<table>
<thead>
<tr>
<th>Title</th>
<th>Quantifying the Welfare Gains from Flexible Dynamic Income Tax Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fukushima, Kenichi</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-03</td>
</tr>
<tr>
<td>Type</td>
<td>Technical Report</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10086/18967</td>
</tr>
</tbody>
</table>
Quantifying the Welfare Gains from Flexible Dynamic Income Tax Systems

Kenichi Fukushima

March 2011
Quantifying the Welfare Gains From Flexible Dynamic Income Tax Systems

Kenichi Fukushima

University of Wisconsin - Madison

May 28, 2010

Abstract.

This paper sets up an overlapping generations general equilibrium model with incomplete markets similar to Conesa, Kitao, and Krueger's (2009) and uses it to simulate a policy reform which replaces an optimal at tax with an optimal non-linear tax that is allowed to be arbitrarily age and history dependent. The reform shifts labor supply toward productive households and thereby increases aggregate productivity. This leads to a large increase in per capita consumption and a moderate increase in per capita hours. Under a utilitarian social welfare function that places equal weight on all current and future cohorts, the implied welfare gain amounts to more than 10% in lifetime consumption equivalents.
1 Introduction

In modern societies, income taxation by the government plays two beneficial roles: it raises revenue for funding public goods and provides social insurance by redistributing from the fortunate to the unfortunate. The associated cost is that taxes negatively affect current and future production possibilities by discouraging labor supply and investment. An important goal in macroeconomics and public finance is to understand how these forces are best balanced given a well-defined notion of social welfare.

In a recent series of papers, Conesa and Krueger (2006) and Conesa, Kitao, and Krueger (2009) provide a quantitative answer to this question using a dynamic general equilibrium model that incorporates many of the relevant ingredients, such as endogenous labor supply, capital accumulation, life cycles, and uninsurable idiosyncratic wage risk with an empirically plausible structure. In doing so, Conesa, Kitao, and Krueger (CKK hereafter) solve for the optimal tax system under a set of restrictions that rule out dependence on age or income histories as well as certain types of non-linearities. Their findings broadly support Hall and Rabushka’s (1995) proposal that labor income be taxed at a moderate, flat rate with a fixed deduction per household, although they also find significant gains from taxing capital income for reasons due to Erosa and Gervais (2002).

Although CKK’s analysis is an important benchmark, the restrictions they impose on the set of tax instruments are not quite ideal. A general issue is that these restrictions limit the government’s choice set in a way that seems somewhat artificial given the presence of age/history dependence in the current U.S. tax code (through social security), which of course cannot help enhance the performance of the “optimal” tax system. But in addition to this, there is also a specific theoretical reason to suspect that they create a positive and possibly significant loss in this instance. This derives from several recent studies, collectively referred to as the New Dynamic Public Finance (NDPF) by Kochezlakota (2009), which theoretically examine the optimal structure of labor and asset income taxes when they are allowed to be arbitrarily non-linear and age/history dependent. Two lessons that have emerged from this literature are that optimal taxes are: (i) non-separable in current labor and asset income with negative cross partial derivatives; and (ii) history dependent as well when wages are random and persistent as in CKK’s model (Albanesi and Sleet, 2006, Golosov and Tsyvinski, 2006, Kochezlakota, 2005). The flat tax whose optimality obtains under CKK’s restrictions has neither property.

To assess the quantitative significance of this observation, this paper sets up a model similar to CKK’s and uses it to quantify the welfare gain from replacing CKK’s optimal flat tax with an optimal non-linear tax that is allowed to be arbitrarily age and history dependent.
The gain turns out to be large: under a utilitarian social welfare function that places equal weight on all current and future cohorts, it is worth more than a 10 percent increase in consumption for every household at all dates and contingencies. This gain mostly comes from higher per capita consumption and shorter per capita hours. These improvements are supported by a massive shift of labor supply toward productive households, which effectively increases aggregate productivity.

The main technical challenge in carrying out this analysis is computational, and CKK in fact cite this as a primary reason for formulating the problem the way they did:

Ideally one would impose no restrictions on the set of tax functions the government can choose from. Maximization over such an unrestricted set is computationally infeasible, however. (Conesa, Kitao, and Krueger, 2009, p. 34)

This paper confronts this challenge by analytically simplifying the unrestricted optimal tax problem before resorting to numerics. The procedure has three steps: The first step follows the NDPF by using mechanism design and Kocherlakota’s (2005) implementation result to reduce the problem to a fictitious social planning problem which maximizes social welfare subject to resource and incentive constraints. The second step then establishes a theoretical result which further reduces this planning problem to a “partial equilibrium” dynamic mechanism design problem without capital. This eliminates the intractability of the former that comes from the model’s general equilibrium structure. The third step wraps up by applying a recursive method devised by Fukushima and Waki (2009) to tame the curse of dimensionality that comes from wage persistence.

There are several recent papers that also use mechanism design to address quantitative questions on optimal taxation, but do so using partial equilibrium models without capital and with stylized forms of wage risk.\(^1\) An early paper by Golosov and Tsyvinski (2006) studies the optimal structure of disability insurance using a model in which agents are subject to a two-state shock sequence (disabled or not), where disability is an absorbing state. A more recent paper by Huggett and Parra (2010) speaks to the optimal structure of tax systems more generally, but they are able to use mechanism design only when households experience no wage risk after entering the labor market. Weinzierl (2008) employs a model with persistent wage risk but in a setting with at most three periods. This paper therefore expands the

\(^1\)An interesting outlier is Farhi and Werning (2009), who use a model with a general structure that allows for capital accumulation and arbitrary forms of labor market risk. They focus on a partial reform which keeps the labor allocation intact and find that it generates a modest welfare gain (relative to a benchmark allocation that resembles what is currently observed in the U.S.). This paper considers a “full” reform which allows for labor reallocations and finds that there are potentially large gains from doing so. On the other hand, this conclusion is more model-dependent than Farhi and Werning’s.
technological frontier of this literature by making it possible to handle general equilibrium models with capital accumulation and richer, empirically better motivated specifications of wage risk. This bridges a gap between this literature and the quantitative incomplete markets literature, and is, in my view, intrinsically valuable as well given the plausible importance of these elements in assessing how tax systems are best structured.

2 Model

The model is almost identical to CKK’s, except for: (i) the fact that the government is given access to a richer set of tax instruments; and (ii) several technical differences that make the model mathematically better behaved.

Environment. Time flows \(t = 1, 2, 3, \ldots \), and in each period a measure \((1 + \eta)^{t-1}\) of households is born. Each household lives for at most \(J \) periods and its lifetime utility is the expected value of

\[
\sum_{j=1}^{J} \beta^{j-1} U(c_j, l_j)
\]

where \(c_j \) and \(l_j \) are its consumption and hours of work at age \(j \), respectively. Here, \(U(c, l) = u(c) - v(l) \), where \(u', -u'', v', \) and \(v'' \) are all non-negative and \(v \) is isoelastic.

At each age \(j \), a household draws an idiosyncratic skill shock \(\theta_j \) from a finite set \(\Theta_j \subset \mathbb{R}_{++} \), which enables it to transform \(l_j \) units of labor into \(n_j = \theta_j l_j \) units of effective labor. For technical reasons I assume that \(n_j \) is bounded from above by a large constant \(n_{\text{max}} \). The skill shock process is first order Markov and has strictly positive transition probabilities. Households also face skill-independent mortality risk, and \(\psi_j \) denotes the probability of survival between ages \(j - 1 \) and \(j \). The distribution of both shocks across households is i.i.d. and satisfies the law of large numbers. Let \(\theta^j = (\theta_1, \ldots, \theta_j) \in \Theta^j = \Theta_1 \times \cdots \times \Theta_j \) and \(\theta^i = (\theta_1, \ldots, \theta_i) \in \Theta^i = \Theta_i \times \cdots \times \Theta_j \), and let \(\pi_j \) denote the joint density of survival and skill draws. The measure of age \(j \) households in period \(t \) with skill history \(\theta^j \) is then

\[
\mu_{jt}(\theta^j) = (1 + \eta)^{t-j} \pi_j(\theta^j).
\]

The technology is described by the aggregate resource constraint

\[
C_t + K_{t+1} - (1 - \delta)K_t + G_t \leq F(K_t, N_t)
\]

for each \(t \), where the initial capital stock \(K_1 \) is given. Here, \(C_t \) is aggregate consumption, \(K_t \) is the capital stock, \(N_t \) is aggregate effective labor, \(G_t = (1+\eta)^{t-1}G \) is an exogenous expense on public goods, \(\delta \) is the depreciation rate of capital, and \(F : \mathbb{R}_{++}^2 \rightarrow \mathbb{R}_{++} \) is a constant-returns-
to-scale (CRS) aggregate production function which is increasing, concave, and continuously differentiable. Using CRS, let \(\hat{r}(K/N) \equiv F_K(K, N) - \delta \) and \(\hat{w}(K/N) \equiv F_N(K, N) \). The Inada conditions \(\lim_{\kappa \to 0} \hat{r}(\kappa) = \infty \) and \(\lim_{\kappa \to \infty} \hat{r}(\kappa) = -\delta \) hold.

