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Abstract

We study surfaces in the hyperbolic four-space admitting isometric
deformations preserving the length of the mean curvature vector and
especially focus on the case that surfaces are non-minimal and have non-
flat normal bundle.

1. Introduction

There has been a long history of study of surfaces in 3-dimensional
space forms admitting isometric deformations preserving the mean
curvature (see [1, 5, 6, 7] and references therein), which can be traced
back to the following result due to Bonnet [2].

Proposition 1.1. If a surface in a 3-dimensional space form has
constant mean curvature and is not totally umbilic, then it admits
isometric deformations preserving the mean curvature.

In the previous paper [4] the author studied surfaces in 4-dimensional
space forms admitting isometric deformations preserving the length of
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the mean curvature vector, called Bonnet surfaces after Bonnet’s work,
and obtained a generalization of Chen-Yau’s reduction theorem for

surfaces with parallel mean curvature vector [3].
In this paper we study Bonnet surfaces in the hyperbolic 4-space and

obtain an example of non-minimal surfaces with non-flat normal bundle.

2. Preliminaries

We denote the hyperbolic 4-space of curvature ¢ < 0 by H 4(c), which

is described as follows:

H*(c) = a connected component of {x e R® |{x, x) = l},
c

where (,) is the Lorentzian inner product on R® with signature (1, 4).

We assume that surfaces are sufficiently smooth. Any surface in
H*(c) is given by a conformal immersion F from a Riemann surface M to
H*(c). Using a local holomorphic coordinate z, we write the induced
metric on M as e®dzdz.

Let N; and N,y be orthogonal unit normals to F. Then the Gauss-

Weingarten equations are

Fzz = O‘)ZFZ + QlNl + QZNZ’

F;: = 21 ce®F + lHlele + leewNz,
2 2 2 2.1)

(Ny), = -H,F, — 2Q,e” °F5 + AN,

(Ng), = —HyF, — 2Qqe” °F5 — ANy,

where
1 .
<Fzz7 Ni> = Qir <Fz§7 Ni> = EHiew (Z =1, 2)7 <(N1)2’ N2> = A.

The quartic differential (Q12 + Q%)dz4 is independent of the choice of z,

N; and N, as well as the function le + H%, which is the length of the
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mean curvature vector. The compatibility conditions for (2.1) give the

Gauss-Codazzi-Ricel equations:

1 _
- +§(H12 +HZ +¢)e® —2(@ [ +| @ [*)e™® =0,
1 — 1
- =—(H).e® + AQy — = AHoe®,
(@1)s 2( 1),€ Q2 5 Aflze 2.2)

1 — 1
(Qe); = E(Hz)zew -AQ + EAHW@,

Az - A, = 2@ Q; - QQs)e™®,

which show that minimal surfaces or surfaces with parallel mean
curvature vector are Bonnet surfaces (cf. [4]). Note that the normal
bundle of minimal surfaces is non-flat in general. On the other hand,
non-minimal surfaces with parallel mean curvature vector have flat
normal bundle and are contained in some totally geodesic or umbilic
3-dimensional space form as surfaces with constant mean curvature,
which is known as Chen-Yau’s reduction theorem [3]. We remark that the
same equations as (2.1) and (2.2) hold for surfaces in the simply

connected, complete, 4-dimensional space form of curvature ¢ > 0.

3. Bonnet Surfaces with Non-flat Normal Bundle

We consider a surface F : M — H*(c) such that @y = @, for some
o € C. Then the second and third equations of (2.2) give a linear
equation for aH; — Hy if and only if a = +-1:

(O(,Hl - H2)z = —G.A((X,Hl - Hz) (31)

In the following we put o = *-1. Exchanging the orthogonal unit

normals, if necessary, we may assume that o = \/-1. Let B: M — C be

a function such that A = (log B),. Then (3.1) can be solved explicitly:

JOH, - Hy = /B, (3.2)

where f : M — C is a holomorphic function. We consider the case that

the mean curvature vector never vanishes. Then changing B, if necessary,

we may assume that f = 1. Since H; and Hy are real-valued, (3.2) is
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equivalent to

AL B, gy - LB,
From the second equation of (2.2), we have the linear equation for @:

E,
@) =V 1Z QB [log Bj . 3.9

4

Solutions of (3.3) are given by @ = PE‘E, where P: M — C is a

P = l(logﬁj e®.
s\ °B),

Let r and 6 be a positive or real valued functions on M respectively such
that

function such that

B:re\/je |B—Jj1|:ee

’

Then a direct computation leads to the following:

Proposition 3.1. The equations (2.2) are equivalent to
S+ _(e26 +c)e® — 4| P [Fe?e 0,

R:Eeew (3.4)
2 77

F4

0.5 = -2 P[220,

Remark 3.2. Note that the normal bundle of F is flat if and only if
0,z = 0. In this case it is easy to see that F'is a totally umbilic surface in

some totally geodesic or umbilic 3-dimensional space form.

Now we assume that F is a Bonnet surface without umbilic points.

Then H; and Hy are deformed under the deformations as
H, - Hycosh—Hgsinh, Hy — Hysin) + Hy cos,

where A is a deformation parameter. However transforming N; and Ny
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as
N; > Nycosh + Ngsinih, Ng — —NjsinA + Ny cos A,

we may assume that H; and H, are invariants under the deformations.

In the following we consider the case that A is invariant under the
deformations and F is simple, i.e., the deformations are given by the

transformations:
@ - nQ, Qg - u@y (3.5)

for some function u: M — C with |p| =1 (cf. [4]). Then from the second

equation of (3.4), we have
{(n-1)P}; = 0.

Since F contains no umbilic points, we have @; # 0 and hence P # 0. In

particular from the third equation of (3.4), the normal bundle of F'is non-
flat. Then we have the following analog of the result due to Graustein [7]

for Bonnet surfaces in 3-dimensional space forms.

Proposition 3.3. Changing the holomorphic coordinate, if necessary,
we may assume that

L (3.6)

g+zg

for some holomorphic function g : M — C.

From the second equation of (3.4) and (3.6), we have

e (3.7)
(g+37 2
Hence if we assume g, # 0 and put
w:"‘ﬁ,s=w+w,t=w—w, (3.8)
8z

it is easy to verify that 0 is a function of s only.

Theorem 3.4. Let r be a positive valued function on M and g be a
holomorphic function on M such that g, #0 and g+ g8 # 0. Then a
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surface F : M — H*(c) given by

|2

2 .
em:——lgfz , le—eesmlogr, sz—eecoslogr,
(g +8)°0;
_169+Jj110gr r 0
Ql:\/_—_, Qo =-1Q, A=241-=
g+8 r 8z

is a Bonnet surface with non-flat normal bundle, where s is a real
parameter given by (3.8) and

0= —%mg(ﬁeﬂ - %) B> 0. (3.9)

Moreover the deformations of F are given by (3.5) with

_—1—2\/—_1u§ ueR.

u_1+2\/jug’

Proof. We continue the above argument to solve (3.4). From (3.6),
(3.7), (3.8) and the third equation of (3.4), we have

2 2 20
2 2
e® = - |gj|2 =- |g2_|26 : (3.10)
(g+28)°0;  (8+28)0
Hence we have 6, < 0 and
0s = 052 (3.11)
From (3.6), (3.8), (3.10) and the first equation of (3.4), we have
20 —\2
0 | 8z | 05 s

Since the right-hand side of (3.12) vanishes from (3.11), we can integrate
(3.11) as

0, %(e% to). (3.13)

Since ¢ < 0, we can obtain solutions of (3.13) with 6, < 0 as (3.9). 0
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