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Abstract

This article analyzes the identifiability of k-variate, M -component finite mixture mod-

els in which each component distribution has independent marginals, including models

in latent class analysis. Without making parametric assumptions on the component

distributions, we investigate how one can identify the number of components and the

component distributions from the distribution function of the observed data.

We reveal an important link between the number of variables (k), the number of values

each variable can take, and the number of identifiable components. A lower bound on the

number of components (M) is nonparametrically identifiable if k ≥ 2, and the maximum

identifiable number of components is determined by the number of different values each

variable takes. When M is known, the mixing proportions and the component distri-

butions are nonparametrically identified from matrices constructed from the distribution

function of the data if (i) k ≥ 3, (ii) two of k variables take at least M different values,

and (iii) these matrices satisfy some rank and eigenvalue conditions.

For the unknown M case, we propose an algorithm that possibly identifies M and

the component distributions from data. We discuss a condition for nonparametric iden-

tification and its observable implications. In case M cannot be identified, we use our

identification condition to develop a procedure that consistently estimates a lower bound

on the number of components by estimating the rank of a matrix constructed from the

distribution function of observed variables.
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1 Introduction

Finite mixture models provide flexible ways to model unobserved population heterogeneity.

Because of their flexibility, finite mixtures have been used in numerous applications in diverse

fields such as biological, physical, and social sciences. For example, empirical researchers in

economics often use finite mixtures to control unobserved individual-specific effects (e.g.,

Keane and Wolpin 1997; Cameron and Heckman 1998). Comprehensive theoretical accounts

and examples of applications can be found in Everitt and Hand (1981), Titterington et al.

(1985), McLachlan and Basford (1988), Lindsay (1995), and McLachlan and Peel (2000).

A finite mixture model is characterized by three main determinants: the number of

components, the component distributions, and the mixing proportions. As emphasized in

Hettmansperger and Thomas (2000), there is often little theoretical guidance for selecting

the number of components and/or the form of the component distributions despite their

key role in the specification of mixtures. In many applications, the component distributions

are assumed to belong to a certain parametric family, such as normal, and the number of

components is then determined by the fit of the model to the data.

However, the shape of the component distributions and the number of components are

related to each other. It has been known that the estimates of the number of components are

sensitive to the choice of the component distributions (see, for example, Schork et al. (1990)

and Roeder (1994)). Further, Cruz-Medina et al. (2004) report a simulation result in which

imposing incorrect parametric restrictions on the component distributions leads to erroneous

inference on the number of components.

This article analyzes the nonparametric identifiability of k-variate, M̃ -component finite

mixture models of W = (W1, ...,Wk) under the assumption that the Wj ’s are independently

(but not necessarily identically) distributed within each component:

F (w) = F (w1, . . . , wk) =

M̃∑
m=1

πmFm1 (w1)Fm2 (w2) · · ·Fmk (wk), πm > 0,
M̃∑
m=1

πm = 1. (1)

Here F (w) is the distribution function of W , πm is the mixture proportion of the m-th

subpopulation, and Fmj (wj) is the distribution function of Wj conditional on being from the

m-th subpopulation, respectively. When F (w) can be expressed as (1), it is also possible to

write F (w) as a mixture with more than M̃ components. Therefore, we define the number

of components in F (w), M , as the smallest positive integer M̃ for which a finite mixture

representation (1) can be found.

We analyze how one can recover the number of components, M , the component distribu-

tions (Fmj ’s), and the mixing proportions (πm’s) from the exact knowledge of the distribution

function of observed variables F (w1, . . . , wk) when no parametric assumptions are imposed

on the component distributions. Identification problems differ from problems of statistical
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inference in that we assume hypothetical access to infinite data; identifiability is a prerequi-

site for statistical inference since consistent estimation is not possible without identifiability

(Koopmans and Reiersøl 1950; Koopmans 1950; Allman et al. 2009). For example, Good-

man (1974b) analyzes a finite mixture model with four binary variables and shows that the

model is not identifiable so that consistently estimating such a model is not possible without

further restrictions. Nonparametric identifiability of finite mixtures has recently attracted

increasing attention. Hall and Zhou (2003), Hall et al. (2005), and Allman et al. (2009)

analyze nonparametric identifiability of k-variate finite mixture models (1). Hettmansperger

and Thomas (2000) and Cruz-Medina et al. (2004) provide sufficient conditions for the non-

parametric identification of finite mixtures with iid marginals.

The mixture model (1) assumes that the marginal distributions are independent condi-

tional on belonging to a subpopulation. The independence assumption is a key assumption,

and it is certainly strong. However, it is applicable to many cases in practice (Hettmansperger

and Thomas 2000; Cruz-Medina et al. 2004; Zhou et al. 2005), and the model (1) encom-

passes models in latent class analysis (Lazarsfeld and Henry, 1968) that has been widely used

in many fields including sociology, psychology, and biostatistics (Clogg 1995; Hagenaars and

McCutcheon 2002; Magidson and Vermunt 2004; Skrondal and Rabe-Hesketh 2004). Fur-

ther, as argued by Hall et al. (2005), a practical consideration associated with the curse of

dimensionality may necessitate imposing independence when modeling multivariate data.

We make the following contributions. We identify the objects of our interest by trans-

forming each element of W to a discrete random variable through partitioning its support and

then analyzing the resulting (multiway) contingency table. First, we show that a lower bound

on the number of components M is identified without imposing any parametric assumptions

if k ≥ 2. Interestingly, this result holds despite the fact that the component distributions are

not identifiable when k = 2 (see Clogg 1981; Hall and Zhou 2003). The variation within each

variable provides information on the number of components, and the maximum identifiable

number of components is limited by the number of different values each variable takes.

Second, we establish that, when M is known, the mixing proportions and the component

distributions are nonparametrically identified from matrices constructed from the distribution

function of data if (i) k ≥ 3, (ii) two of k variables take at least M different values, and

(iii) these matrices satisfy some rank and eigenvalue conditions. These sufficient conditions

are, in principle, testable from the observed data. Here, the requirement on the number of

variables k is stronger than in identifying only a lower bound on the number of components.

For the unknown M case, we develop an algorithm that possibly identifies both M and

the component distributions from data; we provide a sufficient condition for nonparametric

identification under unknown M and discuss its observable implications.

Our sufficient conditions for nonparametric identification when M is known substantially

improve the requirement on the number of variables, k, in the existing literature while few
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identification results exist for the case M is unknown. Using model (1) with known M

and assuming additionally the Wj ’s are identically distributed within each component (i.e.,

Fmj (wj) = Fm(wj) for all j’s), Hettmansperger and Thomas (2000) and Cruz-Medina et al.

(2004) transform the data into binomial or multinomial variables and apply the results on

the identifiability of binomial and multinomial mixtures of Blischke (1964) and Elmore and

Wang (2003). Their transformation achieves robustness against parametric misspecification

as we do, but their sufficient condition requires k ≥ 2M − 1. Hence, for instance, if k = 3, at

the most, two components are identifiable. In contrast, our analysis shows that, even when

k = 3, a large number of components can be identified using the variation in W . Further, their

approach relies on the additional assumption of identically distributed marginals, and thus

our approach is applicable to a wider class of mixture models than theirs. On the other hand,

one has to be cautious of using our identification algorithm for statistical inference because

using higher order partitions of W might make the data thinner and the inference more

difficult in finite samples. Our sufficient conditions are also applicable to latent class analysis

and improve the previously established identification conditions by Anderson (1954), Gibson

(1955) and Madansky (1960), which require 2(k−1)/2 ≥ M . Hall, Neeman, Pakyari, and

Elmore (2005) analyze model (1) but their sufficient condition requires k ≥ (1+o(1))6M logM

as M →∞.

In a recent study, Allman, Matias, and Rhodes (2009) use the same model as ours and

analyze nonparametric identification when k ≥ 3 and M is known. Applying the result of

Kruskal’s theorem (Kruskal, 1976, 1977), Allman et al. (2009) approach the problem by

finding sufficient conditions in terms of the unobservable component distributions, whereas

we approach the problem by finding sufficient conditions in terms of the distribution function

of observable data. Our identification conditions are stronger than those in Allman et al.

(2009) in some cases but weaker in other cases, hence our results for k ≥ 3 and those of

Allman et al. (2009) are complementary to each other.

Our identification condition on the number of components is stated in terms of the rank of

a matrix constructed from the distribution function of observed variables W . By estimating

the rank of its empirical analogue, we develop a procedure to consistently estimate a lower

bound on the number of components. Numerous methods to select the number of components

have been proposed in a parametric setting (see Henna 1985; Leroux 1992; Lindsay and

Roeder 1992; Windham and Cutler 1992; Roeder 1994; Chen and Kalbfleisch 1996; Dacunha-

Castelle and Gassiat 1997, 1999; Keribin 2000; James et al. 2001; Woo and Sriram 2006).

Our proposed procedure requires the conditional independence assumption but makes no

distributional assumptions on the components.

It has also been known that the likelihood ratio test does not lead to the standard chi-

square distribution when applied to testing the number of components because the parameter

value specified under the null hypothesis lies on the boundary of the parameter space. In
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contrast, our selection procedure is based on a statistic that has the asymptotic chi-squared

distribution and is easy to implement without requiring the estimation of a mixture model

with a different number of components. Simulations illustrate that our procedure performs

well.

Kasahara and Shimotsu (2009) study nonparametric identification of finite mixture dy-

namic discrete choice models widely used in econometrics using a similar approach to this

article. This article analyzes nonparametric identifiability in a more general context of mul-

tivariate mixtures.

The remainder of the article is organized as follows. Section 2 discusses the nonpara-

metric identifiability of a lower bound on the number of components under k ≥ 2. Section

3 discusses sufficient conditions for nonparametric identification of the mixing proportions

and the component distributions under k ≥ 3. Section 4 introduces a procedure to test a

lower bound on the number of mixture components. Section 5 reports simulation results, and

empirical examples are provided in section 6. Proofs are collected in the Appendix.

2 Nonparametric identification of a lower bound on the num-

ber of components

2.1 Two-variable case

We first analyze nonparametric identification of a lower bound on the number of components

for the mixture model (1) with k = 2. For notational clarity, we use X and Y in place of W1

and W2. Specifically, consider the following finite mixture models of variable (X,Y ):

F (x, y) =
M̃∑
m=1

πmFmx (x)Fmy (y), πm > 0,
M̃∑
m=1

πm = 1, (2)

where Fmx (x) and Fmy (y) are the distribution functions of X and Y conditional on being

from the m-th subpopulation. No assumptions are imposed on Fmx (x)’s and Fmy (y)’s except

that they are distribution functions. Define the number of components in F (x, y), M , as the

smallest positive integer M̃ for which a finite mixture representation (2) can be found.

We proceed to construct a partition, ∆, of the support of (X,Y ), and form a matrix that

represents the distribution of (X,Y ) over ∆. Let X and Y denote the support of X and Y .

Partition X and Y into s and t mutually exclusive and exhaustive subsets, respectively, as

∆x = {δx1 , . . . , δxs } and ∆y = {δy1 , . . . , δ
y
t }. Define ∆ = ∆x ×∆y, and let D be the set of all

finite partitions of X and Y. Given a choice of partition ∆ ∈ D, collect the distributions of
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X and Y conditional on being from the m-th subpopulation into a vector as

pmx = (Pr(x ∈ δx1 |m), . . . ,Pr(x ∈ δxs |m))′ and pmy = (Pr(y ∈ δy1 |m), . . . ,Pr(y ∈ δyt |m))′,

(3)

respectively. The vectors pmx and pmy implicitly depend on ∆x and ∆y.

Arrange Pr(X ∈ δxa , Y ∈ δyb ) for partition level (a, b) = (1, 1), . . . , (s, t) into an s × t

bivariate probability matrix as

P∆ =


Pr(X ∈ δx1 , Y ∈ δ

y
1) · · · Pr(X ∈ δx1 , Y ∈ δ

y
t )

...
. . .

...

