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Abstract

We deduce discrete compactness of Rellich type for some discontinuous Galerkin finite element meth-
ods (DGFEM) including hybrid ones, under fairly general settings on the triangulations and the finite
element spaces. We make use of regularity of the solutions to an auxiliary second-order elliptic boundary
value problem as well as the error estimates of the associated finite element solutions. The present results
can be used for analyzing DGFEM applied to some boundary value and eigenvalue problems, and also to
derive the discrete Poincaré-Friedrichs inequalities.
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1 Introduction

In recent years, much attention has been drawn to the discontinuous Galerkin finite element methods (DGFEM) [4,
9, 16, 24]. They use discontinuous approximate functions, where the discontinuity is dealt with by the inter-
element Lagrange multiplier and/or interior penalty methods. Such methods have a merit that various approx-
imate functions besides the usual piecewise interpolation polynomials can be used, since the inter-element
continuity and unisolvence conditions are much relaxed. In particular, they are expected to be more flexible
in element shapes than classical FEM.

It is to be noted here that they are closely related to the non-conforming and hybrid methods, which use
discontinuous approximate functions, and the latter of which is characterized by the use of inter-element
Lagrange multipliers [28]. Simplifying the hybrid displacement method of Tong [14, 31], the present author
and his coauthor developed some finite elements in a series of papers e.g. [20, 21], but such an attempt
got only partial success because of lack of effective stabilization methods [25]. In this respect, the interior
penalty approach [2] is now recognized to be crucial in both handling with the inter-element discontinuity
and assuring numerical stability.

Stimulated by rapid development of DGFEM, the present author and his coworkers proposed a hybrid
displacement type DGFEM by stabilizing the above old method using the interior penalty technique. They
showed the idea for the 2D Poisson equation and the plane stress problem with reasonable numerical re-
sults [22, 27]. It turned out that such an approach is actually available as a finite element method by appropri-
ate choice of the stabilization coefficients, and it is fairly robust to deformation of element shape. Moreover,
it can be used just like the conventional finite element methods: usual element-by-element procedures are
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available, and mixed use with the conventional elements is possible. See also [12, 13] for a closely related
approaches.

Since such formulations make full use of discontinuous approximate functions strongly dependent on
triangulations, some standard tools in numerical functional analysis may not be available in their genuine
forms. An important example of such techniques and results is the Rellich selection theorem [10, 30], which
states that any weakly convergent sequence inH1(Ω) (or its closed subspace) for the bounded Lipschitz
domainΩ is strongly convergent inL2(Ω). This theorem and similar ones are frequently employed for
spectral and resolvent analyses of elliptic operators such as the Laplacian, and also for analysis of linear or
semi-linear Poisson-like problems with lower-order linear or nonlinear terms. Moreover, the results obtained
by such analyses are directly applicable to the relatedH1-conforming finite elements.

On the other hand, if we want to use similar arguments in DGFEM, which are notH1-conforming in
principle, we must establish appropriate discrete analogs of the Rellich theorem [10, 30]. Such discrete com-
pactness properties have played important roles especially in the analysis of edge finite elements for electro-
magnetics [7, 18, 19]. Moreover, difficulties of DGFEM applied to Laplace and various spectral problems
are discussed e. g. in [3, 16], and are essentially related to the discrete compactness.

In this paper, we will first explain some DGFEM for 2D Poisson-like problems including hybrid ones.
In particular, the interior penalty term and the lifting operator are introduced to the bilinear forms to assure
numerical stability of the associated DGFEM [4, 12, 13, 26]. For simplicity, we only consider symmetric
bilinear forms, and omit the analysis of non-symmetric DGFEM. Then we discuss the discrete compactness
properties of Rellich type, which will play important roles in numerical analysis of DGFEM. We will prove
our main results under some popular hypotheses (cf. e.g. [4, 9]), with some observations on sufficient
conditions for such hypotheses.

Some related results are also reported in e.g. [3, 6], in which various discrete compactness properties are
derived from some discrete Poincaré-Friedrichs inequalities. On the contrary, our method utilizes some error
estimates of the solutions of auxiliary problems with regularity, and is completely within the framework of
the Hilbert space method. It is also analogous to the methods previously used by the present author to derive
discrete compactness for the edge finite elements [18, 19], and may be effective in some cases, although it
might be difficult to apply to non-Hilbertian cases.

2 Preliminaries and DGFEM

2.1 Auxiliary problem and notations

Let Ω ⊂R2 be a bounded polygonal domain with boundary∂Ω. ForΩ, we can define the Hilbertian Sobolev
spacesL2(Ω) andHκ(Ω) (κ > 0), where the fractional cases (κ /∈N ) are included [5, 9]. The inner products
of bothL2(Ω) andL2(Ω)2 are designated by(·, ·)Ω, with the associated norms done by‖ · ‖Ω. Furthermore,
the norms and the standard semi-norm ofHκ(Ω) are denoted by‖ · ‖κ,Ω and | · |κ,Ω, respectively, where
|v|2κ,Ω = ‖v‖2

κ,Ω −‖v‖2
κ∗,Ω for v∈ Hκ(Ω) (κ∗ = [κ] for κ /∈ N andκ∗ = κ −1 for κ ∈ N ). For these spaces

associated to domains other thanΩ, the same notations of spaces, norms etc. will be used withΩ replaced
appropriately.

