp(αn)γ2 (if t = n),

f(αr+d) =

 exp
{
−(αr+d+1 − ϕαr+d)2

2σ2

}
(if r + d < n)

1 (if r + d = n),

and Θ̃ = (θ, αr, αr+d+1, zr, . . . , zr+d, yr, . . . , yr+d). Let η = (ηr, . . . , ηr+d−1)′ and α =
(αr+1, . . . , αr+d)′. To construct a proposal density based on the normal approximation
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of the posterior density of η, we first define

L =
r+d∑
t=r

{
−αt

2
− (yt − µ̃t)2

2σ̃2
t

}
+ log f(αr+d),

δ = (δr+1, . . . , δr+d)′, δt =
∂L

∂αt
,

Q = −E

(
∂2L

∂α∂α′

)
=



Ar+1 Br+2 0 · · · 0
Br+2 Ar+2 Br+3 · · · 0

0 Br+3 Ar+3
. . .

...
...

. . . . . . . . . Br+d

0 · · · 0 Br+d Ar+d


,

At = −E

(
∂2L

∂α2
t

)
,

Bt = −E

(
∂2L

∂αt∂αt−1

)
, t = r + 2, . . . , r + d, and Br+1 = 0.

For the first derivatives, we have

δt = −1
2

+
(yt − µ̃t)2

2σ̃2
t

+
yt − µ̃t

σ̃2
t

· ∂µ̃t

∂αt
+

yt−1 − µ̃t−1

σ̃2
t−1

· ∂µ̃t−1

∂αt
+ j(αt),

where

∂µ̃t

∂αt
=


{

βz̄t

2
+ ρ

√
zt

(
−ϕ +

αt+1 − ϕαt

2

)
/σ

}
exp(αt/2)γ (if t < n)

0 (if t = n),

∂µ̃t−1

∂αt
=

{
0 (if t = 1)

ρ
√

zt−1 exp(αt−1/2)γ/σ (if t > 1),

j(αt) =


ϕ(αt+1 − ϕαt)

σ2
(if t = r + d < n)

0 (otherwise).

For the second derivatives, we take expectations with respect to yt’s and obtain

At =
1
2

+
1
σ̃2

t

(
∂µ̃t

∂αt

)2

+
1

σ̃2
t−1

(
∂µ̃t−1

∂αt

)2

+ j′(αt),

Bt =
1

σ̃2
t−1

· ∂µ̃t−1

∂αt−1
· ∂µ̃t−1

∂αt
,
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where

j′(αt) =

{
ϕ2/σ2 (if t = r + d < n)

0 (otherwise).

Then, applying the second order Taylor expansion to the log of posterior density around
the mode, η = η̂, we obtain an approximating normal density as follows:

log π(η|Θ̃)

≈ L̂ +
∂L

∂η′

∣∣∣∣
η=η̂

(η − η̂) +
1
2
(η − η̂)′E

(
∂2L

∂η∂η′

)∣∣∣∣
η=η̂

(η − η̂) +
r+d−1∑

t=r

(
−1

2
η2

t

)
+ (const.)

= L̂ + δ̂′(α − α̂) − 1
2
(α − α̂)′Q̂(α − α̂) +

r+d−1∑
t=r

(
−1

2
η2

t

)
+ (const.)

≡ log q(η|Θ̃).

where L̂, δ̂ and Q̂ is the value of L, δ and Q at α = α̂ (or, equivalently at η = η̂). It can be
shown that the proposal density q(η|Θ̃) is the posterior density of η for a linear Gaussian
state space model given by (9)–(11) below. The mode η̂ can be obtained by repeating the
following algorithm until it converges.

Algorithm 1 (Disturbance smoother):

1. Initialize η̂ and compute α̂ at η = η̂ using the state equation (4) recursively.

2. Evaluate δ̂t’s, Ât’s and B̂t’s at α = α̂.

3. Let D̂r+1 = Âr+1 and b̂r+1 = δ̂r+1. Compute the following variables recursively for
t = r + 2, . . . , r + d:

D̂t = Ât − D̂−1
t−1B̂

2
t , K̂t =

√
D̂t,

b̂t = δ̂t − B̂tD̂
−1
t−1b̂t−1,

and B̂d+r+1 = 0.

4. Define an auxiliary variable ŷt = γ̂t + D̂−1
t b̂t, where γ̂t = α̂t + D̂−1

t B̂t+1α̂t+1, for
t = r + 1, . . . , r + d, and α̂r+d+1 = αr+d+1.

5. Consider the linear Gaussian state space model formulated by

ŷt = Ztαt + Gtζt, t = r + 1, . . . , r + d, (9)

αt+1 = ϕαt + Htζt, t = r, . . . , r + d, (10)

ζt ∼ N(0, I2), (11)
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where

Zt = 1 + ϕD̂−1
t B̂t+1, Gt = (K̂−1

t , D̂−1
t B̂t+1σ), Ht = (0, σ),

for t = r + 1 . . . , r + d and H0 = (0, σ/
√

1 − ϕ2). Apply the Kalman filter and the
disturbance smoother to this state space model, and then obtain the posterior mode
η̂ and α̂.

6. Go to 2.

In the MCMC sampling procedure, the current sample of η may be taken as an initial value
of the η̂ in Step 1. Next, to sample η from the conditional posterior density, we implement
the following AR(Accept-Reject)-MH algorithm via the simulation smoother (e.g., de Jong
and Shephard (1995), Durbin and Koopman (2002)).

Algorithm 2 (AR-MH algorithm and simulation smoother):

1. Let η
0

denote the current value. Find the mode η̂ using Algorithm 1.

2. Proceed Steps 2–4 in Algorithm 1 to obtain the approximated linear Gaussian state
space model (9)–(11).

3. Propose a candidate η∗ by sampling from the density q̃(η∗) ∝ min{π(η∗|Θ̃), cq(η∗|Θ̃)}
using the Accept-Reject algorithm as follows:

(a) Generate η∗ using the simulation smoother for the approximated state space
model (9)–(11).

(b) Accept η∗ with a probability

min{π(η∗|Θ̃), cq(η∗|Θ̃)}
cq(η∗|Θ̃)

.

If it is rejected, go to (a).

4. Conduct the MH algorithm using the candidate η∗. The MH acceptance probability
is given by

min

{
π(η∗|Θ̃) min{π(η

0
|Θ̃), cq(η

0
|Θ̃)}

π(η
0
|Θ̃) min{π(η∗|Θ̃), cq(η∗|Θ̃)}

}
.

Finally, we note that α = (α1, . . . , αn)′ is divided into K + 1 blocks at random, say,
(αki−1+1, . . . , αki

) for i = 1, . . . , K + 1 with k0 = 0 and kK+1 = n. We use the stochastic
knots given by ki = int [n(i + Ui)/(K + 2)], for i = 1, . . . , K, where Ui is a random sample

22



from a uniform distribution U [0, 1] (e.g. Shephard and Pitt (1997)) to make our sampling
step for α (equivalently, h) more efficient.
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