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Abstract

Semiparametric estimation of a bivariate fractionally cointegrated system is con-

sidered. We propose a two-step procedure that accommodates both (asymptotically)

stationary (δ < 1/2) and nonstationary (δ ≥ 1/2) stochastic trend and/or equilib-

rium error. A tapered version of the local Whittle estimator of Robinson (2008) is

used as the first-stage estimator, and the second-stage estimator employs the ex-

act local Whittle approach of Shimotsu and Phillips (2005). The consistency and

asymptotic distribution of the two-step estimator are derived. The estimator of

the memory parameters has the same Gaussian asymptotic distribution in both the

stationary and nonstationary case. The convergence rate and the asymptotic dis-

tribution of the estimator of the cointegrating vector are affected by the difference

between the memory parameters. Further, the estimator has a Gaussian asymptotic

distribution when the difference between the memory parameters is less than 1/2.
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1 Introduction

The analysis of the long-run equilibrium relationship between economic variables is now

a common task in empirical econometric modeling. The concept of cointegration (Engle

and Granger, 1987) has provided powerful tools for the analysis of these issues. Two

random processes are said to be cointegrated if they have the same memory parameter

but their linear combination has a smaller memory parameter. Cointegrated random

processes form a long-run equilibrium relationship, in which the cointegrated processes

are driven by a common stochastic trend and the equilibrium error has less persistence

than the stochastic trend.

The fractional cointegration analysis generalizes the conventional I(0)/I(1) cointegra-

tion analysis by allowing the memory parameter of the variables to be any real number.

The system is driven by an I(δ2) common stochastic trend and accompanied by an I(δ1)

equilibrium error. It provides a more flexible apparatus for analyzing long-run relation-

ships between economic time series. For instance, consider the following two cases:

• Two time series have the same memory parameter δ2 < 1, and the equilibrium error

has a memory parameter δ1 < δ2.

• Two time series are I(1), but the equilibrium error is I(δ), where δ ∈ (0, 1).

Clearly, the two time series form a long-run equilibrium in the above two cases, but

the conventional I(0)/I(1) cointegration cannot accommodate them. When empirical

researchers apply the I(0)/I(1) cointegration to such data, it leads to either (i) a false

rejection of the existence of an equilibrium relationship, or (ii) misspecification of the

degree of persistence of the stochastic trend and/or the equilibrium error.

Empirical relevance of fractional cointegration has been long recognized, and fractional

cointegration has been applied in many areas in economics and social science, including

exchange rate dynamics (Cheung and Lai, 1993; Baillie and Bollerslev, 1994), interest rate

dynamics (Dueker and Startz, 1998), and poll data (Davidson and Peel, 2006). More re-

cently, fractional cointegration has been shown to be useful in modeling financial volatility

series. See, for example, Brunetti and Gilbert (2000), Bandi and Perron (2006), Chris-

tensen and Nielsen (2006), and Cassola and Morana (2010).

Because of its attractiveness and relevance, several attempts have been made to de-

velop a semiparametric estimator of fractionally cointegrated systems, but technical diffi-

culties have hampered its development until recently. Robinson (2008) derives the consis-

tency and asymptotic normality of the local Whittle estimator of a stationary fractionally
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cointegrated system under the assumption 0 ≤ δ1 < δ2 < 1/2.1 Hassler et al. (2006)

and Velasco (2003) seek to estimate δ1 by applying semiparametric estimators to the

residuals from cointegrating regressions, but they require δ2 − δ1 > 1/2. Nielsen (2007)

considers joint estimation of δ1, δ2 and the cointegrating vector under the assumption

0 ≤ δ1, δ2 < 1/2, but derives its asymptotic distribution only under the long-run exogene-

ity between the stochastic trend and equilibrium error. Nielsen and Frederiksen (2008)

consider a fully modified narrow-band least squares (NBLS) estimator that corrects the

endogeneity bias of the NBLS estimator.2

The above procedures have an additional difficulty: prior to estimation, the researcher

needs to know the range of the value of δ1 and δ2. Because the semiparametric estimators

of δ employed by these procedures have a standard limiting distribution only for −1/2 <

δ < 3/4, one needs either to assume δ < 3/4 and use row data or assume δ > 1/2 and use

differenced data. This poses problems for the following reasons:

1. Typically, whether δ ≷ 1/2 is unknown a priori ; indeed, often empirical researchers

want to test whether δ ≷ 1/2, because this determines whether the process is

stationary (if δ > 1/2) or nonstationary (if δ < 1/2).

2. Because the value of δ of most economic time series lies between 0 and 1, if two

economic variables are cointegrated, then the memory parameter of the equilibrium

error may take a value larger than or smaller than 1/2.

3. Because one needs to assume either δ < 3/4 or δ > 1/2, the confidence interval

must lie either to the left of 3/4 or to the right of 1/2.

This paper develops an estimation and inference method for bivariate fractionally

cointegrated systems. The proposed procedure accommodates both stationary and non-

stationary processes for the stochastic trend and cointegrating error. We achieve this by a

two-step procedure; a tapered and trimmed version of the estimator by Robinson (2008)

is used as the first-stage estimator, and the second-stage estimator uses the exact local

Whittle (ELW) approach of Shimotsu and Phillips (2005). The second-stage ELW esti-

mator uses neither tapering nor trimming. In a univariate context, Shimotsu and Phillips

(2005) prove the consistency and asymptotic normality of the ELW estimator for both

1Strictly speaking, the system analyzed by Robinson (2008) is more general and includes a fractionally
cointegrated system as a special case.

2Some studies focus on testing the null hypothesis of no cointegration by estimating the rank of the
(normalized) spectral density matrix at frequency zero. See, for example, Robinson and Yajima (2002),
Chen and Hurvich (2002), and Nielsen and Shimotsu (2007).
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stationary and nonstationary δ when the mean of the process is known. Shimotsu (2010a)

extends it to accommodate an unknown mean and a polynomial time trend.

We derive the asymptotic behavior of the tapered estimator and the second-stage ELW

estimator. The ELW estimator of δ1 and δ2 has the same Gaussian asymptotic distribution

in both the stationary and nonstationary case. The asymptotics of the estimator of the

cointegrating vector is affected by the value of δ2 − δ1. Its asymptotic distribution is

Gaussian only when δ2− δ1 < 1/2, and it has a different convergence rate when δ2− δ1 >

1/2. The first-stage tapered estimator is shown to be consistent for −1/2 < δ1 < δ2 <

δ̄ <∞ and has the same convergence rate in both the stationary and nonstationary case.

The estimator imposes an additional restriction that the (pseudo-) spectral density of the

processes has no poles outside the origin.

The remainder of the paper is organized as follows. Section 2 briefly reviews the

model of fractional cointegration. Section 3 derives the consistency and convergence rate

of the tapered local Whittle estimator. Section 4 shows the asymptotic distribution of the

second-stage ELW estimator. Section 5 reports some simulation results. Section 6 pro-

vides an empirical application that revisits the fractional cointegration analysis between

implied and realized volatility by Bandi and Perron (2006). Proofs of the main theorems

are collected in Section 7.

2 Preliminaries: a model of fractional cointegration

We consider a model where the observed variables xt and yt are fractionally cointegrated.

Specifically, xt and yt are generated by the model
(1− L)δ1(yt − βxt) = u1tI {t ≥ 1} , t = 1, 2, . . . ,

(1− L)δ2xt = u2tI {t ≥ 1} , t = 1, 2, . . . ,

yt = xt = 0, t ≤ 0,

(1)

where β 6= 0, and ut = (u1t, u2t)
′ is stationary with zero mean and spectral density matrix

fu(λ) with fu(0) = Ω. We assume −1/2 < δ1 < δ2 < δ̄ < ∞; hence, xt and yt are

individually I(δ2) because their δ2th differences have a spectral density that is bounded

and bounded away from the origin. But their linear combination, yt−βxt, has a memory
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parameter δ1 that is smaller than δ2. We may also write (1) in matrix notation as

Bzt =

[
(1− L)−δ1 0

0 (1− L)−δ2

]
utI {t ≥ 1} , B =

[
1 −β
0 1

]
, zt =

[
yt

xt

]
. (2)

Expanding the binomial in the second row of (1) gives the form

t∑
k=0

Γ(k − δ2)

Γ(−δ2)k!
xt−k = u2tI {t ≥ 1} , (3)

where Γ(·) is the gamma function. The model (1) provides a valid data-generating process

for any value of (δ1, δ2), and accommodates both the nonstationary and (asymptotically)

stationary case. When δ2 > 1/2, xt is nonstationary, and when δ2 < 1/2, xt is asymptot-

ically covariance stationary. Setting δ2 = 1 and δ1 = 0 gives the conventional I(0)/I(1)

cointegration.

For a vector time series at, define the discrete Fourier transform (dft) and the peri-

odogram evaluated at the fundamental frequencies as

wa(λj) =
1√
2πn

n∑
t=1

ate
itλj , λj =

2πj

n
, j = 1, . . . , n, (4)

Ia(λj) = wa(λj)w̄a(λj),

where x̄ denotes the conjugate transpose of x.

3 First-stage estimation: tapered local Whittle esti-

mation

As the first-step estimator, we use the tapered version of the local Whittle estimator of

stationary cointegrated systems by Robinson (2008). Robinson (2008) derives the con-

sistency and asymptotic normality of the local Whittle estimator of a stationary bivari-

ate system that includes fractional cointegration as a special case under the assumption

0 ≤ δ1 < δ2 < 1/2. Our objective is to develop an estimator of ϑ = (β, δ′)′ = (β, δ1, δ2)′

that does not impose prior restrictions on the stationarity of the processes in the system.

As shown by Velasco (1999) and Lobato and Velasco (2000), tapering allows one

to accommodate both stationary and nonstationary processes in local Whittle estima-

tion. We use the taper considered by Velasco (1999). Let ht denote a pth-order ta-
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per generated by Kolmogorov’s proposal. Then ht satisfies the regularity conditions in

Velasco (1999) and Robinson (2005), and the tapered estimator is invariant to a poly-

nomial time trend of order p − 1. Define the tapered dft and periodogram of at as

wTa (λj) = (2πn)−1/2
∑n

t=1 htzte
itλj and ITa (λj) = wTa (λj)w̄

T
a (λj) .

We follow notation in Robinson (2008) in most parts of the paper. Let m be some

integer less than n, and let κ ∈ (0, 1) be an arbitrary small number. Let
∑m

j(p,κ) denote

the sum taken over j = p, 2p, . . . ,m for j ≥ [κm]. Using κ introduces a trimming of the

periodogram ordinates from below. The trimming controls the behavior of the objective

function when δ2 − δ1 > 1/2. The tapered local Whittle estimator is defined as (see

Shimotsu (2010b) for derivation)

R(ϑ) = log det Ω̂T (ϑ)− 2(δ1 + δ2)
p

(1− κ)m

m∑
j(p,κ)

log λj, (5)

Ω̂T (ϑ) =
p

(1− κ)m

m∑
j(p,κ)

Re
[
Ψ(λj; δ)BI

T
z (λj)B

′Ψ̄(λj; δ)
]
,

where

Ψ(λ; δ) = diag(λδ1 , λδ2e−i(π−λj)(δ2−δ1)/2).