Let us consider a subset∂ΩD of ∂Ω, which either is empty or consists of finitely many closed segments.
Then we introduce a closed subspaceH1

D(Ω) of H1(Ω) by

H1
D(Ω) = {v∈ H1(Ω) ; v = 0 on∂ΩD} , (1)

which reduces toH1(Ω) andH1
0(Ω) respectively when∂ΩD = /0 and∂ΩD = ∂Ω.

Using this space, let us define an auxiliary boundary value problem : givenf ∈ L2(Ω), find u∈ H1
D(Ω)

such that
(∇u,∇v)Ω +(u,v)Ω = ( f ,v)Ω ; ∀v∈ H1

D(Ω) , (2)

where∇ denotes the gradient operator. The corresponding partial differential equation is−∆u+u = f , and
the boundary conditions on∂Ω and∂Ω\∂ΩD are the homogeneous Dirichlet and Neumann ones, respec-
tively. If we omit the term(u,v)Ω in (2), we have the popular Poisson problem.
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The uniqueness and existence ofu of (2) in H1
D(Ω) are trivial, andu also belongs toH

3
2+σ (Ω) for a

certainσ ∈]0, 1
2] along with the estimation

‖u‖ 3
2+σ ,Ω ≤CD‖ f‖Ω , (3)

whereCD > 0 is a constant independent off , cf. [15]. Thus the traces ofu and∇u to any piecewise smooth
arcγ ⊂ Ω (= closure ofΩ) are well-defined as functions inL2(γ) andL2(γ)2, respectively.

2.2 Definitions and notations for triangulations

We first construct a family of triangulations{T h}h>0 of Ω by polygonal finite elements (or simply elements) :
eachT h consists of a finite number of elements, and each elementK ∈T h is a boundedm-polygonal (open)
domain (Fig.1), wherem is an integer≥ 3 and can differ withK. Thus the boundary∂K of K ∈T h is a closed
simple polygonal curve composed ofmedges. We assume thatm is bounded from above by a positive integer
M (≥ 3), which is common to all the triangulations in{T h}h>0. Notice here that non-convex elements are
available form≥ 4. We use the notatione to denote an edge ofK, which is assumed to be closed for
convenience. The totality of edges ofK ∈ T h andT h are denoted byE K andE h, respectively

For theoretical treatment, we must impose some “regularity” conditions on the family{T h}h>0 [9, 11].
We omit the details of regularity here, but, besides the trivial conditions such as∪K∈T hK = Ω andK∩K′ = /0
for mutually differentK, K′ ∈ T h, we require some additional conditions. In particular, eachK is not “too
thin”, and the intersection of closures of mutually different two elementsK, K′ ∈T h is exclusively one of the
following three sets : (i) empty set, (ii) one vertex, and (iii) one edge. Here we permit the flat interior angle to
deal with the “hanging” nodes [9] (Fig. 2).1 The use of such nodes in DGFEM is effective to avoid the MPC
(multi-point constraint) techniques employed in various exiting FEM codes [23, 29], and is also convenient
in adaptive mesh refinements [9]. We will later try to present some additional regularity or geometrical
conditions related to triangulations for DGFEM.

For each triangulationT h, we define its “skeleton”Γh as the union of edges inE h: Γh = ∪e∈E he. For
simplicity, we assume that the triangulations are so constructed that any edges intersecting with∂ΩD are
entirely contained in∂ΩD. In other words, such edges have no common points in∂Ω\∂ΩD.

The diameter and measure ofK are denoted byhK and |K|, respectively, while the length of an edge
e∈ E K by |e|. Furthermore,h = maxK∈T h hK . We will use(·, ·)K and‖ · ‖K for bothL2(K) andL2(K)2, and
also define, for ˆu, v̂∈ L2(∂K),

〈û, v̂〉∂K =
∫

∂K
ûv̂ds, |v̂|∂K = 〈v̂, v̂〉1/2

∂K , (4)

whereds is the infinitesimal line element on∂K. Similarly, 〈·, ·〉e and| · |e are defined for each edgee∈ E K .
On the boundaries∂Ω of Ω and∂K of K, the outward unit normal is well-defined almost everywhere, and is
denoted byn = {n1,n2}.
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Figure 1:m-polygonal elementK ; non-convex case

1Strictly speaking, a vertex with the flat angle may not be a hanging node but rather a kind of
degenerated one. Analysis of degenerated nodes in classical FEM is not necessarily easy [17, 32].
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Figure 2: Example of triangulation with hanging nodes

2.3 Function spaces associated to triangulations

OverT h, we consider the “broken” or piecewise Sobolev spaces(κ > 0) :

Hκ(T h) = {v∈ L2(Ω) ; v|K ∈ Hκ(K) (∀K ∈ T h)} , (5)

which can be identified withΠK∈T hHκ(K), whereHκ(K) is the Sobolev space of (possibly fractional) order
κ overK. The norm and the standard semi-norm of this space are defined as usual and denoted by‖ · ‖κ,T h

and | · |κ,T h, respectively. Forv ∈ H
1
2+σ (T h) (σ > 0) andK ∈ T h, its trace to∂K is well defined as an

element ofL2(∂K) and denoted byv|∂K or simply v, which can be double-valued on edges shared by two

elements [4, 5, 9]. Forv∈H
3
2+σ (T h) (σ > 0), we can define the trace of∇v to ∂K and the normal derivative