Allocations. An allocation is a sequence \(x = ((c_{jt}, n_{jt})_{j=1}^J, K_t)_{t=1}^\infty \), where \(c_{jt} : \Theta^j \to \mathbb{R}^+ \), \(n_{jt} : \Theta^j \to [0, n_{\text{max}}] \), and \(K_t \in \mathbb{R}^+ \) for each \(j \) and \(t \). Here, \(c_{jt}(\theta^j) \) is the consumption of an age \(j \) household at calendar time \(t \) whose skill history up to that point is \(\theta^j \). This household’s date of birth is the end of period \(t - j \). The interpretation of \(n_{jt}(\theta^j) \) is analogous.

Thus under allocation \(x \), a household from cohort \(t \geq 0 \) obtains lifetime utility:

\[
V_t(x) = \sum_{j=1}^J \sum_{\theta^j} \beta^{j-1} U(c_{j,t+j}(\theta^j), n_{j,t+j}(\theta^j)/\theta_j) \pi_j(\theta^j)
\]

whereas one from cohort \(t = 1 - i < 0 \) with skill history \(\theta^{i-1} \) at date \(t = 1 \) obtains:

\[
V_{1-i}(x; \theta^{i-1}) = \sum_{j=1}^J \sum_{\theta_i^j} \beta^{j-i} U(c_{j,1-i+j}(\theta^j), n_{j,1-i+j}(\theta^j)/\theta_j) \pi_j(\theta^j|\theta_{i-1}).
\]

Abusing notation, let \(V_{1-i}(x; \theta^{i-1}) = \sum_{\theta_{i-1}} V_{1-i}(x; \theta^{i-1}) \pi_{i-1}(\theta^{i-1}). \)

An allocation is stationary if each \((c_{jt}, n_{jt}) \) is independent of \(t \) and \(K_t \) grows at constant rate \((1 + \eta) \).

Markets and Tax Policies. Commodity and factor markets operate as usual: a number of privately-held firms own the production technology; households rent labor and capital services to the firms and use the income they receive in return to purchase goods for consumption and investment; and all market transactions are competitive. Let \(r_t \) denote the interest rate and \(w_t \) the price of effective labor.

Insurance markets for skill risk are assumed to be missing however, and this creates room for the government to enhance social welfare by providing social insurance through income taxation (broadly defined, so as to include such functionally related arrangements as social security). Annuity markets are missing as well.

Given the goal of this paper, I allow the government to choose from a very rich set of tax instruments. Thus, taxes are allowed to be arbitrary non-linear functions of calendar time, age, income histories, and any other messages received (such as statements pertaining to unemployment, disability, or retirement). The government can also issue debt, commit to future actions, and confiscate any bequests (all of which are accidental in this model). Following Mirrlees (1971), however, I do not allow taxes to depend directly on households’
skill levels that realize after date $t = 1$. It is possible to motivate this restriction by saying that the government cannot condition taxes on skills because they are unobservable; however none of what follows hinges on this (or any other) interpretation.

Thus a tax policy is formally a sequence $T = ((M_{jt}, \tau_{jt})_{j=1}^J, B_t)_{t=1}^\infty$, where M_{jt} is the set of messages that an age j household is allowed to send to the government at date t, τ_{jt} describes the tax obligation of an age j household at time t as a function of its history h_{jt} (a complete record of the household’s income and messages sent to the government up to that date), and B_t is the amount of debt issued by the government in period t. Let T^* denote the set of all tax policies T.

Equilibrium. An equilibrium given a tax policy T and an initial wealth distribution $(k_{i,1}, b_{i,1})_{i=1}^J$ is a sequence of household-level quantities $((c_{jt}, n_{jt}, k_{jt}, b_{jt}, m_{jt}, h_{jt})_{j=1}^J)_{t=1}^\infty$, aggregate quantities $(C_t, N_t, K_t)_{t=1}^\infty$, and factor prices $(w_t, r_t)_{t=1}^\infty$ that satisfy the following conditions.

1. The marginal product conditions $r_t = F_K(K_t, N_t) - \delta$ and $w_t = F_N(K_t, N_t)$ hold for each t.

2. The quantities $(c_{jt+j}, n_{jt+j}, k_{jt+j}, b_{jt+j}, m_{jt+j}, h_{jt+j})_{j=1}^J$ for cohort $t \geq 0$ households maximize $V_t(x)$ subject to the flow budget constraints

$$c_{jt+j}(\theta^j) + k_{jt+j}(\theta^j) + b_{jt+j}(\theta^j) + b_{jt+j}(\theta^{j-1}) - \tau_{jt+j}(h_{jt+j}(\theta^j)) \quad (2)$$

and

$$h_{jt+j}(\theta^j) = (w_{t+j}n_{jt+j}(\theta^j), r_{t+j}(k_{jt+j}(\theta^{j-1}) + b_{jt+j}(\theta^{j-1})), m_{jt+j}(\theta^j))_{j=1}^J \quad (3)$$

$$c_{jt+j}(\theta^j), n_{jt+j}(\theta^j), k_{jt+j}(\theta^j), b_{jt+j}(\theta^{j-1}), m_{jt+j}(\theta^j) \in \mathbb{R}_+ \times [0, n_{\text{max}}] \times \mathbb{R}_+ \times M_{jt+j} \quad (4)$$

for each j and θ^j, given the initial condition $k_{1,t+1}(\theta^0) = b_{1,t+1}(\theta^0) = 0$.

3. The quantities $(c_{j,1-i+j}(\theta^{i-1}, \cdot), n_{j,1-i+j}(\theta^{i-1}, \cdot), k_{j,1-i+j}(\theta^{i-1}, \cdot), m_{j,1-i+j}(\theta^{i-1}, \cdot), h_{j,1-i+j}(\theta^{i-1}, \cdot))_{j=1}^J$ for cohort $t = 1 - i < 0$ households with initial skill history θ^{i-1} maximize $V_{1-i}(x; \theta^{i-1})$ subject to (2),

$$h_{j,1-i+j}(\theta^i) = (\theta^i \cdot (w_{1-i+s}n_{s,1-i+s}(\theta^s), r_{1-i+s}(k_{s,1-i+s}(\theta^{s-1}) + b_{s,1-i+s}(\theta^{s-1})), m_{s,1-i+s}(\theta^s))_{s=1}^J),$$

5
and (4) for each \(j \geq i \) and \(\theta^j \), where \(k_{i,1}(\theta^{i-1}) \) and \(b_{i,1}(\theta^{i-1}) \) are given values which aggregate to \(K_1 \) and \(B_1 \), respectively.

4. Markets clear. That is, (1) and

\[
(C_t, N_t, K_{t+1}, B_{t+1}) = \sum_{j=1}^{J} \sum_{\theta^j} (c_{jt}(\theta^j), n_{jt}(\theta^j), k_{j+1,t+1}(\theta^j), b_{j+1,t+1}(\theta^j)) \mu_{jt}(\theta^j)
\]

hold for each \(t \).

5. The government’s budget balances for each \(t \):

\[
G_t + (1 + r_t)B_t = B_{t+1} + \sum_{j=1}^{J} \sum_{\theta^j} \tau_{jt}(h_{jt}(\theta^j)) \mu_{jt}(\theta^j)
\]

\[
+ (1 + r_t) \sum_{j=2}^{J} \sum_{\theta^j} (1 - \psi_j) (k_{jt}(\theta^{j-1}) + b_{jt}(\theta^{j-1})) \mu_{j-1,t-1}(\theta^{j-1}),
\]

where the final term is revenue from bequest taxation.

Call \(x = ((c_{jt}, n_{jt})_{j=1}^{J}, K_t)_{t=1}^{\infty} \) the equilibrium allocation. An equilibrium is stationary if its allocation is stationary.

