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Abstract

We deduce discrete compactness of Rellich type for some discontinuous Galerkin finite element meth-
ods (DGFEM) including hybrid ones, under fairly general settings on the triangulations and the finite
element spaces. We make use of regularity of the solutions to an auxiliary second-order elliptic boundary
value problem as well as the error estimates of the associated finite element solutions. The present results
can be used for analyzing DGFEM applied to some boundary value and eigenvalue problems, and also to
derive the discrete PoindafFriedrichs inequalities.
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1 Introduction

In recent years, much attention has been drawn to the discontinuous Galerkin finite element methods (DGFEM) [4,
9, 16, 24]. They use discontinuous approximate functions, where the discontinuity is dealt with by the inter-
element Lagrange multiplier and/or interior penalty methods. Such methods have a merit that various approx-
imate functions besides the usual piecewise interpolation polynomials can be used, since the inter-element
continuity and unisolvence conditions are much relaxed. In particular, they are expected to be more flexible
in element shapes than classical FEM.

It is to be noted here that they are closely related to the non-conforming and hybrid methods, which use
discontinuous approximate functions, and the latter of which is characterized by the use of inter-element
Lagrange multipliers [28]. Simplifying the hybrid displacement method of Tong [14, 31], the present author
and his coauthor developed some finite elements in a series of papers e.g. [20, 21], but such an attempt
got only partial success because of lack of effective stabilization methods [25]. In this respect, the interior
penalty approach[2] is now recognized to be crucial in both handling with the inter-element discontinuity
and assuring numerical stability.

Stimulated by rapid development of DGFEM, the present author and his coworkers proposed a hybrid
displacement type DGFEM by stabilizing the above old method using the interior penalty technique. They
showed the idea for the 2D Poisson equation and the plane stress problem with reasonable numerical re-
sults [22, 27]. It turned out that such an approach is actually available as a finite element method by appropri-
ate choice of the stabilization coefficients, and it is fairly robust to deformation of element shape. Moreover,
it can be used just like the conventional finite element methods: usual element-by-element procedures are
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available, and mixed use with the conventional elements is possible. See also [12, 13] for a closely related
approaches.

Since such formulations make full use of discontinuous approximate functions strongly dependent on
triangulations, some standard tools in numerical functional analysis may not be available in their genuine
forms. An important example of such techniques and results is the Rellich selection theorem [10, 30], which
states that any weakly convergent sequenceitQ) (or its closed subspace) for the bounded Lipschitz
domainQ is strongly convergent ih?(Q). This theorem and similar ones are frequently employed for
spectral and resolvent analyses of elliptic operators such as the Laplacian, and also for analysis of linear or
semi-linear Poisson-like problems with lower-order linear or nonlinear terms. Moreover, the results obtained
by such analyses are directly applicable to the relatédonforming finite elements.

On the other hand, if we want to use similar arguments in DGFEM, which arél habnforming in
principle, we must establish appropriate discrete analogs of the Rellich theorem [10, 30]. Such discrete com-
pactness properties have played important roles especially in the analysis of edge finite elements for electro-
magnetics [7, 18, 19]. Moreover, difficulties of DGFEM applied to Laplace and various spectral problems
are discussed e. g. in [3, 16], and are essentially related to the discrete compactness.

In this paper, we will first explain some DGFEM for 2D Poisson-like problems including hybrid ones.

In particular, the interior penalty term and the lifting operator are introduced to the bilinear forms to assure
numerical stability of the associated DGFEM [4, 12, 13, 26]. For simplicity, we only consider symmetric
bilinear forms, and omit the analysis of non-symmetric DGFEM. Then we discuss the discrete compactness
properties of Rellich type, which will play important roles in numerical analysis of DGFEM. We will prove
our main results under some popular hypotheses (cf. e.g. [4, 9]), with some observations on sufficient
conditions for such hypotheses.

Some related results are also reported in e.g. [3, 6], in which various discrete compactness properties are
derived from some discrete Poinédfriedrichs inequalities. On the contrary, our method utilizes some error
estimates of the solutions of auxiliary problems with regularity, and is completely within the framework of
the Hilbert space method. It is also analogous to the methods previously used by the present author to derive
discrete compactness for the edge finite elements[18, 19], and may be effective in some cases, although it
might be difficult to apply to non-Hilbertian cases.

