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1. Introduction

This paper develops a new method of estimation and statistical inference in stationary, purely

integrated, or cointegrated vector autoregressions (VAR), and also studies the tests for struc-

tural changes. The VAR models have long been used in empirical analyses to capture the

relations between economic variables. Since macroeconomic variables sometimes show non-

stationary behaviors, usually, before estimating the VAR models, we first test for a unit root

for each variable and if we find the evidence of nonstationarity, then we test for cointegration.

One of the most widely used unit root tests is the (augmented) Dickey-Fuller test by Dickey

and Fuller (1979) and Said and Dickey (1984); the cointegrating rank is estimated using the

system approach by Ahn and Reinsel (1990) and Johansen (1988, 1991, 1995).

Often, once the order of integration/cointegration is determined, we make a statisti-

cal inference about the coefficients. In this case, the knowledge of the order of integra-

tion/cointegration is crucial to make a valid inference; if the estimated order is different from

the true one, then our statistical inference would be invalid and we may come to a wrong

conclusion. That is, we have to be careful about the pre-test bias when estimating the or-

der of integration/cointegration. However, in some cases, we are not much interested in the

order of integration/cointegration but wish only to test for the hypothesis about the coeffi-

cients. In such a case, statistical methods robust to the order of integration/cointegration

are useful in practical analyses in order to avoid the pre-test bias; hence, several methods

have been proposed in the literature. For example, Phillips (1995) develops the fully modified

VAR (FM-VAR) approach, wherein the Wald test statistic has a limiting distribution that is

bounded above by a chi-square distribution, so that the test with chi-square critical values

becomes asymptotically conservative. Toda and Yamamoto (1995) propose to estimate a

model with intentionally augmented lags, and show that the estimated parameter of interest

has a limiting normal distribution irrespective of whether the variables are (trend) station-

ary, integrated, or cointegrated. This lag-augmented (LA) method is further modified by

Kurozumi and Yamamoto (2000) in order to reduce the estimation bias. While these meth-

ods are mainly developed for the inference about the reduced VAR models, Hsiao and Wang

(2006, 2007) propose the estimation methods for structural VAR models using techniques
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similar to the FM-VAR and the LA-VAR approaches.

The above methods are useful if we are interested in only the coefficients associated

with the lagged dependent variables, in such cases as testing for Granger-noncausality and

investigating the term structure of interest rates. However, such methods are not necessarily

suitable for testing hypotheses including restrictions on the coefficients associated with an

intercept and a linear trend, because the corresponding estimators by the above methods

depend on the stationary/nonstationary nature of the variables. Yamamoto (1996) proposes

the artificial vector autoregressions (ART-VAR) approach, but he also shows that the ART-

VAR method is quite inefficient in small samples.

In this paper, we develop an alternative approach to making a statistical inference about

all the regression coefficients, including those associated with a constant and a linear trend.

Our method is basically a combination of the LA-VAR and the ART-VAR approaches. We

show that the estimator used in our approach has a limiting normal distribution irrespective

of whether the variables are stationary, purely integrated, or cointegrated. As a result, the

Wald test statistic for the hypothesis about the coefficients weakly converges to a chi-square

distribution under the null hypothesis.

In addition to the order of integration/cointegration, we also have to consider the possibil-

ity of structural changes when we investigate the data in long samples because neglecting the

presence of structural breaks may invalidate the statistical inference. For stationary models,

the tests for structural changes have long been developed in the literature: the sup-type test

by Andrews (1993) and the exponential-type and the averaging-type tests by Andrews, Lee

and Ploberger (1996) are commonly used in practice to test for a one time structural change

(and possibly multiple structural changes); the tests for multiple structural changes by tak-

ing the possible number of structural changes into account have been proposed by Bai and

Perron (1998) and Qu and Perron (2007). On the other hand, for cointegrated models, we

need to investigate both the order of cointegration and the existence of structural changes.