Pr(X ∈ δxs , Y ∈ δ
y
1) · · · Pr(X ∈ δxs , Y ∈ δ

y
t )

 . (4)

Then, P∆ represents the distribution of (X,Y ) on the partition ∆ and can be expressed in

terms of πm’s, pmx ’s, and pmy ’s as

P∆ =
M̃∑
m=1

πmpmx (pmy )′, πm > 0,
M̃∑
m=1

πm = 1. (5)

Equation (5) is a finite mixture model (2) that is restricted to the partition ∆.

For a partition ∆, define the number of components in P∆ as the smallest integer M̃ such

that the finite mixture representation (5) is possible. The number of components in P∆ is

closely related to the concept of nonnegative rank developed by Cohen and Rothblum (1993).

For a nonnegative matrix A, its nonnegative rank is denoted by rank+(A) and defined as the

smallest number of nonnegative rank-one matrices such that A equals their sum. Since P∆

is a nonnegative matrix and the right hand side of equation (5) is the sum of nonnegative

rank-one matrices, by definition, the number of components in P∆ is the nonnegative rank

of P∆.

The nonnegative rank of P∆ is no larger than M , but could be strictly smaller than M

when a single partition ∆ does not fully reveal the information for identifying the number

of components in F (x, y). M is identified with the maximum value of rank+(P∆)’s over all

possible finite partitions, i.e., M = max∆∈D rank+(P∆).

The following proposition, originally due to Cohen and Rothblum (1993), states the prop-

erties of the nonnegative rank of P∆ and its relation to the rank of P∆.

Proposition 1 (Cohen and Rothblum, 1993) (a) rank(P∆) ≤ rank+(P∆) ≤ min{s, t}.
(b) If rank(P∆) ≤ 2, then rank(P∆) = rank+(P∆). (c) If s ≤ 3 or t ≤ 3, then rank+(P∆) =

rank(P∆).

From Proposition 1(a), rank(P∆) gives a lower bound on the number of components in P∆

whereas the number of support points of X and Y gives an upper bound on the number of
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identifiable components since s ≤ |X | and t ≤ |Y|, where |S| denotes the number of elements

in a set S. It follows from Proposition 1 that rank+(P∆) = rank(P∆) if rank+(P∆) ≤ 3,

whereas rank+(P∆) may be strictly larger than rank(P∆) when rank+(P∆) > 3.

The rank of P∆ could be different from the nonnegative rank of P∆ because the latter

requires that the components πm’s, pmx ’s, and pmy ’s in (5) to be nonnegative while the former

does not. For example, suppose that s = t = 4 and P∆ =
∑4

m=1 π
mpmx (pmy )′, where πm > 0

and pmx ’s are linearly independent but p1
y+p2

y−p3
y−p4

y = 0, so that the rank of P∆ is 3. Writing

one pmy in terms of the other pmy ’s and substituting into P∆ will give a three-term mixture

representation of P∆. However, if −π1p1
x + π2p2

x and −π3p3
x + π4p4

x have both positive and

negative elements, then the resulting three-term mixture representation necessarily contains

negative components, and the nonnegative rank of P∆ is strictly larger than 3.

The nonnegative rank of P∆ equals the number of components in P∆. However, deter-

mining the nonnegative rank of a matrix is computationally difficult1, and it is still a subject

of on-going research (see, for example, Dong, Lin, and Chu 2009). Therefore, it is useful to

characterize a lower bound on the number of components in P∆ in terms of the rank of P∆.

The tightest lower bound on M we may construct from the rank of P∆’s is the maximal rank

of P∆’s over all possible finite partitions of X × Y.

Corollary 1 The number of components in F (x, y), M , is no smaller than the maximal rank

of P∆ over all possible finite partitions of X × Y, i.e., M ≥ max∆∈D rank(P∆).

When both X and Y have finite support points, we may choose ∆ = X ×Y, and the rank of

PX×Y gives the tightest lower bound on M . In Section 4, we develop a procedure to estimate

a lower bound on M by estimating the rank of P∆.

2.2 General k-variable case

We now illustrate how our approach in Section 2.1 can be applied to the mixture model (1)

with k ≥ 3 to obtain a lower bound on M . First, we group k variables in W = (W1, . . . ,Wk)

into two groups. Since there are multiple ways to group the variables in W , a tighter lower

bound on M is obtained by combining the information across different groupings rather

than using only one grouping. We index the groupings by α, and let Xα and Y α denote

the first and second group of variables. For example, when k is even, we may have Xα =

(W1, . . . ,Wk/2) and Y α = (Wk/2+1, . . . ,Wk) for some α. Let Mα denote the number of

components in F (xα, yα), defined as the smallest number of mixture components for which

the joint distribution of (Xα, Y α) admits a finite mixture representation as

F (xα, yα) =

Mα∑
m=1

πmFmxα(xα)Fmyα(yα). (6)

1Vavasis (2009) shows that determining the nonnegative rank of a matrix is NP-hard.
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Let A be the set of indices α’s for all the possible groupings. The relation M ≥
maxα∈AM

α then holds because the factorization in (1) is the factorization in (6) with an

additional constraint that the elements of Xα and Y α are conditionally independent. On the

other hand, M could be strictly larger than maxα∈AM
α because grouping several variables

into two could lead to a loss of information.

Let ∆ denote a partition of the support of (Xα, Y α). Constructing the matrix Pα∆ from

the distribution of (Xα, Y α), the number of components in Pα∆ is given by the nonnegative

rank of Pα∆. Taking its maximum across different partitions gives Mα = max∆∈Dα rank+(Pα∆),

where Dα denotes the set of all possible finite partitions of the support of (Xα, Y α). The

tightest lower bound on M in terms of rank+(Pα∆)’s is obtained by repeating this pro-

cedure for different groupings and taking the maximum of Mα over α ∈ A, i.e., M ≥
maxα∈Amax∆∈Dα rank+(Pα∆).

In view of the difficulty of determining nonnegative rank, an alternative lower bound

is obtained from taking the maximum of rank(Pα∆) over ∆ and α. Namely, we have M ≥
maxα∈Amax∆∈Dα rank(Pα∆). This lower bound is the tightest lower bound on M in terms of

the rank of Pα∆’s but may not be as tight as the one based on the nonnegative rank.

2.3 Relation to latent class analysis

Consider a special case in which an observation vector W = (W1, . . . ,Wk) consists of k

dichotomous or polytomous responses, typically answers to questions or results of diagnoses.

In this case, our model (1) becomes identical to the model used in latent class analysis

(Lazarsfeld and Henry 1968). For recent surveys and applications of latent class analysis, see

Clogg (1995), Hagenaars and McCutcheon (2002), Magidson and Vermunt (2004), Skrondal

and Rabe-Hesketh (2004), and the references therein.

In latent class analysis, it is assumed that the observations belong to one of the M latent

classes, with the probability of being in class m ∈ {1, . . . ,M} equal to πm. The responses

are assumed to be conditionally independent given membership in a given latent class. Let

ξ = (ξ1, . . . , ξk)
′ denote a possible value of W , then latent class analysis formulates the

distribution function of W as

Pr(W = ξ) =

M∑
m=1

πm Pr(W1 = ξ1|m) · · ·Pr(Wk = ξk|m). (7)

Therefore, we can identify a lower bound on M in a latent class model (7) by grouping the

variables in W into two groups Xα and Y α and computing the rank of Pα∆.

The latent class analysis with k = 2 (two-way contingency table) is also known as latent

budget analysis (Goodman 1974a; Clogg 1981; de Leeuw and van der Heijden 1988). Because

the parameters in a latent budget model are not identifiable, applied researchers impose a

priori restrictions on the model’s parameters to make it identifiable and fit the model to data.
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However, the validity of such restrictions is not always clear. Our result indicates that it is

possible to identify a lower bound on M without imposing restrictions on the parameters.

3 Nonparametric identification of finite mixture models

When k = 2, the mixture model (1) is not identified regardless of the number of values the

Wj ’s can take. In a latent class model of a two-dimensional contingency table, Clogg (1981,

p. 847) shows that two degrees of freedom are lost and the model is not identified unless two

restrictions are imposed on the parameters. When M = 2, Hall and Zhou (2003, Theorem

4.1) solve the model (1) for the unknown parameters, {π1, F 1
1 (w1), F 2

1 (w1), F 1
2 (w2), F 2

2 (w2)},
and show that there is a two-parameter continuum of solutions to (1).

This section considers nonparametric identification of the mixing proportions and the

component distributions of a finite mixture model (1) with k = 3:

F (x, y, z) =
M̃∑
m=1

πmFmx (x)Fmy (y)Fmz (z), πm > 0,
M̃∑
m=1

πm = 1, (8)

where F (x, y, z) is the distribution function of variable (X,Y, Z), and Fmx (x), Fmy (y), and

Fmz (z) are the distribution functions of X, Y , and Z conditional on being from the m-

th subpopulation, respectively. Similar to Section 2, define the number of components in

F (x, y, z), M , as the smallest positive integer M̃ for which a finite mixture representation

(8) can be found.

We first provide sufficient conditions for nonparametric identification of the finite mixture

model (8) when the value of M is known. We then extend our identification analysis to the

unknown M case, and discuss identification in a k > 3 variable model.

3.1 Identification when M is known

We first transform the distribution function F (x, y, z) into an M ×M × 2 contingency table,

and identify the component distributions associated with this contingency table. We then

show that, once the component distributions are identified with respect to this contingency

table, it is possible to identify Fmx (x), Fmy (y), and Fmz (z) at any support point (x, y, z).

Denote the support of X, Y , and Z by X , Y, and Z, respectively. Partition X and

Y into M mutually exclusive and exhaustive subsets. With a slight abuse of notation, let

∆x = {δx1 , . . . , δxM} and ∆y = {δy1 , . . . , δ
y
M} denote these partitions, and let ∆ = ∆x × ∆y.

Similarly, partition Z into 2 mutually exclusive and exhaustive subsets as ∆z = {δz1 , δz2}.
Define pmx , pmy , and P∆ as in (3) and (4) where the number of partitions on the variables

(X,Y ) is set equal to the number of components, i.e., s = t = M . For partition level
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h ∈ {1, 2} of the variable Z, define an M ×M matrix

P∆,h =


Pr(X ∈ δx1 , Y ∈ δ

y
1 , Z ∈ δzh) · · · Pr(X ∈ δx1 , Y ∈ δ

y
M , Z ∈ δzh)

...
. . .

...

Pr(X ∈ δxM , Y ∈ δ
y
1 , Z ∈ δzh) · · · Pr(X ∈ δxM , Y ∈ δ

y
M , Z ∈ δzh)

 . (9)

Note that P∆,1 and P∆,2 summarize the distribution of (X,Y, Z) on the partition ∆×∆z. Let

pmz (h) = Pr(Z ∈ δzh|m) be the m-th component distribution of Z for partition level h = 1, 2.

Then, P∆,h can be written as, similar to (5),

P∆,h =
M∑
m=1

(πmpmz (h))pmx (pmy )′. (10)

We proceed to write P∆ and P∆,h in matrix form. Collect the component distributions

of X and Y restricted to the partition ∆, pmx ’s and pmy ’s, into two M ×M matrices as

Lx =
[
p1
x, . . . , p

M
x

]
and Ly =

[
p1
y, . . . , p

M
y

]
, (11)

respectively, where Lx and Ly implicitly depend on the choice of partition ∆. Collect

πm’s and pmz (h)’s into M × M diagonal matrices as V = diag(π1, . . . , πM ) and Dh =

diag(p1
z(h), . . . , pMz (h)). With this notation at hand, P∆ and P∆,h in (5) and (10) can be

expressed in matrix forms as

P∆ = LxV (Ly)
′, P∆,h = LxDhV (Ly)

′ = LxV Dh(Ly)
′. (12)

Here, P∆ and P∆,h are functions of the observable variables, whereas Lx, Ly, Dh, and V

represent the unknown component distributions and the unknown mixture probabilities. The

following proposition provides a sufficient condition for identifying Lx, Ly, Dh, and V from

P∆ and P∆,h as well as for identifying Fmx (·)’s, Fmy (·)’s, and Fmz (·)’s from F (x, y, z).