3 Question and Approach

Let us now consider a class of optimal tax problems of the form:

\[
\max_{T, x} W(x), \quad \text{subject to} \quad T \in \mathcal{T}, \ x \in \mathcal{E}(T)
\]

where \(\mathcal{T} \subset \mathcal{T}^* \) is a set of tax instruments under consideration, \(\mathcal{E}(T) \) is the set of equilibrium allocations under tax policy \(T \), and \(W \) is a utilitarian social welfare function that places equal weight on all cohorts:

\[
W(x) = \liminf_{H \to \infty} \frac{1}{H + J} \sum_{t=1}^{H} V_t(x).
\]

In their analysis, CKK focus on a particular set \(\mathcal{T}_{CKK} \subset \mathcal{T}^* \) under which taxes depend only on current income as:

\[
\tau_{jt}(h_{jt}) = \tau^n(w_{jt}; \varphi_t) + \tau^a r_t (k_{jt} + b_{jt}),
\]

where \(\tau^n(y; \varphi_t) \equiv \varphi_0(y - (y^{-\varphi^1} + \varphi_2)^{-1/\varphi^1}) \) is the Gouveia and Strauss (1994) tax function.
Each $T \in \mathcal{T}^{CKK}$ is therefore indexed by three parameters $(\varphi_0, \varphi_1, \tau^a)$, and φ_2 adjusts in each period so that the government’s budget constraint holds. The level of per capita government debt is given and no messages are collected. They then solve for the optimal $T^{CKK} \in \mathcal{T}^{CKK}$, and find that the optimal τ^n is essentially a flat tax with a fixed deduction and that τ^a is significantly positive.\footnote{This description differs somewhat from CKK’s, but the two are mathematically equivalent under a technical convergence assumption which I will assume throughout: For any $T \in \mathcal{T}^{CKK}$, there exists an allocation that maximizes $W(x)$ subject to $x \in \mathcal{E}(T)$ and converges to a stationary allocation. Under this assumption, one can solve the optimal tax problem (5) under \mathcal{T}^{CKK} by choosing a tax system in \mathcal{T}^{CKK} so as to maximize the lifetime utility of a household who is born in the associated stationary equilibrium. CKK define their welfare criterion in terms of this procedure. A proof of this easily follows from Lemma 2 in appendix A. See Aiyagari and McGrattan (1998) for a closely related discussion.}

There are theoretical reasons to expect the performance of T^{CKK} to be less than ideal, however. A general point of course is that setting $\mathcal{T} = \mathcal{T}^{CKK}$ instead of $\mathcal{T} = \mathcal{T}^*$ in (5) imposes a restriction on the choice set and hence cannot be welfare-enhancing. But more specifically, several recent papers have studied the theoretical solution properties of (5) with $\mathcal{T} = \mathcal{T}^*$ in related models and have concluded that optimality calls for: (i) non-separabilities in labor and asset income with negative cross partial derivatives, and (ii) history dependence when skills are serially dependent (Albanesi and Sleet, 2006, Golosov and Tsyvinski, 2006, Kocerlakota, 2005). Because none of the tax systems in \mathcal{T}^{CKK} are allowed to have these properties, the loss from CKK’s restrictions is strictly positive.

But the question stands: Is the loss from restricting attention to T^{CKK} small or large in a quantitative sense? If it is small, it would make sense to ignore the above concern for all practical purposes, given that adding complexity to the tax system will no doubt increase costs of administration and compliance (neither of which are explicitly modelled here). If it is large, however, it may make sense to give it due consideration.

To address this question, I perform the following computational experiment. I first solve for T^{CKK} and let the economy start in period $t = 1$ from the associated stationary equilibrium. Then I consider two policy scenarios. Under the first, the government keeps T^{CKK}. Under the second, the government switches to the optimal unrestricted tax system $T^* \in \mathcal{T}^*$. I ask how much better the latter scenario is according to W, and interpret it as an answer to the question above.

Of course, implementing this plan requires solving (5) with $\mathcal{T} = \mathcal{T}^*$—which I call the unrestricted optimal tax problem hereafter—and it is not possible to do so by conducting a direct numerical search over \mathcal{T}^*. My approach is therefore to simplify the problem analytically before resorting to numerical methods.

The first step in this simplification is to take a mechanism design approach to the problem following the NDPF, and it is useful to introduce the relevant terminology. Thus, let us
say that an allocation \(x = ((c_{jt}, n_{jt})_{j=1}^J, K_t)_{t=1}^\infty \) is feasible if it satisfies the following two conditions. The first condition is resource feasibility, which requires that (1) hold with

\[
(C_t, N_t) = \sum_{j=1}^J \sum_{\theta^j} (c_{jt}(\theta^j), n_{jt}(\theta^j)) \mu_{jt}(\theta^j).
\]

The second condition is incentive compatibility for each household. An allocation is incentive compatible for a cohort \(t \geq 0 \) household if:

\[
V_t(x) \geq \sum_{j=1}^J \sum_{\theta^j} \beta^{j-1}U(c_{jt+i+j}(\sigma^j(\theta^j)), n_{jt+i+j}(\sigma^j(\theta^j))/\theta^j)\pi_j(\theta^j)
\]

for all reporting strategies \((\sigma^j)_{j=1}^J \), where \(\sigma^j : \Theta^j \rightarrow \Theta_j \) and \(\sigma^j = (\sigma_1, \ldots, \sigma_J) \). Analogously, an allocation is incentive compatible for a cohort \(t = 1 - i < 0 \) household with initial skill history \(\theta^{i-1} \) if:

\[
V_{1-i}(x; \theta^{i-1}) \geq \sum_{j=1}^J \sum_{\theta^j_i} \beta^{j-i}U(c_{j,1-i+j}(\sigma^j_i(\theta^j_i)), n_{j,1-i+j}(\sigma^j_i(\theta^j_i))/\theta^j_i)\pi_j(\theta^j_i|\theta_{i-1})
\]

for all reporting strategies \((\sigma^j_{i,j})_{j=1}^J \), where \(\sigma^j_{i,j} : \Theta^j_i \rightarrow \Theta_j \), and \(\sigma^j_{i,j} = (\sigma_{i,i}, \ldots, \sigma_{i,j}) \). The planning problem is then to choose an allocation \(x \) so as to maximize social welfare \(W \) subject to feasibility.

Now because any tax-distorted market arrangement is a particular mechanism, it follows from the revelation principle that no such arrangement can do better than an optimal direct mechanism, namely a solution \(x^* \) to the planning problem. And because Kocherlakota’s (2005) implementation result is readily adapted to this setup, we can conclude that \(x^* \) together with a tax system \(T^* \) constructed following his approach solves the unrestricted optimal tax problem.

The remaining task is then to compute \(x^* \). In doing so, it helps to further simplify the problem as follows. The starting point is to make the educated guess that the capital-labor ratio under \(x^* \) will satisfy the golden rule in the long run, which would pin down the long-run intertemporal shadow price. If so, this would enable us to characterize the long-run behavior of \(x^* \) as a solution to a collection of “partial equilibrium” problems that treat each household separately taking this price as given (Atkeson and Lucas, 1992). And because \(W \) effectively places all “weight” on the long run, this is plausibly all we need to know about \(x^* \). This reasoning suggests the following result:

Proposition 1. Let the capital-labor ratio \(\kappa^* \) satisfy the golden rule \(\hat{r}(\kappa^*) = \eta \) and let the
consumption-labor profile \((c^*_j, n^*_j)_{j=1}^J\) solve the dynamic mechanism design problem:

\[
\max_{(c_j, n_j)_{j=1}^J} \sum_{j=1}^J \sum_{\theta^j} \beta^{j-1} U(c_j(\theta^j), n_j(\theta^j)/\theta^j) \pi_j(\theta^j) \\
\mathrm{subject \ to} \\
\sum_{j=1}^J \sum_{\theta^j} \left(\frac{1}{1 + \hat{r}(\kappa^*)} \right)^{j-1} \left\{ c_j(\theta^j) - \hat{w}(\kappa^*) n_j(\theta^j) \right\} \pi_j(\theta^j) + G \leq 0 \\
\sum_{j=1}^J \sum_{\theta^j} \beta^{j-1} \left\{ U(c_j(\theta^j), n_j(\theta^j)/\theta^j) - U(c_j(\sigma^j(\theta^j)), n_j(\sigma^j(\theta^j))/\theta^j) \right\} \pi_j(\theta^j) \geq 0
\]

for all reporting strategies \((\sigma_j)_{j=1}^J\). Then any feasible allocation \(x^* = ((c^*_{jt}, n^*_{jt})_{j=1}^J, K^*_t)_{t=1}^\infty\) such that \((c^*_{jt}, n^*_{jt})_{j=1}^J \rightarrow (c^*_j, n^*_j)_{j=1}^J\) as \(t \rightarrow \infty\) together with some tax system \(T^*\) solves the unrestricted optimal tax problem, and the maximum value of (10) is the welfare level after the reform to \(T^*\).

The formal proof is given in appendix A. Although somewhat lengthy, its core logic is simple. The starting point is to formulate the planning problem recursively taking the capital stock and the continuation utilities for all living cohorts as the state variable. The implied state space is very large, but we can still seek a steady state solution (after suitable detrending); (10) gives one. The result then follows from a property of undiscounted dynamic programming problems in which one can transit between any two states within a finite number of periods.

Given Proposition 1, the task now boils down to solving (10). It is relatively well-known that this problem has a recursive structure but typically suffers from a curse of dimensionality when skills are serially dependent (Fernandes and Phelan, 2000). However Fukushima and Waki (2009) show that it is possible to ameliorate this problem considerably once the skill process is taken to have a particular structure, and this is the route that I will take.

4 Calibration

This section describes the functional forms and parameter values I use in the simulations. My basic approach is to first posit a tax policy that resembles the current U.S. system and then choose the parameters so that the associated stationary equilibrium is consistent with U.S. data along several dimensions. Appendix B describes my measurement scheme. In the
discussion I associate parameters with empirical targets in the usual heuristic fashion.