∂v/∂n there in theL2 senses.
On Γh of T h, we consider a kind of flux ˆv ∈ L2(Γh), which is single-valued on each edge shared by

two elements, unlike various double-valued ones [4, 9]. To deal with the boundary condition in (1), define a
subspace ofL2(Γh) by

L2
D(Γh) = {v̂∈ L2(Γh) ; v̂ = 0 on∂ΩD} . (6)

For each{T h}h>0, let us define some (semi-)norms for arguments{v, v̂}, cf. [9]:

‖v‖2
h = ‖v‖2

Ω + ∑
K∈T h

∑
e∈E K

|e| · |v|2e ; ∀v∈ H
1
2+σ (T h) , (7)

|{v, v̂}|2h = ‖∇hv‖2
Ω + ∑

K∈T h
∑

e∈E K

1
|e|

|v− v̂|2e ; ∀{v, v̂} ∈ H1(T h)×L2(Γh) , (8)

9{v, v̂}92
h = |{v, v̂}|2h + ∑

K∈T h
∑

e∈E K

|e| · |∇v|2e ;∀{v, v̂} ∈ H
3
2+σ (T h)×L2(Γh) , (9)

whereσ > 0, v oneor (v|K)|e implies the trace ofv|K to e∈ E h, ∇v oneor ∇(v|K)|e does the trace of∇(v|K)
to e, and∇h : H1(T h)→ L2(Ω)2 is characterized by(∇hv)|K = ∇(v|K) for v∈ H1(T h) andK ∈T h. Notice
here thatv and∇v can be double-valued one but v̂ is not so. All of these (semi-)norms are mesh-dependent.
The first one is a norm, while the other two are semi-norms in general but become norms if∂ΩD has positive
total length, cf. [4].

2.4 Lifting operators

To consider the local lifting operator [4] for eachK ∈ T h, let us introduce

QK = finite dimensional subspace ofL2(K) , such as the space

Pk(K) of polynomials onK of degree≤ k (k = 0,1,2, ..) . (10)
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Then, the local lifting operatorRK : g ∈ L2(∂K) 7→ p ∈ (QK)2 is well-defined as : giveng ∈ L2(∂K), find
p = {p1, p2} ∈ (QK)2 such that

(p,q)K = 〈g,q·n〉∂K ; ∀q = {q1,q2} ∈ (QK)2 , (11)

whereq · n = q1n1 + q2n2, and the minus sign is sometimes added to the right-hand side, cf. e.g. [4].
IdentifyingQh := ΠK∈T hQK with a subspace ofL2(Ω) and making the identificationΠK∈T h(QK)2 = (Qh)2,
the global lifting operator is defined by

Rh : g̃ = {g∂K}K∈T h ∈ ΠK∈T hL2(∂K) 7→ {RKg∂K}K∈T h ∈ (Qh)2 ⊂ L2(Ω)2 . (12)

Sincev̂ ∈ L2(Γh) is single-valued on every edgee∈ E h, it can be naturally identified with an element
of ΠK∈T hL2(∂K), which is denoted again by ˆv for simplicity. On the other hand, the trace ofv∈ H1(T h)
to e may be double-valued ife 6⊂ ∂Ω. To useRh for v∈ H1(T h), let us define an operatorSh : H1(T h) →
ΠK∈T hL2(∂K) by

Shv = {(v|K)|∂K}K∈T h . (13)

We can now operateRh onShv for v∈ H1(T h) to findRhShv∈ (Qh)2 ⊂ L2(Ω)2.

2.5 Finite element spaces

To approximate{v, v̂} ∈ H
3
2+σ (T h)×L2(Γh) (0< σ ≤ 1

2) associated toT h, let us prepare two finite dimen-
sional spaces :

Uh = finite dimensional subspace ofH
3
2+σ (T h) (0 < σ ≤ 1

2
) , (14)

Ûh = finite dimensional subspace ofL2(Γh) or C(Γh) , (15)

whereC(Γh) denotes the space of continuous functions onΓh. Examples ofUh areΠK∈T hPk(K) (k ∈ N),
while those ofÛh areΠe∈E hPk(e) (k∈N) or their subsets inC(Γh), wherePk(e) is the space of polynomials
on e of degree≤ k. In the present setting, ˆvh ∈ Ûh is not double-valued on each edgee. Moreover, to deal
with the homogeneous Dirichlet condition in (1), let us introduce the subspace ofÛh by

Ûh
D = {v̂h ∈ Ûh; v̂h = 0 on∂ΩD} . (16)

From the assumptions onΓh, the above condition on ˆvh is equivalent to : ˆvh vanishes completely on every
edge contained inΓh∩∂ΩD.

Then the finite element spaces are given by

Vh = Uh×Ûh , Vh
D = Uh×Ûh

D . (17)

Under appropriate conditions on{T h}h>0 andVh, we can show9 ·9h is equivalent to| · |h overVh, cf. [4].
We also needQK for eachK ∈ T h to defineQh and useRh.