2 Preliminaries and DGFEM

2.1 Auxiliary problem and notations

LetQ c R? be a bounded polygonal domain with bounda€y. ForQ, we can define the Hilbertian Sobolev
spaces 2(Q) andH* (Q) (k > 0), where the fractional cases ¢ N) are included [5, 9]. The inner products
of bothL?(Q) andL?(Q)? are designated bf, -)o, with the associated norms done |by||q. Furthermore,
the norms and the standard semi-normHsf(Q) are denoted by - |[«.o and|- |« q, respectively, where
V2 o = [IVI|Z g — ||Vl o for ve HX(Q) (k* = [k] for k ¢ N andk* = k — 1 for k € IN). For these spaces
associated to domains other th@nthe same notations of spaces, norms etc. will be useditkplaced
appropriately.

Let us consider a subséf)p of dQ, which either is empty or consists of finitely many closed segments.
Then we introduce a closed subspatiQ) of H1(Q) by

H(Q)={ve HY(Q); v=00ndQp}, (1)

which reduces t611(Q) andH}(Q) respectively whe@Qp = 0 anddQp = 9Q.
Using this space, let us define an auxiliary boundary value problem: diveh?(Q), find u € H3(Q)
such that
(Ou, V) + (U, V) = (f,v)q ; We HE(Q), 2)

where[] denotes the gradient operator. The corresponding partial differential equatidwis u = f, and
the boundary conditions ofiQ and dQ\dQp are the homogeneous Dirichlet and Neumann ones, respec-
tively. If we omit the term(u,v)q in (2), we have the popular Poisson problem.



The uniqueness and existencewdf (2) in H3(Q) are trivial, andu also belongs td—lgw(Q) for a
certaino €]0, 3] along with the estimation

s o0 <Collflla, ©)

whereCp > 0 is a constant independent Hfcf. [15]. Thus the traces afandUu to any piecewise smooth
arcy C Q (= closure ofQ) are well-defined as functions It (y) andL?(y)?, respectively.

2.2 Definitions and notations for triangulations

We first construct a family of triangulatiods7 "}, of Q by polygonal finite elements (or simply elements) :
each.Z" consists of a finite number of elements, and each eletienZ" is a boundedn-polygonal (open)
domain (Fig.1), wherenis an integee> 3 and can differ wittK. Thus the boundar§K of K € 7 "is a closed
simple polygonal curve composedrafedges. We assume thais bounded from above by a positive integer
M (> 3), which is common to all the triangulations {i7"}-0. Notice here that non-convex elements are
available form > 4. We use the notatioe to denote an edge df, which is assumed to be closed for
convenience. The totality of edgestofe 7" and.Z" are denoted by’* and&™, respectively

For theoretical treatment, we must impose some “regularity” conditions on the f@ﬁﬁ'[&}mo [9, 11].

We omit the details of regularity here, but, besides the trivial conditions sugp.asK = Q andK NK' =0

for mutually differentk, K’ € .7, we require some additional conditions. In particular, eédh not “too

thin”, and the intersection of closures of mutually different two elemints’ ¢ 7" is exclusively one of the
following three sets : (i) empty set, (ii) one vertex, and (iii) one edge. Here we permit the flat interior angle to
deal with the “hanging” nodes [9] (Fig. 3)The use of such nodes in DGFEM is effective to avoid the MPC
(multi-point constraint) techniques employed in various exiting FEM codes [23, 29], and is also convenient
in adaptive mesh refinements[9]. We will later try to present some additional regularity or geometrical
conditions related to triangulations for DGFEM.

For each triangulatio?", we define its “skeletonl™" as the union of edges i#i": I = U,_.ne. For
simplicity, we assume that the triangulations are so constructed that any edges intersecti?@pyvihe
entirely contained idQp. In other words, such edges have no common poindingQp.

The diameter and measure l¢fare denoted by and|K|, respectively, while the length of an edge
e &X by |e/. Furthermoreh = max,_ - hx. We will use(-,-)x and|| - ||k for bothL?(K) andL?(K)?, and
also define, fou,V € L?(9K),

@00 = [ 09ds. [¥lax = (0.95¢ @

wheredsis the infinitesimal line element oK. Similarly, (-,-)e and| - | are defined for each edges &X.
On the boundariedQ of Q anddK of K, the outward unit normal is well-defined almost everywhere, and is
denoted byn = {ng,ny}.

e ! vertex

Figure 1:m-polygonal elemenk ; non-convex case

Istrictly speaking, a vertex with the flat angle may not be a hanging node but rather a kind of
degenerated one. Analysis of degenerated nodes in classical FEM is not necessarily easy[17, 32].



