
Program for Promoting Social Science Research 

Aimed at Solutions of Near-Future Problems
Design of Interfirm Network to Achieve Sustainable Economic Growth 

Shape of Growth Rate Distribution
Determines the Type of Non Gibrat’s Property

Working Paper Series No.1

Determines the Type of Non-Gibrat’s Property

Atushi Ishikawa
Shouji Fujimotoj j

And
Takayuki Mizuno

March 9, 2010
(Revised: June 5  2010)(Revised: June 5, 2010)

Research Center for Interfirm Network
Institute of Economic Research, Hitotsubashi University

Naka 2-1, Kunitachi-city, Tokyo 186-8603, JAPAN
Tel: +81-42-580-9138

E-mail: hit-tdb-sec@ier.hit-u.ac.jp
http://www ier hit-u ac jp/ifn/http://www.ier.hit-u.ac.jp/ifn/



Shape of Growth Rate Distribution

Determines the Type of Non-Gibrat’s Property

Atushi Ishikawa∗ and Shouji Fujimoto†

Kanazawa Gakuin University, Kanazawa, Japan

Takayuki Mizuno‡

Hitotsubashi University, Tokyo, Japan

(Dated: June 5, 2010)

Abstract

In this study, the authors examine exhaustive business data on Japanese firms, which cover

nearly all companies in the mid- and large-scale ranges in terms of firm size, to reach several

key findings on profits/sales distribution and business growth trends. First, detailed balance is

observed not only in profits data but also in sales data. Furthermore, the growth-rate distribution

of sales has wider tails than the linear growth-rate distribution of profits in log-log scale. On

the one hand, in the mid-scale range of profits, the probability of positive growth decreases and

the probability of negative growth increases symmetrically as the initial value increases. This

is called Non-Gibrat’s First Property. On the other hand, in the mid-scale range of sales, the

probability of positive growth decreases as the initial value increases, while the probability of

negative growth hardly changes. This is called Non-Gibrat’s Second Property. Under detailed

balance, Non-Gibrat’s First and Second Properties are analytically derived from the linear and

quadratic growth-rate distributions in log-log scale, respectively. In both cases, the log-normal

distribution is inferred from Non-Gibrat’s Properties and detailed balance. These analytic results

are verified by empirical data. Consequently, this clarifies the notion that the difference in shapes

between growth-rate distributions of sales and profits is closely related to the difference between

the two Non-Gibrat’s Properties in the mid-scale range.
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INTRODUCTION

Distributions with a power-law tail have been found in various fields of natural and social

science. Examples of such studies include, for instance, avalanche sizes in a sandpile model

[1], fluctuations in the intervals of heartbeats [2], fish school sizes [3], citation numbers of

scientific papers [4], frequency of jams in Internet traffic [5], city sizes (see the recent review

in Ref. [6]), land prices [7]—[9], stock market price changes [10], and firm sizes [11]. Here,

variables (denoted by x) follow the probability density function (PDF):

P (x) ∝ x−(μ+1) for x > xth (1)

over some size threshold xth. This is called Pareto’s Law, which was first observed in the

field of personal income [12]. The index μ is called the Pareto index. Refer to Newman [13]

for a useful description of Pareto’s Law.

In statistical physics, the study of distributions with a power-law tail (1) is significant

because the k-th moment hxki = R
dxP (x)xk diverges in the case of μ ≤ k. It is impossible

to describe the system by using the variance σ2 = hx2i or the standard deviation σ in the
case of μ ≤ 2. This feature comes from power-law behavior in the tail. Furthermore, it

is worth noting that a large portion of the overall data are included in the power-law tail.

For example, approximately 90% of total sales or profits in Japanese firms are included in

the power-law tail. In economics (especially in macroeconomics), one of the major issues is

the state of the entire economy. In this sense, it is important to clarify the nature of the

power-law tail not only in physics but also in economics.

In general, the power-law breaks below the size threshold xth to suppress the divergence of

the PDF [14], [15]. There are many distributions that have a power-law tail. These include,

for instance, Classical Pareto Distribution (Pareto Type I Distribution), Pareto Type II

Distribution, Inverse Gamma Distribution, Inverse Weibull Distribution, q—Distribution,

A—Distribution and B—Distribution [16]. In addition to these distributions, it has been

hypothesized that many other distributions with a power-law tail follow the log-normal

distribution for mid-sized variables below the size threshold xth:

P (x) ∝ 1

x
exp
∙
− 1

2σ2
ln2
x

x̄

¸
for xmin < x < xth . (2)

Here, x̄ is a mean value and σ2 is a variance. A lower bound of the mid-scale range xmin

is often related to the lower bound of an exhaustive set of data. A pseudo log-normal
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distribution is approximately derived from A—Distribution or B—Distribution in the mid-

sized range [16].