Demographics. A model period stands for one year, and households can live from ages 25 to 100. I set the population growth rate to its data counterpart $\eta = 0.012$, and take the survival rates ψ_j from the U.S. life tables (Arias, Curtin, Wei, and Anderson, 2008).

Technology. The aggregate production function is Cobb-Douglas $F(K, N) = K^\alpha N^{1-\alpha}$ with capital share $\alpha = 0.382$, and I set the depreciation rate $\delta = 0.072$ so as to hit the 20.6% investment-output ratio in the data.

Preferences. Household utility takes the form:

$$u(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma}, \quad v(l) = \frac{\phi^{1+1/\epsilon}}{1 + 1/\epsilon}.$$

As a benchmark I use $\gamma = 1$ for the relative risk aversion coefficient and $\epsilon = 0.5$ for the Frisch labor supply elasticity. I choose the discount factor β to hit the capital-output ratio of 3.16 in the data, and set the share parameter ϕ so that hours $l = 0.33$ on average in the population.

Skill Process. The skill/wage process has the representation $\log(\theta_j) = e_j + z_j$, where $(e_j)_{j=1}^J$ is a deterministic age-dependent sequence and $(z_j)_{j=1}^J$ is stochastic. I specify these components using household-level wage data as follows. First, I regress log real wages on a cubic polynomial in age and a full set of year dummies. I use the predicted values from the former component as $(e_j)_{j=1}^J$, and, interpreting the residuals as draws from $(z_j)_{j=1}^J$, compute their cross-sectional autocovariances $\text{Cov}(z_j, z_{j-1})$. I next model $(z_j)_{j=1}^J$ as a Markov chain that discretizes the continuous state model

$$z_j = s_j + o_j, \quad j = 1, \ldots, J$$

$$s_j = \rho s_{j-1} + \nu_j, \quad \nu_j \sim N(0, \sigma^2_\nu), \quad j = 2, \ldots, J$$

$$s_1 \sim N(0, \sigma^2_{s_1})$$

$$o_j \sim N(0, \sigma^2_0), \quad j = 1, \ldots, J$$

where $((\nu_j, o_j)_{j=1}^J, s_1)$ are independent. Here I use two states for both the persistent component s_j and the transitory component o_j, so the process $(z_j)_{j=1}^J$ has four states. (But because $(o_j)_{j=1}^J$ is transitory, it is possible to formulate the dynamic mechanism design problem (10) recursively with two continuous state variables (Fukushima and Waki, 2009)). Then, I choose
$(\rho, \sigma_v, \sigma_o, \sigma_s) = (0.98, 0.13, 0.24, 0.27)$ so that the implied Markov chain matches the autocovariances $\text{Cov}(z_j, z_{j-i})$ as well as possible. Figure 1 illustrates the model’s fit with the data. Here the black dashed lines are point estimates from the data, the grey shaded areas are 95% confidence intervals, and the red solid lines are model implications.

In the above, I have used data on wages constructed from data on labor income and hours. The fact that wages are effectively observable in this fashion may seem to contradict the idea that the government cannot condition taxes on wages because they are unobservable. However we can reconcile the two by noting that as long as taxes do not depend directly on hours/wages, households in the economy have a (weak) incentive to report their hours/wages truthfully in a survey interview.

Government Policy. The tax system has two components. The first is a social security system which imposes a linear tax on labor income and pays out a constant benefit to those above age 65. I set the payroll tax rate to 10.6% and choose the benefit level so that the
GDP share of social security benefit payments is 3.5%, both as in the data. The second component is a progressive federal income tax which levies $\varphi_0(y - (y-\varphi_1 + \varphi_2)^{-1/\varphi_1})$ as a function of current taxable income y, defined as labor income plus asset income less one half of social security tax payments. Here, I take the values $(\varphi_0, \varphi_1) = (0.258, 0.768)$ from Gouveia and Strauss (1994) and let φ_2 adjust so that the government’s budget constraint holds. I assume $B_t = (1+\eta)^{t-1}B$ and choose G and B so that the GDP shares of government expenditures and government debt hit the data values 17.8% and 50.1% respectively.

5 Results

5.1 Welfare Gains

I now simulate the policy reform and quantify its impact on welfare. In setting up the status quo, I depart from CKK’s original analysis by choosing the level of government debt B optimally. Doing so brings the status quo capital-labor ratio (close) to the golden rule level, which allows me to isolate the gains attributable to improved incentives and social insurance from those due to the classical long-run effects of government debt on capital accumulation (Diamond, 1965). The status quo policy consists of a 22% flat tax on labor income with a deduction of about 1.2 times median income per household, zero taxes on asset income, and sizable government asset holdings (negative debt) which account for about 85% of the capital stock.

Table 1 summarizes the impact of the policy reform. Column W reports the welfare gain in terms of lifetime consumption equivalents, namely the percentage increase in consumption for all households at all dates and contingencies needed to generate an equivalent welfare increase (keeping labor supply constant). The number is large by conventional standards.

To highlight the source of this gain, columns C through Y report the long-run percentage

3 This difference from CKK’s result is mainly driven by a difference in the preference specification. Here, I have assumed a constant Frisch labor supply elasticity, which is known to nullify Erosa and Gervais’s (2002) case for taxing asset income in OG models (Garriga, 2003). Indeed, when I replicate CKK’s scenario (keeping B constant at its calibrated value) using my setup I find that the optimal asset income tax rate is no more than 5%. The number then goes to zero when B is chosen optimally; this part is consistent with CKK’s finding that the optimal asset income tax rate declines as B is reduced.
changes in per capita aggregates. Here, C is consumption, L is hours, N is effective labor input, K is capital, and Y is output. We can see a large increase in consumption and a moderate increase in hours. Column W_a reports the welfare gain that is attributable to these two effects at the aggregate level, namely the gain that would obtain if households in the status quo were to have their consumption and hours shifted by these amounts at all dates and contingencies. As we can see, this accounts for much of the total gain.

Distributional effects are critical for physically supporting these improvements in per capita aggregates, however. Indeed, columns L and N shows that the increase in per capita effective labor input far surpasses the increase in per capita hours, and this is possible only because of an effective increase in aggregate productivity that comes from a massive shift of labor supply toward productive households. The reform thus enlarges the social pie by motivating productive households to work harder.

In interpreting the above, note that a household in this economy can be productive for two reasons: because it is of a good age (its age j has a high c_j) or because it is of a good type (it has drawn a high z_j). This makes it interesting to examine the extent to which the productivity gain above is driven by a reallocation of labor supply across ages vis-a-vis across types. To quantify this point, let $(l_j, n_j)^J_{j=1}$ and $(l'_j, n'_j)^J_{j=1}$ denote the pre-reform and post-reform labor supply sequences, respectively, and define a hypothetical labor supply sequence $(\tilde{l}_j, \tilde{n}_j)^J_{j=1}$ by:

$$
\tilde{l}_j(\theta^j) = \frac{\sum_{\theta_j} l'_j(\theta^j) \pi_j(\theta^j)}{\sum_{\theta_j} l_j(\theta^j) \pi_j(\theta^j)} l_j(\theta^j) \quad \tilde{n}_j(\theta^j) = \theta_j \tilde{l}_j(\theta^j)
$$

for each j and θ^j. Next let (L, N), (L', N'), and (\tilde{L}, \tilde{N}) denote the aggregates of $(l_j, n_j)^J_{j=1}$, $(l'_j, n'_j)^J_{j=1}$, and $(\tilde{l}_j, \tilde{n}_j)^J_{j=1}$, respectively. Then we can think of $\log(N'/L') - \log(N/L)$ as the total increase in measured (labor augmenting) TFP following the reform and $\log(\tilde{N}/\tilde{L}) - \log(N/L)$ as the part of it that is attributable to the shift in labor supply across ages. Under this decomposition, the total increase in measured TFP is 6%, 1% of which is due to the reallocation of labor supply across ages. The remaining 5% is attributable to the reallocation across types.

Finally, columns W_L and W_H summarize the redistributional effects of the reform by reporting the gains that households would derive from it if they knew their initial skill levels in advance. Here, W_L is for the lowest initial skill level and W_H is for the highest. The welfare improvement is smaller for those with high initial skills. This is as expected given that they are working harder after the reform. Nevertheless, both types gain from the reform and the same is true for the other types in between.
5.2 Pareto Improving Transitions

Because the policy reform induces capital accumulation—as column K of table 1 shows—there is a transition phase during which heavy investment takes place and capital accumulates at a rapid rate. The welfare analysis above did not take this into account, however.

From a formal, mathematical point of view there is no problem with this: using a balanced growth path comparison for welfare calculations is justified by Proposition 1. But if we think through the economics behind this result, we can see that its validity depends on a peculiar (and in fact mathematically non-generic) property of of the social welfare function W, namely that it places zero Pareto weight on any finite number of cohorts. This makes the transition phase irrelevant for welfare and the “optimal transition path” indeterminate. Thus, there are infinitely many transition paths that attain the same welfare gain, some of which treat cohorts born at early dates better than others.