¢ hanging node

Figure 2: Example of triangulation with hanging nodes

2.3 Function spaces associated to triangulations

Over.Z7", we consider the “broken” or piecewise Sobolev spdges 0) :
HX(7M) = {ve L(Q); vk € HX(K) (VK € 7™}, (5)

which can be identified withl, . ,nH" (K), whereH* (K) is the Sobolev space of (possibly fractional) order
k overK. The norm and the standard semi-norm of this space are defined as usual and demoqﬁgﬁy
and|- |, n, respectively. Fow € H2+9(7") (g > 0) andK € 7, its trace todK is well defined as an
element ofL?(9K) and denoted by|sk or simplyv, which can be double-valued on edges shared by two
elements[4, 5, 9]. Fore H %+U(9h) (o > 0), we can define the trace @ to JK and the normal derivative
dv/onthere in theL? senses.

onrh of 7N we consider a kind of flux & L2(I'"), which is single-valued on each edge shared by

two elements, unlike various double-valued ones [4, 9]. To deal with the boundary condition in (1), define a
subspace of2(I'") by

L3(MM) = {9 e L3(M");¥=00ndQp}. (6)
For each{.7"}.-0, let us define some (semi-)norms for argumems’}, cf. [9]:
1
IMIE=IVE+ S S lel-VE; weH2 (), ()
Ke7hecsK
. 1 . .
= 10vIE+ S S a\V—VIéiV{v,V}GHl(ﬂh)xLz(F“), (8)
KeghecsK
~ ~ ~ 3
LW IE =KW h+ S S lel-[OviZ;v{w v} e HZ P9 (™) x LA(T"), ©)
KeghecsK

wherea > 0,voneor (v|)|e implies the trace of|x to e &, Ovoneor O(v|k)|e does the trace dfi(v|k)

toe, andC, : HY(.7") — L?(Q)? is characterized byhv)|k = O(v|) for ve HY(.7") andK € .Z". Notice
here thatv and[v can be double-valued abutVis not so. All of these (semi-)norms are mesh-dependent.
The first one is a norm, while the other two are semi-norms in general but become n@@slifas positive
total length, cf. [4].

2.4 Lifting operators

To consider the local lifting operator [4] for eakhe 7", let us introduce

QX = finite dimensional subspace bf(K), such as the space
R(K) of polynomials orK of degree< k (k=0,1,2,..). (20)



Then, the local liting operatoR¢ : g € L?(dK) — p € (QX)? is well-defined as: giveg € L?(dK), find
p={p1, p2} € (Q¥)? such that

(P, Ak = (8,9 Mok ; ¥Vq= {a1,0} € (Q)?, (11)

whereq-n = qin; + gz2n2, and the minus sign is sometimes added to the right-hand side, cf. e.g. [4].
Identifying Q" := M, ,»QX with a subspace df?(Q) and making the identificatiof . ,»(QX)2 = (Q")?,
the global lifting operator is defined by

Rn 2§ = {0sk ke € Meernl?(9K) = {ReGak treon € (QM2 C L3(Q)2. (12)

Sincev'e L2(I'") is single-valued on every edges &", it can be naturally identified with an element
of My »»L2(dK), which is denoted again byfor simplicity. On the other hand, the tracexof H(7")
to e may be double-valued & ¢ dQ. To useR, for ve H1(7"), let us define an operat&; : H(7") —
I'IKethz(dK) by

Shv = { (V) lok tke 7n- (13)

We can now operatg, on Sy for ve H1(.7") to find RySv € (Q")? ¢ L2(Q)2.

2.5 Finite element spaces

To approximatev, ¥} € H2+9(.7") x L2(I") (0 < o < 1) associated to7", let us prepare two finite dimen-
sional spaces:

U" = finite dimensional subspace Hf%“’(ﬂh) (0<o< %), (14)

UM = finite dimensional subspace bf(I'") or (™M), (15)

whereC(I'") denotes the space of continuous functions BnExamples o" areMy_ ,nA(K) (k € N),
while those otJ" areM_znP(e) (ke IN) or their subsets i€(I™"), whereR(e) is the space of polynomials
on e of degree< k. In the present settingy, € U" is not double-valued on each edgeMoreover, to deal
with the homogeneous Dirichlet condition in (1), let us introduce the subspat® lof

U8 = {9, € UM ¥, =0 0ndQp}. (16)

From the assumptions di", the above condition ow, is equivalent to :vi; vanishes completely on every
edge contained ii"NdQp.
Then the finite element spaces are given by

vi=uhx ", vi=uhxUb. 17)

Under appropriate conditions g7 "} andV", we can showj| - ||| is equivalent td - |, overV", cf. [4].
We also nee@X for eachK € 7" to defineQ" and useR,.