Saikkonen and Lütkepohl (2000) and Lütkepohl, Saikkonen and Trenkler (2003) propose tests

for the cointegrating rank with deterministic shifts with a known timing, while the unknown

case is considered by Inoue (1999) and Lütkepohl, Saikkonen and Trenkler (2004). Regarding
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structural change tests, Quintos (1995) proposes tests for cointegrating vectors with a known

break point, while Quintos (1997), Seo (1998), Hansen and Johansen (1999), and Qu (2007)

develop tests for changes with unknown points. Tests for structural changes for cointegrat-

ing regressions (and not VAR models) are investigated by Bai, Lumsdaine and Stock (1998)

with one time change and Kejriwal and Perron (2008, 2010b) with multiple changes. For the

known break point and the known cointegrating rank, Hansen (2003) proposes the likelihood

ratio test for parameter restrictions. Unfortunately, the above tests for cointegrating rank

with structural changes assume that we know the existence of structural changes, whereas

the tests for structural changes require knowing the cointegrating rank. Therefore, the tests

for cointegration and structural changes present a circular testing problem, and thus, the

existing approaches appear limited when structural changes are incorporated into possibly

integrated/cointegrated VAR.

As the second contribution of this paper, we develop tests for structural changes for

possibly nonstationary VAR models using the same method as explained above: we combine

the LA-VAR and the ART-VAR methods. We propose the sup-type, the exponential-type,

and the averaging-type tests by Andrews (1993) and Andrews, Lee and Ploberger (1996)

and the double maximum tests by Bai and Perron (1998) and show that they have the

same limiting null distributions as in the standard case, and hence, we can use the existing

critical value tables. Again, the advantage of our method is that we do not require the

knowledge of the order of integration/cointegration, and can use the same test statistics in

any case. Note that recently, the trend and/or level breaks tests, which are robust to the

stationary/unit root property in the stochastic term, have been investigated in the literature;

see Harvey, Leybourne and Taylor (2009, 2010), Perron and Yabu (2009) and Kejriwal, and

Perron (2010a) among others. These papers only consider deterministic shifts whereas we

propose tests for the structural changes in the whole structure of VAR models; thus, the main

purpose of this paper is different from that of the above mentioned papers.

The rest of the paper is organized as follows. Section 2 describes the model and the

assumptions. In Section 3, we explain our method of estimating models, which is robust

to the order of integration/cointegration. We first transform a model in order to avoid

asymptotic multicollinearity in the regressors, and show that the coefficients associated with
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the transformed regressors are asymptotically normal. We then show that the standard Wald

test statistic based on the original estimator can be expressed as a nonsingular transformation

of the transformed estimator, and that it has a limiting chi-square distribution. Section 4

deals with the tests for multiple structural changes and shows that the limiting distributions

of our tests are the same as in the standard case. The finite sample properties of the structural

change tests are investigated in Section 5. The concluding remarks are given in Section 6.

The technical derivations are relegated to the Appendix.

2. Model and Assumptions

Let us consider the following n-dimensional VAR model of order p (VAR(p)):

yt = c0 + c1
t

T
+ Φ1yt−1 + · · ·+ Φpyt−p + ut (t = 1, · · · , T ), (1)

where yts are n-dimensional observations, c0 and c1 are n × 1 coefficient vectors associated

with the deterministic terms, Φ1, · · · ,Φp are n× n coefficient matrices, and ut is a sequence

of innovations. We allow yt to be a stationary, pure integrated, or cointegrated process. More

precisely, we make the following assumptions in this paper.

Assumption A1 (a) {ut} is a martingale difference sequence with respect to Ft = σ{ut, ut−1, · · · }

with E[utu
′
t|Ft−1] = Σu > 0 for all t. (b) suptE‖ut‖4+κ <∞ for some κ > 0.