We estimate ϑ = (β, δ′)′ by ϑ̂ = arg minΘR(ϑ). The parameter space is defined as

Θ = Θβ ×Θδ, where Θβ is an arbitrary large interval and

Θδ = {δ : −1/2 + η1 ≤ δ1 ≤ δ2 − η2 ≤ p− 1/2− η3}, (6)

where the ηi’s are arbitrary small positive numbers such that η2 < η3. The constraint, δ1 ≤
δ2−η2, is also used in Robinson (2008). This constraint imposes that there is cointegration,

but this constraint is necessary because β is not identified from the local Whittle-type

objective function when δ1 = δ2. Relaxing this restriction remains an important future

topic.

Robinson (2008) introduces an additional parameter γ to model the phase between yt−
βxt and xt flexibly. In place of Ψ(λ; δ), Robinson (2008) uses Ψ(λ; δ, γ) =diag(λδ1 , λδ2e−iγ)

and defines the objective function R(·) in terms of four parameters, (β, δ1, δ2, γ). In effect,

our parameterization imposes the restriction γ = (δ2 − δ1)π/2 to the model of Robinson

(2008), which is implied by a fractionally cointegrated system (1).

We introduce the following assumptions on m and the stationary component ut in (1).

Henceforth, we denote the true parameter values by Ω0 and ϑ0 = (β0, δ
′
0)′. To simplify
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the presentation and proof, one set of assumptions is used for both the consistency and

the convergence rate of the tapered estimator.

Assumption 1 fu (λ) − Ω0 = O(λb) as λ → 0+ for some b ∈ (0, 2], and Ω0 = (ωk`) is

real, symmetric, finite, and positive definite.

Assumption 2

ut − Eu0 = A (L) εt =
∞∑
j=0

Ajεt−j,

∞∑
j=0

||Aj||2 <∞,

where || · || denotes the Euclidean norm and E(εt|Ft−1) = 0, E(εtε
′
t|Ft−1) = I2 a.s.,

t = 0,±1, . . ., in which Ft is the σ-field generated by εs, s ≤ t, and there exists a scaler

random variable ε such that Eε2 <∞ and for all η > 0 and some K > 0, Pr(||εt|| > η) ≤
K Pr(ε2 > η). Further, the elements of εt have a.s. constant third and fourth moment

and cross-moments conditional on Ft−1.

Assumption 3 A(λ) =
∑∞

j=0Aje
ijλ satisfies, for b defined in Assumption 1,

Ψ(λ; δ0)A(λ)− P = O(λb) as λ→ 0+,

where P satisfies P = PP ′ = Ω0 and δ0 is the true value of δ = (δ1, δ2)′. Further, A(λ) is

differentiable in a neighborhood of λ = 0, and ∂A(λ)/∂λ satisfies Ψ(λ; δ0)(∂/∂λ)A(λ) =

O(λ−1) as λ→ 0+.

Assumption 4 ϑ0 is an interior point of Θ.

Assumption 5 For any C <∞,

1

m
+
m1+2b(logm)2

n2b
+

(log n)C

m
→ 0 as n→∞.

Assumption 6 fu(λ) is bounded and bounded away from zero for λ ∈ [0, π].

Assumption 7 The order p of the taper satisfies p ≥ 2 and s02 < p, where s0i is the true

parameter value of si = [δi + 1/2], i = 1, 2.

Assumptions 1-3 are essentially the same as Assumptions B1-B5 and A6 of Robinson

(2008), but we impose them in terms of ut rather than zt. Assumption A6 of Robinson
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(2008) imposes g12 > 0, but we do not need to assume it because the phase (γ in Robin-

son (2008)) is identified by δ in our model. Assumption 6 is used in Robinson (2005).

This assumption is necessary in approximating the tapered dft of a type-II fractionally

integrated process by that of a type-I fractionally integrated process. This assumption

excludes the poles outside the origin, but it imposes no additional assumptions in terms

of the smoothness of the spectral density beyond Assumptions 1-3.

The following theorem establishes the convergence rate of ϑ̂. Define ν = δ2 − δ1 and

let ν0 denote its true value. ν0 affects the convergence rate of β̂, but it does not affect the

convergence rate of δ̂.

Theorem 1 Suppose zt is generated by (1) and Assumptions 1-7 hold. Then δ̂ − δ0 =

Op(m
−1/2) and β̂ − β0 = Op(m

−1/2(m/n)ν0) as n→∞.

4 Exact local Whittle estimation of fractional coin-

tegration

The tapered estimator is consistent for both stationary and nonstationary zt but is less

efficient than the nontapered estimator in the stationary case. In this section, we propose

and analyze a two-step estimator that is based on the idea of the exact local Whittle

estimation of Shimotsu and Phillips (2005).

We start from the (negative) Whittle likelihood of ut based on frequencies up to λm

and up to scale multiplication:

m∑
j=1

log(det fu(λj)) +
m∑
j=1

tr
[
fu(λj)

−1Iu(λj)
]
, (7)

where m is some integer less than n. Now we transform the likelihood function (7) to be

data dependent. Define

I∆δz(λj; β) = w∆δz(λj; β)w̄∆δz(λj; β), w∆δz(λj; β) =

(
w∆δ1 (y−βx)(λj)

w∆δ2x(λj)

)
.

Theorem 2.2 of Phillips (1999) (or Lemma 5.1 of Shimotsu and Phillips (2005)) provides

an algebraic relationship that connects wu(λj) and wBz(λj):

wu(λj) = w∆δz(λj; β) = Λn(eiλj ; δ)vBz(λj; δ), (8)
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where

Λn(eiλj ; δ) =

(
Dn(eiλj ; δ1) 0

0 Dn(eiλj ; δ2)

)
, vBz(λj; δ) =

(
vBz1(λj; δ1)

vBz2(λj; δ2)

)
,

vBza(λj; δa) = wBza(λj)−Dn(eiλj ; δa)
−1(2πn)−1/2B̃za,λjn(δa), a = 1, 2,

and Phillips (1999) provides the exact definition of Ãλjn(d) for a process at.

Although vBz(λj; d) is not a periodogram of Bzt, we may view (8) as the frequency

domain representation of Bzt where Λn(eiλj ; δ) acts as a transfer function. Using (8)

in conjunction with the local approximation fu(λj) ∼ Ω and |Dn(eiλj ; δa)|2 ∼ λ2δa
j , the

objective function is simplified to

Q∗m (ϑ,Ω) =
1

m

m∑
j=1

{
log det Ω− 2 log(λδ1j + λδ2j ) + tr

[
Ω−1I∆δz(λj; β)

]}
.

We propose to estimate (ϑ,Ω) by minimizing Q∗m(ϑ,Ω), so that

(ϑ∗,Ω∗) = arg min
Ω∈(0,∞)2,ϑ∈Θ

Q∗m(ϑ,Ω),

where Θ is defined in (6). Concentrating out Ω from Q∗m(ϑ,Ω), we find that ϑ∗ satisfies

ϑ∗ = arg min
ϑ∈Θ

R∗(ϑ),

where

R∗(ϑ) = log det Ω̃∗(ϑ)− 2(δ1 + δ2)
1

m

m∑
j=1

log λj, Ω̃∗(ϑ) =
1

m

m∑
j=1

Re[I∆δz(λj; β)]. (9)

We consider the two-step estimator based on the objective function R∗(ϑ). Let ϑ̂ be

the tapered local Whittle estimator of ϑ. The two-step estimator is defined as

ϑ∗ = ϑ̂− [(∂2/∂ϑ∂ϑ′)R∗(ϑ̂)]−1(∂/∂ϑ)R∗(ϑ̂). (10)

Iterating the above procedure and updating the estimator by ϑ∗(2) = ϑ∗−[(∂2/∂ϑ∂ϑ′)R∗(ϑ∗)]−1×
(∂/∂ϑ)R∗(ϑ∗) and similarly for ϑ∗(3) do not change the asymptotic distribution of the esti-

mator, but we find that iterating the procedure can improve its finite sample properties.

The following assumption is additionally imposed.
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Assumption 8
∑
|j|≥k γj = O((log(k + 1))−4), and

∑
j≥k Aj = O((log(k + 1))−4), where

γj = Eutu
′
t−j.

Assumption 8 is also used in Phillips and Shimotsu (2004), who analyze the asymp-

totics of the local Whittle estimator under type-II processes. This assumption is fairly

mild and allows for a pole and discontinuity in fu(λ) at λ 6= 0. For more details, see

Phillips and Shimotsu (2004).

The following theorem establishes the asymptotic distribution of the exact local Whit-

tle estimator.3

Theorem 2 Suppose zt is generated by (1), Assumptions 1-8 hold, and ν0 = δ20 − δ10 6=
1/2. Then, as n→∞,

(a) When ν0 ∈ (0, 1
2
),

m1/2∆∗n(ϑ∗ − ϑ0)→d N(0,Ξ−1), ∆∗n = diag{λ−ν0m , 1, 1},

where Ξ11 = 2µ{(1−2ν0)−1−(1−ν0)−2 cos2(γ0)}ω22/ω11, Ξ22 = Ξ33 = 4+(π2/4−1)2µρ2,

Ξ23 = Ξ32 = −(π2/4−1)2µρ2, Ξ12 = Ξ21 = −2µν0(1−ν0)−2 cos(γ0)ω12/ω11 +(π/2)2µ(1−
ν0)−1 sin(γ0)ω12/ω11, Ξ13 = Ξ31 = −Ξ12, where µ = (1 − ρ2)−1, ρ = ω12/(ω11ω22)1/2, and

γ0 = ν0π/2.

(b) When ν0 ∈ (1
2
, 3

2
), assume further that n−bm1−ν0+b is bounded and the cumu-

lant spectral density of ut, fu(λ, µ, ω), is continuous at λ = µ = ω = 0 and satisfies

supµ,ω
∫
|fu(λ, µ, ω)|2dλ <∞. Then

m1/2(δ∗ − δ0)→d N(0,Ξ−1
δ ), β∗ − β0 = Op(n

−ν0),

where Ξδ is the lower-right (2× 2) block of Ξ.

Remark 1 Because our parameterization and that in Robinson (2008) are related by

(ϑ1, ϑ2, ϑ3) = (θ1, θ3− (π/2)θ2, θ4 + (π/2)θ2), the corresponding relation holds between the

asymptotic variance of the two estimators.

3In the context of univariate ELW estimation, Shimotsu (2010a) shows that the two-step ELW estima-
tor with a mean correction accommodates an unknown mean and has the same asymptotic distribution
as the ELW estimator. In the context of our model, suppose the data-generating process is given by
Bzt − υ = diag{(1−L)−δ1 , (1−L)−δ2}utI {t ≥ 1}, where υ = (υ1, υ2)′ is a nonrandom vector. Estimate
υk by υ̂k (δk) = w(δk)m−1

∑m
t=1(Bz)kt + (1−w(δk))(Bz)k1, where (Bz)kt is the kth element of Bzt, and

w(x) a weight function used in Shimotsu (2010a). In view of Shimotsu (2010, Theorem 3), the asymptotic
distribution of δ∗k is not affected by v if ∆δ1(yt − βxt) and ∆δ2xt in the objective function are replaced
by ∆δ1(yt − βxt − υ̂1 (δ1)) and ∆δ2(xt − υ̂2 (δ2)). Shimotsu (2010a) also shows that the presence of a
polynomial time trend can be dealt with by prior detrending of the data.
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Remark 2 Ξδ can be written as Ξδ = 2[I2 + Ω0 � (Ω0)−1 + (π2/4)(Ω0 � Ω−1
0 − I2)].