2.6 Bilinear forms

Let us consider two symmetric bilinear forms associatedAqd26, 27] :

Jdu ov
B aA ) 7,\ = D 7D + 7;’\7 + 77,\7
(00,069 = O T+ 5 (G0 v+ (G0 )

£33 Plaua—vie [+(R(0-Su).Ry(I- Sl

KeTheesK €]
V{u,a}, (w0} € HEH9(TM) x LA™ (0< o < }), (18)



where% = (Ou)-n, % = (Ov) -n, andno > 0 is the interior penalty parameter. We have now introduced

two bilinear forms, whose difference lies in the use or non-use of the tefmjirWe can also consider other
bilinear forms including non-symmetric ones [4], but we here restrict our analysis to the above two.

If V" and QX are so chosen thal(vy|k) € QX for all v, ¢ UM andK € 7", we have from (11) that
(Rc (Yh —Vh), Oup)k = (Vh — Vh, %MK for allu, €U". In such a case, it holds that, for &ll,, On }, {vh, 94} €
vh,

Bh({Un, Gn}, {Vh,Yn}) = (Ohtn -+ Ra(0h — Shth), OhVh + R (Vh — Shvh) )

+ @<0h—uhv\7h—Vh>e [ —(Rn(Uh — Shtn), Ra(h — SiVn)a | (19)
KeghecsK |e|

where the last term if - | is absent when the last term in (18) is active. We can see from (19) that the last

term in (18) is effective to increase the positivity of the bilinear form when used in finite element schemes.
Bilinear forms like abovéy,’s are used to solve numerically the Poisson equation vai&f # 0 : given

f € L?(Q), find {un.0n} € VY that satisfies

Bh({Un, Gn}, {Vh, % }) = (f,Vh)a; Y{Vh,%n} € V). (20)

When we deal with (2) numerically, we need the tdiug, vi,)q on the left-hand side.

2.7 Comments on other symmetric DGFEM

In the two bilinear forms above,i§ independent of. Introducing appropriate constraints between them, we
can obtain some genuine (non-hybridized) DGFEM. To this end, définé ¢ L2("") forve HY(.7") as:

for an edgee € &M, we set{{v}}|e = V|e if € C dQ, while we set as follows i€ is shared by two elements
Ki, Ko € I,

Hvie= %(V1+V2) (simple averaging) (21)

wherev; (v2 resp.) is the trace ofiK; (v|K> resp.) toe.
Using such{{v}} asvwhene ¢ dQp in our bilinear forms, we have IP (Interior Penalty) method and
a kind of LDG (Local Discontinuous Galerkin) one[4, 9, 16]. The difference is that the lifting term in
(18) is employed in LDG but not in IP. Such modification reduces the number of unknowns for the linear
simultaneous equations associated to (20), but the sparseness of the coefficient matrices may deteriorate [22].

3 Main Results

In this section, we will show a discrete analog of the well-known Rellich theorem for the considered DGFEM.
Along with the conditions in Sec.2, we make some additional assumptions, which can be actually proved
under appropriate settings on the family of triangulations and finite element spaces. For the moment, however,
we postpone such technical processes and prove our main results under the hypotheses below, which are
common in analysis of DGFEM[4, 9, 27] but slightly modified for our purposes. Clearly, the results hold
true for various DGFEM other than those in the preceding sections, so long as they satisfy such conditions.

[HO] Approximation capability For anyu € H%“’(Q) andp € H%“’(Q) (0<o< %), there exists a
family {{u,G;, pi,} € V" x Q"}nso Such that

« A . 1
Jl{u=th, 6= G}l -+ Pilln < Cah3**(lull 3. o+ 1Pll3. .0): (22)

whereC, is a generic positive constant independentiop andh > 0, andu"denotes the trace afto ",

i.e., 0= u|rn. Moreover, when belongs taH3(Q) N H %“’(Q), the same estimate holds with e&gl, G; }
chosen fromv5.



