BONNET SURFACES WITH NON-FLAT NORMAL BUNDLE IN THE HYPERBOLIC FOUR-SPACE

ATSUSHI FUJIOKA

Graduate School of Economics
Hitotsubashi University
2-1, Naka, Kunitachi, Tokyo 186-8601, Japan
e-mail: fujioka@math.hit-u.ac.jp

Abstract

We study surfaces in the hyperbolic four-space admitting isometric deformations preserving the length of the mean curvature vector and especially focus on the case that surfaces are non-minimal and have non-flat normal bundle.

1. Introduction

There has been a long history of study of surfaces in 3-dimensional space forms admitting isometric deformations preserving the mean curvature (see [1, 5, 6, 7] and references therein), which can be traced back to the following result due to Bonnet [2].

Proposition 1.1. If a surface in a 3-dimensional space form has constant mean curvature and is not totally umbilic, then it admits isometric deformations preserving the mean curvature.

In the previous paper [4] the author studied surfaces in 4-dimensional space forms admitting isometric deformations preserving the length of

2000 Mathematics Subject Classification: 53A07, 53A10.
Keywords and phrases: Bonnet surfaces, mean curvature vector, non-flat normal bundle.
Partially supported by Grant-in-Aid for Scientific Research No. 18540074, Japan Society for the Promotion of Science.
Received June 19, 2008
the mean curvature vector, called Bonnet surfaces after Bonnet’s work, and obtained a generalization of Chen-Yau’s reduction theorem for surfaces with parallel mean curvature vector [3].

In this paper we study Bonnet surfaces in the hyperbolic 4-space and obtain an example of non-minimal surfaces with non-flat normal bundle.

2. Preliminaries

We denote the hyperbolic 4-space of curvature \(c < 0 \) by \(H^4(c) \), which is described as follows:

\[
H^4(c) = \text{a connected component of } \left\{ \mathbf{x} \in \mathbb{R}^5 \mid \langle \mathbf{x}, \mathbf{x} \rangle = \frac{1}{c} \right\},
\]

where \(\langle \cdot, \cdot \rangle \) is the Lorentzian inner product on \(\mathbb{R}^5 \) with signature \((1,4)\).

We assume that surfaces are sufficiently smooth. Any surface in \(H^4(c) \) is given by a conformal immersion \(F \) from a Riemann surface \(M \) to \(H^4(c) \). Using a local holomorphic coordinate \(z \), we write the induced metric on \(M \) as \(e^{\omega}dzd\bar{z} \).

Let \(N_1 \) and \(N_2 \) be orthogonal unit normals to \(F \). Then the Gauss-Weingarten equations are

\[
\begin{align*}
F_{zz} &= \omega_2 F_z + Q_1 N_1 + Q_2 N_2, \\
F_{z\bar{z}} &= -\frac{1}{2} ce^{\omega}F + \frac{1}{2} H_1 e^{\omega}N_1 + \frac{1}{2} H_2 e^{\omega}N_2, \\
\langle N_1 \rangle_z &= -H_1 F_z - 2Q_1 e^{-\omega}F_{\bar{z}} + AN_2, \\
\langle N_2 \rangle_z &= -H_2 F_z - 2Q_2 e^{-\omega}F_{\bar{z}} - AN_1,
\end{align*}
\]

where

\[
\langle F_{zz}, N_i \rangle = Q_i, \quad \langle F_{z\bar{z}}, N_i \rangle = \frac{1}{2} H_i e^{\omega} \quad (i = 1, 2), \quad \langle (N_1)_z, N_2 \rangle = A.
\]

The quartic differential \((Q_1^2 + Q_2^2)dz^4\) is independent of the choice of \(z \), \(N_1 \) and \(N_2 \) as well as the function \(H_1^2 + H_2^2 \), which is the length of the...
mean curvature vector. The compatibility conditions for (2.1) give the Gauss-Codazzi-Ricci equations:

\[
\begin{align*}
\omega_z + \frac{1}{2} (H_1^2 + H_2^2 + c)e^{\omega_0} - 2(|Q_1|^2 + |Q_2|^2)e^{-\omega_0} &= 0, \\
(Q_1)_z &= \frac{1}{2} (H_1)_z e^{\omega_0} + \overline{A} Q_2 - \frac{1}{2} \Delta H_2 e^{\omega_0}, \\
(Q_2)_z &= \frac{1}{2} (H_2)_z e^{\omega_0} - \overline{A} Q_1 + \frac{1}{2} \Delta H_1 e^{\omega_0}, \\
A_z - \overline{A}_z &= 2(Q_1 \overline{Q}_2 - \overline{Q}_1 Q_2)e^{-\omega_0},
\end{align*}
\]