Proposition 2 Suppose that M is known and that there exists a partition ∆ × ∆z on the

variables (X,Y, Z) for which the matrix P∆ is nonsingular and the eigenvalues of P∆,h(P∆)−1

are distinct for partition level h = 1 of the variable Z. Then, for such a partition ∆×∆z, we

may uniquely determine Lx, Ly, Dh, and V from P∆ and P∆,h. Further, we may uniquely

determine the component distributions Fmx (·), Fmy (·), and Fmz (·) for m = 1, . . . ,M in (8)

from the distribution function of (X,Y, Z), F (x, y, z).

Remark 1

1. Since P∆,1 + P∆,2 = P∆, the above sufficient condition can be stated equivalently in

terms of the eigenvalues of P∆,2(P∆)−1 for partition level h = 2.
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2. The proof of Proposition 2 is constructive. Namely, the proof provides an algorithm to

compute Lx, Ly, V , and Dh from P∆,h and P∆. Under the stated assumptions in Propo-

sition 2, we have P∆,h(P∆)−1 = LxDh(Lx)−1 and (P∆,h)′((P∆)′)−1 = LyDh(Ly)
−1, and

we can compute Lx and Ly from the eigenvectors of P∆,h(P∆)−1 and (P∆,h)′((P∆)′)−1,

while their eigenvalues identify Dh. Finally, V is computed as (Lx)−1P∆(L′y)
−1.

Once Lx, Ly, and V are identified for some partition ∆, Fmx (·), Fmy (·), and Fmz (·) are

identified from F (x, y, z) without any additional assumptions. For example, for any

x ∈ X , define a 1×M vector

Px,∆y =
(
Pr(X ≤ x, Y ∈ δy1), · · · ,Pr(X ≤ x, Y ∈ δyM )

)
, (13)

which can be computed from the distribution function of the data. Define qx = (F 1
x (x), . . . , FMx (x)).

Then, since Px,∆y = qxV (Ly)
′ holds, qx is identified as qx = Px,∆y((Ly)

′)−1V −1. Poten-

tially, we can use this algorithm to estimate mixture models or to obtain initial values

for other estimation algorithms.

3. The non-singularity of P∆ requires that X and Y take at least M distinct values. Hence,

the number of support points in X and Y provides the upper bound for the identifiable

number of components.

Our sufficient condition in Proposition 2 is new in the literature, aside from a recent

contribution by Allman et al. (2009). Under the assumption of known M , Allman et al.

(2009, Section 7) analyze the same model as our model but via Kruskal’s theorem (Kruskal,

1976, 1977). Theorems 8 and 9 (and the extension on p. 3116) of Allman et al. (2009)

establish a stronger result than ours, in that it is possible to identify more than M types

from an M×M×M contingency table whereas our results do not improve for an M×M×M
table. However, their sufficient conditions are stated in terms of the component distribution

(Lx, Ly and Lz in our notation), which is not observable. In contrast, our sufficient conditions

in Proposition 2 are stated in terms of what we observe. Corollary 11 of Allman et al. (2009)

gives a sufficient condition in terms of the observables, but it requires an M × M × M

contingency table in order to identify M types, whereas we require only an M × M × 2

contingency table. Further, our proof is constructive, whereas the proof of Allman et al.

(2009) is not.

Proposition 2 makes a contribution to latent class analysis. The existing identification

results in latent class analysis (Anderson (1954), Gibson (1955), and Madansky (1960)) focus

on dichotomous response variables, and, consequently, relate the number of variables (k) with

the number of identifiable components (M). Under the assumption of known M , Madansky

(1960) obtains the weakest sufficient condition, which requires 2(k−1)/2 ≥ M .2 On the other

2The same condition, 2(K−1)/2 ≥M , is given by Corollary 5 of Allman et al. (2009).
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hand, our Proposition 2 shows that the variation within the variables plays a key role for

identification; even when k = 3 in latent class model (7), we may identify the number of

components potentially up to the numbers of support points in W1 and W2, provided that

the relevant rank condition in Proposition 2 is satisfied.

The sufficient condition in Proposition 2 includes a condition on the eigenvalues of P∆,1(P∆)−1.

Since P∆,1(P∆)−1 = LxD1(Lx)−1, the eigenvalues of P∆,1(P∆)−1 are distinct if and only if

Pr(Z ∈ δz1 |i) 6= Pr(Z ∈ δz1 |j) for any pair of components i 6= j. If Pr(Z ∈ δz1 |i) = Pr(Z ∈ δz1 |j)
for some i 6= j, then the partition δz1 provides no information on distinguishing between com-

ponents i and j. In such a case, however, we may potentially identify pix and pjx separately

by partitioning Z into u > 2 subsets, δz1 , . . . , δ
z
u, and applying the algorithm to some other

partition δz` if the eigenvalues of P∆,`(P∆)−1 that correspond to components i and j are dis-

tinct. The following corollary shows that, repeating the algorithm across different partitions

of Z, identification is possible even when the eigenvalue condition of Proposition 2 does not

hold. Proposition 2 and Corollary 2 are equivalent if Z has only two support points.

Corollary 2 Suppose that M is known and that there exists a partition ∆×∆z with ∆z =

{δz1 , . . . , δzu} such that P∆ is nonsingular and there are M linearly independent eigenvectors

in the set of eigenvectors of P∆,1(P∆)−1, . . . , P∆,u(P∆)−1. Then, we may uniquely determine

πm, Fmx (·), Fmy (·), and Fmz (·) for m = 1, . . . ,M in (8) from F (x, y, z).

Hall and Zhou (2003, Theorem 4.3 and Appendix) show that model (8) with M = 2 is

identifiable if and only if F (x, y, z) is irreducible, namely, if none of its bivariate marginals

factorizes into the product of univariate marginals. In model (8) with M ≥ 3, irreducibility is

also necessary for the conditions of Proposition 2 to hold but not sufficient for identification.

We may consider a model such that M = 3 and rank(P∆) = 2, so that F (x, y, z) is irreducible

but the mixture model is not identifiable.

The following proposition provides a necessary condition for nonparametric identification

when M ≥ 3. Part (a) provides a condition that corresponds to the irreducibility condi-

tion while part (b) shows that the eigenvector condition in Corollary 2 (and the eigenvalue

condition in Proposition 2 if Z has only two support points) is also necessary.

Proposition 3 (a) Suppose that F iz(·) = F jz (·) for some pair of components i 6= j in model

(8). Then, it is not possible to uniquely determine {πi, πj , F ix(·), F jx(·), F iy(·), F
j
y (·)} in (8)

from F (x, y, z). (b) Suppose that M is known but the eigenvector condition of Corollary 2

does not hold for any partition ∆×∆z such that P∆ is nonsingular. Then, it is not possible

to uniquely determine πm, Fmx (·), Fmy (·), and Fmz (·) for m = 1, ...,M in (8) from F (x, y, z).
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3.2 Identification when M is unknown

The assumption of known M is important in our Proposition 2 and the other existing iden-

tification studies discussed above.3 When M is unknown, currently no identification results

are available.

In this subsection, we develop an algorithm that can potentially identify both M and

the component distributions from the distribution function of the data. We extend our

constructive approach of the known M case in Proposition 2 to the unknown M case where

the dimension of P∆ is not restricted to M ×M . Since P∆ is not invertible in general, we

compute the generalized inverse of P∆, multiply it with P∆,h, and compute the eigenvectors

and eigenvalues of the product. Under some conditions, these eigenvectors and eigenvalues

identify M and component distributions if and only if rank(P∆) = M .

Given a partition ∆x = {δx1 , . . . , δxs }, ∆y = {δy1 , . . . , δ
y
t }, ∆z = {δz1 , δz2}, define P∆ by

(4), and let P∆,h be an s × t matrix defined similar to (9) but the partition index (i, j)

in (δxi , δ
y
j ) runs from (1, 1) to (s, t). Let pmx and pmy be s × 1 and t × 1 vectors defined

by (3), respectively. Then, P∆ and P∆,h can be expressed as P∆ = LxV (Ly)
′ and P∆,h =

LxDhV (Ly)
′ = LxV Dh(Ly)

′ as in (12), where the dimension of Lx and Ly are s ×M and

t×M , respectively, while V = diag(π1, . . . , πM ) and Dh = diag(p1
z(h), . . . , pMz (h)).

Our goal is to recover M , Lx, Ly, V , Dh, Fmx (·), Fmy (·), and Fmz (·) from F (x, y, z). To

this end, we consider the following algorithm, which is similar to the one in Remark 1.2 but

uses the Moore-Penrose generalized inverse in place of the ordinary inverse. Let A+ denote

the Moore-Penrose generalized inverse (henceforth M-P inverse) of A.

Step 1. Compute the eigenvalues and eigenvectors of P∆,h(P∆)+. Let M̂ denote the number

of nonzero eigenvalues, and let e1, . . . , eM̂ denote these eigenvalues. Normalize the

eigenvectors associated with e1, . . . , eM̂ so that the elements of each eigenvector sum to

one, and collect them into an s× M̂ matrix L̂x.

Step 2. Compute the eigenvalues and eigenvectors of P ′∆,h(P ′∆)+.4 Similar to Step 1, construct

a t× M̂ matrix L̂y from the normalized eigenvectors of P ′∆,h(P ′∆)+.

Step 3. Compute an M̂ × M̂ matrix V̂ = (L̂x)+P∆(L̂′y)
+.

Step 4. For any x ∈ X , define a 1 × t vector Px,∆y as in (13) except that M is replaced

with t. Compute (F̂ 1
x (x), . . . , F̂ M̂x (x)) = Px,∆y((L̂y)

′)+(V̂ )+. For any y ∈ Y, de-

fine a s × 1 vector P∆x,y = (Pr(X ∈ δx1 , Y ≤ y), · · · ,Pr(X ∈ δxs , Y ≤ y))′, and com-

pute (F̂ 1
y (y), . . . , F̂ M̂y (y))′ = (V̂ )+(L̂x)+P∆x,y. Similarly, for any z ∈ Z, compute

(F̂ 1
z (z), . . . , F̂ M̂z (z))′ using P∆x,z in place of P∆x,y.

3For example, Allman et al. (2009, p. 3105) write “we always assume the number of latent classes is
known, which is crucial in using Kruskal’s approach.”

4Note that P∆,h(P∆)+ and P ′∆,h(P ′∆)+ have the same M̂ nonzero eigenvalues.
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This algorithm takes {∆x,∆y,∆z, P∆,h, P∆}, {Px,∆y}x∈X , {P∆x,y}y∈Y , and {P∆x,z}z∈Z
as its input and generates {M̂, L̂x, L̂y, V̂ } and {em, F̂mx (x), F̂my (y), F̂mz (z)}M̂m=1 for (x, y, z) ∈
X × Y ×Z as its output. The following proposition shows that the output of this algorithm

identifies M and the component distributions if and only if rank(P∆) = M .

Proposition 4 Suppose that the data are generated by the model (8) with M components.

Further, suppose there exists a partition ∆x × ∆y × ∆z such that the non-zero eigenvalues

of P∆,h(P∆)+ are distinct and rank(P∆) = rank(P∆,h) for some choice of partition level

h ∈ {1, 2}. Then, the following (a) and (b) hold.

(a) If rank(P∆) = M , then V̂ is a diagonal matrix whose elements are positive and sum

to one. Further, the number of components, the component distributions, and the mixing

proportions are uniquely determined from the algorithm as M = M̂ , Lx = L̂x, Ly = L̂y,

V = V̂ , Dh = diag(e1, . . . , eM̂ ), Fmx (·) = F̂mx (·), Fmy (·) = F̂my (·), and Fmz (·) = F̂mz (·) for

m = 1, . . . ,M .

(b) Only if rank(P∆) = M , both P∆ = L̂xV̂ L̂
′
y and F (x, y, z) =

∑M̂
m=1 π̂

mF̂mx (x)F̂my (y)F̂mz (z)

give valid finite mixture representations, where π̂m is the m-th diagonal element of V̂ . Namely,

(i) the elements of every column of L̂x and L̂y are nonnegative and sum to one, (ii) V̂ is

a diagonal matrix whose elements are positive and sum to one, and (iii) F̂mx (·), F̂my (·), and

F̂mz (·) are valid distribution functions.