[H1] Consistency  Letu e H(Q) be the solution of (2) for arbitrarily givef € L?(Q). Then it holds
that, withd'= u|r», and for allh > 0 and{vx, %} € V3,

Bn({u, 0}, {vh,n}) + (U, Vh)o = (f,Vh)a- (23)

[H2] Boundedness  There exists a positive consta@f such that, for allh > 0 and{u,(}, {v,V} €
H2t9(7M) < L2(M) (0< o < 1),

Bn({u, @}, {v,V})[ < Co [[| {u, G} [lIn [[I{v, 9} fIIn - (24)
[H3] Stability (Coerciveness)  There exists a positive constalysuch that, for alh > 0 and{vy, ¥} € V",
[Bn({Vh, U}, {Vh, In})| > Csl{vh, Un}[7- (25)
[H4] Assumptions onQX and R¢ ~ For allh > 0, K € 7" andv, € U", it holds thatO(vy|x) € QX, so
that (19) is available. Moreover, there exists a positive cons@nsuch that, for alh > 0, K € 7" and
g€ L?(9K),
2\3
)" (26)
e

1
< =
IRcgllk < Cr(eeng B lgle

which gives the global form: for alt > 0 andg'= {Qsk }xcoh € I'IKeghLz(dK),

Réle<C( Y ¥

KeghecsK |e‘

1 Z) 3 27)

‘90K|e

Remark 1. For the present purpose$22) of [HO] can be much weakened: for example, the exponent
% + o there can be replaced with arbitrarily small positive constants. Consistency conglitignis that

for (2) but not for the Poisson equation. Undgt1], the adjoint consistendy] holds automatically for the
present types of symmetric formulations, and is effective to apply the Aubin-NitschgXtidkoreover, the
magnitude of interior penalty parametgg must be large enough f¢H3] to hold for the bilinear form B

in (18) without the lifting ternj4, 9, 271

Theorem 1. Let {{un,0n} € V8}n-0 be a family associated tp.7 "} such that {un, Gn}|Z -+ ||un[|3 < 1.
We assumgHO] through[H4] besides the conditions in Sec.2. Then there exist a funcgierH (Q) and a
subfamily, denoted again Hy{un, 0y } }n~0 for convenience, such that, ag 0,

Un — Up strongly inL2(Q), Un|ga, — Uolag, = O strongly inL?(dQp), (28)
OhUn 4 Ra(0h — Shun) — Oup weakly inL?(Q)2. (29)
Remark 2. As may be seen from the proof of Lemma 1 below, the expreSgigit Ry (0n — Syup) is a

natural approximation to the distributional derivative of.Ueak convergence §flnun }h-o to Oug is not
shown here. To assure such convergence, we may need modifications of the interior penalty terms.

Proof.  For the specified family {un, Gn} € V3}n-0, define{u" € H3(Q) }n=0 and {{uf}, a1} € Vi }n-o by,
for each.s",
(Duha DV)Q + (uhaV)Q = (Uh,V)Q e HI%(Q)a (a)

Bn({up, Gh}, {Vh, % }) + (UD, Vi) o = (Un,Vh)a ; ¥{Vh, %} € V3 - (b)
We will now prove in several steps.

1° Equatingv to u" in (a) and using the Schwarz inequality, we fifid"||1.0 < ||un||q < 1. Applying the
Rellich theorem and standard arguments to the famflig$n-o and {u"},,~o, we can choose their subfam-
ilies, denoted by the same notations, with their limit functiopss L2(Q) andu® € H3(Q) such that, as
h|o,

(i) Up — Up weakly inL2(Q),



(ii) u" — u° weakly inH3(Q) and strongly in.%(Q).
Then, taking the limit in(a) for the subfamilies, we find thaf andug satisfy
(O, Ov)q + (W, v)a = (U0, V)a ;W € HE(Q), (c)

from which we haveuo, u®)q = ||0u0||3 + [|u%]|3 = [|u||2 . Similarly, we obtain fron(a) that (un, u")q =
[uM||2 . Since(un, uM)q — (o, W)q (h | 0) by (i) and(ii), we can segu”||1.o — [|u%10, So that

(iii ) u" — u° strongly inH3(Q).