Not surprisingly, this is identical to the asymptotic variance of the bivariate local Whittle

estimator analyzed by Shimotsu (2007).

Remark 3 The additional rate condition on m for ν0 ∈ (1
2
, 3

2
) is needed to control the

bias from the periodogram of ∆−ν0xt that appear in the derivatives of the objective function

with respect to β. The condition is innocuous when ν0 ≥ 1. When b = 2, this condition

becomes n−2m3−ν0 = O(1), which is slightly weaker than m = O(n5/4−ε), a condition often

used in univariate local Whittle estimation.

Remark 4 The convergence rate of β∗ is nν0m1/2−ν0 when ν0 ∈ (0, 1/2) and nν0 when

ν0 > 1/2. The two-step estimator converges at the rate of nν0m1/2−ν0 for ν0 ≷ 1/2. Thus,

the convergence rate of β∗ is no slower than that of β̂.

Remark 5 The asymptotic distribution of β∗ for ν0 > 1/2 remains an open question.

We conjecture that it is not Gaussian, because the part of the Hessian corresponding to β

(namely, the (1, 1)th element) does not converge to a nonrandom constant.

A consistent estimate of ρ = ω12/(ω11ω22)1/2 is necessary to construct a confidence

interval for ϑ0. We can estimate Ω and ρ by Ω̃∗(ϑ∗) = m−1
∑m

j=1 Re[I∆δ∗z(λj; β
∗)] and ρ∗ =

Ω̃∗(ϑ∗)12/(Ω̃
∗(ϑ∗)11Ω̃∗(ϑ∗)22)1/2, respectively, which converge to Ω and ρ in probability

under the assumptions of Theorem 2. The asymptotic distribution of ρ∗ can be derived

in the same manner as the proof of Lemma 5 of Nielsen and Shimotsu (2007).

The convergence rate of β∗ depends on the difference in the memory parameters,

ν0 = δ20 − δ10. In the spurious regression wherein a fractionally integrated process is

regressed on another unrelated fractionally integrated process, the convergence rate of

the slope estimate depends on the memory parameters of the processes involved. Tsay

and Chung (2000) analyze this problem and show that the convergence rate depends on

either the difference between or the sum of the memory parameter of the regressor and

the dependent variable, depending on their stationarity.

Similar to many other semiparametric estimators, the ELW approach estimates only

the long-run parameters, δ1 and δ2. The estimation of short-run parameters, however, can

be critical for evaluation of impulse response weights or forecasts. Baillie and Kapetanios

(2009) demonstrate using simulations that when the short-run dynamic of ut is strong

(for example, AR(1) with the autoregressive parameter being 0.8 or 0.95), the univariate

local Whittle estimator gives biased estimates of δ and the impulse response weights.
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Hence, one must interpret semiparametric estimates carefully when one suspects that the

short-run dynamic of ut is strong.

Using the lag operator Lb = (1 − (1 − L)b), Johansen (2008) introduces an alternate

representation of fractionally integrated processes that is more amenable to economic

interpretation. If zt is defined using Johansen’s representation, then zt is a function of

{ut}∞t=1 and another component (denoted by µt in Johansen (2008)) that depends on

{zt}0
t=−∞ (Johansen, 2008, Theorem 8). Consequently, whether the asymptotic results

of this paper carry through depends on what is assumed on {zt}0
t=−∞. For example, if

one conditions on {zt}0
t=−∞ and assumes {zt}0

t=−∞ is finite, then the asymptotics of the

stationary local Whittle estimator and tapered estimator would remain unchanged (c.f.

Shimotsu and Phillips, 2006; Shao and Wu, 2007). The effect of Johansen’s representa-

tion on the ELW estimator needs more careful analysis because the ELW estimator uses

fractional differences of zt. We conjecture that Theorem 2 would still hold conditional on

{zt}0
t=−∞ if a suitable assumption is imposed on {zt}0

t=−∞.

5 Simulations

This section reports some simulations that were conducted to examine the finite sample

performance of the developed estimator. We generate a fractionally cointegrated system

according to (1) with β = 1. ut is generated by iidN(0,Σ), where the diagonal elements of

Σ are fixed as 1 and the off-diagonal elements of Σ, ρ, are set to (0.0, 0.4, 0.8). The bias,

standard deviation, and root mean squared error (RMSE) are computed using 10,000

replications. The sample size (n) and m are chosen as n = 512 and m = n0.65 = 57,

respectively. Further, κ = 0.1 is used in the trimming and yields [κm] = 5. The value

of δ1 is fixed as 0.1. The value of δ2 is set to (0.4, 0.8, 1.3) to analyze three cases: ν0 ∈
(0, 1/2), ν0 ∈ (1/2, 1), and ν0 ∈ [1, 3/2). We compare three estimators: the two-step

ELW estimator, the tapered estimator, and the stationary local Whittle (LW) estimator

of Robinson (2008). In the two-step estimation, quasi-Newton updating is repeated until

convergence. The mean correction by Shimotsu (2010a), discussed in footnote 2, is applied

to the ELW estimator because it is found to improve the finite performance of the ELW

estimator.

Table 1 shows the simulation results for ρ = 0. First, we discuss the estimates of β.

The ELW estimator of β is very imprecise when δ2 − δ1 is small and appears to stay at

a poor initial estimate of β; the ELW and tapered estimators of β have almost identical
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performance. The stationary LW estimator of β works well even when δ2 − δ1 is small.

When δ2 ≥ 0.8, the performance of the ELW estimator improves and becomes comparable

to that of the stationary LW estimator.

We now focus on the estimates of δ. When δ2 − δ1 is small, the ELW estimator of

δ is also affected by the poor estimates of β and has a slightly larger RMSE than the

stationary LW estimator. Interestingly, the ELW estimator of δ performs better than the

tapered estimator even when both have a similar RMSE with respect to β. The stationary

LW estimator appears to be consistent even when δ2 = 0.8. When δ2 = 1.3, however, the

stationary LW estimator of δ2 converges to 1. This phenomenon is similar to the property

of the univariate LW estimator.

Table 2 reports the results when ρ = 0.4. The presence of endogeneity improves

the performance of all the estimators. This is analogous to the simulation results with

bivariate LW estimation in Shimotsu (2007, Tables 2–4). Table 2 is comparable to Table

1 in some aspects: β is imprecisely estimated by the ELW estimator when δ2−δ1 is small;

the ELW estimator of δ is more efficient than the tapered estimator; the stationary LW

estimator performs well even when δ2− δ1 is small but becomes inconsistent when δ2 > 1.

The ELW estimator of β performs poorly when δ2 = 0.8. We do not know the exact source

of this problem, but it was probably caused by a few extremely large or small estimates.

In a simulation result not reported here, imposing a bound on β, say [−10, 10], reduced

the RMSE substantially.

Table 3 reports the results with ρ = 0.8. Stronger endogeneity further improves the

RMSE of the estimators. The overall picture is analogous to the case when ρ = 0.4.

When δ2 > 1, the value of ρ affects the performance of the stationary LW estimator of

δ1: its RMSE deteriorates as ρ increases. Tables 1–3 report the performance of the ELW

estimator of ρ in the sixth column. The ELW estimator is unbiased across all the values

of ρ and δ2.

In Table 4, we examine the performance of the estimators when δ1 is large and hence

δ2 − δ1 is small. We set δ1 = 0.3; as such, δ2 − δ1 = 0.1, 0.5, 1.0 when δ2 = 0.4, 0.8, 1.3,

respectively. The value of ρ is set to 0.4. The results for the other values of ρ are

qualitatively similar. Because δ2 − δ1 is smaller than in Table 2, from Theorem 2, we

expect that the estimators of β perform worse than in Table 2 and that in contrast,

the estimators of δ1 and δ2 are not affected significantly. When δ2 = 0.4 and hence

δ2 − δ1 = 0.1, the estimators of β, including the stationary LW estimator, perform very

poorly. When δ2 = 0.8, the performance of all the estimators of β improves, but the ELW

and tapered estimators of β have a large MSE. The performance of the estimators of δ1
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and δ2 is similar to that in Table 2.

Tables 1–4 show that the estimates of β have a large variance and RMSE when δ2− δ1

is small. A close examination of the simulation results reveals that this large RMSE is

caused by a small number of observations taking extremely large or small values. As such,

we consider adding a penalty term p(β, βNB) = (min{0, β − βNB + C})4 + (max{0, β −
βNB − C})4 to the objective function of the ELW estimator R∗(ϑ), where βNB is the

narrow-band least squares (NBLS) estimator, and C > 0 is a constant. In effect, this

penalization restricts β to the range [βNB − C, βNB + C]. Adding this penalty term (or

imposing β ∈ [βNB −C, βNB +C]) does not invalidate the asymptotic results in Theorem

2 because βNB is consistent. We set C = 50.

Table 5 reports the simulation results when the penalty term p(β, βNB) is added to the

objective function of the ELW, tapered, and stationary LW estimators. The simulation

focuses on the case when δ2 − δ1 is small. We set (δ1, δ2) = (0.1, 0.4), (0.3, 0.4), (0.3, 0.8)

and ρ = 0.4 so that the results are comparable to the first panel of Table 2 and the

first and second panels of Table 4. As can be seen, adding the penalty term improves the

performance of the estimate of β substantially without affecting the estimates of δ1 and δ2

negatively. The ELW estimator of β rarely lies outside [βNB−50, βNB+50]; this is observed

in 0.3%, 7.6%, and 0.0% of the replications when (δ1, δ2) = (0.1, 0.4), (0.3, 0.4), (0.3, 0.8),

respectively.

Fractionally integrated processes are often used to model financial time series. In

such cases, the sensitivity of our semiparametric estimator to heavy-tailedness becomes

a concern because many financial time series have heavy-tailed distribution reflecting

the extent of outlier activity. We examine this issue by generating ut from a bivariate t-

distribution with parameter (Σ, (0, 0)′, 2). This is a multivariate extension of t-distribution

with two degrees of freedom, and ut has a finite mean but its variance is infinity. Table 6

reports the results for ρ = 0.4. The results for the other values ρ are similar and available

from the author upon request. In most cases, neither the variance nor the MSE appears

to increase.