Given this, it would seem useful to ask if there is a transition path that treats all households in a respectable fashion, say one that Pareto dominates the pre-reform allocation, and if so, how long it will take. I address these questions below by directly constructing a such a path. In claiming Pareto dominance, I will be treating households alive in the first period with different skill histories as different households but those born in the first period or later from behind the veil of ignorance.

My starting point is an allocation \tilde{x} under which cohorts born before the reform are given the status quo consumption-labor profile $(\bar{c}_j, \bar{n}_j)_{j=1}^J$, all newborns are given the profile $(c^*_j, n^*_j)_{j=1}^J$ from Proposition 1, and the capital stock sequence equals that under the post-reform balanced growth path, $(K^*_t)_{t=1}^\infty$. This allocation satisfies all of the desired condition except for resource feasibility—the initial capital stock \bar{K}_1 is insufficient to support it (i.e., $\bar{K}_1 < K^*_1$). But because \tilde{x} makes those cohorts born over the first several periods strictly better off than they were under the status quo, it is possible to convert some of their consumption into investment while securing their pre-reform welfare. So a way to proceed is to check if doing so will suffice to make up for the shortage of initial capital.

To this end, I construct a new allocation \hat{x} by perturbing \tilde{x} as follows. First fix $H(\geq J)$ which indexes the length of the transition, and choose $((\Delta_{jt})_{j=1}^J, K_t)_{t=1}^H$ so as to minimize K_1 subject to the constraints:

$$\sum_{j=1}^J \sum_{\theta^j} c^*_j(\theta^j)\mu_{jt}(\theta^j) + K_{t+1} - (1-\delta)K_t + G_t = F(K_t, \tilde{N}_t), \quad \forall t = 1, ..., H$$

(13)
\(c^\Delta_{jt}(\theta^j) = \begin{cases}
 u^{-1}\left(u(c_j^*(\theta^j)) - \Delta_{jt}\right) & \text{if } 0 \leq t - j \leq H - J \\
 c_j^*(\theta^j) & \text{if } t - j > H - J \\
 \tilde{c}_j(\theta^j) & \text{if } t - j < 0
\end{cases} \) \hfill (14) \\

\[\sum_{j=1}^{J} \beta^{j-1} \Delta_{j,t+j}\left(\prod_{i=1}^{j} \psi_i\right) \leq W^* - \tilde{W}, \quad \forall t = 0, ..., H - J \] \hfill (15)

where \(K_{H+1} = K^*_{H+1}, (\tilde{N}_t)_{t=1}^{H} \) is the effective labor sequence under \(\tilde{x} \) and \(W^* (\tilde{W}) \) is the post-reform (pre-reform) welfare level. Let \(((\hat{\Delta}_{jt})_{j=1}^{J}, \hat{K}_t)_{t=1}^{H} \) denote a solution to this problem. Then define \(\hat{x} \) by taking \(\tilde{x} \) and replacing the consumption for cohorts \(0, ..., H - J \) by \(\hat{c}_{jt} = u^{-1}(u(c_j^*(\theta^j)) - \hat{\Delta}_{jt}) \) and the capital stock for periods \(1, ..., H \) by \((\hat{K}_t)_{t=1}^{H} \).

In words, this perturbation designates cohorts \(t = 0, ..., H - J \) as the “heavy investors,” whose consumption is reduced relative to \((c_j^*)_{j=1}^{J} \) for the sake of investment. The consumption reduction takes the form \((14) \) so as to preserve incentive compatibility (Rogerson, 1985), while the constraint \((15) \) insures that none of these cohorts are made worse off than under the status quo. Hence \(\hat{x} \) satisfies all of the desired conditions as long as \(\hat{K}_1 \leq \bar{K}_1 \).

Given this, I compute the minimum \(H \) for which \(\hat{K}_1 \leq \bar{K}_1 \) and report the number of cohorts required to accomplish the required investment in capital, \(NTC = H - J + 1, \) in the last column of table 1. Of course it is straightforward to modify this scheme in a way that benefits the older cohorts at the cost of having a longer transition.

5.3 Properties of the Unrestricted Optimal Tax System

Motivated by the preceding results, I go on to examine the quantitative characteristics of the post-reform, optimal unrestricted tax system \(T^* \) and provide some intuition on how it generates its incentive effects.

General Structure. I focus on a tax system \(T^* \) whose construction follows Kocherlakota (2005) and examine its long run properties, namely those that hold after the capital-labor ratio and households’ consumption-labor profiles have settled down to \(\kappa^* \) and \((c_j^*, n_j^*)_{j=1}^{J} \) from Proposition 1, respectively. I denote the associated factor prices by \(r^* = \hat{r}(\kappa^*) \) and \(w^* = \hat{w}(\kappa^*) \), and labor income by \(y_j^* = w^* n_j^* \) and \(y^* = (y_i^*)_{i=1}^{J} \). I also define \(Y^i* = \{y^i*(\theta^j) : \theta^j \in \Theta^j\} \) to be the set of labor income histories observed in equilibrium.

For the sake of exposition only, let us assume that there exists \((\hat{c}_j)_{j=1}^{J}, \check{c}_j : \mathbb{R}_+^j \to \mathbb{R}_+ \), such that \(c_j^*(\theta^j) = \hat{c}_j(y^i*(\theta^j)) \) for all \(j \) and \(\theta^j \). This assumption, which is the counterpart of Kocherlakota’s (2005) Assumption 1, ensures the existence of a \(T^* \) which collects no messages (i.e., \(M_{jt} \equiv 0 \)). A violation of this assumption would add complexity to equations \((16) \) and
Then in the long run, T^* becomes independent of calendar time and its tax function τ^* has the form:

$$\tau^*_j(h_j) = \tau_{j}^{n*}(y^j_i) + \tau_{j}^{a*}(y^j_i)r(k_j + b_j)$$

where τ_{j}^{n*} and τ_{j}^{a*} are both non-linear functions of the household’s history of labor income $y^j_j \equiv (y_i^j)_{i=1}^j$, $y_i \equiv w^*n_i$. The function τ^{a*} is characterized by the intertemporal condition

$$u'(\hat{c}_j(y^j_i)) = \beta u'(\hat{c}_{j+1}(y^{j+1}_i))[1 + (1 - \tau_{j+1}^{n*}(y^{j+1}_i))r^*]\psi_{j+1}$$

for all j and $y^{j+1}_i \in Y^{j+1*}$, while τ^{n*} is characterized by the present value relation:

$$\sum_{j=1}^{J} \beta^{j-1} u'(\hat{c}_j(y^j_i))\tau_{j}^{n*}(y^j_i) = \sum_{j=1}^{J} \beta^{j-1} u'(\hat{c}_j(y^j_i))\{y_j - \hat{c}_j(y^j_i)\}$$

for all $y^j_i \in Y^{j*}$. As well, $\tau_{j}^{a*}(y^j_i) = 1 + 1/r^*$ and $\tau_{j}^{n*}(y^j_i) = y_j + 1$ for $y^j_i \notin Y^{j*}$ so as to make such income histories budget infeasible.

Properties and Interpretation. There is an analytical proof that the asset income tax rates τ_{j}^{a*} are zero on average in the cross section (counting bequest taxation as a 100% tax on the asset stock upon death), and that they therefore generate no revenue (Kocherlakota, 2005). This means that all tax revenue must come from labor income taxes τ_{j}^{n*} through either a high marginal tax rate or a large lump sum tax. To see which is the case, let us look at how a household’s lifetime present value of labor income tax payments given skill history θ^j,

$$\sum_{j=1}^{J} q_j(\theta^j)\tau_{j}^{n*}(y^{j*}(\theta^j)),$$

relate to its present value labor income

$$\sum_{j=1}^{J} q_j(\theta^j)y^{j*}(\theta^j),$$

where the discount factor is defined in terms of the after tax interest rate:

$$q_j(\theta^j) = \prod_{i=2}^{j} \frac{1}{1 + (1 - \tau_{i}^{a*}(y^{i*}(\theta^j)))r^*}.$$
Figure 2: Summary of labor income tax and labor wedges.

The top left panel of figure 2 represents this relationship using a scatter plot. Here, each dot corresponds to a skill history θ^j realization and units are normalized on both axes so that the median value of (19) equals one. If we fit a straight line to these dots, the slope is 0.60 and the intercept is -0.55. This suggests that the labor income tax schedules τ^*_{nj} raise revenue through high marginal rates and use lump sum transfers to provide redistribution from high income earners to low income earners.

