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Abstract

We classify centroaffine minimal surfaces whose centroaffine curvature and Pick function are
constants locally, which also gives classification of centroaffine minimal surfaces whose cen-
troaffine curvature and generalized Pick function are constants locally.
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1. Introduction

The notion of centroaffine minimal hypersurfaces was introduced by Wang [13] as extremals
for the area integral of the centroaffine metric. Such a class of hypersurfaces is a natural gener-
alization of proper affine hypersurfaces centered at the origin. In the following, we shall discuss
the case the ambient space is R3 and consider surfaces in R3 locally. In this case, it is also
worthwhile to point out that centroaffine minimal surfaces are considered as an interesting class
of surfaces from the viewpoint of not only centroaffine differential geometry or variational prob-
lems but also integrable systems [10]. Fundamental examples of centroaffine minimal surfaces
are centroaffine surfaces with vanishing centroaffine Tchebychev operator, which were classified
by Liu and Wang [7]:

Theorem 1.1. (Liu and Wang [7]). Let f : M → R3 be an immersion from a 2-dimensional
domain which is a centroaffine surface with vanishing centroaffine Tchebychev operator and put
f = (X,Y,Z). Then up to centroaffine congruence, f is one of the following:

Example 1: A piece of a quadric.
Example 2: A proper affine sphere centered at the origin.
Example 3: XαYβZγ = 1, where α, β, γ ∈ R such that αβγ(α + β + γ) , 0.

Example 4:
{
exp

(
−α arctan

X
Y

)}
(X2+Y2)βZγ = 1, where α, β, γ ∈ R such that γ(2β+γ)(α2+β2) ,

0.
Example 5: Z = −X(α log X + β log Y), where α, β, γ ∈ R such that β(α + β) , 0.

Example 6: Z = ±X log X +
Y2

X
.
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Example 7: f (u, v) = (eu, A1(u)ev, A2(u)ev), where A1 and A2 are linearly independent solutions
of the linear ordinary differential equation A′′ − A′ − a(u)A = 0 for any function a = a(u). In this
case, f is indefinite.

Remark 1.1. The classification result in [7] and [2, Proposition 2.2] dropped Example 6. See
also [4].

Remark 1.2. If a centroaffine surface with vanishing centroaffine Tchebychev operator has con-
stant centroaffine curvature κ, then it is one of Example 1, Example 2 with κ = 0, 1 or Examples
3, 4, 5, 6 and 7, and the Pick function of the surface is constant. In the case of Examples 3, 4, 5, 6
and 7, we have κ = 0. Example 2 with κ = 0 and κ = 1 were classified by Magid and Ryan [8]
and Simon [11] respectively.

In this paper, we classify centroaffine minimal surfaces whose centroaffine curvature and Pick
function are constants locally. Our main theorem is the following:

Theorem 1.2. Let f : M → R3 be an immersion from a 2-dimensional domain which is a
centroaffine minimal surface whose centroaffine curvature κ and Pick function J are constants.
Then up to centroaffine congruence, f is one of the following:

(i) Example 1, Example 2 with κ = 0, 1 or Examples 3, 4, 5, 6 and 7.
(ii) The surface given by

f (u, v) =

 ∞∑
n=0

An,1(v)un,

∞∑
n=0

An,2(v)un,

∞∑
n=0

An,3(v)un

 , (1)

where the coordinates (u, v) are defined around (0, v0) such that v0 , 0, and A0,1, A0,2 and A0,3
are linearly independent solutions of the linear ordinary differential equation:

vA′′′ + A′′ − A = 0, (2)

and
An+1,i =

v
n + 1

A′′n,i (i = 1, 2, 3). (3)

In this case, f is indefinite, and κ = 0 and J = −1.
(iii) A ruled surface:

f (u, v) = A′ + vA (4)

for any R3-valued function A = A(u) such that

det

 A
A′

A′′

 , 0. (5)

In this case, f is indefinite, and κ = 1 and J = 0.