The study of distributions in the mid-scale range below the size threshold xth is as im-

portant as the study of the power-law tail. In physics, we are interested not only in the

mechanism generating a power-law tail but also in the reason for the tail breaking. In eco-

nomics, we should note that the majority of firms are mid-sized. For instance, in sales or

profits data, more than 90% of the total number of firms are in the mid-scale range. In

this study, by examining exhaustive business data of Japanese firms that nearly cover the

mid- and large-scale ranges, the authors investigate the relevant distributions with a power-

law tail. This research is expected to be useful for understanding phenomena not only in

economics but also in physics.

On the one hand, it has been shown that Pareto’s Law and the log-normal distribution can

be derived by assuming some model. For example, a multiplicative process with boundary

constraints and additive noise can generate Pareto’s Law [17]. On the other hand, by using

no model, Fujiwara et al. have recently shown that Pareto’s Law (1) is derived from Gibrat’s

Law and from the detailed balance observed in the large-scale range of exhaustive business

data [18]. The relations among laws observed in exhaustive business data are important for

examining the characteristics of distributions based on firm-size. For instance, in the study

of Fujiwara et al., it was found that Pareto index μ is related to the difference between

a positive growth-rate distribution and a negative one. Furthermore, along the lines of

their study, one of the authors (A. I) has shown that the log-normal distribution (2) can

be inferred from detailed balance and from Non-Gibrat’s Property observed in the profits

data of the mid-scale range [19]. The study of the growth-rate distribution is an interesting

subject in itself, and an ongoing investigation into this issue has progressed recently [20].

Detailed balance means that the system is thermodynamically in equilibrium, the state

of which is described as

PJ(xT , xT+1) = PJ(xT+1, xT ) . (3)

Here, xT and xT+1 are firm sizes at two successive points in time. In Eq. (3), the joint PDF

PJ(xT , xT+1) is symmetric under the time reversal exchange xT ↔ xT+1.

Gibrat’s Law and Non-Gibrat’s Property are observed in the distributions of firm-size

growth rate R = xT+1/xT . The conditional PDF of the growth rate Q(R|xT ) is defined
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as Q(R|xT ) = PJ(xT , R)/P (xT ) by using the PDF P (xT ) and the joint PDF PJ(xT , R).

Gibrat’s Law, which is observed in the large-scale range, implies that the conditional PDF

Q(R|xT ) is independent of the initial value xT [21]:

Q(R|xT ) = Q(R) . (4)

Sutton [22] provides an instructive resource for obtaining the proper perspective on Gibrat’s

Law.

Non-Gibrat’s Property reflects the dependence of the growth-rate distribution on the

initial value xT . The following properties are observed in the mid-scale range of positive

profits data of Japanese firms [19]:

Q(R|xT ) = d(xT ) R−t+(xT )−1 for R > 1 , (5)

Q(R|xT ) = d(xT ) R+t−(xT )−1 for R < 1 , (6)

t±(xT ) = ±α lnxT + C± . (7)

Here, α and C± are positive constants. In this composite Non-Gibrat’s Property (5)—(7),

the probability of positive growth decreases and the probability of negative growth increases

symmetrically as the initial value xT increases in the mid-scale range. It is particularly

noteworthy that the shape of the growth-rate distribution (5)—(6) uniquely determines the

change in the growth-rate distribution (7) under detailed balance (3). Moreover, the rate-

of-change parameter α appears in the log-normal distribution (2). We designate (5)—(7) as

Non-Gibrat’s First Property to distinguish it from another Non-Gibrat’s Property that is

observed in sales data.

The shape of the growth-rate distribution (5)—(6) is linear in log-log scale. This type

of growth-rate distribution is observed in profits and income data of firms (for instance

[23], [24], [25]). In contrast, it has been reported in various articles that the growth-rate

distributions of assets, sales, number of employees in firms, and personal income have wider

tails than those of profits and income in log-log scale (for instance [26], [18], [27], [28], [29],

[25]). In this case, the shape of the growth-rate distribution is different from Eqs. (5) and

(6). There must be, therefore, another Non-Gibrat’s Property corresponding to this shape.

In fact, it has been reported in several studies that a Non-Gibrat’s Property different from

Non-Gibrat’s First Property exists in the mid-scale range of assets and sales of firms (for

instance [30]—[32]).
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In this study, we report the following findings by employing the sales data of Japanese

firms, which include not only data in the large-scale range but also those in the mid-scale

range.

1. Detailed balance (3) is confirmed in the mid- and large-scale ranges of sales data.

2. In not only the large-scale range but also the mid-scale range of sales data, the growth-

rate distributions have wider tails than those of profits in log-log scale.

3. Under detailed balance (3), the allowed change of the growth-rate distribution in the

mid-scale range is analytically determined by using empirical data. The change is

different from that of profits. We call this Non-Gibrat’s Second Property.