2.6 Bilinear forms

Let us consider two symmetric bilinear forms associated to−∆ [26, 27] :

Bh({u, û},{v, v̂}) = (∇hu,∇hv)Ω + ∑
K∈T h

(
〈∂u

∂n
, v̂−v〉∂K + 〈∂v

∂n
, û−u〉∂K

)
+ ∑

K∈T h
∑

e∈E K

η0

|e|
〈û−u, v̂−v〉e

[
+(Rh(û−Shu),Rh(v̂−Shv))Ω

]
;

∀{u, û}, {v, v̂} ∈ H
3
2+σ (T h)×L2(Γh) (0 < σ ≤ 1

2) , (18)
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where ∂u
∂n = (∇u) ·n, ∂v

∂n = (∇v) ·n, andη0 > 0 is the interior penalty parameter. We have now introduced
two bilinear forms, whose difference lies in the use or non-use of the term in[ · ]. We can also consider other
bilinear forms including non-symmetric ones [4], but we here restrict our analysis to the above two.

If Vh andQK are so chosen that∇(vh|K) ∈ QK for all vh ∈ Uh andK ∈ T h, we have from (11) that
(RK(v̂h−vh),∇uh)K = 〈v̂h−vh,

∂uh
∂n 〉∂K for all uh ∈Uh. In such a case, it holds that, for all{uh, ûh}, {vh, v̂h} ∈

Vh,

Bh({uh, ûh},{vh, v̂h}) = (∇huh +Rh(ûh−Shuh),∇hvh +Rh(v̂h−Shvh))Ω

+ ∑
K∈T h

∑
e∈E K

η0

|e|
〈ûh−uh, v̂h−vh〉e

[
−(Rh(ûh−Shuh),Rh(v̂h−Shvh)Ω

]
, (19)

where the last term in[ · ] is absent when the last term in (18) is active. We can see from (19) that the last
term in (18) is effective to increase the positivity of the bilinear form when used in finite element schemes.

Bilinear forms like aboveBh’s are used to solve numerically the Poisson equation when∂ΩD 6= /0 : given
f ∈ L2(Ω), find {uh.ûh} ∈Vh

D that satisfies

Bh({uh, ûh},{vh, v̂h}) = ( f ,vh)Ω ; ∀{vh, v̂h} ∈Vh
D . (20)

When we deal with (2) numerically, we need the term(uh,vh)Ω on the left-hand side.

2.7 Comments on other symmetric DGFEM

In the two bilinear forms above, ˆv is independent ofv. Introducing appropriate constraints between them, we
can obtain some genuine (non-hybridized) DGFEM. To this end, define{{v}} ∈ L2(Γh) for v∈ H1(T h) as :
for an edgee∈ E h, we set{{v}}|e = v|e if e⊂ ∂Ω, while we set as follows ife is shared by two elements
K1, K2 ∈ T h ;

{{v}}|e =
1
2
(v1 +v2) (simple averaging) (21)

wherev1 (v2 resp.) is the trace ofv|K1 (v|K2 resp.) toe.
Using such{{v}} as v̂ whene 6⊂ ∂ΩD in our bilinear forms, we have IP (Interior Penalty) method and

a kind of LDG (Local Discontinuous Galerkin) one [4, 9, 16]. The difference is that the lifting term in
(18) is employed in LDG but not in IP. Such modification reduces the number of unknowns for the linear
simultaneous equations associated to (20), but the sparseness of the coefficient matrices may deteriorate [22].

3 Main Results

In this section, we will show a discrete analog of the well-known Rellich theorem for the considered DGFEM.
Along with the conditions in Sec.2, we make some additional assumptions, which can be actually proved

under appropriate settings on the family of triangulations and finite element spaces. For the moment, however,
we postpone such technical processes and prove our main results under the hypotheses below, which are
common in analysis of DGFEM [4, 9, 27] but slightly modified for our purposes. Clearly, the results hold
true for various DGFEM other than those in the preceding sections, so long as they satisfy such conditions.

[H0] Approximation capability For anyu∈ H
3
2+σ (Ω) and p∈ H

1
2+σ (Ω) (0 < σ ≤ 1

2), there exists a
family {{u∗h, û

∗
h, p∗h} ∈Vh×Qh}h>0 such that

9{u−u∗h, û− û∗h}9h +‖p− p∗h‖h ≤Cah
1
2+σ (‖u‖ 3

2+σ ,Ω +‖p‖ 1
2+σ ,Ω) , (22)

whereCa is a generic positive constant independent ofu, p andh > 0, andû denotes the trace ofu to Γh,
i.e., û = u|Γh. Moreover, whenu belongs toH1

D(Ω)∩H
3
2+σ (Ω), the same estimate holds with each{u∗h, û

∗
h}

chosen fromVh
D.
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[H1] Consistency Let u ∈ H1
D(Ω) be the solution of (2) for arbitrarily givenf ∈ L2(Ω). Then it holds

that, withû = u|Γh, and for allh > 0 and{vh, v̂h} ∈Vh
D,

Bh({u, û},{vh, v̂h})+(u,vh)Ω = ( f ,vh)Ω . (23)

[H2] Boundedness There exists a positive constantCb such that, for allh > 0 and{u, û}, {v, v̂} ∈
H

3
2+σ (T h)×L2(Γh) (0 < σ ≤ 1

2),

|Bh({u, û},{v, v̂})| ≤Cb 9{u, û}9h 9{v, v̂}9h . (24)