The surface given by (4) such that the left hand side of (5) is a constant, coincides with
Example 2 with κ = 1. The surfaces given by (1) and (4) can also be found in the author’s
recent paper [3]. See also [5] for recent results about centroaffine ruled surfaces. Our result
also gives classification of centroaffine minimal surfaces whose centroaffine curvature and gen-
eralized Pick function are constants locally, which generalize one of the results due to Liu and
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Jung [6] about indefinite centroaffine minimal surfaces with constant centroaffine curvature and
vanishing generalized Pick function. In [6, Theorem 3.3], they showed that the centroaffine cur-
vature of indefinite centroaffine minimal surfaces with vanishing generalized Pick function is
equal to 0 or 1. However, the surfaces for the non-flat case were not given explicitely. Hence
the surface given by (4) also answers the classification problem for the non-flat case [6, Remark
3.3].

2. Preliminaries

A centroaffine surface f in the real affine 3-space R3 is given locally by a smooth immersion
from a 2-dimensional domain to R3 such that the position vector f is transversal to the tangent
plane at each point. In the following, we assume that f is nondegenerate, i.e., the centroaffine
metric h is nondegenerate. For simplicity, we consider the case that h is indefinite. Then as
can be seen in [10, Theorem 1], we can take asymptotic line coordinates (u, v) and the Gauss
equations for f are given by

fuu =

(
ϕu

ϕ
+ ρu

)
fu +

a
ϕ

fv, fuv = −ϕ f + ρv fu + ρu fv, fvv =

(
ϕv

ϕ
+ ρv

)
fv +

b
ϕ

fu, (6)

where ϕ = h(∂u, ∂v),

a = ϕ det

 f
fu
fuu


/

det

 f
fu
fv

 , b = ϕ det

 f
fv
fvv


/

det

 f
fv
fu

 . (7)

It is obvious to see that the cubic differentials adu3 and bdv3 are centroaffine invariants. On the
other hand, the function ρ is an equicentroaffine invariant. Indeed, it is known that ±eρ is equal
to the equiaffine support function from the origin. In particular, centroaffine transformations
preserve the property that ρ is a constant, which was discovered by Tzitzéica [12]. Moreover, ρ
is a constant if and only if f is a proper affine sphere centered at the origin. See [9] for basic facts
about affine hyperspheres. In particular, flat affine spheres were classified by Magid and Ryan
[8]. Affine spheres with constant curvature metric were classified by Simon [11]. It is easy to see
that the integrability conditions for (6) are given by

(log |ϕ|)uv = −ϕ −
ab
ϕ2 + ρuρv, av + ρuϕu = ρuuϕ, bu + ρvϕv = ρvvϕ. (8)

The surface f is called to be centroaffine minimal if it extremizes the area integral of h, which
is known to be equivalent to the condition that the trace of the centroaffine Tchebychev operator
vanishes. Let ∇ be the connection induced by the immersion f and ∇̃ the Levi-Civita connection
of h. It is easy to see that the Christoffel symbols Γ̃k

i j (i, j, k = 1, 2) for ∇̃ with respect to (u, v)
vanish except

Γ̃1
11 =

ϕu

ϕ
, Γ̃2

22 =
ϕv

ϕ
. (9)

We denote ∇ − ∇̃ by C, which defines a (1, 2)-tensor field. From (6) and (9), it is obvious to see
that

C(∂u, ∂u) = ρu∂u +
a
ϕ
∂v, C(∂u, ∂v) = ρv∂u + ρu∂v, C(∂v, ∂v) =

b
ϕ
∂u + ρv∂v. (10)
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Then the centroaffine Tchebychev vector field T is computed as

T =
1
2

trhC =
ρv

ϕ
∂u +

ρu

ϕ
∂v = gradhρ. (11)

From the second and the third equations of (8) and (9), the centroaffine Tchebychev operator ∇̃T
is computed as

∇̃T (∂u) =
ρuv

ϕ
∂u +

av

ϕ2 ∂v, ∇̃T (∂v) =
bu

ϕ2 ∂u +
ρuv

ϕ
∂v. (12)

Hence f is centroaffine minimal if and only if ρuv = 0. Centroaffine surfaces such that ∇̃T is pro-
portional to the identity are called to be centroaffine Tchebychev. In particular, f is centroaffine
minimal and centroaffine Tchebychev if and only if ∇̃T = 0, i.e., ρuv = av = bu = 0. Such
surfaces were classified by Liu and Wang [7] as in Theorem 1.1.