6 Empirical application

As an empirical application, we revisit Bandi and Perron (2006, henceforth BP), who

analyze the fractional cointegration relationship between monthly implied volatility and

realized volatility of the S&P 100 index from January 1988 to October 2003. The regres-
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sion model that BP estimate is

σRt = α + βσIt + εt, (11)

where σRt and σIt are realized volatility and implied volatility, respectively, and εt is the

residual term that includes the measurement error in implied volatility and a time-varying

volatility risk premium. Note that εt may have long memory. Implied volatility is an

unbiased forecast of future realized volatility if α = 0 and β = 1. The regression model

(11) can be expressed in terms of model (1) by defining yt = σRt and xt = σIt , and adding

a constant term to yt − βxt and xt. The dataset is constructed following BP. We use

the S&P 500 index and the implied volatility of S&P 500 index options because S&P

500 options are more liquid than S&P 100 options. The sample period is from January

1990 to December 2009; the number of observations is 240. The data of implied volatility

are the monthly observations of VIX (the CBOE Market Volatility index). As in BP,

we use the closing value of each month and multiply the VIX data by (252/365)1/2 to

account for the difference between the numbers of trading days and calendar days in a

year. The realized volatility of the S&P 500 index for each month is constructed by

taking the average of the daily square return using the closing value of each day. Namely,

σRt = (n−1
t

∑nt
j=1 r

2
j × 252)1/2, where rj = log(Sj/Sj−1), Sj is the closing value of the S&P

500 index on the jth trading day of month t, and nt is the number of trading days in

month t. See Section 1 of BP for more details.

BP use the NBLS estimator to estimate β; however, the NBLS estimator has different

limiting distributions depending on whether δ2 < 1/2 (Christensen and Nielsen, 2006)

or δ2 > 1/2 (Robinson and Marinucci, 2001). Further, when δ2 < 1/2, the asymptotic

normality of the NBLS estimator is established only when δ1 + δ2 < 1/2 and ρ = 0.

Consequently, BP use subsampling to construct asymptotic confidence intervals for β.

However, subsampling confidence intervals depend on the size of subsamples, and the

validity of subsampling is questionable when the asymptotic distribution theory is not

available, namely when δ2 < 1/2 but δ1 + δ2 > 1/2 and/or ρ 6= 0. On the other hand,

the proposed ELW estimator allows us to construct asymptotic confidence intervals for

both β and (δ1, δ2) for any value of (δ1, δ2) ∈ Θδ as long as δ2 − δ1 < 1/2. As we shall see

below, this condition is satisfied in all the cases we consider.

Table 7 reports the descriptive statistics of the two volatility measures and corresponds

to Table 1 of BP. The means are comparable to those in BP. The standard deviations,

skewness, and kurtosis are higher than in BP because our sample includes the period of
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the recent financial crisis.

Table 8 reports the estimates of δ of implied volatility, realized volatility, and their

differences using the univariate two-step ELW estimator of Shimotsu (2010a). This table

corresponds to Table 2 of BP. The number of Fourier frequencies used is equal to the

integer part of nα, where α = 0.55, 0.6, 0.65, 0.7, 0.75. The second row reports the esti-

mates of δ for the implied volatility σI . Asymptotic 95% confidence intervals are reported

in parentheses in the third row. The fourth and sixth rows report the δ estimates for

realized volatility σR and volatility difference σR − σI . The estimates of δ are around 0.6

for implied volatility and around 0.55 for realized volatility. Overall, the two volatility

series have similar estimates of δ, whereas the volatility difference σR − σI has substan-

tially smaller memory parameter estimates than both σI and σR, suggesting fractional

cointegration between implied volatility and realized volatility. In general, our results are

in accordance with those in Table 2 in BP, although in many cases, our estimates are

larger than those in BP.

Table 9 reports the system ELW (ELW-FCI) estimates of (δ1, δ2, β, ρ) defined by (10),

and the NBLS estimates of β for the same values ofm as in Table 8. This table corresponds

to Table 7 in BP. For the tapered estimator, the NBLS estimator βNB is used as the initial

value for β, and the univariate two-step ELW estimators from yt−βNBxt and xt are used

as the initial values for δ1 and δ2, respectively. The same value of m is used in the

computing of the NBLS estimator, tapered estimator, and ELW-FCI estimator. The

ELW-FCI estimates are computed by repeating quasi-Newton updates from the tapered

estimator until convergence. The figures in the parentheses report the confidence intervals

for (δ1, δ2, β) constructed using the asymptotic distribution in Theorem 2(a). The ELW-

FCI estimate satisfies the condition of Theorem 2(a), i.e., ν = δ2 − δ1 < 0.5, for all the

cases.

The estimates of δ1 and δ2 are around 0.25 and around 0.65, respectively. The estimate

of δ1 increases as m increases, which may indicate a positive bias in the estimates of δ1

from short-run dynamics. In many cases, the estimates of δ1 are smaller than the δ

estimates of σR−σI in Table 8, whereas the estimates of δ2 are similar to the δ estimates

of σI in Table 8. For all m, the confidence intervals of δ1 and δ2 do not overlap with each

other, which strongly suggests fractional cointegration between σRt and σIt . The point

estimates of β are very close to one, and the hypothesis β = 1 is not rejected for all

m. The estimates of ρ are positive and take values between 0.4 and 0.7. This suggests

that ρ > 0 and that implied volatility and risk premium may be correlated even in the

long-run. The last row reports the NBLS estimates of β. Reflecting ρ > 0, the NBLS
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estimates are upwardly biased for all m.

7 Appendix: Proof

In this and the following sections, C denotes a generic constant such that C ∈ (1,∞)

unless specified otherwise; Ek` denotes a 2 × 2 matrix whose (k, `)th element is one and

the other elements are zero; Ixj denotes Ix(λj), wuj denotes wu(λj), and similarly for

other dft’s and periodograms. Auxiliary lemmas and their proofs are collected in the

supplementary appendix (Shimotsu (2010b)).

7.1 Proof of Theorem 1

The proof is divided into two parts. Part 1 shows δ̂ →p δ0 and β̂−β0 = Op((m/n)ν0), which

serves as a prerequisite for deriving the convergence rate in the theorem. Part 2 strength-

ens the convergence rate of part 1 to δ̂−δ0 = Op(m
−1/2) and β̂−β0 = Op(m

−1/2(m/n)ν0).

7.1.1 Part 1: Proof of δ̂ →p δ0 and β̂ − β0 = Op((m/n)ν0)

The proof closely follows the proof of Theorem 3 of Robinson (2008; henceforth R08). For

any c > 0, define neighborhoods Nβ(c) = {β : |β − β0| < c} and Nδ(c) = {δ : ||δ − δ0||| <
c}. Fix ε > 0 and define N (ε) = Nβ(ε−1(m/n)ν0)×Nδ(ε), and N̄ (ε) = Θ\N (ε). Define

ζi = δi − δ0i. We split the parameter space Θδ into two. For a constant 0 < ∆ ≤ 1/8,

define Θδ1 = {δ ∈ Θδ : ζ1 ≥ −1/2 + ∆, ζ2 ≥ −1/2 + ∆} and Θδ2 = Θδ\Θδ1. Since

Pr(ϑ̂ ∈ N̄ (ε)) ≤ Pr(infN̄ (ε){R(ϑ)−R(ϑ0)} ≤ 0), the consistency of ϑ̂ follows if we show

Pr

(
inf

N̄ (ε)∩{Θβ×Θδ1}
{R(ϑ)−R(ϑ0)} ≤ 0

)
→ 0, as n→∞, (12)

Pr

(
inf

N̄ (ε)∩{Θβ×Θδ2}
{R(ϑ)−R(ϑ0)} ≤ 0

)
→ 0, as n→∞. (13)

First, we show (12). As in equation (7.1) in R08, rewrite R(ϑ)−R(ϑ0) as

R(ϑ)−R(ϑ0) = log det{Ω̂T (ϑ)Ω̂T (ϑ0)−1} − 2(ζ1 + ζ2)
p

(1− κ)m

m∑
j(p,κ)

log λj,

where we use Ω̂T (ϑ) in place of Ω̂(θ) in R08. Define a vector type-II I(δ01, δ02) process
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that corresponds to a type-II version of ut in R08 as

ξt =

[
ξ1t

ξ2t

]
= B0zt =

[
(1− L)−δ01u1tI {t ≥ 1}
(1− L)−δ02u2tI {t ≥ 1}

]
, B0 =

[
1 −β0

0 1

]
. (14)

Define, analogously to R08 p. 2523, Hj = (hk`j) = Ψ(λj; δ0)ITξjΨ̄(λj; δ0), and Ĝ(1)(δ) =

(ĝ
(1)
k` ), where ĝ

(1)
kk = p(1− κ)−1m−1

∑m
j(p,κ)(j/m)2ζkhkkj, and

ĝ
(1)
12 = ĝ

(1)
21 = p(1−κ)−1(2m)−1

∑m
j(p,κ)(j/m)ζ1+ζ2(ei(π−λj)(ζ2−ζ1)/2h12j+e

−i(π−λj)(ζ2−ζ1)/2h21j).

Proceeding in the same manner as in Robinson (2008, p. 2523), we obtain

R(ϑ)−R(ϑ0) = Uδ(δ) + Uβ(ϑ),

where

Uδ(δ) = log det{Υ(δ)Ĝ(1)(δ)Υ(δ)Ĝ(1)(δ0)−1}+ φ1(δ, κ) + u(δ)− φ2(δ, κ),

Uβ(ϑ) = log det{Ω̂T∗(ϑ)Ĝ(1)(δ)−1} − φ1(δ, κ) + φ2(δ, κ),

where Υ(δ) =diag((2ζ1+1)1/2, (2ζ2+1)1/2), Ω̂T∗(ϑ) = Ξ(ϑ)Ω̂T (ϑ)Ξ(ϑ), Ξ(ϑ) =diag(λ−ζ1m , λ−ζ2m ),

φ1(δ, κ) = log[(1− κ)2(1− κ2ζ1+1)−1(1− κ2ζ2+1)−1], φ2(δ, κ) = 2(ζ1 + ζ2)(1− κ)−1κ log κ,

u(δ) =
∑2

i=1[2ζi− log(2ζi+1)+2ζi(logm−p(1−κ)−1m−1
∑m

j(p,κ) log j−1)]. The functions

φ1(δ, κ), and φ2(δ, κ) control the effect of taking summations from [κm]; see Lemma 2(a)

of Shimotsu (2010b). Other major differences from R08 are that (i) we define Ĝ(1)(δ)

with the tapered periodograms and p(1− κ)−1m−1
∑m

j(p,κ), and (ii) we use Uδ(δ) instead

of Uα(α) in R08 because our model does not have the parameter γ.