4. A log-normal distribution is derived from Non-Gibrat’s Second Property and from

detailed balance. This is verified with empirical data.

From these results, we conclude that the shape of the growth-rate distribution determines

the type of Non-Gibrat’s Property in the mid-scale range.

NON-GIBRAT’S FIRST PROPERTY

In this section, we review the analytic discussion in Ref. [19] and confirm it by applying

the results to newly obtained data. In the analytic discussion, detailed balance (3) and the

shape of the growth-rate distribution (5)—(6) lead uniquely to a change in the growth-rate

distribution (7). In addition, Non-Gibrat’s First Property and detailed balance derive a

log-normal distribution (2) in the mid-scale range.

In this study, we employ profits and sales data supplied by the Research Institute of

Economy, Trade and Industry, IAA (RIETI) [33]. In this section we analyze profits data,

and sales data are analyzed in the next section. The data set, which was created by TOKYO

SHOKO RESEARCH, LTD. [34] in 2005, includes approximately 800,000 Japanese firms

over a period of three years: the current year, the preceding year, and the year before that.

The number of firms is approximately the same as the actual number of active Japanese

firms. This database is considered nearly comprehensive, at least in the mid- and large-scale

ranges. In this study, we investigate the joint PDF PJ(xT , xT+1) and the distribution of

the growth rate R = xT+1/xT . Therefore, by using data of each firm in the previous three
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FIG. 1. Scatter plot of positive profits in the database. Here, xT and xT+1 are positive profits of

individual firms in consecutive years.

years, we analyze a data set that has two values at two successive points in time as follows:

(xT , xT+1) = (data in preceding year, data in current year) ∪ (data in year before last,
data in preceding year). Here, ∪ indicates set-theoretic union. This superposition of data is
employed in order to secure a statistically sufficient sample size. This procedure is allowed in

cases where the economy is stable, that is, thermodynamically in equilibrium. The validity

is checked by detailed balance, as described below.

First, detailed balance (3) is observed in profits data. Note that only positive-profits data

are analyzed here, since we assume that non-negligible negative profits are not listed in the

database. Negative-profits data are thus not regarded as exhaustive. We employ “622,420”

data sets (xT , xT+1) that have two positive profits at two successive points in time. Figure. 1

shows the joint PDF PJ(xT , xT+1) as a scatter plot of individual firms. Detailed balance

(3) is confirmed by the Kolmogorov—Smirnov (KS), Wilcoxon—Mann—Whitney (WMW), and

Brunner—Munzel (BM) tests. In the statistical tests, the range of xT is divided into N bins

as i0 ≤ i1 ≤ · · · ≤ in−1 ≤ in ≤ · · · ≤ iN to approximately equalize the number of data in each
bin “xT ∈ [in−1, in) and xT > xT+1.” Here, i0 and iN are the lower and the upper bounds
of xT , respectively. We compare the distribution sample for “PJ(xT ∈ [in−1, in), xT+1) and
xT > xT+1” with another sample for “PJ(xT , xT+1 ∈ [in−1, in)) and xT < xT+1” (n =

1, 2, · · · , N) by making the null hypothesis that these two samples are taken from the same

parent distribution.
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FIG. 2. Each p value of the WMW test for the scatter plot of positive-profits data points in Fig. 1.

Each p value of the WMW test for the case of N = 2000 is shown in Fig. 2. Note that

the profits data contain a large number of same-value amounts, which are round numbers:

100, 200, · · ·, 1000, 2000, · · ·, 10000, 20000, · · ·. This phenomenon is frequently observed
in economic data. A bin with a round-number amount may contain an exceptionally large

number of data in this method of division. For the case of N = 2000, almost all bins

typically contain 200 data; however, a bin with the round number of 5000, for instance,

contains an exceptional 4437 data. In order to generally equalize the average amount of

data in bins to the typical value, an appropriate number of empty bins are inserted at such

bins of round-number amounts as needed (Fig. 3). In the case of N = 2000, there are 759

empty bins. P values with respect to the remaining 1241 bins are depicted in Fig. 2, in

which 1141 p values exceed 0.05. Regardless of the division number N and the kind of test,

p values exceed 0.05 in approximately 92% of bins. This means that the null hypothesis is

not rejected within the 5% significance level in approximately 92% of the range. This result

does not change in the case where the range of xT is divided into logarithmically equal bins.

Consequently, the detailed balance (3) in Fig. 1 is generally confirmed.