The eigenvalues of P∆,h(P∆)+ correspond to Pr(Z ∈ δzh|m) when rank(P∆) = M . If

rank(P∆) 6= rank(P∆,h), then Pr(Z ∈ δzh|m) = 0 for some component m, and the algorithm

fails to identify M because P∆,h has fewer than M effective components. In view of Corollary

2, the condition on the nonzero eigenvalues of P∆,h(P∆)+ can be weakened to the eigenvector

condition similar to the one in Corollary 2.

Given a partition ∆ × ∆z such that the non-zero eigenvalues of P∆,h(P∆)+ are distinct

and rank(P∆) = rank(P∆,h), this algorithm generates valid component distributions if and

only if rank(P∆) = M . The “only if” part gives a testable implication of rank(P∆) = M ;

if the algorithm produces π̂m, F̂mx (·), F̂my (·), and F̂mz (·) that give a valid finite mixture

representation of F (x, y, z) with M̂ components, then M is equal to the rank of P∆, and

hence M and component distributions are jointly identified from the distribution function of

the data.

On the other hand, when at least one of the conditions (i)-(iii) in Proposition 4(b) is

violated for any choice of partitions ∆×∆z, we learn that rank(P∆) < M for any partition ∆.

In such a case, however, Proposition 4 does not tell us how to identify M and the component

distributions. This is a limitation of our algorithm. Also, given our identification result, how

to make statistical inference on the condition rank(P∆) = M and how to nonparametrically

estimate a mixture model from finite data are important future research topics that are not

explored in this paper.
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3.3 General k-variate case

We now extend our approach to a k-variate finite mixture model (1) with k > 3. We only

consider the case of known M here but, for the case of unknown M , it is also possible to

extend the identification result of Propositions 4 to a general k-variate mixture model.

Consider grouping W into three groups, (Xα, Y α, Zα), with the grouping index α. Let A
be the set of indices α’s for all possible groupings. For example, if k is odd, we can choose

Xα = (W1, . . . ,W(k−1)/2), Y α = (W(k−1)/2+1, . . . ,Wk−1), and Zα = Wk for some α ∈ A.

We apply Proposition 2 to Xα, Y α, and Zα as follows. Let (Xα,Yα,Zα) denote the

support of (Xα, Y α, Zα). As in Section 3.1, partition Xα and Yα into M mutually exclusive

and exhaustive subsets. Let ∆x,α and ∆y,α denote these partitions, and define ∆α = ∆x,α ×
∆y,α. Similarly, partition Zα into 2 mutually exclusive and exhaustive subsets, and let ∆z,α

denote this partition. Given ∆α and ∆z,α, we may construct P∆α and P∆α,h analogously to

P∆ and P∆,h in (5) and (10), respectively.

Corollary 3 Suppose that M is known and, for some choice of grouping α ∈ A, there exists

a partition ∆α×∆z,α such that P∆α is nonsingular and the eigenvalues of P∆α,h(P∆α)−1 are

distinct for partition level h = 1 of the variable Zα. Then, we may uniquely determine πm,

Fm1 (·), . . . , Fmk (·) for m = 1, . . . ,M in (1) from F (w1, . . . , wk).

Thus, the k-variate mixture model (1) is nonparametrically identified if the assumptions

corresponding to those in Proposition 2 hold for at least one grouping in A.

4 Estimating a lower bound on the number of components

Proposition 1 in Section 2 shows that the rank of an s × t matrix P∆ in (5) gives a lower

bound on the number of mixture components. In this section, we develop two procedures

to estimate the rank of P∆ for a given partition ∆: sequential hypothesis testing and model

selection. These procedures are based on the test statistic proposed by Kleibergen and Paap

(2006). We also extend these procedures to estimate the maximum rank of P∆’s across

different groupings of variables when there are more than two variables.

4.1 Statistic by Kleibergen and Paap (2006)

Kleibergen and Paap (2006) develop a procedure to test the null hypothesis that the rank

of P∆ is equal to r as described below. Write the singular value decomposition of an s × t
matrix P∆ as

P∆ = USV ′ =

(
U11 U12

U21 U22

)(
S1 0

0 S2

)(
V ′11 V ′12

V ′21 V ′22

)
, (14)
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where U is an s×s orthogonal matrix, V is a t× t orthogonal matrix, and S is an s× t matrix

that contains the singular values of P∆ in decreasing order on its main diagonal and is equal

to zero elsewhere. In the partition of U , S, and V on the right hand side, U11, S1 and V11

are r × r, and the dimensions of the other submatrices are defined conformably. Then, the

null hypothesis H0 : rank(P∆) = r is equivalent to H0 : S2 = 0 because the rank of a matrix

is equal to the number of non-zero singular values.

The test statistic by Kleibergen and Paap (2006) is based on an orthogonal transformation

of S2 as

Λr = (U22U
′
22)−1/2U22S2V

′
22(V22V

′
22)−1/2 = A′r,⊥P∆B

′
r,⊥,

where A′r,⊥ = (U22U
′
22)1/2(U ′22)−1[U ′12

...U ′22] and Br,⊥ = (V22V
′

22)1/2(V ′22)−1[V ′12

...V ′22]. Unlike

S2, Λr is not restricted to be non-negative.5 Then the null hypothesis H0 : rank(P∆) = r is

equivalent to H0 : Λr = 0.

Let P̂∆ be an estimator of the matrix P∆ with sample size N . We assume that vec(P̂∆)

is asymptotically normally distributed.

Assumption 1
√
Nvec(P̂∆−P∆)→d N(0,Σ) as N →∞, where Σ is an st× st covariance

matrix.

We estimate Λr by Λ̂r = Â′r,⊥P̂∆B̂
′
r,⊥ and test H0 : Λr = 0, where Âr,⊥ and B̂r,⊥ are the

estimator of Ar,⊥ and Br,⊥ obtained from the singular value decomposition of P̂∆. Kleibergen

and Paap (2006) derive the asymptotic distribution of λ̂r =vec(Λ̂r), as summarized below.

Proposition 5 (Kleibergen and Paap, 2006, Theorem 1) Suppose that Assumptions 1 holds

and that Ωr = (Br,⊥⊗A′r,⊥)Σ(Br,⊥⊗A′r,⊥)′ is nonsingular. If rank(P∆) ≤ r, then
√
Nλ̂r →d

N(0,Ωr) as N →∞.

Kleibergen and Paap (2006, Corollary 1) propose the following test statistic called the

rk-statistic:

rk(r) = Nλ̂′rΩ̂
−1
r λ̂r. (15)

where Ω̂r is a consistent estimator for Ωr. If the assumptions of Proposition 5 hold, then rk(r)

converges in distribution to a χ2((s − r)(t − r)) random variable under H0 : rank(P∆) = r.

The nonsingularity assumption on Ωr can be relaxed by using the M-P inverse as discussed

in Section 4.4.

The choice of ∆ is left to the researcher. From the perspective of pure identification,

if one’s goal is to identify as many components as possible, then it is desirable to use a

partition that is as fine as possible. From the perspective of estimating rank(P∆) from data,

however, using too fine a partition may cause problems because some cells may have few or

5Robin and Smith (2000) propose a rank statistic based on a consistent estimator of S2. But, because S2

is nonnegative, the asymptotic distribution of their estimator of S2 is not Gaussian when S2 = 0.
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no observations. In practice, we suggest setting the number of partitions equal to one plus

the maximum number of components we want to allow for in modeling the data.

4.2 Sequential hypothesis testing

Denote the population rank of P∆ by r0. To estimate r0, we sequentially test H0 : rank(P∆) =

r against H1 : rank(P∆) > r starting from r = 0, and then r = 1, . . . , t∗, where t∗ = min{s, t}.
The first value for r that leads to a nonrejection of H0 gives our estimate for r0.

For r = 0, . . . , t∗, let cr1−αN denote the 100(1 − αN ) percentile of the cumulative dis-

tribution function of a χ2 ((s− r)(t− r)) random variable. Then, our estimator based on

sequential hypothesis testing (SHT, hereafter) is defined as

r̂ = min
r∈{0,...,t∗}

{r : rk(i) ≥ ci1−αN , i = 0, . . . , r − 1, rk(r) < cr1−αN }. (16)

The estimator r̂ depends on the choice of the significance level αN . As shown by Robin and

Smith (2000, Theorem 5.2), r̂ converges to r0 in probability as N →∞ if we choose αN such

that αN = o(1) and −N−1 lnαN = o(1).

4.3 Model selection procedure

We also propose a model selection procedure based on the statistic rk(r) to estimate r0

consistently. Consider the following criterion function

Q(r) = rk(r)− f(N)g(r),

where g(r) is a (possibly stochastic) penalty function. Define

r̃ = arg min
1≤r≤t∗

Q(r).

Under a standard condition on f(N) and g(r), this gives a consistent estimate of r0:

Proposition 6 Suppose the conditions of Proposition 5 hold, and Ω̂r converges to a nonsin-

gular matrix for any r ≥ r0. Suppose that f(N)→∞, f(N)/N → 0, and Pr(g(r)− g(r0) <

0)→ 1 for all r > r0 as N →∞. Then r̃ →p r0.

For the choice of f(N) and g(r), we consider the penalty terms in the Akaike (AIC),

Bayesian (BIC) and Hannan-Quinn (HQ) information criteria. We choose g(r) = (s−r)(t−r)
with f(N) = 2 for AIC, f(N) = log(N) for BIC, and f(N) = 2 log(log(N)) for HQ. The BIC

and HQ model selection procedures provide a consistent estimate of r0 since their choice of

f(N) and g(r) satisfies the conditions in Proposition 6. On the other hand, the AIC is not

necessarily consistent and tends to overestimate r0 with a large sample size.
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4.4 The case of multiple variables

So far, our proposed procedures are based on a two-variable test. We now discuss how to

extend our method to the case with more than 2 variables.

The proposed approach parallels the way we identify a lower bound on M in k-variate

models in Section 2.2. We divide the variables into two groups, construct a matrix from

their joint distribution, and examine its rank. Since there is more than one way to divide

k variables in two groups, we combine information from different groupings into one test

statistic, and test the null hypothesis that all the matrices have rank no larger than r.

Suppose W = (W1, . . . ,Wk)
′ with k ≥ 3 follows the distribution function (1). For simplic-

ity, we assume Wj for j = 1, . . . , k has a finite support Wj = {1, . . . , |Wj |}.6 As in Section

2, group the variables in W into two groups Xα and Y α, with the grouping index α, and let

Xα and Yα denote their support. Let PXαYα denote a bivariate probability matrix derived

from the joint distribution of Xα and Y α. We test the null hypothesis that rank(PXαYα) ≤ r
for all α ∈ A0.

LetA0 = {1, . . . , |A0|} be a set of indices for the α’s over which we construct test statistics.

It is convenient to assume that all the variables in W are included in the first grouping

{X1, Y 1}. For instance, we can choose X1 = (W1, . . . ,W[k/2]) and Y 1 = (W[k/2]+1, . . . ,Wk).

Observe that PX 1Y1 contains |X 1| × |Y1| = (
∏[k/2]
j=1 |Wj |) × (

∏k
j=[k/2]+1 |Wj |) =

∏k
j=1 |Wj |

elements and that the elements of PX 1Y1 exhaust all the possible values of W . Therefore,

for every α ∈ A0, the elements of the probability matrix PXαYα can be expressed as a linear

combination of the elements of PX 1Y1 , and there exists a matrix Πα such that vec(PXαYα) =

Παvec(PX 1Y1).

Define Aαr,⊥, Bα
r,⊥, and λαr analogously to Ar,⊥, Br,⊥, and λr in Section 4.1 using PXαYα

in place of P∆. Define λ̂αr = vec((Âαr,⊥)′P̂XαYα(B̂α
r,⊥)′) = (B̂α

r,⊥⊗ (Âαr,⊥)′)Παvec(P̂X 1Y1) using

the estimators of PX 1Y1 , Aαr,⊥ and Bα
r,⊥. To test the null hypothesis that rank(PXαYα) ≤ r

for all α ∈ A0, we stack λ̂αr ’s into a vector as λ̂r(A0) = ((λ̂1
r)
′, . . . , (λ̂

|A0|
r )′)′ and test the

null hypothesis λr(A0) = 0. Extending Proposition 5, the following corollary establishes the

asymptotic normality of λ̂r(A0). We omit its proof to save space, because it is a straightfor-

ward consequence of Slutsky’s theorem.