[H3] Stability (Coerciveness) There exists a positive constantCs such that, for allh> 0 and{vh, v̂h}∈Vh,

|Bh({vh, v̂h},{vh, v̂h})| ≥Cs|{vh, v̂h}|2h . (25)

[H4] Assumptions onQK and RK For all h > 0, K ∈ T h andvh ∈ Uh, it holds that∇(vh|K) ∈ QK , so
that (19) is available. Moreover, there exists a positive constantCr such that, for allh > 0, K ∈ T h and
g∈ L2(∂K),

‖RKg‖K ≤Cr

(
∑

e∈E K

1
|e|

∣∣∣g|e∣∣∣2
e

) 1
2
, (26)

which gives the global form : for allh > 0 andg̃ = {g∂K}K∈T h ∈ ΠK∈T hL2(∂K),

‖Rhg̃‖Ω ≤Cr

(
∑

K∈T h
∑

e∈E K

1
|e|

∣∣∣g∂K |e
∣∣∣2
e

) 1
2
. (27)

Remark 1. For the present purposes,(22) of [H0] can be much weakened : for example, the exponent
1
2 + σ there can be replaced with arbitrarily small positive constants. Consistency condition[H1] is that
for (2) but not for the Poisson equation. Under[H1] , the adjoint consistency[4] holds automatically for the
present types of symmetric formulations, and is effective to apply the Aubin-Nitsche trick[11]. Moreover, the
magnitude of interior penalty parameterη0 must be large enough for[H3] to hold for the bilinear form Bh
in (18) without the lifting term[4, 9, 27].

Theorem 1. Let {{uh, ûh} ∈Vh
D}h>0 be a family associated to{T h}h>0 such that|{uh, ûh}|2h +‖uh‖2

Ω ≤ 1.
We assume[H0] through[H4] besides the conditions in Sec.2. Then there exist a function u0 ∈ H1

D(Ω) and a
subfamily, denoted again by{{uh, ûh}}h>0 for convenience, such that, as h↓ 0,

uh → u0 strongly inL2(Ω), uh|∂ΩD
→ u0|∂ΩD

= 0 strongly inL2(∂ΩD), (28)

∇huh +Rh(ûh−Shuh) ⇀ ∇u0 weakly inL2(Ω)2 . (29)

Remark 2. As may be seen from the proof of Lemma 1 below, the expression∇huh + Rh(ûh −Shuh) is a
natural approximation to the distributional derivative of uh. Weak convergence of{∇huh}h>0 to ∇u0 is not
shown here. To assure such convergence, we may need modifications of the interior penalty terms.

Proof. For the specified family{{uh, ûh} ∈Vh
D}h>0, define{uh ∈ H1

D(Ω)}h>0 and{{uh
h, û

h
h} ∈Vh

D}h>0 by,
for eachT h,

(∇uh,∇v)Ω +(uh,v)Ω = (uh,v)Ω ;∀v∈ H1
D(Ω), (a)

Bh({uh
h, û

h
h},{vh, v̂h})+(uh

h,vh)Ω = (uh,vh)Ω ;∀{vh, v̂h} ∈Vh
D . (b)

We will now prove in several steps.

1◦ Equatingv to uh in (a) and using the Schwarz inequality, we find‖uh‖1,Ω ≤ ‖uh‖Ω ≤ 1. Applying the
Rellich theorem and standard arguments to the families{uh}h>0 and{uh}h>0, we can choose their subfam-
ilies, denoted by the same notations, with their limit functionsu0 ∈ L2(Ω) andu0 ∈ H1

D(Ω) such that, as
h ↓ 0,

(i) uh ⇀ u0 weakly inL2(Ω) ,
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(ii) uh → u0 weakly inH1
D(Ω) and strongly inL2(Ω) .

Then, taking the limit in(a) for the subfamilies, we find thatu0 andu0 satisfy

(∇u0,∇v)Ω +(u0,v)Ω = (u0,v)Ω ;∀v∈ H1
D(Ω) , (c)

from which we have(u0,u0)Ω = ‖∇u0‖2
Ω +‖u0‖2

Ω = ‖u0‖2
1,Ω. Similarly, we obtain from(a) that(uh,uh)Ω =

‖uh‖2
1,Ω. Since(uh,uh)Ω → (u0,u0)Ω (h ↓ 0) by (i) and(ii), we can see‖uh‖1,Ω →‖u0‖1,Ω, so that

(iii ) uh → u0 strongly inH1
D(Ω) .

2◦ Sinceuh ∈ L2(Ω), uh of (a) belongs toH1
D(Ω)∩H

2
3+σ (Ω). Then we can perform error analysis of

{{uh
h, û

h
h}}h>0 with respect touh using the hypotheses from [H0] through [H4] together with (2) as in [26, 27],

and we have 9{uh−uh
h, û

h− ûh
h}9h ≤Ch

1
2+σ‖uh‖ 3

2+σ ,Ω ≤CDCh
1
2+σ‖uh‖Ω , (d)

whereûh is the trace ofuh to Γh (which is not double-valued),CD is the constant in(2), andC is a positive
constant dependent only onCa, Cb andCs.2

3◦ By [H1], we have
Bh({uh, ûh},{uh, ûh})+(uh,vh)Ω = (uh,uh)Ω ,

which can be concretely rewritten by

(∇uh,∇huh)Ω + ∑
K∈T h

〈∂uh

∂n
, ûh−uh〉∂K +(uh,uh)Ω = (uh,uh)Ω .