Second, we divide the range of the initial value xT into logarithmically equal bins as

xT ∈ [101+0.4(n−1), 101+0.4n) (n = 1, 2, · · · , 15) in order to identify the shape of the growth-
rate distribution and the change as the initial value xT increases. The conditional PDFs

q(r|xT ) of the logarithmic growth rate r = log10R are shown in Figs. 4—6. In Figs. 5 and

6, the growth-rate distributions in the mid- and large-scale ranges are approximated by a
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FIG. 3. A bin with a round-number amount contains an exceptionally large number of data. In

order to generally equalize the average amount of data in bins to the typical value, empty bins are

inserted at bins with round-number amounts as needed.

FIG. 4. Conditional PDFs of positive-profits growth rate in the low-scale range (101 ≤ xT < 103).

Here, xT and xT+1 are positive profits in consecutive years, in thousand yen.

linear function of r:

log10 q(r|xT ) = c(xT )− t+(xT ) r for r > 0 , (8)

log10 q(r|xT ) = c(xT ) + t−(xT ) r for r < 0 . (9)

The approximation (8)—(9) is equivalent to Eqs. (5) and (6) by using relations log10 q(r|xT ) =
log10Q(R|xT ) + r + log10(ln 10) and d(xT ) = 10c(xT )/ ln 10. From

R∞
0 dR Q(R|xT ) = 1, the

normalization coefficient d(xT ) (or the intercept c(xT )) is determined as

1

d(x)
=

1

t+(x)
+

1

t−(x)
. (10)

Following the discussion in a previous work [19], we derive the change in the growth-rate

distribution (7) from the shape of the growth-rate distribution (5)—(6) under detailed balance
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FIG. 5. Conditional PDFs of positive-profits growth rate in the mid-scale range (103 ≤ xT < 105).

Here, xT and xT+1 are positive profits in consecutive years, in thousand yen.

FIG. 6. Conditional PDFs of positive-profits growth rate in the large-scale range (105 ≤ xT < 107).

Here, xT and xT+1 are positive profits in consecutive years, in thousand yen.

(3) and then derive the log-normal distribution in the mid-scale range. Under the exchange

of variables from (xT , xT+1) to (xT , R), two joint PDFs PJ(xT , xT+1) and PJ(xT , R) are

related to each other as PJ(xT , R) = xTPJ(xT , xT+1). Substituting the joint PDF PJ(xT , R)

for the conditional PDF Q(R|xT ) and using detailed balance (3), we obtain
P (xT )

P (xT+1)
=
1

R

Q(R−1|xT+1)
Q(R|xT )

. (11)

By substituting the conditional PDF for the shape of the growth-rate distribution (5)—(6),
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another expression of detailed balance (11) is reduced to

P̃ (xT )

P̃ (xT+1)
= R+t+(xT )−t−(xT+1)+1 (12)

for the case of R > 1. Here, we denote P̃ (x) = d(x) P (x). By expanding Eq. (12) around

R = 1 with xT → x and xT+1 → R x, the following three differential equations are obtained:h
1 + t+(x)− t−(x)

i
P̃ (x) + x P̃

0
(x) = 0 , (13)

t+
0
(x) + t−

0
(x) = 0 , t+

0
(x) + x t+

00
(x) = 0 . (14)

The same differential equations are obtained for R < 1. Equations (14) uniquely fix t±(xT )

as Eq. (7). Now, let us verify this by empirical data.

Figure 7 shows t±(xT ) and c(xT ) estimated by fitting the approximation (8)—(9) to each

growth-rate distribution in Figs. 4—6. In Fig. 7, c(xT ) is fixed as the empirical value and

t±(xT ) is estimated by using the least-squares method. In Fig. 4, the linear function (8)—

(9) is difficult to approximate for each growth-rate distribution, and the values for n =

1, 2, · · · , 5 in Fig. 7 are untrustworthy. In Fig. 5, however, the linear approximation (8)—(9)
is appropriate. Applying the change in the growth-rate distribution t±(xT ) (7) to n = 6, 7, 8

(103 ≤ xT < 104.2) in Fig. 7, we obtain the rate-of-change parameter α = 0.11 ± 0.02
from t+(xT ) and α = 0.11 ± 0.03 from t−(xT ) by using the least-squares method. This

FIG. 7. Estimations of c(xT ) and t±(xT ). Here, xT is the lower bound of each bin, in thousand

yen, and c(xT ) is the original value of the growth-rate distribution. From left, each point on the

graph represents n = 1, 2, · · · , 15.
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FIG. 8. Estimations of σ±(xT ). Here, xT is the lower bound of each bin, in thousand yen. From

left, each point on the graph represents n = 1, 2, · · · , 15.

coincidence of two estimated values guarantees Non-Gibrat’s First Property (5)—(7) in the

empirical data. We regard 103 ≤ xT < 104.2 as the mid-scale range.
In Fig. 6, the growth-rate distribution barely changes as n increases. This means that

Gibrat’s Law (4) is valid in the large-scale range. In Fig. 7, the values t±(xT ) vary in the

large-scale range, since the number of data in Fig. 6 is statistically insufficient to estimate

t±(xT ) by the least-squares method. However, by measuring the positive and negative

standard deviations σ± of each growth-rate distribution in Figs. 4—6, we confirmed that the

growth-rate distribution only slightly changes in the range xT ≥ 105 (Fig. 8). From Fig. 8,

we regard xT ≥ 105 as the large-scale range and set α = 0 in this range. Strictly speaking,
a constant parameter α must not take different values. However, in the database, a large

number of firms stay in the same range for two successive years. This parameterization is,

therefore, generally suitable for describing the PDF.