The centroaffine curvature κ is given by

κ = − (log |ϕ|)uv

ϕ
. (13)

Centroaffine Tchebychev surfaces with constant κ were classified by Binder [1]. In a previous
paper [2], the author classified centroaffine minimal surfaces with constant κ, a = b and ρ =
c1u + c2v + c3 for c1, c2, c3 ∈ R.

The Pick function J is computed as

J =
1
2
‖C‖2 = 3ρuρv

ϕ
+

ab
ϕ3 . (14)

We denote the traceless part of C by C̃, which is defined by

C̃(X, Y) = C(X,Y) − 1
2

(h(T, X)Y + h(T,Y)X + h(X,Y)T ) (15)

for vector fields X and Y on f . From (10), (11) and (15), we have

C̃(∂u, ∂u) =
a
ϕ
∂v, C̃(∂u, ∂v) = 0, C̃(∂v, ∂v) =

b
ϕ
∂u. (16)

Then from (11), (14) and (16), the generalized Pick function J̃ in [6] is computed as

J̃ =
1
2
‖C̃‖2 = ab

ϕ3 = J − 3ρuρv

ϕ
= J − 3

2
‖T‖2. (17)

3. Indefinite case

Assume that the indefinite centroaffine surface f is centroaffine minimal. Since ρuv = 0,
changing the coordinates, if necessary, we may assume that ρ = c1u+ c2v+ c3 for any c1, c2, c3 ∈
R, which reduces (6) to the following:

fuu =

(
ϕu

ϕ
+ c1

)
fu +

a
ϕ

fv, fuv = −ϕ f + c2 fu + c1 fv, fvv =

(
ϕv

ϕ
+ c2

)
fv +

b
ϕ

fu. (18)
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Moreover, from (14) and (17), we have

J =
3c1c2

ϕ
+

ab
ϕ3 =

3c1c2

ϕ
+ J̃. (19)

Hence from (8), (13) and (19), we have

(J + 1 − κ)ϕ = 4c1c2, av + c1ϕu = 0, bu + c2ϕv = 0, (20)

or the first equation of (20) is equivalent to

(J̃ + 1 − κ)ϕ = c1c2. (21)

The following is a key lemma to our classification result.

Lemma 3.1. Let f be an indefinite centroaffine minimal surface. If both κ and J are constants,
then changing the coordinates u and v, if necessary, we have one of the following:

(i) κ = 0, J = 3, ϕ = c1c2 , 0, a = a(u) and b = 0.

(ii) κ = 0, J =
4c1c2

ϕ
− 1 , 3,−1, and a, b and ϕ are non-zero constants.

(iii) κ = 0, J = −1, c2 = 0 and b = b(v) , 0.
(iv) κ = 1, J = 0, c2 = 0 and b = 0.

Proof. In case of J + 1 , κ, since ϕ , 0, from the first equation of (20), we have c1c2 , 0 and
ϕ is a non-zero constant. Then from (13) we have κ = 0. Moreover, from the second and the
third equations of (20), we have a = a(u) and b = b(v). Since κ = 0 and c1c2 , 0, from the first
equation of (20), we have

J =
4c1c2

ϕ
− 1 , −1. (22)

From (19) and (22), ab = 0 if and only if ϕ = c1c2. If ab , 0, from (19) a and b are non-zero
constants. Hence we have (i) and (ii).

In case of J + 1 = κ = 0, from the first equation of (20), we have c1 = 0 or c2 = 0. If c2 = 0,
we have b = b(v) as above. Moreover, since J = −1, from (19) we have b , 0. Hence we have
(iii).