which show that minimal surfaces or surfaces with parallel mean curvature vector are Bonnet surfaces (cf. [4]). Note that the normal bundle of minimal surfaces is non-flat in general. On the other hand, non-minimal surfaces with parallel mean curvature vector have flat normal bundle and are contained in some totally geodesic or umbilic 3-dimensional space form as surfaces with constant mean curvature, which is known as Chen-Yau’s reduction theorem [3]. We remark that the same equations as (2.1) and (2.2) hold for surfaces in the simply connected, complete, 4-dimensional space form of curvature \(c \geq 0\).

3. Bonnet Surfaces with Non-flat Normal Bundle

We consider a surface \(F : M \to H^4(c)\) such that \(Q_2 = \alpha Q_1\) for some \(\alpha \in \mathbb{C}\). Then the second and third equations of (2.2) give a linear equation for \(\alpha H_1 - H_2\) if and only if \(\alpha = \pm \sqrt{-1}\):

\[
(\alpha H_1 - H_2)_z = -\alpha \Lambda (\alpha H_1 - H_2).
\]

In the following we put \(\alpha = \pm \sqrt{-1}\). Exchanging the orthogonal unit normals, if necessary, we may assume that \(\alpha = \sqrt{-1}\). Let \(B : M \to \mathbb{C}\) be a function such that \(A = (\log B)_z\). Then (3.1) can be solved explicitly:

\[
\sqrt{-1} H_1 - H_2 = fB^{-\sqrt{-1}},
\]

where \(f : M \to \mathbb{C}\) is a holomorphic function. We consider the case that the mean curvature vector never vanishes. Then changing \(B\), if necessary, we may assume that \(f = 1\). Since \(H_1\) and \(H_2\) are real-valued, (3.2) is
equivalent to

\[H_1 = -\frac{\sqrt{-1}}{2} (B^{-\sqrt{-1}} - \overline{B}^{\sqrt{-1}}), \quad H_2 = -\frac{1}{2} (B^{-\sqrt{-1}} + \overline{B}^{\sqrt{-1}}). \]

From the second equation of (2.2), we have the linear equation for \(Q_1 \):

\[(Q_1)_z = \sqrt{-1} \frac{\overline{B}}{B} \, Q_1 + \frac{1}{4} \frac{\overline{B}^{\sqrt{-1}}}{B} \left(\log \frac{B}{\overline{B}} \right)_z e^{\omega}. \] \hspace{1cm} (3.3)

Solutions of (3.3) are given by \(Q_1 = P \overline{B}^{\sqrt{-1}} \), where \(P : M \to \mathbb{C} \) is a function such that

\[P_z = \frac{1}{4} \left(\log \frac{B}{\overline{B}} \right)_z e^{\omega}. \]

Let \(r \) and \(\theta \) be a positive or real valued functions on \(M \) respectively such that

\[B = re^{\sqrt{-1} \theta}, \quad |B^{-\sqrt{-1}}| = e^\theta. \]

Then a direct computation leads to the following:

Proposition 3.1. The equations (2.2) are equivalent to

\[
\begin{cases}
\omega_z + \frac{1}{2} (e^{2\theta} + c) e^{\omega} - 4 |P|^2 e^{2\theta - \omega} = 0, \\
P_z = \sqrt{-1} \frac{1}{2} \theta e^{\omega}, \\
0_z = -2 |P|^2 e^{2\theta - \omega}.
\end{cases}
\] \hspace{1cm} (3.4)

Remark 3.2. Note that the normal bundle of \(F \) is flat if and only if \(\theta_z = 0 \). In this case it is easy to see that \(F \) is a totally umbilic surface in some totally geodesic or umbilic 3-dimensional space form.