In Fig. 7, c(xT ) = log10(d(xT ) ln 10) hardly changes in the mid- and large-scale ranges

xT ≥ 103. This is consistent with C± >> α lnxT in Eqs. (7) and (10). Consequently, by

approximation we determine that the dependence of d(xT ) on xT is negligible in the mid-

and large-scale ranges. Using t±(x) (7), Eq. (13) uniquely decides the PDF of x as

P (x) = C x−(μ+1) exp
h
−α ln2 x

i
for x > xmin . (15)

Here, we regard d(x) in P̃ (x) = d(x) P (x) as a constant and denote μ = C+ − C−. The
solutions (7) and (15) satisfy Eq. (12) beyond perturbation around R = 1, and thus these
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are not only necessary but also sufficient.

Figure 9 shows that the resultant PDF (15) fits correctly with the empirical profits data.

In the large-scale range (α = 0), the PDF (15) behaves as Pareto’s Law (1). The Pareto

index is estimated as approximately μ ∼ 1 in the large-scale range (x ≥ 105) of Fig. 9. In the
mid-scale range, the PDF (15) behaves as the log-normal distribution (2) with α = 1/(2σ2),

μ = − ln x̄/(σ2). Applying the PDF (15) to the mid-scale range (103 ≤ x < 104.2) of Fig. 9,
we obtain the rate-of-change parameter α = 0.082±0.089 by using the least-squares method.
The error bar is not small because we have applied the least-squares method to the quadratic

curve in log-log scale. The estimated value (α = 0.082± 0.089) is, however, consistent with
the values estimated by the change in t±(xT ) (α = 0.11± 0.02 or 0.11 ± 0.03). From these

results, we conclude that Non-Gibrat’s First Property is confirmed by the empirical data.

FIG. 9. A PDF of positive profits in the database. Pareto’s Law is observed in the large-scale

range (x ≥ 105) and in the log-normal distribution in the mid-scale range (103 ≤ x < 104.2).

NON-GIBRAT’S SECOND PROPERTY

In this section, we investigate another Non—Gibrat’s Property observed in the mid-scale

range of sales data. This is the main aim of this study. First, detailed balance (3) is also

observed in sales data. Here, we employ “1,505,108” data sets (xT , xT+1) that have two sales

at two successive points in time. Figure 10 shows the joint PDF PJ(xT , xT+1) as a scatter

plot of individual firms. Detailed balance (3) is also confirmed by using the KS, WMW, and

BM tests in the same manner as in the previous section. Figure 11 shows each p value of the
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FIG. 10. Scatter plot of sales in the database. Here, xT and xT+1 are sales of individual firms in

consecutive years.

FIG. 11. Each p value of the BM test for the scatter plot of sales data points in Fig. 10.

BM test for the N = 5000 case. Regardless of the division number N and the kind of test, p

values exceed 0.05 in approximately 82% of bins. This means that the null hypothesis is not

rejected within the 5% significance level in approximately 82% of the range. Note that the

sales data also contain a large number of same-value amounts, which are round numbers.

P values of the statistical test for bins with a large number of round values are unusually

small. In this situation, 82% is acceptable. The percentage is slightly higher in the case

where the range of xT is divided into logarithmically equal bins. We assume, therefore, that

detailed balance (3) in Fig. 10 is generally verified.
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Second, we divide the range of the initial value xT into logarithmically equal bins as xT ∈
[103+0.4(n−1), 103+0.4n) (n = 1, 2, · · · , 15). The conditional growth-rate distributions q(r|xT )
are shown in Figs. 12—14. Each growth-rate distribution in Figs. 12—14 has curvatures. It

FIG. 12. Conditional PDFs of sales growth rate in the small- and mid-scale ranges (103 ≤ xT <

105). Here, xT and xT+1 are sales in consecutive years, in thousand yen.

FIG. 13. Conditional PDFs of sales growth rate in the mid- and large-scale ranges (105 ≤ xT < 107).