Then (12) follows if we show that, as n→∞,

Pr

(
inf

N̄δ(ε)∩Θδ1

Uδ(δ) ≤ 0

)
→ 0, (15)

Pr

(
inf

N̄β( 1
ε(

n
m)

ν0)×Θδ

Uβ(ϑ) ≤ 0

)
→ 0. (16)

The proof of (15) is essentially the same as in R08. Define the population analogue

of ĝ
(1)
k` as ĝ

(1)
kk = ωkk(1 − κ)−1

∫ 1

κ
x2ζkdx and g

(1)
12 = g

(1)
21 = ω12(1 − κ)−1

∫ 1

κ
xζ1+ζ2dx cos τ ,
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where τ = (ζ2 − ζ1)π/2. Then, (15) holds if

sup
Θδ1

∥∥∥Υ(δ)[Ĝ(1)(δ)−G(1)(δ)]Υ(δ)
∥∥∥ →p 0, (17)

sup
Θδ1

∥∥{Υ(δ)G(1)(δ)Υ(δ)}−1
∥∥ < ∞, (18)

inf
N̄δ(ε)∩Θδ1

{log det{Υ(δ)G(1)(δ)Υ(δ)G(1)(δ0)−1}+ φ1(ϑ, κ)} ≥ 0, (19)

limn→∞ inf
N̄δ(ε)∩Θδ1

[u(δ)− φ2(δ, κ)] > 0. (20)

These conditions correspond to (7.5)-(7.8) of R08. (19) is weaker than (7.7) of R08 in

that the inequality is not strict, but this does not affect (15) as long as (20) holds. The

proof of (17) follows from using Lemma 1(b) of Shimotsu (2010b) in conjunction with

the arguments in the proof of Theorem 1 of Robinson (1995). Use the summation by

parts as in Robinson (1995) to deal with the uniformity, and approximate Hj by Ω0

using Lemmas 1(b) and 2(c) of Shimotsu (2010b). For (18) and (19), direct calculation

gives det{Υ(δ)G(1)(δ)Υ(δ)} = (2ζ1 + 1)(2ζ2 + 1)(1 − κ)−2
∫ 1

κ
x2ζ1dx

∫ 1

κ
x2ζ1dx[ω11ω22 −

ω2
12c(δ) cos2 τ ], where c(δ) = (

∫ 1

κ
xζ1+ζ2dx)2(

∫ 1

κ
x2ζ1dx

∫ 1

κ
x2ζ1dx)−1. Since 0 < c(δ) ≤ 1

from the Cauchy-Schwartz inequality and | cosx| ≤ 1, the right hand side is no smaller

than (2ζ1 + 1)(2ζ2 + 1)(1 − κ)−2
∫ 1

κ
x2ζ1dx

∫ 1

κ
x2ζ1dx det Ω0 > 0, giving (18). (19) follows

from log det{Υ(δ)G(1)(δ)Υ(δ)}+ φ1(ϑ, κ) ≥ log det Ω0 and G(1)(δ0)−1 = Ω−1
0 . For (20), it

follows from Lemma 2(a) of Shimotsu (2010b) that u(δ)−φ2(δ, κ) =
∑2

i=1[2ζi− log(2ζi +

1)]+O(m−1 logm). The required result then follows because inf |x|>ε{x−log(x+1)} > ε2/6

(see (7.9) of R08). Therefore, we establish (15).

We proceed to show (16). Define ĝ
(i)
k` similarly to R08 p. 2523 but using p(1 −

κ)−1m−1
∑m

j(p,κ) and setting τ = (ζ2− ζ1)π/2 and γ0 = (δ02− δ01)π/2. As in R08 p. 2524,

define â1 = (ĝ
(2)
11 ĝ

(1)
22 − 2ĝ

(1)
12 ĝ

(2)
12 )/ det{Ĝ(1)(δ)}, and â2 = (ĝ

(3)
11 ĝ

(1)
22 − ĝ

(2)2
12 )/ det{Ĝ(1)(δ)}.

Define g
(i)
k` , the population counterpart of ĝ

(i)
k` , analogously to g

(1)
k` : for example, g

(2)
12 =

g
(2)
21 = (1 − κ)−1ω22 cos γ

∫ 1

κ
xδ1−δ02+ζ2dx, and g

(3)
11 = (1 − κ)−1ω22

∫ 1

κ
x2(δ1−δ02)dx, where

γ = (δ2 − δ1)π/2. Using summation by parts and Lemma 1(b) of Shimotsu (2010b), we

obtain supΘδ
|ĝ(i)
k` − g

(i)
k` | →p 0 for i = 1, 2, 3, k, ` = 1, 2 as n→∞.

Rewrite Uβ(ϑ) = logQ(bn(β)) − φ1(δ, κ) + φ2(δ, κ), where Q(s) = 1 + â1s + â2s
2

and bn(β) = λ−ν0m (β0 − β). Define a1 = (g
(2)
11 g

(1)
22 − 2g

(1)
12 g

(2)
12 )/ det{G(1)(δ)} and a2 =

(g
(3)
11 g

(1)
22 − g

(2)2
12 )/ det{G(1)(δ)}. Following R08 p. 2525, the probability in (16) is bounded
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by, with ρ = supΘδ
|φ1(δ, κ)− φ2(δ, κ)| <∞,

Pr

(
log

{
1− sup

Θδ

|â1|
ε

+ inf
Θδ

|â2|
ε2

}
≤ ρ

)
+ Pr

(
sup
Θδ

|â1|
2|â2|

>
1

ε

)
≤ 2 Pr

(
sup
Θδ

|â1 − a1|+
2

ε
sup
Θδ

|â2 − a2|+ ερ ≥ 1

ε
inf
Θδ
a2 − sup

Θδ

|a1|
)
, (21)

which has an additional term ερ compared with (7.13) of R08. Since supΘδ
|âi − ai| →p 0

for i = 1, 2 as n→∞ and infΘδ det{G(1)(δ)} > 0, we have supΘδ
|a1| <∞. Because ε can

be arbitrarily small, the probability in (21) tends to zero if infΘδ a2 > 0. Recall

g
(3)
11 g

(1)
22 − g

(2)2
12 ≥ (1− κ)−2ω2

22

(∫ 1

κ

x2(δ1−δ02)dx

∫ 1

κ

xζ2dx−
(∫ 1

κ

xδ1−δ02+ζ2dx

)2
)
.

Note that ζ2 = δ2−δ02. The right hand side is strictly positive because (i)
∫ 1

κ
x2(δ1−δ02)dx

∫ 1

κ
xζ2dx−

(
∫ 1

κ
xδ1−δ02+ζ2dx)2 > 0 if δ1 6= δ2 from the Cauchy-Schwartz inequality, and (ii) δ2 − δ1 ≥

η2 > 0 in δ ∈ Θδ. Consequently, we have infΘδ a2 > 0, and (16) follows.

It remains to show (13). Write R(ϑ) − R(ϑ0) = U∗δ (δ) + U∗β(ϑ), where U∗δ (δ) =

log det{Ξ(δ)Ĝ(1)(δ)Ξ(δ)Ĝ(1)(δ0)−1} − 2(ζ1 + ζ2)p(1 − κ)−1m−1
∑m

j(p,κ) log λj and U∗β(ϑ) =

log det{Ω̂T∗(ϑ)Ĝ(1)(δ)−1} = Uβ(ϑ)+φ1(δ, κ)−φ2(δ, κ). Then Pr(infN̄β(ε−1(n/m)ν0 )×Θδ U
∗
β(ϑ) ≤

0) → 0 follows from the proof of (16), so it suffices to show Pr(infΘδ2 U
∗
δ (δ) ≤ 0) → 0.

Rewrite U∗δ (δ) as (see Shimotsu, 2007, p. 293)

U∗δ (δ) = log det D̂(δ)− log det D̂(δ0),

where

D̂(δ) =
p

(1− κ)m

m∑
j(p,κ)

[
(j/q)2ζ1h11j (j/q)ζ1+ζ2Re{ei(π−λj)(ζ2−ζ1)/2h12j}

(j/q)ζ1+ζ2Re{ei(π−λj)(ζ2−ζ1)/2h12j} (j/q)2ζ2h22j

]
,

and q = exp(p(1− κ)−1m−1
∑m

j(p,κ) log j) ∼ m/e1+(1−κ)−1κ log κ.

Define K(δ) as D̂(δ) but hk`j is replaced with ωk`. Note that D̂(δ) is identical to

D̂κ(d) in Shimotsu (2007, p. 294) except that {m−1
∑m

j=[κm], θk, p, Ij} in Shimotsu (2007)

is replaced with {p(1 − κ)−1m−1
∑m

j(p,κ), ζk, q,Hj}. Therefore, supΘδ2
|D(δ) − K(δ)| →p

0 follows from using Lemma 1 of Shimotsu (2010b) and proceeding as in the proof of

Theorem 1 of Shimotsu (2007, p. 294). Further, we can use the argument in Shimotsu

(2007, pp. 294-95) to show that there exist ε ∈ (0, 0.1) and κ ∈ (0, 1/4) such that
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infΘδ2 detK(δ) ≥ (1 + ε) detG0 + o(1). This is because Lemma 2 of Shimotsu (2007) and

Lemma 5.5 of Shimotsu and Phillips (2005) hold even if m−1
∑m

j=[κm] and e are replaced

with p(1 − κ)−1m−1
∑m

j(p,κ) and e1+(1−κ)−1κ log κ as long as κ is sufficiently small, since

limκ→0 κ log κ = 0. Therefore, det D̂(δ) ≥ (1 + ε) detG0 + op(1). Since det D̂(δ0) =

det Ĝ(1)(δ0) = det Ω0 + op(1) from (17), we establish (13). �

7.1.2 Part 2: Proof of δ̂ − δ0 = Op(m
−1/2) and β̂ − β0 = Op(m

−1/2(m/n)ν0)

The proof closely follows the proof of Theorem 4 of R08. R08 uses the parameterization

θ = (β, γ, δ1, δ2) = (θ1, θ2, θ3, θ4), whereas our parameterization is ϑ = (β, δ1, δ2). Because

our parameterization implies γ = (δ2−δ1)π/2, the derivatives (∂/∂β), (∂/∂δ1) and (∂/∂δ2)

in our model correspond to (∂/∂θ1), −π/2(∂/∂θ2) + (∂/∂θ3), and π/2(∂/∂θ2) + (∂/∂θ4)

in R08, respectively.

For the clarity of the proof, we reparameterize our objective function with the pa-

rameterization of R08, namely θ = (β, γ, δ1, δ2), and write Ω̂T as Ω̂T (θ). Similar to R08,

define sT (θ) = (∂/∂θ)RT (θ), ST (θ) = (∂/∂θ′)sT (θ), ∆n =diag{λ−ν0m , 1, 1, 1}, and denote

by S̃T the matrix ST (θ) whose elements are evaluated at a point between θ0 and θ̂. The

required result follows if we show, for a finite matrix Σκ,

m1/2∆−1
n sT (θ0) = Op(1), (22)

∆−1
n S̃T∆−1

n →p Σκ. (23)

We show (22) first. The elements of sT (θ) and ST (θ) admit the same expression as

equations (8.3) and (8.4) in R08 but in terms of Ω̂T (θ) and its derivatives. Define AT0j =

Ψ(λj; δ0)B0I
T
zjB

′
0Ψ̄(λj; δ0). Define the score vectors sT1 (θ0), . . . , sT4 (θ0) as s1(θ), . . . , s4(θ)

in R08 p. 2527 but replacing A0j and m−1
∑

j in R08 with AT0j and p(1−κ)−1m−1
∑m

j(p,κ).