Here, terms including ˆuh− û in the original expression (18) forBh({uh, ûh},{uh, ûh}) have vanished thanks

to ûh = uh|Γh. By [H4] and usinguh
h ∈Uh of (b) in the second term of the above, we find∑K∈T h〈 ∂uh

∂n , ûh−

uh〉∂K = ∑K∈T h〈 ∂ (uh−uh
h)

∂n , ûh−uh〉∂K +(∇huh
h,Rh(ûh−Shuh))Ω , so that the above equality is further rewritten

as

(∇huh
h,∇huh +Rh(ûh−Shuh))Ω +(∇uh−∇huh

h,∇huh)Ω

+ ∑
K∈T h

〈
∂ (uh−uh

h)
∂n

, ûh−uh〉∂K +(uh,uh)Ω = (uh,uh)Ω . (e)

4◦ As regards∇huh +Rh(ûh−Shuh) in (e), we can show the following lemma.

Lemma 1. Let{{uh, ûh} ∈Vh
D}h>0 be the subfamily which is selected to satisfy(i). Then, u0 ∈ L2(Ω) in (i)

also belongs to H1D(Ω), and, as h↓ 0,

∇huh +Rh(ûh−Shuh) ⇀ ∇u0 weakly inL2(Ω)2. (30)

We will give the proof of Lemma 1 later. Once we admit this lemma, we find with the aid of(ii), (iii )
and(d) that, ash ↓ 0,

(∇huh
h,∇huh +Rh(ûh−Shuh))Ω = (∇huh

h−∇uh +∇uh,∇huh +Rh(ûh−Shuh))Ω

→ (∇u0,∇u0)Ω .

Similarly, using(i), (ii), (d) and‖∇huh‖Ω ≤ 1, we can also obtain that, ash ↓ 0,

(∇uh−∇huh
h,∇huh)Ω → 0, (uh,uh)Ω → (u0,u0)Ω .

Moreover, we have

∑
K∈T h

〈
∂ (uh−uh

h)
∂n

, ûh−uh〉∂K → 0 (h ↓ 0) ,

2NotationsC, C1, C2 etc. will be used as various generic positive constants.
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since ∣∣∣∣∣ ∑
K∈T h

〈
∂ (uh−uh

h)
∂n

, ûh−uh〉∂K

∣∣∣∣∣ ≤ ∑
K∈T h

∑
e∈E K

|∇(uh−uh
h)|e · |ûh−uh|e

≤

[
∑

K∈T h
∑

e∈E K

|e| · |∇(uh−uh
h)|2e

]1/2[
∑

K∈T h
∑

e∈E K

1
|e|

|ûh−uh|2e

]1/2

≤ 9{uh−uh
h, û

h− ûh
h}9h ·|{uh, ûh}|h ≤ 9{uh−uh

h, û
h− ûh

h}9h .

From these results, the left-hand side of(e) converges to(∇u0,∇u0)Ω + (u0,u0)Ω, which is equal to
(u0,u0)Ω by (c). In view of (e), this implies

(uh,uh)Ω → (u0,u0)Ω (h ↓ 0) ,

which together with(i) assures that the former part of(28) holds true.
5◦ Let us prove that{uh|∂ΩD

}h>0 converges strongly to 0 inL2(∂ΩD) ash ↓ 0. But this follows from the
estimation ∫

∂ΩD

|uh|2ds=
∫

∂ΩD

|uh− ûh|2ds≤ ∑
K∈T h

∑
e∈E K

|e|2 1
|e|

|uh− ûh|2e ≤ h2|{uh, ûh}|2h ≤ h2 .

6◦ Finally, let us prove Lemma 1. To this end, we use the vector-valued test functionϕ = {ϕ1,ϕ2} ∈C∞
0 (Ω)2

to consider distributional derivatives ofuh ∈Uh. Then the value of∇uh atϕ is given by−(uh,divϕ)Ω, which
is rewritten as

−(uh,divϕ)Ω = (∇huh,ϕ)Ω + ∑
K∈T h

∫
∂K

(ûh−uh)(ϕ ·n)ds, ( f )

where the Green formula is used with the inter-element continuity ofϕ taken into account, and ˆuh ∈ Ûh
D is

inserted for later use. The use of such ˆuh is justified since ˆuh is single-valued onΓh andϕ|∂Ω = 0.

For eachϕ ∈C∞
0 (Ω)2 ⊂ H

1
2+σ (Ω)}2 (0 < σ ≤ 1

2), we can choose by[H0] a family of functions{ϕh =
{ϕh1,ϕh2} ∈ (Qh)2}h>0 such that

2

∑
i=1

‖ϕi −ϕhi‖h → 0 (h ↓ 0) . (g)

Using suchϕh, we have

−(uh,divϕ)Ω = (∇huh,ϕ)Ω + ∑
K∈T h

∫
∂K

(ûh−uh)[(ϕ −ϕh +ϕh) ·n]ds

= (∇huh,ϕ)Ω + ∑
K∈T h

∫
∂K

(ûh−uh)[(ϕ −ϕh) ·n]ds+(Rh(ûh−Shuh),ϕh)Ω

= (∇huh +Rh(ûh−Shuh),ϕh)Ω +(∇huh,ϕ −ϕh)Ω

+ ∑
K∈T h

∫
∂K

(ûh−uh)[(ϕ −ϕh) ·n]ds. (h)