Here, xT and xT+1 are sales in consecutive years, in thousand yen.

is difficult to approximate the growth-rate distributions by the linear approximation (8)—(9)

as in the profits case. As the simplest extension, we have added a second-order term with

respect to r to express the curvatures as follows:

log10 q(r|xT ) = c(xT )− t+(xT ) r + ln 10 u+(xT ) r2 for rc > r > 0 , (16)
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FIG. 14. Conditional PDFs of sales growth rate in the large-scale range (107 ≤ xT < 109). Here,

xT and xT+1 are sales in consecutive years, in thousand yen.

log10 q(r|xT ) = c(xT ) + t−(xT ) r + ln 10 u−(xT ) r2 for − rc < r < 0 . (17)

Note that we must introduce a cut rc in order to normalize the probability integration asR 10rc
10−rc dR Q(R|xT ) = 1, since Eqs. (16) and (17) are quadratic with respect to r. From

this normalization condition, c(xT ) can be expressed by using t±(xT ), u±(xT ), and rc. The

expression is quite complicated, and it is later observed that c(xT ) only slightly depends on

xT in the empirical data. Therefore, we do not describe the expression here.

The approximation (16)—(17) is rewritten as

Q(R|xT ) = d(xT ) R−1−t+(xT )+u+(xT ) lnR for R > 1 , (18)

Q(R|xT ) = d(xT ) R−1+t−(xT )+u−(xT ) lnR for R < 1 . (19)

By using this shape, in the case of R > 1, detailed balance (11) is reduced to

P̃ (xT )

P̃ (xT+1)
= R 1+t+(xT )−t−(xT+1)−[u+(xT )−u−(xT+1)] lnR . (20)

By expanding Eq. (20) around R = 1 with xT → x and xT+1 → R x, the following five

differential equations are obtained:h
1 + t+(x)− t−(x)

i
P̃ (x) + x P̃

0
(x) = 0 , (21)

x
h
t+

0
(x) + t−

0
(x)

i
+ 2 [u+(x)− u−(x)] = 0 , (22)

2 t+
0
(x) + t−

0
(x) + 6u+

0
(x) + x

h
2 t+

00
(x) + t−

00
(x)

i
= 0 , (23)
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t+
0
(x) + t−

0
(x) + 3x

h
t+

00
(x) + t−

00
(x)

i
+ x2

h
t+
(3)(x) + t−

(3)(x)
i
= 0 , (24)

t+
0
(x) + 7x t+

00
(x) + 6x2 t+

(3)(x) + x3 t+
(4)(x) = 0 . (25)

The same differential equations are obtained for R < 1. Equations (22)—(25) uniquely fix

the change in the growth-rate distribution t±(x), u±(x) as follows:

t+(x) =
γ

3
ln3 x+

β

2
ln2 x+ α ln x+ C1 , (26)

t−(x) = −
γ

3
ln3 x+

δ − β

2
ln2 x+ (η − α) ln x+ C2 , (27)

u+(x) = −
γ

6
ln2 x− δ + β

6
ln x+ C3 , (28)

u−(x) = −
γ

6
ln2 x+

2δ − β

6
ln x+ C3 +

η

2
. (29)

Now, let us confirm these solutions with the empirical data.

Figure 15 shows t±(xT ), u±(xT ) and c(xT ) estimated by fitting the approximation (16)—

(17) to each growth-rate distribution in Figs. 12—14. In Fig. 15, c(xT ) is fixed as the empirical

value and t±(xT ) and u±(xT ) are estimated by using the least-squares method. For n =

13, 14, 15 in Fig. 14, there are not sufficient data points to estimate t±(xT ), u±(xT ) for

n = 14, 15 or to estimate the error bar for n = 13. Therefore, data points for n = 13, 14, 15

are not plotted in Fig. 15.

On the one hand, for n = 9, 10, · · · , 15 (xT ≥ 106.2) in Figs. 13 and 14, the growth-rate

FIG. 15. Estimations of c(xT ), t±(xT ), and u±(xT ). Here, xT is the lower bound of each bin, in

thousand yen, and c(xT ) is the original value of the growth-rate distribution. From left, each point

on the graph represents n = 1, 2, · · · , 12.
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distribution hardly changes as n increases. This means that Gibrat’s Law (4) is verified by

the empirical data. We regard xT ≥ 106.2 as the large-scale range and set γ = β = δ = α =

η = 0 in this range because t±(xT ) and u±(xT ) do not depend on xT . In Fig. 15, the values

of t±(xT ) and u±(xT ) vary in this range because the number of data in Fig. 14 is statistically

insufficient to estimate them by the least-squares method. However, by measuring positive

and negative standard deviations σ± of each growth-rate distribution in Figs. 12—14, we

confirmed that the growth-rate distribution hardly changes in the large-scale range xT ≥
106.2 (Fig. 16).

FIG. 16. Estimations of σ±(xT ). Here, xT is the lower bound of each bin, in thousand yen. From

left, each point on the graph represents n = 1, 2, · · · , 15.