High marginal taxes on labor income may seem to contradict the fact that the tax reform generates much of its positive effects by improving incentives to work. To examine this point further, let us first look at the labor wedges ω^*_j, defined by

$$(1 - \omega^*_j(\theta^j))w^*\theta_ju'(c^*_j(\theta^j)) = v'(l^*_j(\theta^j))$$

for each j and θ^j, which measures the extent to which labor supply is distorted by the tax system. The top right panel of figure 2 plots the cross sectional average of $\omega^*_j(\theta^j)$ for each age j. As we can see, the average wedge is close to zero (and possibly negative) for young
households, and although it gradually increases with age, it never exceeds 10%. The bottom two panels of figure 2 summarize the dependence of $\omega_{j}^{n\ast}$ on current and past labor income by reporting the regression coefficients from:

$$\omega_{j}^{n\ast}(\theta^j) = \beta_{0n} + \beta_{1n} \log(y_{1n}^\ast(\theta^1)) + \cdots + \beta_{jn} \log(y_{jn}^\ast(\theta^j)) + \text{(approx. error)},$$

computed using a large number of skill history θ^j realizations. As we can see, the labor wedge declines moderately with current labor income, meaning that high labor income earners are given better incentives to produce on the margin. Its dependence on past labor income, on the other hand, seems limited.

As noted above, the asset income tax rate $\tau_{j}^{a\ast}$ is allowed to depend on current and past labor income, and this feature is essential for reconciling high marginal labor income tax rates and low labor wedges. This is especially true for the more productive households. To illustrate this point, figure 3 summarizes this dependence by reporting the regression

Figure 3: Summary of asset income tax.
coecients from:
\[
\tau^*_j(y^*_j(\theta_j)) = \beta_0 + \beta_1 \log(y^*_1(\theta^1)) + \cdots + \beta_j \log(y^*_j(\theta^j)) + \text{(approx. error)}
\]
computed using a large number of skill history \(\theta^j\) realizations. The effect that clearly stands out is the strong negative relationship between \(\tau^*_j\) and current labor income \(y^*_j\): a 1% decline in the latter is associated with as much as a 4-6% decline in the former. The presence of this non-separability is consistent with the findings of Albanesi and Sleet (2006), Golosov and Tsyvinski (2006), and Kocherlakota (2005), but here it seems helpful to give an alternative interpretation of its role: it serves as a device for encouraging labor supply by the wealthy, who are relatively old and have had high wages in the past. Because average wages follow a hump-shaped pattern over the life cycle and shocks to wages are persistent, such households are more likely to have high current wages than others. This explains how the tax system manages to keep the labor wedge low for high-wage households and thereby generate the right incentive effects, despite the seemingly high marginal labor income tax rates. The figure also suggests that the asset income tax rate \(\tau^*_j\) is increasing in previous years’ labor income, possibly up to 3 years.

6 Tentative Conclusions

The results obtained so far suggest that there is a potentially large gain from employing a tax system of the kind prescribed by the New Dynamic Public Finance, and that its main characteristics are the following: (a) tax revenue is generated by a high marginal labor income tax; (b) redistribution from high income households to low income households is provided through lump sum transfers; and (c) incentives to work are provided through a non-separability of the tax function in current labor and asset income.

An important caveat from a practical point of view is that the analysis did not take into account the additional costs of administration and/or compliance that the tax reform may induce. It is hard to see how large these costs might be, but Hall and Rabushka (1995) provide conservative estimates of how costly the current U.S. tax system is for these reasons and their numbers are by no means small. On the other hand, some optimism derives from the fact that the optimal non-linear tax requires no more record-keeping than is currently done by the U.S. Social Security system (which keeps track of all individuals’ labor income histories). At any rate, providing a serious quantification of the “cost side” of the reform

4In parallel work, Kitao (2010) effectively examines this mechanism in isolation by enlarging \(T^{CKK}\) in a way that allows for contemporaneous non-separabilities in labor and asset income. She highlights forces that are close to those described here.
remains an important goal for future research.

The most conspicuous shortcoming of the analysis for the time being, however, is that its characterization of the optimal tax system is only partial. For example, the exact nature of history dependence in the tax code and its role in generating the welfare gain remain obscure. At the time of writing it appears difficult to make good progress on this front using a straightforward variant of the mechanism design approach employed here, and in ongoing work I am therefore exploring an alternative route. The idea is to follow Huggett and Parra (2010) and seek a tax system: (i) that has a structure that is simple enough to permit the direct computation of the implied competitive equilibrium; (ii) and is approximately optimal in the sense that it generates a welfare gain whose size is close to what is attained by the fully non-linear tax examined here. If successful, this will provide both a (more or less) complete characterization of the optimal tax system and a laboratory for examining the roles and quantitative importance of its main features.

A Proof of Proposition 1

We first observe the following property of W:

Lemma 2. If $V_t(x) \to V_\infty$ as $t \to \infty$, $W(x) = V_\infty$.

Proof. Write:

$$\frac{1}{H^2 + J} \sum_{t=1}^{H^2} V_t(x) = \left(\frac{H + J}{H^2 + J} \right) \frac{1}{H + J} \sum_{t=1}^{H} V_t(x) + \left(\frac{H^2 - H}{H^2 + J} \right) \frac{1}{H^2 - H} \sum_{t=H+1}^{H^2} V_t(x).$$

As $H \to \infty$, the first term on the right hand side converges to zero, while the second term converges to V_∞. \qed

To proceed, let us reformulate the planning problem recursively following Fernandes and Phelan (2000) by introducing a new variable ν representing continuation utilities. Formally, a continuation utility as of age j given $(c_i, n_i)^j_{i=j}$, where $(c_i, n_i) : \Theta^j \to \mathbb{R}_+ \times [0, n_{\text{max}}]$ for each i, is $v_j : \Theta^{j-1} \to \mathbb{R}^{\Theta_{j-1}}$ such that

$$v_j(\theta^{j-1})(\theta'_{j-1}) = \sum_{i=j}^{J} \sum_{\theta'_j} \beta^{i-j} U(c_i(\theta^i), n_i(\theta^i)/\theta_i) \pi_i(\theta^i|\theta'_{j-1})$$

for all $(\theta^{j-1}, \theta'_{j-1})$, where $\Theta_0 = \Theta^0 \equiv \emptyset$. This defines a mapping $\Upsilon_j : (c_i, n_i)^j_{i=j} \mapsto v_j$. Also
define a sequence of functions \((D^I_j, D^P_j)_{j=1}^J\) by:

\[
D^I_j(c_j, n_j, v_{j+1}; \theta^i, \theta'_j) = U(c_j(\theta^i), n_j(\theta^i)/\theta_j) + \beta v_{j+1}(\theta^i)(\theta_j)
- U(c_j(\theta^i-1, \theta'_j), n_j(\theta^i-1, \theta'_j)/\theta_j) - \beta v_{j+1}(\theta^i-1, \theta'_j)(\theta_j)
\]

and

\[
D^P_j(c_j, n_j, v_j, v_{j+1}; \theta^i-1, \theta'_j-1) = v_j(\theta^i-1)(\theta'_j-1)
- \sum_{\theta_j} \{U(c_j(\theta^i), n_j(\theta^i)/\theta_j) + \beta v_{j+1}(\theta^i)(\theta_j)\} \pi_j(\theta_j|\theta'_j-1)
\]

for all \((j, \theta^i, \theta'_j, \theta'_j-1), (c_j, n_j, v_{j+1}) : \Theta^j \to \mathbb{R}_+ \times [0, n_{\text{max}}] \times \mathbb{R}^{\Theta_j}, v_j : \Theta^j-1 \to \mathbb{R}^{\Theta_j-1}\). Finally, let \(v_{j+1} \equiv 0\) and \(v_{j+1,t} \equiv 0\) for all \(t\) in what follows. (Note that there is no need to characterize the subset of \(\mathbb{R}^{\Theta_j-1}\) to which each \(v_j(\theta^i-1)\) must belong, given these terminal conditions and the fact that we will not be doing any backward induction in this proof.)

For a given initial condition \((\bar{K}_1, (\bar{v}_j)_{j=2}^J)\), where \(\bar{K}_1 \in \mathbb{R}_+\) and \(\bar{v}_j : \Theta^j-1 \to \mathbb{R}^{\Theta_j-1}\) for each \(j\), define the auxiliary planning problem as follows: Choose \(\xi = (x, ((v_{jt})_{j=1}^\infty)_{t=1}^H)\), where \(x\) is an allocation and \(v_{jt} : \Theta^j-1 \to \mathbb{R}^{\Theta_j-1}\) for each \((t, j)\), to maximize \(W(x)\) subject to the resource feasibility of \(x\),

\[
D^I_j(c_{jt}, n_{jt}, v_{j+1,t+1}; \theta^i, \theta'_j) \geq 0 \tag{20}
\]

\[
D^P_j(c_{jt}, n_{jt}, v_{jt}, v_{j+1,t+1}; \theta^i-1, \theta'_j-1) = 0 \tag{21}
\]

for all \((t, j, \theta^i, \theta'_j, \theta'_j-1)\), and the initial conditions \((K_1, (v_{j1})_{j=2}^J) = (\bar{K}_1, (\bar{v}_j)_{j=2}^J)\). Using (21), it is straightforward to see that \(W(x) = \liminf_{H\to\infty} \frac{1}{H} \sum_{t=1}^H v_{1t}\) for any \(\xi\) satisfying the constraints. As well, because each \(n_{jt}\) is bounded and the resource constraint must hold at each \(t\), we may without loss restrict each \(c_{jt}, v_{jt}\), and \(K_t/(1+\eta)^{t-1}\) to be bounded from above and below by appropriate constants. Let \(W^{APP*}(\bar{K}_1, (\bar{v}_j)_{j=2}^J)\) denote the maximum objective value of this problem as a function of its initial condition. \(W^{APP*}(\bar{K}_1, (\bar{v}_j)_{j=2}^J) = -\infty\) if the constraint set given \((\bar{K}_1, (\bar{v}_j)_{j=2}^J)\) is empty.