2° Sinceup € L?(Q), u" of (a) belongs toH3(Q) N H%“’(Q). Then we can perform error analysis of
{{ub, a0} 1~ o with respect tai" using the hypotheses from [HO] through [H4] together with (2) as in [26, 27],
and we have L L

I{u" — uf, 6" — @R} I < Chz*7[u"| 3 5 o < CoCh2*|un]la, (d)

whereu" is the trace ofi” to I'" (which is not double-valued}p is the constant irf2), andC is a positive
constant dependent only @, C, andCs.?
3° By [H1], we have

Bn({u", 0"}, {Un, Gn}) + (U, Vh)a = (Un, Un)a ,

which can be concretely rewritten by
uh

(=
Kezyh on

(Ou", Ohun)q + ,0h — Un) ok + (U", U)o = (Un, Un)g -

Here, terms including™— 4 in the original expression (18) fd@,({u",d"}, {un,d,}) have vanished thanks

to 0" = u"|rn. By [H4] and usingu € U of (b) in the second term of the above, we fiﬂqeyh@—‘f,ﬁh -

h_,h
Un)ok = Ykeon ‘9(”0“”*‘) ,Unh—Un)gk + (Dhuﬂ, Rn(0h — Shun))aq , so that the above equality is further rewritten

as

(Onul, OnUn 4 Ra(Gh — Shtin) )o + (OU" — Opul, Ohun)g

auM—uf)

+ 3 (75 ,Gh — Un) gk + (U", Un)o = (Un,Un)q - C

Ke.zh
4°  As regarddlnup + Ry (0nh — Shup) in (e), we can show the following lemma.

Lemma 1. Let {{un,0dn} € V3}n-o be the subfamily which is selected to satisfy Then, g € L%(Q) in (i)
also belongs to B(Q), and, as h| 0,

OhUn + R (Gh — Shun) — Oup weakly inL2(Q)2. (30)
We will give the proof of Lemma 1 later. Once we admit this lemma, we find with the a{d )of(iii )
and(d) that, ash | 0,
(Onul, Ontn 4 Ra(Gh — Shtin) o = (Onull — Ou + Ou, Onun 4 Ra(Gh — Shtin) o
— (0u®, Oug)q -

Similarly, using(i), (ii), (d) and||Onun|jq < 1, we can also obtain that, A O,

(Ou” — Onuf, Ohtn)o — 0, (U, un)a — (W0, Uo)a .-

Moreover, we have
X o — 0 (h10),

Kezyh< an

2NotationsC, Cy, C; etc. will be used as various generic positive constants.




since

o —uly .
(g O tn)ok | < Y Y (O~ U)e-[Oh— Unle
Ke.zh KeshecsK
1/2 1 1/2
h 2 ~ 2
< [ Z z |e|'|D(u _uh)|e] [ Z @Wh_uh‘e
KeghecsK KeghecsK

h_heh_ o - h_hgh_gh
< [[{u" = up, @" — G} [lIn-[{tn, Gn}ln < [f[{u" — up, 0" — G} [lln -

From these results, the left-hand side(ef converges tq0u®, Oug)o + (U%, Ug)q, which is equal to
(ug,up)q by (c). In view of (e), this implies

(Unh,Un)o — (Uo,Uo)o (N ] 0),
which together with(i) assures that the former part (@) holds true.

5° Let us prove tha{un|sq, th>0 COnverges strongly to 0 ih?(dQp) ash | 0. But this follows from the

estimation
1
|uh|2ds=/ U — Oh|2ds < €12~ U — Gh|2 < W[ {Un, Gn} 2 < h2.
/oQD 99 KezyheeZgK €] ) 7

6° Finally, let us prove Lemma 1. To this end, we use the vector-valued test fugctiofs, ¢} € C5(Q)?2
to consider distributional derivatives of € U". Then the value ofluy, at ¢ is given by—(up, div ¢ )q, which
is rewritten as

~(ndvgla = Cntn@)a+ 5 [ (Gr—un)(@-n)ds. (f)

Kegh

where the Green formula is used with the inter-element continuity fken into account, ana, € UJ is
inserted for later use. The use of sughs'justified sinceuy, is single-valued o™ and@|yq = 0.

For eachp € C5(Q)2 C H279(Q)}2 (0 < 0 < ), we can choose biH0] a family of functions{ ¢, =
{®n1, P2} € (Q")2}h=0 such that

2
3 4= dnlln—0 (h10). (9)
Using suchpy,, we have

~(Undvg)o = Cntn @)+ 3 [ (Eh—w)(9—dn-+ dn)-nds

Kezh

— (Ot Do+ T [ (Eh=un)((9~ ¢n)-nlds+ (Rt~ Sotw) fr)a

Kegh
= (Opun + Rn(Gh — Shiun), #n)a + (Ohtnh, ¢ — dn)a
. Kgyh/&}((ﬂh —Un)[(¢ — ¢n) -n|ds. )

It is easy to see that the last two terms converge tol®|a3, since

|(Ontn, @ — ¢n)al < [|[Ohtnlla- |9 — ¢nlla — 0 (by (g) and ||Ohun|lq < 1),
PRNCERICRARL
1

1/2 ) 1/2
< |G —u |§] l S |oi—¢ iél
S s hmewd |5 s eSe-n

ecs Ke7

2
< [I{u" —uf, 0" — an IHh_;Ilcbi — ¢nilln — 0 (by (d) and(g)) .