On the other hand, in Fig. 12, while the negative growth-rate distribution hardly changes

as n increases, the positive growth-rate distribution gradually decreases. This is Non-

Gibrat’s Property in the mid-scale range of sales data. We should estimate parameters

γ,β, δ,α and η by applying the change in the growth-rate distribution (26)—(29) to Fig. 15.

However, there are insufficient data points in Fig. 15 for using the least-squares method by

polynomial functions (26)—(29). Consequently, as a first-order approximation, we assume

that the negative growth-rate distribution does not depend on xT , even in the mid-scale

range. This approximation is guaranteed by Fig. 16 because the negative standard devia-

tion σ− hardly changes compared with the positive standard deviation σ+.

In this approximation, the parameters are simplified as

γ = δ = β = 0 and η = α . (30)
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Only the change in the positive growth-rate distribution t+(xT ) depends on xT as follows:

t+(x) = α ln x+ C1 , (31)

t−(x) = C2 , u+(x) = C3 , u−(x) = C3 +
α

2
. (32)

We call this Non-Gibrat’s Second Property.

Applying t+(xT ) (31) to n = 3, 4, 5, 6 (10
3.8 ≤ xT < 105.4) in Fig. 15, we obtain the rate-of-

change parameter α = 0.68±0.03 by the least-squares method. We regard 103.8 ≤ xT < 105.4

as the mid-scale range of sales. In this range, t−(xT ) and u±(xT ) hardly change compared

with t+(xT ), so the approximation (32) is considered relevant. Nevertheless, the value α

estimated by the difference between u+(xT ) and u−(xT ) disagrees with the value estimated

by the change in t+(xT ). Most likely, this comes from a limitation of the second-order

approximation with respect to r (16)—(17). To fix this discrepancy, we may add a third-

order term with respect to r. We will consider this point in the conclusion. In addition, we

should note that the intercept c(xT ) only slightly depends on xT in the mid- and large-scale

ranges xT ≥ 103.8, as in the profits case.
Using t±(x) (26)—(27), Eq. (21) uniquely determines the PDF of x as

P (x) ∝ x−(μ+1) exp
h
−γ
6
ln4 x+

δ − 2β
6

ln3 x− (α− η

2
) ln2 x

i
. (33)

Here, we regard d(x) in P̃ (x) = d(x) P (x) as a constant and denote μ = C1 − C2. The
solutions (26)—(29) and (33) satisfy Eq. (20) beyond perturbation around R = 1, so these

are not only necessary but also sufficient. In the approximation (30), the PDF is reduced to

P (x) ∝ x−(μ+1) exp
∙
−α
2
ln2 x

¸
. (34)

Figure 17 shows that the resulting PDF (34) fits correctly with the empirical sales data. In

the large-scale range (α = 0), the PDF (34) behaves as Pareto’s Law (1). The Pareto index is

estimated as approximately μ ∼ 1 in the large-scale range (x ≥ 106.2) of Fig. 17. In the mid-
scale range, the PDF (34) behaves as the log-normal distribution (2) in the same manner as in

the profits case. Applying the PDF (34) to the mid-scale range (103.8 ≤ x < 105.4) of Fig. 17,
we obtain the rate-of-change parameter α = 0.65± 0.04 by using the least-squares method.
This is consistent with the value estimated by the change in t+(xT ) (α = 0.68 ± 0.03).
From these results, we conclude that Non-Gibrat’s Second Property is also confirmed by the

empirical data.
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FIG. 17. A PDF of sales in the database. Pareto’s Law is observed in the large-scale range

(x > 106.2) and the log-normal distribution in the mid-scale range (103.8 ≤ x < 105.4).

CONCLUSION

In this study, we have employed exhaustive business data on Japanese firms that nearly

cover not only the entire large-scale range but also the entire mid-scale range in terms of

firm size. Using this newly assembled database, we first reconfirmed the previous analyses

for profits data [19] as described below. In the mid-scale range, the log-normal distribution

is derived from detailed balance and from Non-Gibrat’s First Property. In Non-Gibrat’s

First Property, the probability of positive growth decreases and the probability of negative

growth increases symmetrically as the initial value xT increases. Under detailed balance,

this change is uniquely reduced from the shape of the growth-rate distribution, which is

linear in log-log scale.

Second, the following findings were reported with respect to sales data. Detailed balance is

also observed in the mid- and large-scale ranges of sales data. The growth-rate distribution of

sales has wider tails than the linear growth-rate distribution of profits in log-log scale. In the

mid-scale range, while the probability of negative growth hardly changes as the initial value

xT increases, the probability of positive growth gradually decreases. This feature is different

from Non-Gibrat’s First Property observed in the profits data. We have approximated

the growth-rate distribution with curvatures by a quadratic function. In addition, from

an empirical observation, we have imposed the condition that the negative growth-rate

distribution does not depend on xT , even in the mid-scale range. Under detailed balance,
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these approximations and conditions uniquely lead to a decrease in positive growth. We call

this Non-Gibrat’s Second Property. In the mid-scale range, the log-normal distribution is

also derived from detailed balance and from Non-Gibrat’s Second Property. These results

are confirmed by the empirical data.