It is easy to see that the last two terms converge to 0 ash ↓ 0, since

|(∇huh,ϕ −ϕh)Ω| ≤ ‖∇huh‖Ω · ‖ϕ −ϕh‖Ω → 0 (by (g) and‖∇huh‖Ω ≤ 1) ,∣∣∣ ∑
K∈T h

∫
∂K

(ûh−uh)[(ϕ −ϕh) ·n]ds
∣∣∣

≤

[
∑

K∈T h
∑

e∈E K

1
|e|

|ûh−uh|2e

]1/2[
∑

K∈T h
∑

e∈E K

|e|
2

∑
i=1

|ϕi −ϕhi|2e

]1/2

≤ 9{uh−uh
h, û

h− ûh
h}9h

2

∑
i=1

‖ϕi −ϕhi‖h → 0 (by (d) and (g)) .
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On the other hand,[H4] assures that

‖∇huh +Rh(ûh−Shuh)‖Ω ≤ ‖∇huh‖Ω +‖Rh(ûh−Shuh)‖Ω

≤ ‖∇huh‖Ω +Cr |{uh, ûh}|h ≤ (1+Cr)|{uh, ûh}|h ≤ (1+Cr) ,

so that the subfamily{∇huh + Rh(ûh −Shuh)}h>0 is uniformly bounded. Thus, there exists its subfamily
(denoted by the same notation) that converges weakly inL2(Ω)2 to an elementw∈ L2(Ω)2.

By these observations and(g), the right-hand side of(h) converges to(w,ϕ)Ω ash↓ 0, while the left-hand
side converges to−(u0,divϕ)Ω. Thus,

−(u0,divϕ)Ω = (w,ϕ)Ω ,

that is,w = ∇u0 ∈ L2(Ω)2 in the sense of distribution, and henceu0 ∈ H1(Ω) . Although we selected a
subfamily of{∇huh +Rh(ûh−Shuh)}h>0, there was no need of such selection because of the uniqueness of
∇u0 for u0.

We have now shown that the whole subfamily{∇huh + Rh(ûh−Shuh)}h>0 converges weakly to∇u0 in
L2(Ω)2, and the final process is to proveu0 ∈ H1

D(Ω). In this respect, we should notice that( f ) holds for any
ϕ ∈ C∞(Ω)2 with ϕ |∂Ω\∂ΩD

= 0, since ˆuh = 0 on∂ΩD andϕ = 0 on∂Ω\∂ΩD. Moreover, for suchϕ, we
can choose an appropriate family of functions{ϕh = {ϕh1,ϕh2} ∈ (Qh)2}h>0 that satisfy(g). Then we have
(h) again, and, by taking its limit ash ↓ 0, we find that

−(u0,divϕ)Ω = (∇u0,ϕ)Ω , or, by the Green formula,
∫

∂ΩD

u0(ϕ ·n)ds= 0.

Noting the arbitrariness ofϕ on ∂ΩD, we can conclude thatu0 = 0 on∂ΩD.

4 Observations on hypotheses

We will give some sufficient conditions to assure hypotheses[H0] through[H4] to hold. At present, the
conditions to be given are not necessarily satisfactory from both theoretical and practical viewpoints, and
there remains much room for improvement.

As is fully discussed in [4], the essential points are approximation capabilities of polynomial functions
at element level and some trace theorems for each element under some geometrical conditions on element
shapes and sizes. We will explain them below for the following choice of discrete spaces (0< σ ≤ 1

2) : for
givenk∈ N, letUh, Ûh andQK (∀K ∈ T h) be

Uh = ΠK∈T hPk(K) ⊂ H
3
2+σ (T h) , QK = Pk(K) ⊂ L2(K) or Pk−1(K) ⊂ L2(K) ,

Ûh = Πe∈E hPk(e) ⊂ L2(Γh) or C(Γh)∩Πe∈E hPk(e) . (31)

4.1 Chunkiness condition for star-shaped elements

To show[H0] , we require some regularity conditions on the triangulations to avoid too thin elements. There
have been proposed a number of statements relevant to this issue, among which we here employ the chunki-
ness condition of Deny-Lions and Brenner-Scott [1, 9] for convenience. To such an end, we assume that each
K ∈ T h is star-shaped with respect to a closed diskDK ⊂ K of positive radius, and then defineρK as the
supermom of radii of such possibleDK ’s. Then, by usingρK andhK = diamK, thechunkiness parameterζK

for K ∈ T h is defined as :
ζK = hK/ρK . (32)

The chunkiness condition for the family{T h}h>0 is now stated as follows.
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Chunkiness condition For{T h}h>0, there exists a positive constantγC such that

sup
T h

max
K∈T h

ζK ≤ γC . (33)

Remark 3. If K is a triangle, this condition coincides with the minimum angle one[9, 11]. By(32), too thin
elements are excluded from{T h}h>0. On the other hand, non-convex finite elements are allowed to a certain
extent, although convexity of elements is sometimes essential in classical FEM[11]. From (33), we have for
example C1h2

K ≤ |K| ≤C2h2
k for all h > 0 and K∈ T h with appropriate C1 and C2.