The following lemma clarifies the relationship between the auxiliary planning problem and the planning problem.

Lemma 3. If, for a given \(\bar{K}_1\),

\[
(\bar{v}_j)_{j=2}^J \in \arg \max_{(v_{j1})_{j=2}^J} W^{APP*}(\bar{K}_1, (v_{j1})_{j=2}^J), \tag{22}
\]
the x-component of a solution to the auxiliary planning problem starting from $(\bar{K}_1, (\bar{v}_{j1})^j_{j=2})$ solves the planning problem starting from \bar{K}_1.

Proof. If x^* satisfies the given description, it is resource feasible by definition, and is incentive compatible by (20), (21), and the one-shot deviation principle. To see that it is optimal, choose any feasible $x = ((c_{jt}, n_{jt})^j_{j=1})_{t=1}^\infty$ and define $((v_{jt})^j_{j=1})_{t=1}^\infty$ by $v_{jt+1} = T_j(c_{jt}, n_{jt})$ for each j and t. Then $\xi = (x, ((v_{jt})^j_{j=1})_{t=1}^\infty)$ satisfies the constraints of the auxiliary planning problem starting from $(\bar{K}_1, (\bar{v}_{j1})^j_{j=2})$, so

$$W(x) \leq W^{APP*}(\bar{K}_1, (\bar{v}_{j1})^j_{j=2}) \leq W^{APP*}(\bar{K}_1, (\bar{v}_{j1})^j_{j=2}) = W(x^*)$$

as desired. \qed

Let us call $((c_j, n_j, v_j)^j_{j=1}, K)$ a stationary solution to the auxiliary planning problem if $\xi = (((c_{jt}, n_{jt}, v_{jt}) = (c_j, n_j, v_j))^j_{j=1}, K_t = (1 + \eta)^{t-1}K_{t-1}$ solves the auxiliary planning problem starting from $(K_1 = K, (\bar{v}_{j1} = v_{j1})^j_{j=2})$.

Lemma 4. Let $((c_j^*, n_j^*, v_j^*)^j_{j=1}, K^*)$ satisfy the conditions in Proposition 1, $v_j^* = \Upsilon_j((c_i^*, n_i^*)^i_{i=1})$ for each j, and

$$K^* = \kappa^* \sum_{j=1}^J \sum_{\theta^j} \left(\frac{1}{1 + \eta} \right)^{j-1} n_j^*(\theta^j) \pi_j(\theta^j).$$

(23)

Then $((c_j^*, n_j^*, v_j^*)^j_{j=1}, K^*)$ is a stationary solution to the auxiliary planning problem.

Proof. Define $\xi^* = (((c_{jt}^*, n_{jt}^*, v_{jt}^*) = (c_j^*, n_j^*, v_j^*))^j_{j=1}, K_t^* = (1 + \eta)^{t-1}K_{t-1}$. This satisfies resource feasibility by (11), $\hat{f}(\kappa^*) = \eta$, (23), and Euler’s theorem. It also satisfies (20) and (21) by (12) and the definition of $(v_j^*)^j_{j=1}$.

To verify its optimality, let us first follow Fernandes and Phelan (2000) and rewrite the dynamic mechanism design problem in the proposition as: Choose $(c_j, n_j, v_j)^j_{j=1}$, where $v_j : \Theta^{j-1} \rightarrow \mathbb{R}^{\Theta_{j-1}}$ for each j, to maximize v_1 subject to (11) and

$$D_j^I(c_j, n_j, v_{j+1}; \theta^j, \theta^j) \geq 0$$

$$D_j^P(c_j, n_j, v_{j+1}; \theta^j, \theta^j) = 0$$

for all $(j, \theta^j, \theta^j, \theta_{j-1})$. Under the change of variables with $(u(c_j), v(n_j), v_j)^j_{j=1}$ instead of $(c_j, n_j, v_j)^j_{j=1}$ as the choice variable, this problem is smooth and concave. Moreover, once $(v_j)^j_{j=1}$ is substituted out as a linear function of $(u(c_j), v(n_j))^j_{j=1}$ using $(\Upsilon_j)^j_{j=1}$, the constraint (25) drops out and the constraint set has a non-empty interior. Hence there exist Lagrange
multipliers \((\lambda^R, (\lambda^I_j, \lambda^P_j)_{j=1}^J)\) such that \((c^*_j, n^*_j, v^*_j)_{j=1}^J\) maximizes the Lagrangian:

\[
L^{MDP}((c_j, n_j, v_j)_{j=1}^J) = v_1 - \lambda^R G + \sum_{j=1}^J \sum_{\theta_j} \left(\frac{\lambda^R}{(1 + \eta)^{j-1}} \{ \hat{w}(\kappa^*) n_j(\theta^j) - c_j(\theta^j) \} + \sum_{\theta'_{j}} \lambda^I_{j}(\theta^j, \theta'_{j}) D^I_{j}(c_j, n_j, v_{j+1}; \theta^j, \theta'_{j}) + \sum_{\theta'_{j-1}} \lambda^P_{j}(\theta^{j-1}, \theta'_{j-1}) D^P_{j}(c_j, n_j, v_{j+1}; \theta^{j-1}, \theta'_{j-1}) \right) \pi_j(\theta^j)
\]

and the complementary slackness conditions hold.

Consider the following Lagrangian for the auxiliary planning problem:

\[
L^{APP}(\xi) = \lim_{H \to \infty} \inf_{H} \left\{ v_{1t} + \frac{\lambda^R}{(1 + \eta)^{t-1}} \{ F(K_t, N_t) - C_t - K_{t+1} + (1 - \delta)K_t - G_t \} + \sum_{j=1}^J \sum_{\theta_j} \left(\sum_{\theta'_{j}} \lambda^I_{j}(\theta^j, \theta'_{j}) D^I_{j}(c_{jt}, n_{jt}, v_{j+1,t+1}; \theta^j, \theta'_{j}) + \sum_{\theta'_{j-1}} \lambda^P_{j}(\theta^{j-1}, \theta'_{j-1}) D^P_{j}(c_{jt}, n_{jt}, v_{j+1,t+1}; \theta^{j-1}, \theta'_{j-1}) \right) \pi_j(\theta^j) \right\}.
\]

Using \(F(K_t, N_t) \leq (\hat{r}(\kappa^*) + \delta)K_t + \hat{w}(\kappa^*)N_t, \hat{r}(\kappa^*) = \eta,\) and the boundedness condition on \(\xi,\) we obtain

\[
L^{APP}(\xi) \leq \lim_{H \to \infty} \inf_{H} \frac{1}{H} \sum_{t=1}^H L^{MDP}((c_{j,t+j-1}, n_{j,t+j-1}, v_{j,t+j-1})_{j=1}^J).
\]

It then follows from the previous paragraph that \(L^{APP}\) is maximized at \(\xi^*\) and that the complementary slackness conditions hold.

Now suppose \(\xi^*\) did not solve the auxiliary planning problem, and let \(\xi^{**}\) denote a superior choice. Then using the constraints and the complementary slackness conditions, we have

\[
L^{APP}(\xi^{**}) \geq W(x^{**}) > W(x^*) = L^{APP}(\xi^*),
\]

where \(x^*\) and \(x^{**}\) are the x-components of \(\xi^*\) and \(\xi^{**}\), respectively. This contradicts the above.

\[\square\]

Lemma 5. \(W^{APP*}\) is a constant function.

Proof. Pick any two initial conditions \((\bar{K}_1, (\bar{v}_j)_{j=2}^J)\) and \((\bar{K}'_1, (\bar{v}'_j)_{j=2}^J)\), and let \(\xi\) and \(\xi'\) solve the corresponding auxiliary planning problems. Then consider a deviation from \(\xi\) of the
following form. For the first H periods set the consumption-labor profiles for all newborns to $(c_j = 0, n_j = n_{\text{max}})_{j=1}^H$. From then on, set them to what they are under ξ'. For H sufficiently large, this together with a capital stock sequence which equals that under ξ' for $t \geq H + 1$ defines a feasible allocation. Since this deviation equals ξ' after a finite number of periods, the no-discounting property of W implies that it gives welfare $W^{APP*}(\tilde{K}_1', (\tilde{v}_{j1})_{j=2}^T)$. It follows that $W^{APP*}(\tilde{K}_1, (\tilde{v}_{j1})_{j=2}^T) \geq W^{APP*}(\tilde{K}_1', (\tilde{v}_{j1})_{j=2}^T)$. Use symmetry. \hfill \Box

Lemma 6. If x^* satisfies the conditions in Proposition 1, it solves the planning problem.