In this study, it was clarified that the shape of the growth-rate distribution of sales is

different from that of profits. It was also demonstrated that this difference is closely related

to the difference between two kinds of Non-Gibrat’s Properties in the mid-scale range. The

growth-rate distribution of income of firms is approximated by a linear function in log-

log scale as in the profits data. The growth-rate distributions of assets, the number of

employees, and personal income have wider tails than a linear function in log-log scale, as in

the sales data. If we obtained exhaustive data that include the mid-scale range, Non-Gibrat’s

First Property would probably be observed in the income data of firms, while Non-Gibrat’s

Second Property would probably be observed in the assets, the number of employees, and

the personal income data.

We have not determined what makes the difference between the shapes of the growth-

rate distributions. However, this difference is probably related to the following factors [25].

Income and profits of firms are calculated by a subtraction of total expenditures from total

sales in a rough estimate. Assets and sales of firms, the number of employees, and personal

income are not calculated by any subtraction.

Let us consider the distribution of added values, the sum of which is GDP. Clearly,

added values are calculated by some subtraction. If we obtained exhaustive data of added

values, Non-Gibrat’s First Property would certainly be observed. It has been reported that

the growth-rate distribution of GDPs of countries is linear in log-log scale (for instance

[35]). This report reinforces that speculation. The results in this paper should be carefully

considered in cases where governments and firms discuss strategies of growth.

Finally, we consider a method to fix the inconsistency by which the rate-of-change pa-

rameter α is not estimated by the difference between u±(xT ) (32). Let us add not only the

second-order term with respect to r but also a third-order term as follows:

log10 q(r|xT ) = c(xT )− t+(xT ) r + ln 10 u+(xT ) r2 − ln2 10 v+(xT ) r3 for r > 0 ,(35)

log10 q(r|xT ) = c(xT ) + t−(xT ) r + ln 10 u−(xT ) r2 + ln2 10 v−(xT ) r3 for r < 0 .(36)

In the same manner as in the previous section, under detailed balance, coefficients t±(x),
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u±(x), and v±(x) are uniquely obtained as follows:

t+(x) =
ζ

5
ln5 x+

²

4
ln4 x+

γ

3
ln3 x+

β

2
ln2 x+ α ln x+ C1 , (37)

t−(x) = −
ζ

5
ln5 x+

κ− ²
4

ln4 x+
θ − γ

3
ln3 x+

δ − β

2
ln2 x+ (η − α) ln x+ C2 , (38)

u+(x) = −
ζ

5
ln4 x− 4²+ 3κ

20
ln3 x− (λ+ 2γ + θ

12
) ln2 x+ (ν − δ + β

6
) ln x+ C3 , (39)

u−(x) = −
ζ

5
ln4 x− 4²− 7κ

20
ln3 x− (λ+ 2γ − 5θ

12
) ln2 x+ (ν +

2δ − β

6
) ln x

+C3 +
η

2
, (40)

v+(x) =
ζ

15
ln3 x+

2κ+ ²

20
ln2 x+ λ lnx+ C4 , (41)

v−(x) = −
ζ

15
ln3 x+

3κ− ²
20

ln2 x− (λ− θ

6
) lnx+ C4 + μ . (42)

By imposing the condition that the negative growth-rate distribution does not depend

on xT even in the mid-scale range, these are simplified as follows:

t+(x) =
β

2
ln2 x+ α ln x+ C1 , t−(x) = C2 , (43)

u+(x) = −
β

2
lnx+ C3 , u−(x) = C3 +

α

2
, (44)

v+(x) = C4 , v−(x) = C4 −
β

6
. (45)

The results in the previous sections (31) and (32) correspond to a special case β = 0, C4 = 0

in Eqs. (43)—(45). In the previous section, it was difficult to estimate α by the difference in

u±(x). In the expressions (43)—(45), this discrepancy is probably solved with a negative β.

Note that Eqs. (26)—(29) cannot be reduced to Eqs. (43) and (44) in any parameterization.

It is technically difficult to estimate t±(x), u±(x), and v±(x) by approximating the growth-

rate distribution by the cubic function (35)—(36) and to estimate β and α fitting Eqs. (43)—

(45) by the least-squares method. At the same time, under the approximation by the cubic

function (35)—(36), the integration
R∞
0 dR Q(R|xT ) converges without a cut rc, as in the

linear approximation. Because this work involves difficulties as well as advantages, we will

investigate the above issues in the near future.
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