Under the above condition, we can show the following approximation capabilities ofUh : for v∈H
3
2+σ (T h) (0<

σ < 1
2), it holds that

inf
vh∈Uh

[
h−1‖v−vh‖Ω +‖∇h(v−vh)‖Ω

]
≤Ch

1
2+σ‖v‖

H
3
2+σ (T h)

. (34)

See e. g. [1, 9] for the details, and similar results in the mesh-dependent norm‖ · ‖h are available forQh.
Such estimates essentially contribute to assuring[H0] .

4.2 Triangle condition

To obtain desirable trace theorems for each element, we here assume a kind of cone condition [5, 15].

Triangle condition Let T0 be an isosceles triangle with unit base length and heightγT . Then, for all
h > 0, K ∈ T h ande∈ E K , there exists an isosceles triangleTK,e contained inK, whose base coincides with
eand whose height isγT |e| (TK,e is similar toT0 with similarity ratio |e|, see Fig. 3).

For T0 above, we have the trace theorem of form : anyv∈ H
1
2+σ (T0) (0 < σ ≤ 1

2) satisfies

|v|∂T0
≤C

(
‖v‖T0 + |v| 1

2+σ ,T0

)
, (35)

whereC > 0 depends only onγT andσ [4]. Then introducing an appropriate similarity transformation be-
tweenT0 andTK,e of K ∈ T h, we easily obtain

|v|e ≤ |v|∂K ≤C
(
|e|−

1
2‖v‖K + |e|

1+2σ
4 |v| 1

2+σ ,K

)
. (36)
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Figure 3: Triangle condition

4.3 Local quasi-uniformity condition on edge sizes

Although we do not employ the quasi-uniformity [9] of the family{T h}h>0 here, we still assume that the
sizes of edges for eachK ∈ T h are comparable.
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Local quasi-uniformity of edge sizes For{T h}h>0, there exists a positive constantγU such that, for all
h > 0 andK ∈ T h,

maxe∈E K |e|
mine∈E K |e|

≤ γU . (37)

Remark 4. Since3≤ m≤ M and|∂K|= ∑e∈E K |e| ≥ 2hK , the present condition assures thatmine∈E K |e| ≥
ChK for a constant C> 0 dependent only on M andγU .

By this condition, we can modify (36) as, withC slightly changed,

|v|e ≤ |v|∂K ≤C
(
|hK |−

1
2‖v‖K + |hK |

1+2σ
4 |v| 1

2+σ ,K

)
. (38)

By (34) and the above, we can deduce[H0] through[H4] completely as in [4], so that we omit the proofs.

5 Fundamental applications

The obtained results can be applied to numerical analysis of various problems, but here we list up some very
fundamental problems only :

1. Numerical analysis of resolvents and non-coercive problems.

2. Numerical analysis of spectral problems.

3. Derivation of the discrete Poincaré-Friedrichs inequalities.

4. Approximation of problems with non-smooth solutions.

5. Numerical analysis of some nonlinear problems.

As is well known, the first three are closely related to each other [3, 8, 10]. For example, some discrete
compactness properties can be derived from the discrete Poincaré-Friedrichs inequalities, see e.g. [3, 6].

As a simple example of problem for item 4, let us consider the problem : givenf̃ = { f1, f2} ∈ L2(Ω)2,
find u∈ H1

D(Ω) s.t.
(∇u,∇v)Ω +(u,v)Ω = ( f̃ ,∇v)Ω ; ∀v∈ H1

D(Ω) , (39)

where the term(u,v)Ω can be omitted if∂ΩD 6= /0. Clearly, the solution of this problem may not have
additional smoothness such asu∈ H1+ε(Ω) for someε > 0. A possible example of discretized problem for
(39) is : given f̃ = { f1, f2} ∈ L2(Ω)2, find {uh, ûh} ∈Vh

D(Ω) s.t.

Bh({uh, ûh},{vh, v̂h})+(uh,vh)Ω = ( f̃ ,∇hvh +Rh(v̂h−Shvh))Ω ;

∀{vh, v̂h} ∈Vh
D . (40)

By using Theorem 1, we can show, for example, strong convergence of∇huh+Rh(ûh−Shuh) to ∇u in L2(Ω)2

as well as that ofuh to u in L2(Ω) ash ↓ 0, provided that the set of sufficiently smooth function inH1
D(Ω) is

dense there. We omit the proof, but it can be performed by essentially the same ideas and techniques as in
the proof of Theorem 1.

As an example for the final item, we can consider the boundary value problems for a simple semi-linear
elliptic equation−∆u = f (u), where f (·) is a polynomial function. For the analysis of the corresponding
approximate problems discretized by DGFEM, we need additional results on some function spaces such as
Lp(Ω) (p 6= 2), so that the analysis in e.g. [6] may be effective.

6 Concluding remarks

We have discussed a Rellich-type discrete compactness for some DGFEM. Our approach has limitations in
the framework of Hilbert methods, but may be effective for some purposes. We can generalize the present
methodologies to wider classes of DGFEM, but we have not attempted such generalization to make the
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description concise. Extensions to 3D cases appears to be possible, provided that the regularity results of the
corresponding auxiliary problem are well established and the appropriate conditions for triangulations are
found. As was already mentioned, we can apply the results to various problems, and such applications will
be reported elsewhere.
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