In case of J + 1 = κ , 0, we have c1 = 0 or c2 = 0 as above. If c2 = 0, we have b = b(v) as
above. Note that (13) is the Liouville equation, whose solution is given by

ϕ = −2
κ

puqv

(p(u) + q(v))2 (23)

for any functions p = p(u), q = q(v) such that pu, qv , 0. Then the second equation of (20)
becomes

av −
2c1

κ

{
puuqv

(p + q)2 −
2p2

uqv

(p + q)3

}
= 0, (24)

which can be integrated as

a =
2c1

κ

{
− puu

p + q
+

p2
u

(p + q)2

}
+ r(u) (25)

for any function r = r(u). If b(v) , 0, since c2 = 0, from (19) and (25), we have J = c1 = r = 0,
so that a = 0. Hence we have (iv).
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Proposition 3.1. Depending on the case of (i)∼(iv) in Lemma 3.1, we have J̃ = 0,
c1c2

ϕ
− 1,−1

and 0 respectively.

Proof. It is obvious from (19).

Proposition 3.2. Let f be an indefinite centroaffine minimal surface with constant κ. Then J is
a constant if and only if J̃ is a constant. In particular, Theorem 1.2 also gives classification of
centroaffine minimal surfaces with constant κ and J̃.

Proof. This is a direct consequence of the centroaffine Theorema egregium.

In the case of (i) in Lemma 3.1, up to centroaffine congruence, f is Example 7, which includes
a piece of the hyperbolic paraboloid.

In the case of (ii) in Lemma 3.1, up to centroaffine congruence, f is one of Examples 3, 4, 5
or 6.

In the case of (iii) in Lemma 3.1, it is better to come back to (6) as follows.

Theorem 3.1. In the case of (iii) in Lemma 3.1, f is one of Examples 3, 4 or 5, which include
Example 2 with κ = 0, or the surface given by (1).

Proof. Since κ = 0, from (13) we have ϕ = p(u)q(v) for any functions p = p(u), q = q(v) such
that pq , 0. Changing the coordinates, if necessary, we may assume that ϕ = −1. Since c2 = 0,
we have ρ = ρ(u). Since J = −1, c2 = 0 and b = b(v), from (19) we have

ab = a(v)b(v) = 1. (26)

Then from the second equation of (8), we have

−bv

b2 = −ρuu. (27)

Hence we have
ρ =

1
2

ĉ1u2 + ĉ2u + ĉ3, b = − 1
ĉ1v + ĉ4

(28)

for any ĉ1, ĉ2, ĉ3, ĉ4 ∈ R. Then from (26) we have

a = −(ĉ1v + ĉ4). (29)

If ĉ1 = 0, then f is one of Examples 3, 4 or 5, which include Example 2 with κ = 0.
If ĉ1 , 0, changing the coordinates, if necessary, we may assume that the coordinates (u, v)

are defined around (0, v0) such that v0 , 0, and ĉ1 = 1 and ĉ2 = ĉ4 = 0. Then (6) becomes

fuu = u fu + v fv, fuv = f + u fv, fvv =
1
v

fu. (30)

Moreover, if we put

f =
∞∑

n=0

An(v)un (31)

for some R3-valued functions An = An(v) (n = 0, 1, 2, . . . ), a direct computation using (30) and
(31) shows that

(n + 1)(n + 2)An+2 = nAn + vA′n, (32)
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A′1 = A0, (n + 2)A′n+2 = An+1 + A′n, (33)

A′′n =
n + 1

v
An+1, (34)

where n = 0, 1, 2, . . . . Note that the second equation of (33) can also be deduced from (32) and
(34). Combining the first equation of (33) and (34) with n = 0, we have

vA′′′0 + A′′0 − A0 = 0. (35)

Moreover, if we define An (n = 0, 1, 2, . . . ) by (34) and (35), it is straightforward to see by
induction on n that (32) is satisfied. Hence f is the surface given by (1).

In order to complete the proof of Theorem 1.2 in the case that the surface is indefinite, it
remains to show the following:

Theorem 3.2. In the case of (iv) in Lemma 3.1, f is the surface given by (4).

Proof. The equations (23) and (25) with κ = 1 become

ϕ = − 2puqv

(p + q)2 , a = 2c1

{
− puu

p + q
+

p2
u

(p + q)2

}
+ r(u). (36)

If c1 = 0, then f is Example 2 with κ = 1, which includes a piece of the hyperboloid of one
sheet.