Corollary 4 Suppose that
√
Nvec(P̂X 1Y1−PX 1Y1)→d N(0,ΣX 1Y1) and that Ωr(A0) defined

in (17) below is nonsingular. If rank(PXαYα) ≤ r for all α ∈ A0, we have
√
Nλ̂r(A0) →d

N(0,Ωr(A0)) as N →∞, where

Ωr(A0) =


Ψ1ΣX 1Y1(Ψ1)′ · · · Ψ1ΣX 1Y1(Ψ|A0|)′

...
. . .

...

Ψ|A0|ΣX 1Y1(Ψ1)′ · · · Ψ|A0|ΣX 1Y1(Ψ|A0|)′

 , (17)

6When Wj is continuously distributed, we may discretize the support of Wj into a finite number of subsets
that is strictly larger than the number of components under the null hypothesis.
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and Ψα = (Bα
r,⊥ ⊗ (Aαr,⊥)′)Πα.

We can test the null hypothesis H0 : rank(PXαYα) ≤ r for all α ∈ A0 by the average

rk-statistic defined as

ave-rk(r,A0) = N(λ̂r(A0))′(Ω̂r(A0))−1λ̂r(A0), (18)

where Ω̂r(A0) is a consistent estimator of Ωr(A0). Thus, ave-rk(r,A0) combines information

from λ̂αr ’s across different α using the inverse of their covariance matrix as the weight. Under

the assumptions in Corollary 4, ave-rk(r,A0) converges in distribution to a χ2(ν(A0)) random

variable, where ν(A0) ≡
∑

α∈A0
(|Xα| − r)(|Yα| − r) is the number of elements in λ̂r(A0).

When the number of variables is very large, however, calculating λ̂αr for all the possible

groupings will become computationally challenging.

Ωr(A0) is a ν(A0)× ν(A0) matrix, but its rank cannot be larger than the rank of ΣX 1Y1

because all the λ̂αr ’s are functions of vec(P̂X 1Y1). When |A0| is very large, ν(A0) may be-

come larger than the rank of ΣX 1Y1 , and, consequently, the covariance matrix Ωr(A0) is

singular and the assumption of Corollary 4 is violated. In such a case, if Pr(rank(Ω̂r(A0)) =

rank(Ωr(A0))) → 1, using the M-P inverse of Ω̂r(A0) in the ave-rk statistic (18) gives a

test statistic whose asymptotic distribution is χ2(rank(Ωr(A0))) (Andrews, 1987). However,

in finite samples, if Ω̂r(A0) has a very small but nonzero eigenvalue, its generalized inverse

may take a very large value and behave erratically. To deal with the singularity of Ωr(A0),

we follow Lütkepohl and Burda (1997) to use a suitable reduced rank estimator in place of

Ω̂r(A0). Given a small constant c, we apply a singular decomposition to Ω̂r(A0) and replace

the eigenvalues smaller than c with zero. Let Ω̂r,c(A0) denote this low-rank approximation

of Ω̂r(A0), and define the modified average rk-statistic as

ave-rk+(r,A0) = N(λ̂r(A0))′(Ω̂r,c(A0))+λ̂r(A0). (19)

The asymptotic distribution of ave-rk+(r,A0) is χ2(Jc), where Jc is the number of eigenvalues

of Ωr(A0) which are no smaller than c. The behavior of ave-rk+(r,A0) could be sensitive

to the choice of c. In the simulations in Section 5, we set c equal to 0.01 times the largest

eigenvalue of Ωr(A0).7

We also consider alternative statistics that are less subject to the singularity problem.

In the average rk-statistic, we stack the rk-statistic λ̂αr for all α ∈ A0 into one large vector

λ̂r(A0) and take its quadratic form. In the alternate statistic, we first choose K subsets of A0

as {A1, . . . ,AK} so that A0 =
⋃K
j=1Aj , and construct the average rk-statistic ave-rk(r,Aj)

as in (18) but using Aj in place of A0. If ν(Aj) is not too large, then each ave-rk(r,Aj) is

less subject to the singularity problem than ave-rk(r,A0). We then combine the information

7See Lütkepohl and Burda (1997) for other choices of c.
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in ave-rk(r,Aj) for j = 1, . . . ,K into the max-rk and the sum-rk statistics defined as

max-rk(r) = max
j=1,...,K

ave-rk(r,Aj), sum-rk(r) =
∑

j=1,...,K

ave-rk(r,Aj). (20)

We can apply the sequential hypothesis testing procedure to max-rk(r) and sum-rk(r). While

their asymptotic null distributions are not chi-square, they can be easily simulated using

the relation
√
Nλ̂αr = Ψ̂α

√
N(vec(P̂X 1Y1) − vec(PX 1Y1)), because it is easy to simulate the

asymptotic distribution of
√
N(vec(P̂X 1Y1)− vec(PX 1Y1)).

If Ω̂r(Aj) is singular for some j, we may also construct a modified average rk-statistic for

Aj , denoted by ave-rk+(r,Aj), as in (19) using Aj in place of A0, and make an inference based

on the modified max-rk and the modified sum-rk statistics. By choosing Aj ’s so that the

degree of freedom ν(Aj) is sufficiently small, the modified max-rk and sum-rk statistics would

be less sensitive to the choice of c than the modified average rk-statistics ave-rk+(r,A0).

5 Simulation Study

We conduct Monte Carlo simulation experiments to assess the finite sample performance of

our proposed procedures for selecting the number of components. We generate samples with

normal mixtures and M = 3 components. The reported results are based on 1, 000 simulated

samples with three different sample sizes: N = 500, 2000, and 8000.

In the first experiment, we consider a two-variable normal mixture with three com-

ponents, thus the distribution function of W = (W1,W2)′ is
∑M

m=1 π
mN(µm, I2), where

µm = (µm1 , µ
m
2 )′. We experiment with two different parameterizations of µm. The first de-

sign sets µ1 = (0, 0)′, µ2 = (1.0, 2.0)′, and µ3 = (2.0, 1.0)′, whereas the second design sets

µ1 = (0, 0)′, µ2 = (0.5, 1.0)′, and µ3 = (1.0, 0.5)′. Hence, the component distributions of W

are further from each other in the first design compared with the second design. In both

designs, the mixing probabilities are set to π1 = π2 = π3 = 1/3. Regarding the number

of partitions, we choose t = s = 4 so that we can sequentially test the null hypothesis

rank(P∆) = 1, 2, and 3. We partition the support of Wi into 4 equiprobable subsets as

∆wi = {δwi1 , . . . , δwi4 } so that Pr(Wi ∈ δwia ) = 1/4 for a = 1, . . . , 4.

Table 1 reports the result of experiments in which we estimate a lower bound on M

by rank(P∆) with sequential hypothesis testing (SHT), AIC, BIC, and HQ. The first panel

of Table 1 shows the results with the first design. The performance of all the procedures

improves as the sample size increases from 500 to 2000, and then to 8000. In SHT, the

“optimal” choice of significance level, i.e., α that selects M = 3 most frequently, decreases

from 0.1 to 0.01 when the sample size increases from N = 2000 to 8000. With the sample

size of 500 and 2000, the AIC outperforms other statistics. With a larger sample size of 8000,

however, the AIC overestimates the number of components and is outperformed by SHT and
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HQ, highlighting its inconsistency. The performance of the BIC is the worst among all of the

methods even at N = 8000; while the BIC is consistent, its finite sample bias is substantial

in this setup. Our result shows that the HQ is a better choice than the BIC but the HQ is

outperformed by the AIC and SHT when the sample size is small at N = 500 and 2000. The

second panel of Table 1 reports the results with the second design. The overall performance of

our methods is substantially worse than the first design, reflecting the difficulty of estimating

the number of components when the component distributions are close to each other.

Next, we consider a four-variable normal mixture with three components. The distribu-

tion function of W = (W1, . . . ,W4)′ is
∑M

m=1 π
mN(µm, I4), where µm = (µm1 , . . . , µ

m
4 )′. We

set µ1 = (0, 0, 0, 0)′, µ2 = (1.0, 2.0, 0.5, 1.0)′, and µ3 = (2.0, 1.0, 1.0, 0.5)′ with mixing proba-

bilities π1 = π2 = π3 = 1/3. Thus, (W1,W2) and (W3,W4) have the same distribution as the

first and second design in Table 1, respectively. Following the approach in Sections 4.4, the

variables in W are divided into two groups, Xα and Y α, each containing two variables. There

are three different ways to choose 2 variables out of 4, hence α = {1, 2, 3}. We then estimate

the probability matrix PXαYα for each α, and construct the average rk-statistic (18). The

support of Wi is partitioned into 2 equiprobable subsets, so that the dimension of PXαYα is

4× 4. For example, when X1 = (W1,W2)′ and Y 1 = (W3,W4)′, then each element of PXαYα

is given by Pr(X1 ∈ δw1
a × δ

w2
b , Y 1 ∈ δw3

c × δ
w4
d ) for a, b, c, d = 1 or 2.

The first panel of Table 2 reports the results with the average rk-statistic (18). When test-

ing the null hypothesis that a lower bound on M = 1, the covariance matrix Ωr(A0) becomes

singular, and thus we use the M-P inverse to construct the average rk-statistic; in effect, we

use the modified average rk-statistic (19) in which c is equal to machine epsilon. SHT per-

forms better than the model selection procedures across all sample sizes, and the HQ appears

to perform the best within the model selection procedures. Note that the four-variable test

substantially outperforms the two-variable tests reported in Table 1. The variable (W3,W4)

may not provide a good signal for separating the components when used alone, but it provides

significant additional information when used in conjunction with (W1,W2).

The second panel of Table 2 reports the performance of the maximum likelihood estimator

(MLE)-based parametric model selection procedure with AIC, BIC and HQ. Each compo-

nent distribution is correctly specified as a 4-dimensional normal distribution with a diagonal

covariance matrix.8 Our proposed methods outperform the MLE-based model selection pro-

cedures when N = 500 and are at least comparable to the MLE in other sample sizes. This is

somewhat surprising because our selection methods do not use parametric restrictions of the

normal mixture model. The relatively poor performance of the MLE-based procedure could

be due to the difficulties in estimating the large number of parameters in the normal mix-

tures.9 For instance, a four-variable normal mixture model with 3 component distributions

8We do not implement SHT based on the likelihood ratio statistic here because the likelihood ratio statistic
is not asymptotically chi-square distributed.

9The maximum likelihood estimates are obtained by numerically maximizing the normal mixture likelihood
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has 26 parameters even when the covariance matrix is restricted to be diagonal.

The third panel of Table 2 reports the results using information from only one grouping

out of three. Using {X1, Y 1} = {(W1,W2), (W3,W4)} and {X3, Y 3} = {(W1,W4), (W2,W3)}
outperforms Table 1, but using {X2, Y 2} = {(W1,W3), (W2,W4)} performs poorly. Thus,

using information from all four variables can potentially improve the performance of our

selection methods, but it is not clear how to choose the best grouping a priori in practice.

Further, note that the average rk-statistic in the first panel outperforms any one of the 3 rk-

statistics in the third panel. Therefore, it is important to combine information from different

groupings for our selection procedures.