First, we analyze the score vector. From Lemma 1(a) of Shimotsu (2010b), we obtain

m1/2∆−1
n sT (θ0) = m1/2∆−1

n sT∗(θ0) + op(1) as in R08, where sT∗(θ0) has kth element

sT∗k = 2p(1− κ)−1m−1
∑m

j(p,κ)tr(URkjRe{ITεj}+ UIkjIm{ITεj}), where the coefficients URkj,

and UIkj are defined similarly to R08 p. 2527 by replacing m−1
∑

j and Iεj in R08 with

p(1− κ)−1m−1
∑m

j(p,κ) and ITεj. We do not provide the explicit formula for URkj, and UIkj

here. Because EsT∗(θ0) = 0, equation (22) follows if we show var(m1/2∆−1
n s∗(θ0)) = O(1).

Note that λ−ν0j ≤ C([κm]/m)−ν0 < ∞ for all j ≥ [κm]. Consequently, |URkj|, |UIkj| ≤
C logm for k = 1, 2, 3, where logm term is from UR,2+k,j. Therefore, in view of Lemma

2(b) of Shimotsu (2010b), var(m1/2∆−1
n sT∗(θ0)) is bounded by O(m−1

∑m
j(p,κ)var(ITεj)) +
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O((logm)2m−1
∑m

j(p,κ),j 6=k
∑m

k(p,κ)cov(ITεj, I
T
εk)). From Velasco (1999, p. 114), var(ITεj) =

V +O(n−1), where V does not depend on j, and cov(ITεj, I
T
εk) = O(|j−k|−2p+ |j+k|−2p+

n−1) for j 6= k. Therefore, var(m1/2∆−1
n sT∗(θ0)) = O(1) follows, giving (22).

It remains to show (23). It suffices to show the following results, which correspond to

(8.6) and (8.7) in R08:

∆−1
n {S̃T − ST (θ0)}∆−1

n →p 0, (24)

1

2
∆−1
n ST (θ0)∆−1

n →p Σk. (25)

For (24), repeating the argument in R08 p. 2528 gives (log n)C(δ̂k− δ0k)→p 0 for k = 1, 2

for any C <∞. Then (24) follows from mθ − 1 = O((log n)−C+1) if |θ| ≤ (log n)−C .

The result (25) is obtained by following the argument of R08. Define Ω
(k)
0 and Ω

(k,`)
0

by replacing Aj in the definition of A
(k)
j and A

(k,`)
j in R08 with Ω0. First, from Lemma 1

of Lobato and Velasco (2000) and Lemma 1 of Shimotsu (2010b), we have
∑s

j(p,κ)(A
T
0j −

Ω0) = Op(s
β+1n−β + log n + s1/2) for any 1 ≤ s ≤ m. Combining it with Lemma

2(c) of Shimotsu (2010b) and summation by parts, we obtain
∑s

j(p,κ)(A
T (k,`)
0j − Ω

(k,`)
0 ) =

Op(s
β+1n−β + log n+ s1/2) at θ = θ0, and (25) follows. �

7.2 Proof of Theorem 2 (a)

The required result follows if we show, for any ϑ̄ such that ϑ̄− ϑ0 = Op(m
−1/2),

m1/2(∆∗n)−1(∂/∂ϑ)R∗(ϑ0)→d N(0,Ξ), and (∆∗n)−1(∂2/∂ϑ∂ϑ′)R∗(ϑ̄)(∆∗n)−1 →p Ξ. (26)

7.2.1 Score vector with respect to δ

From the proof of Theorem 4 of R08, (∂/∂δk)R
∗(ϑ0) satisfies the first result in (26) if

(∂/∂δk)R
∗(ϑ0) = tr((∂/∂δk)Ω̃

∗(ϑ0)Ω̃∗(ϑ0)−1)− 2m−1

m∑
j=1

log λj

= s∗1 + (−1)k(π/2)s∗2 + op(m
−1/2), (27)

where s∗1 and s∗2 are defined in (8.5) of R08. Define w∆1j = (wlog(1−L)u1j, wu2j)
′, then

(∂/∂δ1)Ω̃∗(ϑ0) = E11m
−1
∑m

j=1 Re{w∆1jw̄uj}+m−1
∑m

j=1 Re{wujw̄∆1j}E11. Because w∆1j

is premultiplied by E11, we only need to analyze the first row of m−1
∑m

j=1 Re{w∆1jw̄uj}.
Define the (1, 1)th element of m−1

∑m
j=1 Re{w∆1jw̄uj} as s1 = m−1

∑m
j=1wlog(1−L)u1jwu1j.
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Observe that s1 is identical to 1/2 times Ĝ1(d0) that is defined on p. 1912 of Shimotsu

and Phillips (2005; henceforth SP). SP derive the limit of m1/2Ĝ1(d0) on pp. 1916-18.

Because their argument uses only Lemmas 5.8 and 5.9 of SP, we can obtain a matrix-

valued version of SP, pp. 1916-18 using Lemma 5 of Shimotsu (2010b). Specifically, the

following matrix-valued version of line 3, p. 1917 of SP holds for our model:

−wdiag{log(1−L)}ujw̄uj = diag{Jn(eiλj)}Iuj−(2πn)−1/2diag{J̃nλj(e−iλjL)}A(0)εnw̄εjĀ(λj)+Rnj,

where Rnj has the same order of magnitude as specified in SP. Taking its average over

j = 1, . . . ,m and repeating SP pp. 1916-8, we obtain −m−1
∑m

j=1wlog(1−L)ujw̄uj =

m−1
∑m

j=1diag{Jn(eiλj)}Iuj + op(m
−1/2). Using the approximation of Jn(eiλj) at the

end of Lemma 5 of Shimotsu (2010b) gives (∂/∂δ1)Ω̃∗(ϑ0) = E11Φ + ΦE11 + op(m
−1/2),

where Φ = m−1
∑m

j=1 log λjRe{Iuj}−m−1
∑m

j=1(λj−π)Im{Iuj}/2. Approximating Iuj by

A(λj)IεjĀ(λj) by Lemma 1(b1) of Shimotsu (2007) and then by PIεjP using Assumptions

1-3, we obtain Φ = m−1
∑m

j=1 log λjPRe{Iεj}P ′+(π/2)m−1
∑m

j=1 P Im{Iεj}P ′+op(m−1/2),

in which the terms with λjIm{Iεj} reduce to op(m
−1/2) by EIm{Iεj} = 0,

∑r
j=1(Iεj−I2) =

O(r1/2) (Lobato, 1999, p. 145, (C.3)), and summation by parts. It follows that

tr

(
∂

∂δ1

Ω̃∗(ϑ0)Ω−1
0

)
=

2

m

m∑
j=1

log λjtr(E11PRe{Iεj}P ′Ω−1
0 )−π

2

2

m

m∑
j=1

tr(E22P Im{Iεj}P ′Ω−1
0 ),

where the negative sign appears because tr(E11Im{Iεj}) = −tr(E22Im{Iεj}). Using the

fact that Ω̃∗(ϑ0) = m−1
∑m

j=1 PRe{Iεj}P ′+ op(m
−1/2) and evaluating (∂/∂δ2)Ω̃∗(ϑ0) sim-

ilarly, we find

(∂/∂δk)R
∗(ϑ0) =

2

m

m∑
j=1

tr

{(
log j − 1

m

m∑
j=1

log j

)
P ′Ω−1

0 EkkPRe{Iεj}

}

+(−1)k
π

2

2

m

m∑
j=1

tr
{
P ′Ω−1

0 E22P Im{Iεj}
}

+ op(m
−1/2).

The first two terms on the right are the same as s∗1 and s∗2. Hence, we establish (27).

7.2.2 Score vector with respect to β

From the proof of Theorem 4 of R08, (∂/∂β)R∗(ϑ0) satisfies the first result in (26) if

(∂/∂β)Ω̃∗(ϑ0) = s1(θ0) + op(λ
−ν0
m m−1/2), (28)
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where s1(θ0) is defined similarly to p. 2527 of R08 but A0j in R08 is replaced with Iuj.

Define w∆2j = (0, w∆δ1u2j)
′ so that E12w∆2j = (w∆δ1u2j, 0)′. Then

∂

∂β
Ω̃∗(ϑ) = −E12

1

m

m∑
j=1

Re{w∆2jw̄∆δz(λj; β)} − 1

m

m∑
j=1

Re{w∆δz(λj; β)w̄∆2j}E21. (29)

Define w∆2j evaluated at ϑ0 as w∆02j = (0, w∆−ν0u2j)
′, then we have (∂/∂β)Ω̃∗(ϑ0) =

−E12m
−1
∑m

j=1 Re{w∆02jw̄uj} −m−1
∑m

j=1 Re{wujw̄∆02j}E21.

We approximate w∆−ν0u2jw̄uj by eiπν0/2λ−ν0j wu2jw̄uj by applying the results from Phillips

and Shimotsu (2004) and Shimotsu and Phillips (2006, henceforth SP06). First, re-

place (Xt − X0, ut) in equation (26) of SP06 with (∆−ν0u2t, u2t) to obtain w∆−ν0u2j =

Dn(eiλj ;−ν0)wu2j − (2πn)−1/2λν0j Ũ2,λjn (−ν0). Define Dnj(ν0) = λν0j Dn(eiλj ;−ν0) as on p.

226 of SP06. Then

λν0m
1

m

m∑
j=1

w∆−ν0u2jw̄u2j

=
1

m

m∑
j=1

(
j

m

)−ν0
Dnj(ν0)Iu2j +

1

m

m∑
j=1

(
j

m

)−ν0 1√
2πn

λν0j Ũ2,λjn (−ν0) w̄u2j. (30)

SinceDnj(ν0) = eiπν0/2+O(λj)+O(j−ν0−1) from (27) of SP06, we can write the first term in

(30) as eiπν0/2m−1
∑m

j=1(j/m)−ν0Iu2j + op(m
−1/2), by approximating Iuj by A(λj)IεjĀ(λj)

first (see Lemma 1(b1) of Shimotsu (2007)) and then using the order of the covariance

between Iεj and Iεk.

For the second term in (30), note that a vector version of Lemma A.5(b) of Phillips and

Shimotsu (2004) holds for a vector process ut. Namely, E||Ũλjn (−ν0)−A(0)ε̃λjn (−ν0) ||2 =

O(n1+2ν0s−2ν0−1(log n)−4 + n1+2ν0s−2), where Ũλn (ν0) and ε̃λn (ν0) are 2 × 1 and defined

exactly in same manner as in Phillips and Shimotsu (2004, p. 667). Combining it with

Lemma 3(a) of Shimotsu (2010b) and the order of Ũλjn (−ν0), we may write the second

term in (30) as Un+op(m
−1/2), where Un = m−1

∑m
j=1(j/m)−ν0(2πn)−1/2λν0j A2(0)ε̃λjn (−ν0) w̄εjĀ2(λj),

where A2(λ) denotes the second row of A(λ). Observe that mUn is closely related to T ′n

that is defined on p. 231 of SP06. The major differences between mUn and T ′n are that

Un is constructed from vector-valued εt, and (d0, νj) in T ′n corresponds to (ν0, (j/m)−ν0)

in mUn. Observe that, if we replace νj in T ′n with (j/m)−ν0 in the derivations on pp.