If c1 , 0, note that the centroaffine Tchebychev operator ∇̃T is not semisimple. Then by [3,
Theorem 4.6], f is the surface given by (4).

4. Definite case

In the following, we consider the case that f is a definite centroaffine surface whose cen-
troaffine metric is h. We can carry out all computations in a similar manner to the indefinite case.
The Gauss equations for f are given by

fzz =

(
ϕz

ϕ
+ ρz

)
fz +

a
ϕ

fz̄, fzz̄ = −ϕ f + ρz̄ fz + ρz fz̄ (37)

for a holomorphic coordinate z, where ϕ = h(∂z, ∂z̄),

a = ϕ det

 f
fz
fzz


/

det

 f
fz
fz̄

 . (38)

Similar to the indefinite case, the cubic differential adz3 is a centroaffine invariant, while the
function ρ is an equicentroaffine invariant. The integrability conditions for (37) are given by

(log |ϕ|)zz̄ = −ϕ −
|a|2
ϕ2 + |ρz|2, az̄ + ρzϕz = ρzzϕ. (39)

Assume that f is centroaffine minimal, i.e., ρzz̄ = 0. Then changing the coordinate z, if
necessary, we may assume that ρ = c1z + c̄1z̄ + c2 for any c1 ∈ C and c2 ∈ R, which reduces (37)
to the following:

fzz =

(
ϕz

ϕ
+ c1

)
fz +

a
ϕ

fz̄, fzz̄ = −ϕ f + c̄1 fz + c1 fz̄. (40)
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Note that the centroaffine curvature κ, the Pick function J and the generalized Pick function J̃
become

κ = − (log |ϕ|)zz̄

ϕ
, J =

3|c1|2
ϕ
+
|a|2
ϕ3 , J̃ =

|a|2
ϕ3 . (41)

Then (39) becomes
(J + 1 − κ)ϕ = 4|c1|2, az̄ + c1ϕz = 0, (42)

or the first equation of (42) is equivalent to

(J̃ + 1 − κ)ϕ = |c1|2. (43)

Lemma 4.1. Let f be a definite centroaffine minimal surface. If both κ and J are constants, then
we have one of the following:

(i) κ = 0, J = 3, ϕ = |c1|2 > 0 and a = 0.

(ii) κ = 0, J =
4|c1|2
ϕ
− 1 , 3,−1, and a and ϕ are non-zero constants.

(iii) κ = 0, J = −1, c1 = 0 and a = a(z) , 0.
(iv) κ = 1, J = 0, c1 = 0 and a = 0.

Depending on the case of (i) ∼ (iv), we have J̃ = 0,
|c1|2
ϕ
− 1,−1 and 0 respectively.

Proof. We can carry out a similar computation to the proof of Lemma 3.1 except the case that
J + 1 = κ , 0 and obtain (i), (ii) and (iii).

In case of J + 1 = κ , 0, from the first equation of (42), we have c1 = 0. Then from the
second equation of (42), we have a = a(z). Since c1 = 0, changing the coordinate, if necessary,
we may assume that a = 0, 1. Then from the first equation of (39) and the first equation of (41),
we have

(κ − 1)ϕ3 = 0, 1 (44)

Note that ϕ is not a constant since κ , 0. Hence we have κ = 1 and a = 0, so that J = 0.
Therefore we have (iv).

Similar to Proposition 3.2, we have the following:

Proposition 4.1. Let f be a definite centroaffine minimal surface with constant κ. Then J is a
constant if and only if J̃ is a constant.

Combining the following proposition with the result in §3, we complete the proof of Theorem
1.2.

Proposition 4.2. Depending on the case of (i) ∼ (iv) in Lemma 4.1, up to centroaffine congru-
ence, we have

(i) f is a piece of the elliptic paraboloid,
(ii) f is one of Examples 3, 4, 5 or 6,
(iii) f is Example 2 with κ = 0,
(iv) f is a piece of the ellipsoid or the hyperboloid of two sheets,

respectively.
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