In the third experiment, we consider a 3-component normal mixture with 8 variables to

examine the max-rk and sum-rk statistics developed in (20). The distribution function of W

is given by F (w1, . . . , w8) =
∑3

m=1 π
mN(µm, I8), where µm = (µm1 , . . . , µ

m
8 )′. We choose π1 =

π2 = π3 = 1/3, µ1 = (0, 0, 0, 0, 0, 0, 0, 0)′, µ2 = (0.5, 1.0, 0.25, 0.5, 0.75, 0.25, 1.0, 0.25)′, and

µ3 = (1.0, 0.5, 0.5, 0.25, 0.25, 0.75, 0.25, 1.0)′. To calculate the max-rk and sum-rk statistics,

we first choose 4 variables out of 8. From the 4 chosen variables, we construct the modified

average rk-statistic by the procedure for the four-variable model in Table 2, namely, by

dividing 4 variables into two bivariate groups and estimating the probability matrix PXαYα

for three different groupings.10 These three groupings correspond to Aj in (20). Since there

are 8C4 = 70 ways to choose 4 variables out of 8, there are 70 different rk-statistics. Finally,

we combine information from these 70 modified average rk-statistics into the modified max-

rk and modified sum-rk statistics defined as in (20) but using ave-rk+(r,Aj) in place of

ave-rk(r,Aj).
The first panel of Table 3 reports the performance of SHT with the modified max-rk and

sum-rk statistics. Both statistics perform well, but the max-version chose M = 1 more fre-

quently when N = 500. Overall, the modified sum-rk statistic tends to perform better than

the modified max-rk statistic. The second panel of Table 3 reports the mean selection fre-

quencies by the SHT and the AIC/BIC/HQ across 70 different modified average rk-statistics.

As shown in the second panel of Table 3, both the max-rk and the sum-rk statistics perform

substantially better than individual average rk-statistics. Thus, combining information from

different average rk-statistics improves the performance of our procedures.

In the fourth experiment, we employ a challenging setup. The distribution of W1, . . . ,W5

is the same as the third experiment, butW6, W7, andW8 are set to have identical distributions

across sub-populations. Specifically, we set µ1 = (0, 0, 0, 0, 0, 0, 0, 0)′, µ2 = (0.5, 1.0, 0.25, 0.5, 0.75, 0, 0, 0)′,

and µ3 = (1.0, 0.5, 0.5, 0.25, 0.25, 0, 0, 0)′. This is a challenging setup in that only five out of

using a quasi-Newton method with BFGS updating. For each simulated data set, we use 5 different randomized
initial parameter values.

10We use the modified average rk-statistic because Ωr becomes singular when we test the null hypothesis
of M = 1. We choose c = 0.01 × ŝ1 for the modified average rk-statistic, where ŝ1 is the estimated largest
singular value of Ωr.
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eight variables can be used to identify the number of components and the researcher does

not have any prior knowledge as to which variables should be used. The maximum number

of identifiable components depends on the choice of variables included in Xα and Y α. For

example, if either Xα or Y α contains {W6,W7,W8}, then PXαYα using such a {Xα, Y α} can

identify only up to two types.

Table 4 shows the results of the fourth experiment. The performance in Table 4 is generally

worse than that in Table 3 because it is more difficult to identify the number of components.

On the other hand, both the max-rk and the sum-rk statistics choose the correct M well

when N ≥ 2000. The mean performance of the 70 rk-statistic is much worse than in Table

3. This reflects the lack of power of some choices of {Xα, Y α} discussed above. We also

note that, when N = 500 and α = 0.10, 0.05, the max-rk statistics selects the correct M

more often than the sum-rk statistics, but the max-rk statistics also chooses M = 1 more

frequently than the sum-rk statistics.

6 Examples

Empirical analysis using latent class models involves determining the number of latent classes

that are needed to give an adequate description of the data. Choosing the number of latent

classes is often a challenge in practice because the parameters of some latent class models are

not identifiable without imposing further restrictions. In addition, the likelihood ratio statis-

tic does not have the standard chi-square limiting distribution when applied to testing the

number of components. This section provides three illustrative empirical examples, focusing

on how to apply our procedures in such cases.

6.1 Intergenerational Occupational Mobility in Great Britain

We estimate the number of latent classes in the table of intergenerational mobility from

father’s occupation to subject’s occupation in Great Britain, which is originally studied by

Clogg (1981) using latent class models. With two variables, the unrestricted latent class

model is not identifiable in this case. Clogg estimates the two-class and three-class models

using this data by imposing a priori restrictions on a set of parameters. On the other hand,

as our theoretical analysis shows, a lower bound on the number of latent classes is estimable

without imposing any restrictions. For instance, we may test the null hypothesis that the

data are generated from the two or the three class models as analyzed by Clogg.

Panel (1) of Table 5 presents the 8×8 table of social mobility in Great Britain taken from

Table 1.C of Clogg (1981). Here, occupational categories are: 1=professional and high admin-

istrative; 2=managerial and executive; 3=inspectional, supervisory, and other non-manual

(high grade); 4=inspectional, supervisory, and other non-manual (low grade); 5=routine

grades of nonmanual; 6=skilled manual; 7=semi-skilled manual; 8=unskilled manual. Table

23



1.B of Clogg (1981) presents the 5× 5 table in which categories 2 and 3, categories 5 and 6,

and categories 7 and 8 were combined. We apply our procedures to both the 5× 5 table and

the 8× 8 table.

Panel (2) of Table 5 presents the result of the SHT procedure applied to the 5× 5 table,

rejecting the null hypothesis that the number of latent classes is no more than 4 at any

significance level. The AIC/BIC/HQ model selection procedures similarly indicate that the

number of latent classes is at least 5 (not reported in Table 5). We further examine the

number of latent classes in the 8× 8 table starting from the null hypothesis of no more than

five classes; the results are presented in Panels (3) and (4) of Table 5. The SHT and the

HQ model selection procedures suggest that this intergenerational occupational mobility data

could be generated from 6 or 7 latent classes while the BIC and the AIC suggests 5 and 8

latent classes, respectively. Overall, the results of our procedures suggest that there are more

than 5 latent classes, rejecting the two or the three class models.

6.2 Types of Trades Started by Different Ethnic Groups in Amsterdam

and Rotterdam

The second example analyzes the difference across ethnic groups in the types of trades they

start in two large cities in the Netherlands, Amsterdam and Rotterdam. Van der Heijden,

van der Ark, and Mooijaart (2002) study this data, which are presented in Panel (1) of Table

6. There are 6 types of trades and 5 ethnic groups for each of two cities.11 The types of

trade in Panel (1) are 1=wholesale trade; 2=retail trade; 3=producer services; 4=catering

and restaurants; 5=personal services. Members of some ethnic groups are more likely to start

certain types of trades because of factors such as the number of clients in the same ethnic

group or their level of human capital, including knowledge of the Dutch language. From this

viewpoint, each latent class could be reflecting a specific type of network and human capital.

Based on likelihood ratio statistics, van der Heijden et al. (2002) conclude that the

number of latent classes M = 3 “seems adequate” for both Amsterdam and Rotterdam. We

apply our procedures to examine if the number of latent classes is at least three or not. Panels

(2) and (3) of Table 6 show the estimated lower bound on the number of latent classes for

Amsterdam and Rotterdam across different procedures. For Amsterdam, the SHT procedure

suggests 3 or 4 latent classes, whereas the AIC, BIC, and HQ suggest 4, 2, and 3 latent

classes, respectively. For Rotterdam, all of our procedures suggest 3 latent classes. Overall,

the results of our procedures agree with the conclusion of van der Heijden et al. (2002).

11In the original table, there are 8 ethnic groups but we have merged the “Cape Verdeans” and the “Ghana-
ians” into the “Other” ethnic group because they are relatively small ethnic minorities.
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6.3 Response Patterns in Five-item Subsets of LSAT and the Number of

Latent Ability Distributions

In our third example, we analyze the response patterns in two different five-item subsets of

LSAT, denoted by LSAT-6 and LSAT-7, originally studied by Mislevy (1984).

We employ max-rk and sum-rk statistics to this dataset by taking a similar approach

to Table 3. Using the notation in Section 4.4, the response to five items is represented

by {W1,W2,W3,W4,W5} where Wi ∈ {0, 1}. We first choose 4 items out of 5.12 Given a

choice of 4 items, we group the 4 items into two bivariate groups Xα and Y α and estimate

the probability matrix PXαYα . We then construct the average rk-statistic in (18) from the

estimates of PXαYα for three different groupings.13 Finally, we construct the max-rk and the

sum-rk statistics in (20) from 5 average rk-statistics.

The upper panel of Table 7 reports the results from the sum-rk and max-rk statistics.

With these statistics, all of the procedures indicate that there are at least 3 latent ability

classes in both LSAT-6 and LSAT-7. The lower panel of Table 7 reports the estimated lower

bound on the number of latent ability distributions by SHT and the AIC/BIC/HQ across

5 different choices of 4 items. The selected number of latent classes differs across different

choices of 4 items. The results are mixed even within the same choice of 4 items across

different procedures; some indicate there are 2 latent classes while others suggest 3.
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7 Appendix: proofs

7.1 Proof of Proposition 1

The proofs are given in Cohen and Rothblum (1993). Proposition 1.(a),(b), and (c) corre-

spond to Lemma 2.3, Theorem 4.1, and Corollary 4.2 of Cohen and Rothblum (1993).

7.2 Proof of Proposition 2

Since P∆ is nonsingular, both Lx and Ly are of full rank. It follows that P∆,h(P∆)−1 =

LxDh(Lx)−1. Because [P∆,h(P∆)−1]Lx = LxDh and the eigenvalues of P∆,h(P∆)−1 are dis-

tinct, the eigenvalues of P∆,h(P∆)−1 determine the elements of Dh, whereas its eigenvec-

12There are 5 ways to choose 4 items out of 5.
13There are 3 ways to group 4 items into two bivariate groups.
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tors determine the columns of Lx uniquely up to a multiplicative constant. Then, Lx is

uniquely determined since the elements of each column of Lx must sum to one. Using an

analogous argument, the columns of Ly are uniquely determined from the eigenvectors of

(P∆,h)′((P∆)′)−1 = LyDh(Ly)
−1. Having determined Lx and Ly, V is uniquely determined

as V = (Lx)−1P∆(Ly)
′−1.

Given Lx, Ly, and V , we may uniquely determine Fmx (x), Fmy (y), and Fmz (z) from

F (x, y, z) as follows. For every x ∈ X , define Px,∆y by (13), and let qx = (F 1
x (x), . . . , FMx (x)).

Since Px,∆y = qxV (Ly)
′, we may uniquely determine {Fmx (x)}Mm=1 by qx = Px,∆y((Ly)

′)−1V −1.

Defining P∆x,y and P∆x,z analogously and applying the same argument identifies {Fmy (y)}Mm=1

and {Fmz (z)}Mm=1 uniquely. �

7.3 Proof of Corollary 2

Because P∆,h(P∆)−1 = LxDh(Lx)−1 holds for all h, the set of eigenvectors of P∆,1(P∆)−1, . . . , P∆,u(P∆)−1

contains the columns of Lx. Therefore, if there are M linearly independent eigenvectors, then

Lx is determined uniquely. Ly is uniquely determined by a similar argument. Once Lx and

Ly are identified, the rest of the proof follows the proof of Proposition 2. �

7.4 Proof of Proposition 3

We prove part (a) first. Without loss of generality, let i = 1 and j = 2, and let F 1
z (·) = F 2

z (·) =

Az(z). Then, we can write F (x, y, z) as F (x, y, z) = [π1F 1
x (x)F 1

y (y) + π2F 2
x (x)F 2

y (y)]Az(z) +∑M
m=3 π

mFmx (x)Fmy (y)Fmz (z). For any z such that Az(z) > 0, rearrange this equality as

F (x, y, z)−
∑M

m=3 π
mFmx (x)Fmy (y)Fmz (z)

(π1 + π2)Az(z)
=

π1

π1 + π2
F 1
x (x)F 1

y (y) +
π2

π1 + π2
F 2
x (x)F 2

y (y).

(21)

The right hand side of (21) takes the form of the distribution function of a bivariate mixture

model. Therefore, from Theorem 4.2 of Hall and Zhou (2003), {π1/(π1 + π2), π2/(π1 +

π2), F 1
x (·), F 1

y (·), F 2
x (·), F 2

y (·)} are not identifiable from the left hand side of (21). Hence, it

is not possible to uniquely determine {π1, π2, F 1
x (·), F 1

y (·), F 2
x (·), F 2

y (·)} from F (x, y, z) even

with the additional knowledge of {πm, Fmx (·), Fmy (·)}Mm=3, and part (a) follows.