231-32 of SP06, the order of T ′n does not change and E|T ′n|2 = o(m) still holds. Therefore,

Un = op(m
−1/2). A similar analysis applies to λν0mm

−1
∑m

j=1 w∆−ν0u2jw̄u1j, and, conse-
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quently, (∂/∂β)Ω̃∗(ϑ0) = −m−1
∑m

j=1 λ
−ν0
j (E12Iuje

iπν0/2 +IujE21e
−iπν0/2)+op(λ

−ν0
m m−1/2),

giving (28).

7.2.3 Hessian approximation

We prove the required result by approximating the derivatives of Ω̃∗(ϑ0) = m−1
∑m

j=1 Re{I∆δz(λj; β)}
by the derivatives of the counterpart in R08 p. 2512, Ω̂(θ0) = m−1

∑m
j=1 Re{A(λj; θ)}.

First, replace Aj in the definition of A
(k)
j and A

(k,`)
j in R08 p. 2527 with Iuj. This

does not change the limit of the derivatives of Ω̂(θ0), because both A0j and Iuj are

approximated by PIεjP
′. Define I

(k)
j and I

(k,`)
j similarly to A

(k)
j and A

(k,`)
j in R08 but

using Iuj in place of A0j. We proceed to show that the derivatives of I∆δz(λj; β) at

ϑ = ϑ0 are equal to linear combinations of I
(k)
j and I

(k,`)
j up to an negligible term.

First, w∆δ0z(λj; β0) = wuj from the definition. Second, for the derivative with respect

to δk, it follows from the derivation of the score approximation above that, for k = 1, 2,

(∂/∂δk)Ω̃(ϑ0) = [∂/∂θ2+k + (−1)k(π/2)(∂/∂θ2)]Ω̂(θ0) + op((log n)−C). For the deriva-

tive with respect to β, (28) implies (∂/∂β)Ω̃∗(ϑ0) = (∂/∂β)Ω∗(θ0) + op(λ
−ν0
m (log n)−C).

Similarly, we can use Lemma 4 of Shimotsu (2010b) to express the other derivatives of

Ω̃∗(ϑ0) in terms of the derivatives of Ω̂(θ) in R08 such as (∂2/∂δk∂β)Ω̃∗(ϑ0) = [∂/∂θ2+k +

(−1)k(π/2)(∂/∂θ2)](∂/∂β)Ω̂(θ0) + op(λ
−ν0
m (log n)−C). We suppress the obvious formula

for (∂2/∂δk∂δ`)Ω̃
∗(ϑ0). Therefore, it follows from the relation between ϑ and θ that

(∆∗n)−1(∂2/∂ϑ∂ϑ′)R∗(ϑ̄)(∆∗n)−1 →p Ξ.

Finally, the proof of (∆∗n)−1[(∂2/∂ϑ∂ϑ′)R∗(ϑ̄)− (∂2/∂ϑ∂ϑ′)R∗(ϑ0)](∆∗n)−1 = op(1) fol-

lows from the root–m consistency of ϑ̄ and λαj − 1 = O(log n) for any finite α. �

7.3 Proof of Theorem 2 (b)

Define ∆∗∗n =diag(nν0m−1/2, 1, 1). The stated result follows if we show (i)m1/2(∆∗∗n )−1(∂/∂ϑ)R∗(ϑ0) =

(r1, r2, r3), where r1 = Op(1), (r2, r3)′ →d N (0,Ξδ),

(ii) (∆∗∗n )−1(∂2/∂ϑ∂ϑ′)R∗(ϑ0)(∆∗∗n )−1 = Hn =

[
H11,n H12,n

H21,n H22,n

]
,

where H11,n is (1× 1), H22,n is (2× 2), and Hk`,n satisfies

H11,n = Op(1), Pr(|H11,n| < ε)→ 0 as ε→ 0, H12,n, H21,n →p 0, H22 →p Ξδ, (31)
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and (iii) (∆∗∗n )−1(∂2/∂ϑ∂ϑ′)[R∗(ϑ̄)−R∗(ϑ0)](∆∗∗n )−1 →p 0, for any ϑ̄ such that ∆∗n(ϑ̄−ϑ) =

Op(m
−1/2). We omit a tedious but straightforward proof of (∆∗∗n )−1(∂2/∂ϑ∂ϑ′)[R∗(ϑ̄) −

R∗(ϑ0)](∆∗∗n )−1 →p 0.

7.3.1 Score vector approximation

The score with respect to δk remains unchanged, because it does not depend on the value

of ν0. We need only to analyze the score with respect to β. The required result is

(∂/∂β)R∗(ϑ0) = Op(n
ν0m−1). (32)

First, as in the proof for ν0 ∈ (0, 1/2), we have (∂/∂β)Ω̃∗(ϑ0) = −E12m
−1
∑m

j=1 Re{w∆02jw̄uj}−
m−1

∑m
j=1 Re{wujw̄∆02j}E21, hence (∂/∂β)R∗(ϑ0) = −2tr[E12m

−1
∑m

j=1 Re{w∆02jw̄uj}Ω̃∗(ϑ0)−1].

Define cn = m−1
∑m

j=1 Re{(1−eiλj)−ν0}, which satisfies cn = O(nν0m−ν0+nν0m−1 logm) =

O(nν0m−1/2−η) for some η > 0. Using tr(E12) = 0, rewrite (∂/∂β)R∗(ϑ0) further as

−2tr[E12m
−1
∑m

j=1 Re{w∆02jw̄uj}(Ω̃∗(ϑ0)−1 − Ω−1
0 )]− 2tr[E12(m−1

∑m
j=1 Re{w∆02jw̄uj} −

cnΩ0)Ω−1
0 ]. Then (32) follows if we show

E12

(
m−1

m∑
j=1

Re{w∆02jw̄uj} − cnΩ0

)
= Op(n

ν0m−1). (33)

We prove (33) only for m−1
∑m

j=1 Re{w∆−ν0u2jw̄u2j} − cnω22. The other elements are

analyzed similarly. First, it follows from Lemma A.1 of Phillips and Shimotsu (2004) that

(1−eiλj)w∆−ν0u2j = Dn(eλj ; 1−ν0)wu2j− (2πn)−1/2Ũ2,λjn(1−ν0)− (2πn)−1/2eiλjYn, (34)

where Yn = ∆−ν0u2nI{t ≥ 1}. Hence, m−1
∑m

j=1 Re{w∆−ν0u2jw̄u2j} − cnω22 is written as

Re{T1n + T2n + T3n}, where

T1n = m−1

m∑
j=1

(1− eiλj)−1Dn(eλj ; 1− ν0)Iu2j − cnω22,

T2n = m−1

m∑
j=1

(1− eiλj)−1(2πn)−1/2Ũ2,λjn(1− ν0)w̄u2j,

T3n = m−1

m∑
j=1

(1− eiλj)−1(2πn)−1/2eiλjYnw̄u2j.
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For Re{T1n}, noting that Dn(eλj ; 1 − ν0) = (1 − eiλj)1−ν0 + (nν0−1j−1) from Lemma

A.2 of Phillips and Shimotsu (2004) and using the definition of cn, we have Re{T1n} =

m−1
∑m

j=1 Re{(1− eiλj)−ν0}(Iu2j − ω22) +Op(n
ν0m−1).

Therefore, using Lemma 3(b) of Shimotsu (2010b), summation by parts, and (1 −
eiλj)−ν0 − (1 − eiλj+1)−ν0 = O(nν0j−ν0−1), and noting ν0 > 1/2, we obtain Re{T1n} =

m−1
∑m

j=1 Re{(1−eiλj)−ν0}(f22(λj)−ω22)+Op(n
ν0m−1). The first term on the right has the

order m−1
∑m

j=1 j
−ν0+bnν0−b = nν0m−1(n−b

∑m
j=1 j

−ν0+b). When ν0 ≥ 1, (n−b
∑m

j=1 j
−ν0+b)

is o(1). When ν0 ∈ (1/2, 1), it is O(n−bm1−ν0+b), thus Re{T1n} = Op(n
ν0m−1).

It remains to show the order of T2n and T3n. For T2n, it easily follows from the order

of Ũ2,λjn(1 − ν0) provided in Lemma A.5 of Phillips and Shimotsu (2004) that T2n =

Op(m
−1
∑m

j=1 j
−1n1/2nν0−1/2j1/2−ν0) = Op(n

ν0m−1). For T3n, it follows from Lemma 3(a)

of Shimotsu (2010b) that T3n = m−1n−1/2Y3n(
∑m

j=1(1−eiλj)−1eiλj w̄εjĀ2(λj)+Op(n)). This

is Op(n
ν0m−1) because wεj and wεk are uncorrelated for j 6= k and n1/2−ν0Y3n →d N(0, σ2)

with σ2 <∞ from Lemma A.5(a2) of Phillips and Shimotsu (2004) and a standard MDS-

CLT. This establishes (33).

7.3.2 Hessian approximation

Again, we need only to consider the terms involving the derivatives with respect to β.

Note that

∂2R∗(ϑ)

∂β∂δk
= tr

{
∂2Ω̃∗(ϑ)

∂β∂δk
Ω̃∗(ϑ)−1 − ∂Ω̃∗(ϑ)

∂β
Ω̃∗(ϑ)−1∂Ω̃∗(ϑ)

∂δk
Ω̃∗(ϑ)−1

}
,

∂2R∗(ϑ)

∂β2
= tr

{
∂2Ω̃∗(ϑ)

∂β2
Ω̃∗(ϑ)−1 − ∂Ω̃∗(ϑ)

∂β
Ω̃∗(ϑ)−1∂Ω̃∗(ϑ)

∂β
Ω̃∗(ϑ)−1

}
.

The required result follows if

(∂2/∂β∂δk)R
∗(ϑ0) = op(n

ν0m−1/2), (35)

and n−2ν0m(∂2/∂β2)R∗(ϑ0) satisfies the condition (31) ofH11,n. We analyze (∂2/∂β∂δk)R
∗(ϑ0)

first. (∂/∂β)Ω̃∗(ϑ0)Ω̃∗(ϑ0)−1 = op(n
ν0m−1/2) holds because (∂/∂β)Ω̃∗(ϑ0) = O(cn) +

Op(n
ν0m−1) = Op(n

ν0m−1/2−η) from (33) and Ω̃∗(ϑ0)−1 = Op(1). Note that (∂/∂β)Ω̃∗(ϑ)

consists of w∆2j and w∆δz(λj; β), and that (∂2/∂β∂δk)Ω̃
∗(ϑ) consists of w∆2j and w∆δz(λj; β)

and their derivatives with respect to δk. From Lemma 4 of Shimotsu (2010b), the lead-

ing term of these derivatives is (log n)s, s = 1, 2, times w∆2j and w∆δz(λj; β). There-
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fore, the order of magnitude of (∂2/∂β∂δk)Ω̃
∗(ϑ) is no larger than (log n)2 times that of

(∂/∂β)Ω̃∗(ϑ). Thus, (∂2/∂β∂δk)Ω̃
∗(ϑ0) = op(n

ν0m−1/2) follows, and (35) follows.