Now we assume that \(F \) is a Bonnet surface without umbilic points. Then \(H_1 \) and \(H_2 \) are deformed under the deformations as

\[H_1 \to H_1 \cos \lambda - H_2 \sin \lambda, \quad H_2 \to H_1 \sin \lambda + H_2 \cos \lambda, \]

where \(\lambda \) is a deformation parameter. However transforming \(N_1 \) and \(N_2 \)
as
\[N_1 \rightarrow N_1 \cos \lambda + N_2 \sin \lambda, \quad N_2 \rightarrow -N_1 \sin \lambda + N_2 \cos \lambda, \]
we may assume that \(H_1 \) and \(H_2 \) are invariants under the deformations.

In the following we consider the case that \(A \) is invariant under the deformations and \(F \) is simple, i.e., the deformations are given by the transformations:
\[Q_1 \rightarrow \mu Q_1, \quad Q_2 \rightarrow \mu Q_2 \]
for some function \(\mu : M \rightarrow \mathbb{C} \) with \(|\mu| = 1 \) (cf. [4]). Then from the second equation of (3.4), we have
\[\{ (\mu - 1)P \} = 0. \]
Since \(F \) contains no umbilic points, we have \(Q_1 \neq 0 \) and hence \(P \neq 0 \). In particular from the third equation of (3.4), the normal bundle of \(F \) is non-flat. Then we have the following analog of the result due to Graustein [7] for Bonnet surfaces in 3-dimensional space forms.

Proposition 3.3. Changing the holomorphic coordinate, if necessary, we may assume that
\[P = \frac{\sqrt{-1}}{g + \bar{g}} \]
for some holomorphic function \(g : M \rightarrow \mathbb{C} \).

From the second equation of (3.4) and (3.6), we have
\[-\frac{\overline{P_\tau}}{(g + \bar{g})^2} = \frac{1}{2} \partial_z e^\alpha. \]
Hence if we assume \(g_z \neq 0 \) and put
\[w = \int \frac{dz}{g_z}, \quad z = w + \overline{w}, \quad t = w - \overline{w}, \]
it is easy to verify that \(\theta \) is a function of \(s \) only.

Theorem 3.4. Let \(r \) be a positive valued function on \(M \) and \(g \) be a holomorphic function on \(M \) such that \(g_z \neq 0 \) and \(g + \overline{g} \neq 0 \). Then a
surface $F : M \to H^4(c)$ given by

$$e^{\theta_0} = -\frac{2g_z}{(g + \bar{g})^2\theta_s}, \quad H_1 = -e^0 \sin r, \quad H_2 = -e^0 \cos r,$$

$$Q_1 = \sqrt{-1}e^{\theta_0 + \sqrt{-1}\log r}, \quad Q_2 = \sqrt{-1}Q_1, \quad A = \frac{r_z}{r} + \sqrt{-1}\frac{\theta_s}{g_z}$$

is a Bonnet surface with non-flat normal bundle, where s is a real parameter given by (3.8) and

$$\theta = -\frac{1}{2} \log \left(\beta e^{-cs} - \frac{1}{c} \right), \quad \beta > 0. \quad (3.9)$$

Moreover the deformations of F are given by (3.5) with

$$\mu = \frac{1 - 2\sqrt{-1}u\bar{u}}{1 + 2\sqrt{-1}u\bar{u}}, \quad u \in \mathbb{R}.$$

Proof. We continue the above argument to solve (3.4). From (3.6), (3.7), (3.8) and the third equation of (3.4), we have

$$e^{\theta_0} = -\frac{2g_z^2}{(g + \bar{g})^2\theta_s} = -\frac{2g_z}{(g + \bar{g})^2\theta_s}e^{2\theta}.$$ \hspace{1cm} (3.10)

Hence we have $\theta_s < 0$ and

$$\theta_{ss} = \theta_s e^{2\theta}. \quad (3.11)$$

From (3.6), (3.8), (3.10) and the first equation of (3.4), we have

$$2 - \frac{e^{2\theta} + c}{\theta_s} = \frac{(g + \bar{g})^2}{g_z^4} \left(\frac{\theta_{ss}}{\theta_s} - 2\theta_s e^{2\theta} \right). \quad (3.12)$$

Since the right-hand side of (3.12) vanishes from (3.11), we can integrate (3.11) as

$$\theta_s = \frac{1}{2} (e^{2\theta} + c). \quad (3.13)$$

Since $c < 0$, we can obtain solutions of (3.13) with $\theta_s < 0$ as (3.9). \hfill \square
References