Proof. Let $((c^*_j, n^*_j)_{j=1}^T, \kappa^*)$ and x^* satisfy the conditions in Proposition 1. Define $(v^*_j)_{j=1}^T$ and K^* as in Lemma 4. Let $W^{PP*}(\tilde{K}_1)$ denote the maximum value of the objective in the planning problem. We then have:

$$W(x^*) = v^*_1 \quad (\text{by Lemma 2, since } (c^*_{jt}, n^*_{jt}) \to (c^*_j, n^*_j) \text{ and so } V_t(x^*) \to v^*_1 \text{ as } t \to \infty)$$

$$= W^{APP*}(K^*, (v^*_j)_{j=2}^T) \quad (\text{by Lemma 4})$$

$$= W^{APP*}(\tilde{K}_1, (\tilde{v}_{j1})_{j=2}^T) \quad (\text{by Lemma 5, where } (\tilde{v}_{j1})_{j=2}^T \text{ satisfies (22)})$$

$$= W^{PP*}(\tilde{K}_1) \quad (\text{by Lemma 3})$$

Hence x^* solves the planning problem. \hfill \Box

The following lemma, which is a straightforward adaptation of Kocherlakota (2005), concludes the proof:

Lemma 7. If x^* solves the planning problem, there exists a tax system T^* such that (T^*, x^*) solves (5) with $\mathcal{T} = \mathcal{T}^*$.

Proof. We first construct a tax policy T^* and a candidate equilibrium as follows. Write $x^* = ((c^*_{jt}, n^*_{jt})_{j=1}^T, K^*)_{t=1}^\infty$. For each t, define C^*_t and N^*_t by aggregating $(c^*_{jt}, n^*_{jt})_{j=1}^T$ and set factor prices to $r^*_t = F_K(K^*_t, N^*_t) - \delta$ and $w^*_t = F_N(K^*_t, N^*_t)$. Let $M^*_jt = \Theta_j$ and $m^*_j(\theta^j) = \theta_j$ for each (t, j, θ^j). Let each τ^*_jt take the form:

$$\tau^*_jt(h_{jt}) = \tau^{n*_t}(\theta^j, w_t n_{jt}) + \tau^{a*_t}(\theta^j, w_t n_{jt}) r_t(k_{jt} + b_{jt})$$

and specify $(\tau^{n*_t}_jt, \tau^{a*_t}_jt)$ as follows. First let $((\tau^{a*}_jt)_{j=1}^T)_{t=1}^\infty$ satisfy:

$$u'(c^*_{jt+t,j}(\theta^j)) = \beta u'(c^*_j_{t+1,t+j}(\theta^{j+1})) [1 + (1 - \tau^{a*}_jt_{t+1,t+j}(\theta^{j+1})) r^*_t_{t+1,j}] \psi_{j+1} \quad (26)$$
for all \((t, j, \theta^{j+1})\), and choose \(((\tau_{jt}^{n, k, b})_{j=1}^{J}, B_{t})_{t=1}^{\infty} \) so as to satisfy the budget constraints

\[
\begin{align*}
 c_{j,t+j}^{*}(\theta^{j}) + k_{j+1,t+j+1}^{*}(\theta^{j}) + b_{j+1,t+j+1}^{*}(\theta^{j}) \\
 = w_{t+j}^{*} n_{jt}^{*}(\theta^{j}) + [1 + (1 - \tau_{jt+j}^{*}(\theta^{j}))]r_{t+j}^{*} (k_{j,t+j}^{*}(\theta^{j-1}) + b_{j,t+j}^{*}(\theta^{j-1})) - \tau_{jt+j}^{n}(\theta^{j}),
\end{align*}
\]

for all \((t, j, \theta^{j})\), the initial conditions on asset holdings, and the aggregation conditions

\[
(K_{t+1}^{*}, B_{t+1}^{*}) = \sum_{j=1}^{J} \sum_{\theta^{j}} (k_{j+1,t+1}^{*}(\theta^{j}), b_{j+1,t+1}^{*}(\theta^{j})) \mu_{jt}(\theta^{j})
\]

for all \(t\). Then, set

\[
(\tau_{jt}^{n, k, b}(\theta^{j}, w_{t} n_{jt}), \tau_{jt}^{*}(\theta^{j}, w_{t} n_{jt})) = \begin{cases}
(\tau_{jt}^{n}(\theta^{j}), \tau_{jt}^{*}(\theta^{j})) & \text{if } w_{t} n_{jt} = w_{t}^{*} n_{jt}(\theta^{j}) \\
(w_{t} n_{jt} + 1/\tau_{t}^{*} + 1) & \text{otherwise}
\end{cases}
\]

for each \((t, j, \theta^{j}, w_{t} n_{jt})\).

I claim that \((T^{*}, x^{*})\) solves the optimal tax problem (5) under \(T^{*}\). Since any equilibrium allocation is feasible, it is enough to show that \(((c_{jt}^{*}, n_{jt}^{*}, k_{jt}^{*}, b_{jt}^{*}, m_{jt}^{*})_{j=1}^{J})_{t=1}^{\infty}, (C_{t}^{*}, N_{t}^{*}, K_{t}^{*})_{t=1}^{\infty}, (w_{t}^{*}, r_{t}^{*})_{t=1}^{\infty}\) is an equilibrium given \(T^{*}\). Markets clear and the marginal product conditions hold by construction, so it remains to check that households are optimizing. (The government’s budget constraint is then implied by Walras’ law). The argument for cohorts \(t \geq 0\) is the following. If a household chooses \((m_{jt+j})_{j=1}^{J}\), its labor choice must satisfy \(n_{jt+j}^{*}(\theta^{j}) = n_{jt+j}^{*}(m_{jt+i}(\theta^{i}))_{i=1}^{J}\) for all \((j, \theta^{j})\) so as to be budget feasible. Given this, it follows from (26) and (27) that choosing \(c_{j,t+j}^{*}(\theta^{j}) = c_{j,t+j}^{*}(m_{jt+i}(\theta^{i}))_{i=1}^{J}\) and \(k_{j+1,t+j+1}^{*}(\theta^{j}) = k_{j+1,t+j+1}^{*}(m_{jt+i}(\theta^{i}))_{i=1}^{J}\) for all \((j, \theta^{j})\) is optimal. The conclusion then follows from the incentive compatibility of \(x^{*}\). The argument for cohorts \(t < 0\) is the same.

\(\square\)

B Measurement

B.1 Aggregates

Data for aggregate and policy variables are from the Bureau of Economic Analysis’s National Income and Product Accounts (NIPA) and Fixed Asset Tables (FA), the Federal Reserve Board’s Flow of Funds Accounts (FOF), the Economic Report of the President (EROP), and the Social Security Administration’s Annual Statistical Supplement to the Social Security Bulletin (SSA).
The mapping between model and data variables is straightforward for the following: the population growth rate is that of the civilian non-institutional population of ages 16 and above (EROP B-35); government debt is gross federal debt (EROP B-78); the social security tax rate is the sum of Old Age and Survivors Insurance (OASI) contribution rates for employers and employees (SSA 2.A3); and social security benefit expenses are those for the OASI (SSA 4.A1).

For the remaining variables, the mapping generally follows Cooley and Prescott (1995): capital is the total value of private fixed assets (FA 1.1), consumer durables (FA 1.1), inventories (NIPA 5.7.5.A/B), and land (FOF B.100, B.102, B.103); the components of gross domestic income (NIPA 1.10) are allocated to capital and labor income assuming that factor shares among the ambiguous components (components other than compensation of employees, net interest, rental income, and corporate profits) are the same as those among total income; service flows from consumer durables are imputed assuming that they yield the same rate of return as other components of capital; and gross domestic product/income and its components (NIPA 1.1.5 and 1.10) are adjusted by adding the imputed service flows from durables to consumption and capital income.

The empirical targets used in the calibration are average values for years 1980-2007 based on the measurement scheme above.

B.2 Wages

Household-level data on income, labor supply, and age are obtained from the Panel Study of Income Dynamics (PSID), waves 1968-2007. Nominal wages are measured as ratios of annual labor income to annual hours worked, both head and wife combined. Real wages are nominal wages deflated by the year’s Consumer Price Index. A household’s age is the age of its head.

For each wave, a household is dropped from the sample if it fails to meet any of the following criteria: the household belongs to the Survey Research Center sample; its head is between ages 25 and 60; its head’s age is non-decreasing in calendar time; its nominal wage is no less than 1/2 of the corresponding year’s federal minimum wage; its annual labor supply is no less than 520 hours and no more than 10,400 hours; and its income is not top-coded.

References