On the other handH4] assures that

|Ohtn + Ra(0h — Shun) [[@ < [|[Chtnll@ + ||Ra(Gh — Shun) || @
< [|0htnll +Cr[{tn, Gn}n < (1+Cr)[{tn, Gn}ln < (1+Cr),

so that the subfamilyf Onuh + Ry (Gh — Shun) }hso is uniformly bounded. Thus, there exists its subfamily
(denoted by the same notation) that converges weaklly(f2)? to an elementv € L2(Q)2.

By these observations aiig), the right-hand side dh) converges tdw, ¢ ) ash | 0, while the left-hand
side converges te-(Up,div¢)q. Thus,

—(Uo,dive)a = (W, 9)a,

that is,w = Oup € L?(Q)? in the sense of distribution, and henagc H(Q) . Although we selected a
subfamily of{Onun 4+ Rn(0n — Shun) }hs0, there was no need of such selection because of the uniqueness of
Oug for ug.

We have now shown that the whole subfam{ilyh,un + Ry (0nh — Shuh) th=0 converges weakly t@lug in
L?(Q)2, and the final process is to proug < H3(Q). In this respect, we should notice ti{d} holds for any
¢ € C*(Q)? with ?lo0\00, = 0, sinceun = 0 ondQp and¢ = 0 ondQ\dQp. Moreover, for suctp, we
can choose an appropriate family of functids, = {@n1, dr2} € (Q")?}hs0 that satisfy(g). Then we have
(h) again, and, by taking its limit a&s | 0, we find that

—(Up,divg)q = (Huo, ¢)q, or, by the Green formula,/ Uo(¢ -n)ds=0.
aQp

Noting the arbitrariness af on dQp, we can conclude thakty = 0 ondQp. O

4 Observations on hypotheses

We will give some sufficient conditions to assure hypothdgs through[H4] to hold. At present, the
conditions to be given are not necessarily satisfactory from both theoretical and practical viewpoints, and
there remains much room for improvement.

As is fully discussed in [4], the essential points are approximation capabilities of polynomial functions
at element level and some trace theorems for each element under some geometrical conditions on element
shapes and sizes. We will explain them below for the following choice of discrete spaces @%): for
givenk € N, letU", UM andQX (VK € 7" be

UM =My Pd(K) CH319(7M) | QX = R(K) C L2(K) or R1(K) C L(K),
UM =N aP(e) C LAM) or (MM NN gnRk(e). (31)

4.1 Chunkiness condition for star-shaped elements

To show[HO], we require some regularity conditions on the triangulations to avoid too thin elements. There
have been proposed a number of statements relevant to this issue, among which we here employ the chunki-
ness condition of Deny-Lions and Brenner-Scott[1, 9] for convenience. To such an end, we assume that each
K € 7" is star-shaped with respect to a closed dkC K of positive radius, and then defimg as the
supermom of radii of such possilli’s. Then, by usingpx andhx = diamK, thechunkiness parametéi

for K € 7" is defined as:

Ik =hk/px - (32)
The chunkiness condition for the famify7 "}~ is now stated as follows.
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Chunkiness condition  For {.7"}1,.0, there exists a positive constaatsuch that

supmax{k < \e. (33)
gh Kegh

Remark 3. If K is a triangle, this condition coincides with the minimum angle @d.1]. By (32), too thin
elements are excluded fro{“th}h>o. On the other hand, non-convex finite elements are allowed to a certain
extent, although convexity of elements is sometimes essential in classicil EEMrom (33), we have for
example Ghg < |K| < C;hZ for all h > 0 and K€ 7" with appropriate G and G.

Under the above condition, we can show the following approximation capabiliti¢$:dor v e H %“’(ﬂh) (0<
o < 1), it holds that

(34)

1
inf [htv— On(v— <Chzt? :
vhlguh[ IV=Vhlla +1/Bn(v—Vh)lla] < Ml 340 n,

See e.g. [1, 9] for the details, and similar results in the mesh-dependent|ndtpare available foQ".
Such estimates essentially contribute to assUtity.