The proof completes by showing the behavior of n−2ν0m(∂2/∂β2)R∗(ϑ0). Taking a

derivative of (29) gives (∂2/∂β2)Ω̃∗(ϑ0) = 2E12m
−1
∑m

j=1 Re{w∆02jw̄∆02j}E21. The only

non-zero element of this matrix is its (1,1)th element, 2m−1
∑m

j=1 I∆−ν0u2j. From Theo-

rems 4.5 and 5.1 of Robinson and Marinucci (2001), we have limn→∞E[n−2ν0
∑m

j=1 I∆−ν0u2j] <

∞ and limn→∞var[n−2ν0
∑m

j=1 I∆−ν0u2j] = V ∈ (0,∞). The required result then follows

from (∂/∂β)Ω̃∗(ϑ0)Ω̃∗(ϑ0)−1 = op(n
ν0m−1/2) and Ω̃∗(ϑ0)→p Ω0. �
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Table 1: Simulation results with δ1 = 0.1 and ρ = 0.0

ELW Tapered Estimator Stationary LW
δ1 δ2 β ρ δ1 δ2 β δ1 δ2 β

bias -0.005 -0.002 -3.271 0.005 -0.010 0.008 -3.233 -0.014 -0.005 -0.471
δ2 = 0.4 s.d. 0.086 0.085 251.1 0.288 0.129 0.123 251.0 0.081 0.078 21.03

RMSE 0.086 0.085 251.1 0.288 0.130 0.124 251.0 0.082 0.078 21.04

bias -0.015 -0.001 0.001 0.000 -0.021 0.014 0.006 -0.020 0.013 -0.000
δ2 = 0.8 s.d. 0.083 0.076 1.340 0.105 0.133 0.125 0.594 0.082 0.082 0.022

RMSE 0.084 0.076 1.340 0.105 0.135 0.125 0.594 0.084 0.083 0.022

bias -0.020 -0.002 -0.000 0.000 -0.030 0.034 -0.000 -0.024 -0.212 -0.000
δ2 = 1.3 s.d. 0.083 0.078 0.003 0.098 0.134 0.127 0.008 0.082 0.098 0.003

RMSE 0.085 0.078 0.003 0.098 0.137 0.131 0.008 0.085 0.234 0.003

Note: The sample size and bandwidth are n = 512 and m = n0.65 = 57, respectively.

Table 2: Simulation results with δ1 = 0.1 and ρ = 0.4

ELW Tapered Estimator Stationary LW
δ1 δ2 β ρ δ1 δ2 β δ1 δ2 β

bias -0.004 -0.002 -19.14 0.013 -0.009 0.008 -19.45 -0.013 -0.005 -0.470
δ2 = 0.4 s.d. 0.085 0.085 220.5 0.250 0.127 0.120 220.4 0.079 0.078 10.25

RMSE 0.085 0.085 221.3 0.250 0.127 0.120 221.3 0.081 0.078 10.26

bias -0.013 -0.002 0.029 0.003 -0.014 0.011 -0.005 -0.015 0.012 -0.001
δ2 = 0.8 s.d. 0.077 0.072 1.512 0.091 0.124 0.116 0.054 0.077 0.078 0.024

RMSE 0.078 0.072 1.512 0.091 0.125 0.117 0.054 0.078 0.079 0.024

bias -0.015 -0.004 -0.000 0.003 -0.015 0.026 0.000 -0.029 -0.211 -0.001
δ2 = 1.3 s.d. 0.073 0.070 0.002 0.081 0.118 0.113 0.008 0.080 0.097 0.003

RMSE 0.075 0.070 0.002 0.081 0.119 0.116 0.008 0.085 0.233 0.003

Note: The sample size and bandwidth are n = 512 and m = n0.65 = 57, respectively.
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Table 3: Simulation results with δ1 = 0.1 and ρ = 0.8

ELW Tapered Estimator Stationary LW
δ1 δ2 β ρ δ1 δ2 β δ1 δ2 β

bias 0.001 -0.002 -8.737 0.004 -0.003 0.005 -8.821 -0.007 -0.004 -0.140
δ2 = 0.4 s.d. 0.078 0.078 75.80 0.092 0.118 0.111 75.79 0.073 0.072 2.353

RMSE 0.078 0.078 76.30 0.092 0.118 0.111 76.30 0.074 0.072 2.357

bias -0.009 -0.005 -0.010 0.000 0.001 0.007 -0.020 0.003 0.016 -0.001
δ2 = 0.8 s.d. 0.064 0.064 1.604 0.041 0.103 0.099 1.512 0.066 0.068 0.021

RMSE 0.064 0.064 1.605 0.041 0.103 0.099 1.512 0.066 0.070 0.021

bias -0.010 -0.007 0.000 0.001 0.011 0.028 0.001 -0.046 -0.213 -0.001
δ2 = 1.3 s.d. 0.061 0.060 0.002 0.034 0.099 0.099 0.006 0.077 0.091 0.002

RMSE 0.061 0.060 0.002 0.034 0.100 0.103 0.006 0.089 0.232 0.002

Note: The sample size and bandwidth are n = 512 and m = n0.65 = 57, respectively.

Table 4: Simulation results with δ1 = 0.3 and ρ = 0.4

ELW Tapered Estimator Stationary LW
δ1 δ2 β ρ δ1 δ2 β δ1 δ2 β

bias 0.002 0.001 -224.4 -0.036 -0.007 0.011 -223.6 -0.011 -0.004 -3.257
δ2 = 0.4 s.d. 0.086 0.082 675.6 0.545 0.125 0.121 675.7 0.079 0.079 80.42

RMSE 0.086 0.082 711.9 0.546 0.125 0.121 711.7 0.080 0.079 80.49

bias -0.011 -0.001 -0.852 0.000 -0.012 0.012 -0.964 -0.014 0.012 -0.003
δ2 = 0.8 s.d. 0.080 0.076 27.78 0.121 0.127 0.119 27.63 0.079 0.080 0.060

RMSE 0.080 0.076 27.79 0.121 0.127 0.119 27.65 0.080 0.081 0.060

bias -0.014 -0.003 0.000 0.003 -0.014 0.027 -0.000 -0.027 -0.212 -0.001
δ2 = 1.3 s.d. 0.074 0.070 0.005 0.081 0.120 0.114 0.016 0.080 0.097 0.006

RMSE 0.075 0.070 0.005 0.081 0.120 0.117 0.016 0.085 0.233 0.006

Note: The sample size and bandwidth are n = 512 and m = n0.65 = 57, respectively.
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Table 5: Simulation results when a penalty term is added to the objective function

ELW Tapered Estimator Stationary LW
δ1 δ2 β ρ δ1 δ2 β δ1 δ2 β

(δ1, δ2) = bias -0.003 -0.001 -1.167 0.013 -0.009 0.008 -1.414 -0.013 -0.005 -0.349
(0.1, 0.4) s.d. 0.085 0.083 9.664 0.250 0.127 0.120 9.068 0.079 0.078 10.25

RMSE 0.085 0.083 9.735 0.250 0.127 0.120 9.177 0.081 0.078 10.25

(δ1, δ2) = bias 0.000 -0.002 -8.311 -0.036 -0.007 0.011 -7.618 -0.011 -0.004 -0.723
(0.3, 0.4) s.d. 0.080 0.079 21.11 0.545 0.125 0.121 18.39 0.079 0.079 14.05

RMSE 0.080 0.079 22.69 0.546 0.125 0.121 19.91 0.080 0.079 14.07

(δ1, δ2) = bias -0.011 -0.001 -0.049 0.000 -0.012 0.012 -0.124 -0.014 0.012 -0.003
(0.3, 0.8) s.d. 0.080 0.075 2.859 0.121 0.127 0.119 2.329 0.079 0.080 0.060

RMSE 0.081 0.075 2.859 0.121 0.127 0.119 2.332 0.080 0.081 0.060

Note: The sample size and bandwidth are n = 512 and m = n0.65 = 57, respectively. ρ is set to

0.4.

Table 6: Simulation results with t–distributed ut: ut ∼ t(Σ, (0, 0)′, 2)

ELW Tapered Estimator Stationary LW
δ1 δ2 β ρ δ1 δ2 β δ1 δ2 β

bias -0.003 -0.001 -16.25 -0.006 -0.008 0.008 -16.44 -0.012 -0.004 -0.240
δ2 = 0.4 s.d. 0.082 0.077 201.3 0.337 0.123 0.110 201.3 0.076 0.072 7.844

RMSE 0.082 0.077 202.0 0.337 0.123 0.110 201.9 0.077 0.072 7.848

bias -0.012 -0.002 0.015 -0.013 -0.013 0.011 -0.003 -0.012 0.014 -0.000
δ2 = 0.8 s.d. 0.073 0.068 0.862 0.264 0.118 0.107 0.055 0.073 0.074 0.026

RMSE 0.074 0.068 0.862 0.264 0.118 0.107 0.055 0.074 0.075 0.026

bias -0.015 -0.004 0.000 -0.012 -0.013 0.029 0.000 -0.030 -0.214 -0.001
δ2 = 1.3 s.d. 0.070 0.066 0.003 0.261 0.113 0.105 0.009 0.076 0.096 0.003

RMSE 0.072 0.066 0.003 0.261 0.114 0.109 0.009 0.081 0.234 0.003

Note: The sample size and bandwidth are n = 512 and m = n0.65 = 57, respectively. δ1 and ρ

are set to δ1 = 0.1 and ρ = 0.4.
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Table 7: Descriptive statistics

Mean Standard Deviation Skewness Kurtosis

Implied volatility (σI) 0.168 0.066 1.624 7.077
Realized volatility (σR) 0.159 0.097 2.807 14.98

Table 8: Univariate two-step ELW estimates of δ

m n0.55 = 20 n0.6 = 26 n0.65 = 35 n0.7 = 46 n0.75 = 60

σI 0.572 0.554 0.634 0.628 0.645
(0.353, 0.792) (0.362, 0.747) (0.468, 0.800) (0.483, 0.772) (0.518, 0.772)

σR 0.512 0.480 0.550 0.561 0.609
(0.293, 0.731) (0.288, 0.672) (0.384, 0.715) (0.417, 0.706) (0.482, 0.735)

σR − σI 0.250 0.246 0.319 0.377 0.457
(0.031, 0.469) (0.054, 0.438) (0.153, 0.484) (0.233, 0.522) (0.330, 0.583)

Note: Asymptotic 95% confidence intervals are in parentheses.

Table 9: ELW-FCI estimates of (δ1, δ2, β, ρ) and NBLS estimates of β

m n0.55 = 20 n0.6 = 26 n0.65 = 35 n0.7 = 46 n0.75 = 60

δ1 0.208 0.220 0.262 0.313 0.381
(0.015, 0.402) (0.050, 0.390) (0.116, 0.407) (0.182, 0.444) (0.264, 0.499)

δ2 0.619 0.675 0.675 0.644 0.642
(0.425, 0.812) (0.505, 0.845) (0.530, 0.821) (0.513, 0.775) (0.524, 0.760)

β 1.052 1.107 1.045 1.032 1.039
(0.925, 1.180) (1.031, 1.183) (0.930, 1.160) (0.851, 1.213) (0.791, 1.287)

ρ 0.609 0.594 0.621 0.554 0.487
βNB 1.309 1.318 1.325 1.330 1.330

Note: Asymptotic 95% confidence intervals are in parentheses.

34