We proceed to prove part (b). First, consider the case where Z is discrete with Z =

{1, . . . , |Z|}. Let δzh = {h} for h = 1, . . . , |Z|. If there are less than M linearly indepen-

dent eigenvectors in the set of eigenvectors of P∆,1(P∆)−1, . . . , P∆,|Z|(P∆)−1, then, in view

of P∆,h(P∆)−1 = LxDh(Lx)−1 and the property of eigenvectors, there exists a pair of com-

ponents i 6= j such that Pr(Z = h|i) = Pr(Z = h|j) for all h. Therefore, the stated result

follows from part (a). When Z is continuous, partition Z into u mutually exclusive and

exhaustive subsets, δz1 , . . . , δ
z
u. Then, there exists a pair of components i 6= j such that

Pr(Z ∈ δzh|i) = Pr(Z ∈ δzh|j) for all h. Since δz1 , . . . , δ
z
u can be chosen arbitrarily, part (b)
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follows from part (a). �

7.5 Proof of Proposition 4

Because the data are generated by the model and rank+(P∆) = M , we can factorize P∆ and

P∆,h as P∆ = LxV L
′
y and P∆,h = LxV DhL

′
y.

We prove part (a) first. Because rank(P∆) = rank(P∆,h) = M , we have rank(Lx) =

rank(Ly) = rank(Dh) = M . Consequently, it follows from the property of the M-P in-

verse (e.g., Seber (2007, 7.54(d) and 7.65)) that (P∆)+ = (L′y)
+V −1(Lx)+ and (Lx)+Lx =

(Ly)
+Ly = IM . This gives P∆,h(P∆)+ = LxDh(Lx)+. Then, M̂ = rank(LxDh(Lx)+) ≥

rank(LxDh) + rank(Dh(Lx)+)− rank(Dh) = M from Frobenius inequality (e.g., Seber (2007,

3.18)) while M̂ = rank(LxDh(Lx)+) ≤ min{rank(Lx), rank(Dh)} = M . Hence, we obtain

M̂ = M . Since [P∆,h(P∆)+]Lx = LxDh and the non-zero eigenvalues of P∆,h(P∆)+ are dis-

tinct, we have em = pmz (h) for m = 1, . . . ,M and L̂x = Lx. Similarly, L̂y = Ly follows from

P ′∆,h(P ′∆)+ = LyDh(Ly)
+. Finally, V̂ = V follows from V = (Lx)+P∆(L′y)

+.

Once Lx, Ly, and V are identified, we can uniquely determine Fmx (·), Fmy (·), and Fmz (·)
by repeating the argument in the later part of the proof of Proposition 2 but using the M-P

inverse of Lx and Ly in place of their inverse.

We proceed to prove part (b). We show M ≤ rank(P∆) first. Recall that M is defined

as the smallest positive integer M̃ for which a trivariate finite mixture representation (8) can

be found. Suppose F (x, y, z) =
∑M̂

m=1 π̂
mF̂mx (x)F̂my (y)F̂mz (z) gives a valid trivariate finite

mixture representation (8). Then we have M ≤ M̂ by the definition of M . Further, because

M̂ = rank(P∆,h(P∆)+) ≤ rank((P∆)+) = rank(P∆), we have M ≤ rank(P∆).

Because the data are generated by the model (8) withM components, F (x, y) =
∑M

m=1 π
mFmx (x)Fmy (y)

gives a valid bivariate finite mixture representation, possibly with a redundant compo-

nent. Since rank+(P∆) is no larger than the smallest positive integer M̃ for which a fi-

nite mixture representation of F (x, y) is found, we have rank+(P∆) ≤ M . Further, since

rank(P∆) ≤ rank+(P∆) from the property of nonnegative rank, we obtain rank(P∆) ≤ M .

Because we have shown M ≤ rank(P∆) already, rank(P∆) = M follows. �

7.6 Proof of Corollary 3

Define Lαx , Lαy , and Dα
h similar to Lx, Ly, and Dh in Section 3.1 but using (Xα, Y α, Zα)

and (Xα,Yα,Zα) in place of (X,Y, Z) and (X ,Y,Z). Then, similar to (12), we have P∆α =

LαxV (Lαy )′ and P∆α,h = LαxV D
α
h (Lαy )′. Consequently, by applying the proof of Proposition

2, we can identify πm’s and the component distribution functions of (Xα, Y α, Zα). Finally,

each of Fm1 (·), ..., Fmk (·) is obtained from the m-th component distribution of (Xα, Y α, Zα)

by integrating out the other elements. �.
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7.7 Proof of Proposition 5

The proof is given by the proof of Theorem 1 in Kleibergen and Paap (2006). �

7.8 Proof of Proposition 6

First, we show Pr(r̃ < r0) → 0. If r̃ < r0, this implies Q(r) < Q(r0) for some r < r0. Thus

Pr(r̃ < r0) ≤
∑r0−1

r=1 Pr(Q(r) < Q(r0)). Observe that Pr(Q(r) < Q(r0)) = Pr(rk(r)−rk(r0)−
f(N)g(r) + f(N)g(r0) < 0) = Pr(Nλ̂′rΩ̂

−1
r λ̂r −Nλ̂′r0Ω̂−1

r0 λ̂r0 + f(N)(g(r0) − g(r)) < 0). For

any r < r0, this probability tends to 0 as N → ∞ because f(N)/N → 0, λ̂′rΩ̂
−1
r λ̂r →p

λ′rΩ
−1
r λr > 0, and λ̂′r0Ω̂−1

r0 λ̂r0 →p λ
′
r0Ω−1

r0 λr0 = 0.

Second, we show Pr(r̃ > r0)→ 0. Similarly as above, we have Pr(r̃ > r0) ≤
∑t∗

r=r0+1 Pr(Q(r) <

Q(r0)) and Pr(Q(r) < Q(r0)) = Pr(Nλ̂′rΩ̂
−1
r λ̂r−Nλ̂′r0Ω̂−1

r0 λ̂r0 + f(N)(g(r0)− g(r)) < 0). For

any r > r0, this probability tends to 0 as N →∞ because both Nλ̂′rΩ̂
−1
r λ̂r and Nλ̂′r0Ω̂−1

r0 λ̂r0

converge to a chi-square random variable, f(N) → ∞, and Pr(g(r0) − g(r) > 0) → 1 as

N →∞. �
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Table 1: Selection Frequencies of the Number of Components: Two Variables

Selection frequencies by rk-statistic using (W1,W2) with t = 4
first design: µ1 = (0, 0)′, µ2 = (1.0, 2.0)′, µ3 = (2.0, 1.0)′

N = 500 N = 2000 N = 8000
M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4

α = 0.10 0.008 0.747 0.211 0.034 0.000 0.345 0.595 0.060 0.000 0.001 0.908 0.091
SHT α = 0.05 0.020 0.828 0.143 0.009 0.000 0.480 0.491 0.029 0.000 0.003 0.951 0.046

α = 0.01 0.063 0.892 0.045 0.000 0.000 0.703 0.296 0.001 0.000 0.029 0.963 0.008
AIC 0.004 0.668 0.282 0.046 0.000 0.269 0.623 0.108 0.000 0.001 0.852 0.147
BIC 0.458 0.542 0.000 0.000 0.000 0.961 0.039 0.000 0.000 0.417 0.582 0.001
HQ 0.083 0.849 0.063 0.005 0.000 0.686 0.302 0.012 0.000 0.033 0.932 0.035

second design: µ1 = (0, 0)′, µ2 = (0.5, 1.0)′, µ3 = (1.0, 0.5)′

N = 500 N = 2000 N = 8000
M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4

α = 0.10 0.746 0.227 0.023 0.004 0.354 0.594 0.044 0.008 0.000 0.901 0.092 0.007
SHT α = 0.05 0.842 0.147 0.011 0.000 0.480 0.502 0.018 0.000 0.002 0.945 0.050 0.003

α = 0.01 0.950 0.050 0.000 0.000 0.731 0.266 0.003 0.000 0.016 0.975 0.009 0.000
AIC 0.664 0.298 0.033 0.005 0.252 0.644 0.091 0.013 0.000 0.851 0.135 0.014
BIC 1.000 0.000 0.000 0.000 0.995 0.005 0.000 0.000 0.618 0.382 0.000 0.000
HQ 0.966 0.032 0.002 0.000 0.819 0.179 0.002 0.000 0.037 0.959 0.004 0.000

d.f. 9 4 1 — 9 4 1 — 9 4 1 —

Notes: The true number of components is M = 3. (W1,W2)′ follows a three-component normal mixture distribution,

where each component distribution is N2(µm, I2) for m = 1, 2, 3. The mixing proportions are π1 = π2 = π3 = 1/3 in

both designs.
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Table 2: Selection Frequencies of the Number of Components: Four Variables

Selection frequencies by average rk-statistic constructed from simultaneously using 3 different groupings
N = 500 N = 2000 N = 8000

M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4
SHT α = 0.10 0.002 0.173 0.803 0.022 0.000 0.002 0.946 0.052 0.000 0.000 0.942 0.058
ave- α = 0.05 0.004 0.209 0.774 0.013 0.000 0.004 0.967 0.029 0.000 0.000 0.966 0.034
rk α = 0.01 0.009 0.286 0.705 0.000 0.000 0.014 0.977 0.009 0.000 0.000 0.985 0.015
AIC by ave-rk 0.001 0.184 0.792 0.023 0.000 0.003 0.938 0.059 0.000 0.000 0.936 0.064
BIC by ave-rk 0.400 0.498 0.102 0.000 0.000 0.112 0.887 0.001 0.000 0.001 0.997 0.002
HQ by ave-rk 0.073 0.390 0.537 0.000 0.000 0.039 0.956 0.005 0.000 0.000 0.986 0.014

d.f. 15 12 3 — 15 12 3 — 15 12 3 —

Selection frequencies by MLE-based model selection under parametric multi-dimensional normal distribution
N = 500 N = 2000 N = 8000

M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4
AIC by MLE 0.000 0.015 0.371 0.614 0.000 0.000 0.366 0.634 0.000 0.000 0.437 0.563
BIC by MLE 0.003 0.976 0.021 0.000 0.000 0.102 0.897 0.001 0.000 0.000 0.987 0.013
HQ by MLE 0.000 0.569 0.424 0.007 0.000 0.001 0.985 0.014 0.000 0.000 0.984 0.016

d.f. 8 17 26 35 8 17 26 35 8 17 26 35

Selection frequencies by rk-statistic using a single grouping (Xα, Y α)
X1 = (W1,W2) N = 500 N = 2000 N = 8000
Y 1 = (W3,W4) M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4

α = 0.10 0.000 0.530 0.415 0.055 0.000 0.028 0.886 0.086 0.000 0.000 0.907 0.093
SHT α = 0.05 0.003 0.647 0.328 0.022 0.000 0.053 0.899 0.048 0.000 0.000 0.950 0.050

α = 0.01 0.009 0.841 0.146 0.004 0.000 0.162 0.829 0.009 0.000 0.000 0.989 0.011
AIC 0.000 0.424 0.485 0.091 0.000 0.017 0.852 0.131 0.000 0.000 0.843 0.157
BIC 0.204 0.760 0.034 0.002 0.000 0.599 0.398 0.003 0.000 0.000 0.997 0.003
HQ 0.019 0.768 0.200 0.013 0.000 0.146 0.816 0.038 0.000 0.000 0.966 0.034

X2 = (W1,W3) N = 500 N = 2000 N = 8000
Y 2 = (W2,W4) M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4

α = 0.10 0.032 0.852 0.097 0.019 0.000 0.761 0.206 0.033 0.000 0.380 0.562 0.058
SHT α = 0.05 0.073 0.864 0.058 0.005 0.000 0.854 0.137 0.009 0.000 0.524 0.448 0.028

α = 0.01 0.195 0.781 0.023 0.001 0.000 0.957 0.042 0.001 0.000 0.739 0.257 0.004
AIC 0.020 0.798 0.153 0.029 0.000 0.683 0.272 0.045 0.000 0.283 0.612 0.105
BIC 0.712 0.287 0.001 0.000 0.001 0.998 0.001 0.000 0.000 0.991 0.009 0.000
HQ 0.222 0.749 0.026 0.003 0.000 0.953 0.043 0.004 0.000 0.774 0.219 0.007