4.2 Triangle condition

To obtain desirable trace theorems for each element, we here assume a kind of cone condition [5, 15].

Triangle condition Let To be an isosceles triangle with unit base length and heightThen, for all
h>0,K € 7" andec &K, there exists an isosceles trianglee contained irk, whose base coincides with
eand whose height igr|e| (Tk ¢ is similar toTo with similarity ratio |e|, see Fig. 3).

ForTp above, we have the trace theorem of form: sryH %W(To) (0<o< %) satisfies

Mot <C (1Mt + My o7, ) (35)

whereC > 0 depends only oy and o [4]. Then introducing an appropriate similarity transformation be-
tweenTp andTk ¢ of K € 7" we easily obtain

_1 1+20
Ve < Mok < C (Jef=2 IVl + 64 V3 g ) (36)

Figure 3: Triangle condition

4.3 Local quasi-uniformity condition on edge sizes

Although we do not employ the quasi-uniformity [9] of the fam{ly7 "}, here, we still assume that the
sizes of edges for ea¢h e 7" are comparable.
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Local quasi-uniformity of edge sizes  For {. 7"}y, there exists a positive constgqt such that, for all
h>0andK € 7",
MaXe gK le]

- <y. 37
MiNgc ok € — 0 37)

Remark 4. Since3 <m< M and|dK| = Y ¢« |€] > 2hk, the present condition assures timain, o« |€| >
Chk for a constant C> 0 dependent only on M ang,.

By this condition, we can modify (36) as, wi@slightly changed,

1+20

_1 1420
Ve < Vo < C (Il =2 Vil + | ¥ My g ) - (38)

By (34) and the above, we can ded(ie®] through[H4] completely as in [4], so that we omit the proofs.

5 Fundamental applications

The obtained results can be applied to numerical analysis of various problems, but here we list up some very
fundamental problems only :

1. Numerical analysis of resolvents and non-coercive problems.
2. Numerical analysis of spectral problems.

3. Derivation of the discrete Poin@iFriedrichs inequalities.

4. Approximation of problems with non-smooth solutions.

5. Numerical analysis of some nonlinear problems.

As is well known, the first three are closely related to each other[3, 8, 10]. For example, some discrete
compactness properties can be derived from the discrete PeiRcadrichs inequalities, see e.g. [3, 6].
As a simple example of problem for item 4, let us consider the problem: g‘T\ﬁer{fl, fo} € L2(Q)?,
findue H3(Q) s.t.
(Ou,Dv)q + (u,v)g = (f,0v)q; W e HA(Q), (39)

where the term(u,v)q can be omitted if9Qp # 0. Clearly, the solution of this problem may not have
additional smoothness suchas H1t¢(Q) for somee > 0. A possible example of discretized problem for
(39) is: givenf = {fy, f,} € L2(Q)?, find {un,0n} € V(Q) s.t.

Bh({uh,0n}, {Vh,Yn}) 4 (Un,Vh)o = (T,0nVh + Ra(Uh — Shvh))a;
V{Vh, I} € V. (40)

By using Theorem 1, we can show, for example, strong convergerogigfi- Ry (0 — Shun) to Ouin L2(Q)?

as well as that ofi, to uin L2(Q) ash | 0, provided that the set of sufficiently smooth functiorH$(Q) is

dense there. We omit the proof, but it can be performed by essentially the same ideas and techniques as in
the proof of Theorem 1.

As an example for the final item, we can consider the boundary value problems for a simple semi-linear
elliptic equation—Au = f(u), wheref(-) is a polynomial function. For the analysis of the corresponding
approximate problems discretized by DGFEM, we need additional results on some function spaces such as
LP(Q) (p# 2), so that the analysis in e.g. [6] may be effective.

6 Concluding remarks

We have discussed a Rellich-type discrete compactness for some DGFEM. Our approach has limitations in
the framework of Hilbert methods, but may be effective for some purposes. We can generalize the present
methodologies to wider classes of DGFEM, but we have not attempted such generalization to make the
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description concise. Extensions to 3D cases appears to be possible, provided that the regularity results of the
corresponding auxiliary problem are well established and the appropriate conditions for triangulations are
found. As was already mentioned, we can apply the results to various problems, and such applications will
be reported elsewhere.
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