X3 = (W1,W4) N = 500 N = 2000 N = 8000
Y 3 = (W2,W3) M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4

α = 0.10 0.000 0.589 0.370 0.041 0.000 0.056 0.865 0.079 0.000 0.000 0.905 0.095
SHT α = 0.05 0.001 0.705 0.281 0.013 0.000 0.090 0.865 0.045 0.000 0.000 0.948 0.052

α = 0.01 0.003 0.868 0.127 0.002 0.000 0.253 0.740 0.007 0.000 0.000 0.990 0.010
AIC 0.000 0.484 0.448 0.068 0.000 0.036 0.844 0.120 0.000 0.000 0.842 0.158
BIC 0.092 0.888 0.020 0.000 0.000 0.721 0.278 0.001 0.000 0.000 0.998 0.002
HQ 0.006 0.808 0.175 0.011 0.000 0.237 0.728 0.035 0.000 0.000 0.962 0.038
d.f. 9 4 1 — 9 4 1 — 9 4 1 —

Notes: The true number of components is M = 3. W = (W1,W2,W3,W4)′ follows a three-component normal mixture

distribution, where each component distribution is N4(µm, I4) for m = 1, 2, 3. The parameter values are: π1 = π2 =

π3 = 1/3, µ1 = (0, 0, 0, 0)′, µ2 = (1.0, 2.0, 0.5, 1.0), and µ3 = (2.0, 1.0, 1.0, 0.5).
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Table 3: Selection Frequencies of the Number of Components: Eight Variables

Selection frequencies based on the max or the sum of 70 modified average rk-statistics
N = 500 N = 2000 N = 8000

M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4
max- α = 0.10 0.158 0.016 0.826 0.000 0.000 0.000 0.995 0.005 0.000 0.000 0.981 0.019
rk+ α = 0.05 0.259 0.025 0.716 0.000 0.000 0.000 0.997 0.003 0.000 0.000 0.990 0.010

α = 0.01 0.471 0.028 0.501 0.000 0.001 0.000 0.999 0.000 0.000 0.000 0.997 0.003
sum- α = 0.10 0.008 0.130 0.862 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000
rk+ α = 0.05 0.013 0.147 0.840 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000

α = 0.01 0.019 0.188 0.793 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000

Mean of the selection frequencies across 70 modified average rk-statistics
N = 500 N = 2000 N = 8000

M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4
mean α = 0.10 0.493 0.255 0.251 0.002 0.069 0.287 0.636 0.007 0.000 0.141 0.842 0.017
of 70 α = 0.05 0.613 0.210 0.177 0.001 0.108 0.314 0.575 0.003 0.001 0.165 0.827 0.008
SHT’s α = 0.01 0.799 0.122 0.078 0.000 0.220 0.337 0.442 0.000 0.002 0.216 0.780 0.001
mean of AIC’s 0.067 0.689 0.242 0.002 0.015 0.347 0.629 0.009 0.000 0.146 0.834 0.020
mean of BIC’s 0.085 0.915 0.000 0.000 0.170 0.815 0.015 0.000 0.065 0.597 0.338 0.000
mean of HQ’s 0.110 0.867 0.022 0.000 0.104 0.671 0.225 0.000 0.007 0.346 0.647 0.000
mean of d.f. 11.02 11.99 3.00 — 11.00 12.00 3.00 — 11.00 12.00 3.00 —

Notes: The true number of components is M = 3. W follows a three-component normal mixture distribu-

tion
∑3
m=1 π

mN8(µm, I8). The parameter values are π1 = π2 = π3 = 1/3, µ1 = (0, 0, 0, 0, 0, 0, 0, 0)′, µ2 =

(0.5, 1.0, 0.25, 0.5, 0.75, 0.25, 1.0, 0.25)′, µ3 = (1.0, 0.5, 0.5, 0.25, 0.25, 0.75, 0.25, 1.0)′. The modified rk-statistic with

c = 0.01× ŝ1 is used, where ŝ1 is the estimated largest singular value of Ωr.

Table 4: Selection Frequencies of the Number of Components: Eight Variables, where Three
Variables do not have a mixture distribution

Selection frequencies based on the max or the sum of 70 modified average rk-statistics
N = 500 N = 2000 N = 8000

M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4
max- α = 0.10 0.580 0.049 0.371 0.000 0.120 0.009 0.871 0.000 0.000 0.000 0.999 0.001
rk+ α = 0.05 0.678 0.050 0.272 0.000 0.175 0.008 0.817 0.000 0.000 0.000 1.000 0.000

α = 0.01 0.844 0.034 0.122 0.000 0.366 0.011 0.623 0.000 0.000 0.000 1.000 0.000
sum- α = 0.10 0.237 0.484 0.279 0.000 0.009 0.059 0.932 0.000 0.000 0.000 1.000 0.000
rk+ α = 0.05 0.264 0.492 0.244 0.000 0.012 0.075 0.913 0.000 0.000 0.000 1.000 0.000

α = 0.01 0.328 0.472 0.200 0.000 0.022 0.095 0.883 0.000 0.000 0.000 1.000 0.000

Mean of selection frequencies across the 70 modified average rk-statistics
N = 500 N = 2000 N = 8000

M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4
mean α = 0.10 0.765 0.126 0.108 0.001 0.553 0.171 0.275 0.001 0.251 0.206 0.541 0.002
of 70 α = 0.05 0.849 0.086 0.065 0.000 0.646 0.149 0.205 0.000 0.296 0.214 0.489 0.001
SHT’s α = 0.01 0.945 0.034 0.021 0.000 0.794 0.101 0.105 0.000 0.385 0.223 0.392 0.000
mean of AIC’s 0.072 0.825 0.103 0.001 0.073 0.655 0.271 0.001 0.035 0.424 0.539 0.003
mean of BIC’s 0.044 0.956 0.000 0.000 0.082 0.917 0.000 0.000 0.125 0.836 0.040 0.000
mean of HQ’s 0.069 0.927 0.004 0.000 0.113 0.862 0.025 0.000 0.092 0.689 0.218 0.000
mean of d.f. 11.00 11.99 3.00 — 11.00 12.00 3.00 — 11.00 12.00 3.00 —

Notes: The true number of components is M = 3. W follows a three-component normal mixture distribu-

tion
∑3
m=1 π

mN8(µm, I8). The parameter values are π1 = π2 = π3 = 1/3, µ1 = (0, 0, 0, 0, 0, 0, 0, 0)′, µ2 =

(0.5, 1.0, 0.25, 0.5, 0.75, 0, 0, 0)′, µ3 = (1.0, 0.5, 0.5, 0.25, 0.25, 0, 0, 0)′. The modified rk-statistic with c = 0.01 × ŝ1 is

used, where ŝ1 is the estimated largest singular value of Ωr.
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Table 5: Intergenerational Social Mobility in Great Britain

(1) British Social Mobility Data (8× 8 Table)

Father’s Subject’s Status
Status 1 2 3 4 5 6 7 8

1 50 19 26 8 7 11 6 2
2 16 40 34 18 11 20 8 3
3 12 35 65 66 35 88 23 21
4 11 20 58 110 40 183 64 32
5 2 8 12 23 25 46 28 12
6 12 28 102 162 90 553 230 177
7 0 6 19 40 21 158 143 71
8 0 3 14 32 15 126 91 106

(2) rk-statistics for H0 : M = 1, 2, 3, 4 (5×5 Table)

The null hypothesis (H0) M = 1 M = 2 M = 3 M = 4

rk-statistic 557.09 144.64 48.18 15.71
d.f. 16 9 4 1

p-value 0.000 0.000 0.000 0.000

(3) rk-statistics for H0 : M = 5, 6, 7 (8×8 Table)

The null hypothesis (H0) M = 5 M = 6 M = 7

rk-statistic 35.59 12.33 2.27
d.f. 9 4 1

p-value 0.000 0.015 0.132

(4) The Selected Value of a Lower Bound on M (8×8 Table)

α = 0.10 α = 0.05 α = 0.01
Sequential Hypothesis Testing (SHT) M = 7 M = 7 M = 6

AIC BIC HQ
Model Selection by Information Criteria M = 8 M = 5 M = 6

No. of Observations 3497

Notes: The data are from Table 1.C of Clogg (1981). Occupational categories in Panel (1) are: 1=professional and

high administrative; 2=managerial and executive; 3=inspectional, supervisory, and other non-manual (high grade);

4=inspectional, supervisory, and other non-manual (low grade); 5=routine grades of nonmanual; 6=skilled manual;

7=semi-skilled manual; 8=unskilled manual. Panel (2) reports the result from the 5× 5 table in which categories 2 and

3, categories 5 and 6, and categories 7 and 8 were combined.

36



Table 6: Type of Trade and Ethnic Group data, Amsterdam and Rotterdam

(1) Cross-Classification by Ethnic Group and Type of Trade

Amsterdam Rotterdam

Types of Trade Types of Trade
Ethnic Group 1 2 3 4 5 Total 1 2 3 4 5 Total

Dutch 382 367 788 113 28 1678 323 209 459 91 153 1235
Turks 14 21 3 8 10 56 29 30 2 15 14 90
Moroccans 12 36 2 5 7 62 8 17 2 13 5 45
Antilleans 8 6 2 1 2 19 5 4 3 4 3 19
Surinamese 44 33 33 17 24 151 35 31 28 19 33 146
Others 208 97 86 26 39 456 82 18 19 16 12 147

Total 668 560 914 170 110 2422 482 309 513 158 220 1682

(2) The values of rk-statistics and the degree of freedom

Amsterdam Rotterdam

The null hypothesis (H0) M = 1 M = 2 M = 3 M = 4 M = 1 M = 2 M = 3 M = 4

rk-statistic 318.09 57.87 13.48 0.23 190.23 60.82 9.20 1.88
d.f. 20 12 6 2 20 12 6 2

p-value 0.000 0.000 0.036 0.891 0.000 0.000 0.163 0.391

(3) The Selected Value of a Lower Bound on M

Amsterdam Rotterdam

α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01
Sequential Hypothesis Testing M=4 M=4 M=3 M=3 M=3 M=3

AIC BIC HQ AIC BIC HQ
Model Selection by Information Criteria M=4 M=2 M=3 M=3 M=3 M=3

No. of Observations 2422 1682

Notes: The data are from Table 2a of van der Heijden et al. (2002). Types of trade in Panel (1) are 1=wholesale trade;

2=retail trade; 3=producer services; 4=catering and restaurants; 5=personal services.

Table 7: Response Patterns in Five-item Subsets of LSAT and the Estimated Number of
Latent Ability Distributions

Number of Components Selected based on 5 items
LSAT 6 LSAT 7

α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01
max-rk statistic M=3 M=3 M=3 M=3 M=3 M=3
sum-rk statistic M=3 M=3 M=3 M=3 M=3 M=3

Number of Components Selected based on 4 items
LSAT 6 LSAT 7

SHT α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01
{W1,W2,W3,W4} M = 2 M = 2 M = 2 M = 2 M = 2 M = 2
{W2,W3,W4,W5} M = 3 M = 3 M = 2 M = 3 M = 2 M = 2
{W1,W3,W4,W5} M = 3 M = 3 M = 3 M = 2 M = 2 M = 2
{W1,W2,W4,W5} M = 2 M = 2 M = 2 M = 3 M = 3 M = 3
{W1,W2,W3,W5} M = 3 M = 3 M = 3 M = 2 M = 2 M = 2

Model Selection AIC BIC HQ AIC BIC HQ
{W1,W2,W3,W4} M = 2 M = 2 M = 2 M = 2 M = 2 M = 2
{W2,W3,W4,W5} M = 3 M = 2 M = 2 M = 3 M = 2 M = 2
{W1,W3,W4,W5} M = 3 M = 2 M = 2 M = 2 M = 2 M = 2
{W1,W2,W4,W5} M = 2 M = 2 M = 2 M = 3 M = 2 M = 2
{W1,W2,W3,W5} M = 3 M = 2 M = 3 M = 2 M = 2 M = 2

No. of observations 1000 1000

Notes: The data are from Table 1 of Mislevy (1984).
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