Assumption A2 The lag polynomial Φ(L) = In −Φ1L−Φ2L
2 − · · · −ΦpL

p satisfies either

of the following: (a) |Φ(z)| = 0 implies |z| > 1 or (b) some solutions of |Φ(z)| = 0 equal 1

and the other solutions lie outside the unit circle. With regard to case (b), we also assume

the following. (b-i) Π =
∑p

j=1 Φj − In can be decomposed such that Π = αβ′, where α and β

are n × r matrices of rank r (0 ≤ r < n). (b-ii) Let α⊥ and β⊥ be n × (n − r) full column

rank matrices such that α′α⊥ = β′β′⊥ = 0 for 0 < r < n and α⊥ = β⊥ = In for r = 0. Then,

α′⊥(In +
∑k

j=2(j − 1)Φj)β⊥ has full rank n − r. (b-iii) α′⊥c1 = 0 if c1 6= 0, and α′⊥c0 = 0 if

c1 = 0.

Assumption A1 is standard in the time series literature to ensure that the weak law of

large numbers (WLLN) and the functional central limit theorem (FCLT) hold. Assumption

4



A2 excludes the explosive case but allows yt to be either (trend) stationary or cointegrated.

In the case of cointegration, the integrated order is at most one and the I(2) case is excluded

by (b-ii). In addition, by (b-iii), when c1 6= 0, yt may have a linear trend but is not allowed

to have a quadratic trend, while yt does not have a linear trend when c1 = 0. For details, see

Chapter 5 in Johansen (1995).

3. Robust Estimation

Suppose that we want to estimate c0, c1, and Φ1, · · · ,Φp, and to make a statistical inference

about them but we are not interested in the integrated order of yt. In other words, we want to

establish the method of estimation and statistical inference about all the coefficients, which

is robust to the integrated order. Note that if we are interested in only the lag’s coefficients,

then we may use the LA method by Toda and Yamamoto (1995) or the FM method by

Phillips (1995). However, since we also want to investigate the coefficients associated with a

constant and a linear trend, we cannot use these methods. On the other hand, Yamamoto

(1996) proposes the ART-VAR approach, which provides a statistical method that is robust

to the integrated order of time series, but he also points out that this method is inefficient. In

fact, the original ART-VAR approach includes many additional artificial regressors, so much

that the total number of regressors is doubled as compared to the original model; as such,

the degrees of freedom in the original ART-VAR is much reduced. Moreover, the convergence

order of the estimator of Φ1, · · · ,Φp in the ART-VAR approach is slower than
√
T , while our

estimator is
√
T -consistent as will be shown later. As a result, the estimator based on the

original ART-VAR is quite inefficient, and hence, the tests based on it lose power.

In order to avoid this inefficiency of the ART-VAR method, we consider a combination of

the LA-VAR and the ART-VAR approaches and estimate the following regression:

yt = c0 + c1
t

T
+ Φ1yt−1 + · · ·+ Φpyt−p + Φp+1yt−p−1 + d0η0t + d1η1t + ut, (2)

where Φp+1 = 0, d0 = d1 = 0, η0t = 1 − (1/T λ0)ε0t, and η1t = (t/T ){1 − (1/T λ1)ε1t} with

0 < λ0, λ1 < 1/2 (which must be pre-determined by a researcher) and with ε0t and ε1t being

artificially generated i.i.d. random variables with unit variances. The selection of λ0 and λ1

will be discussed later. Although ε0t and ε1t can be drawn from any random generators with

5



finite fourth moments, we assume that they are independent (pseudo) standard normal ran-

dom variables generated by a computer. In regression (2), the extra lag yt−p−1 is introduced

so that yt−p and yt−p−1 are cointegrated under Assumption A2(b), as suggested by Toda

and Yamamoto (1995), while the artificial regressors η0t and η1t are included as regressors

along the line of Yamamoto (1996). That is, the artificial regressor η0t is introduced so that

the order of the constant term can be reduced by linear combinations with η0t from Op(1)

to Op(1/T
λ0). Similarly, the order of t/T is Op(1) but it is reduced to Op(1/T

λ1) by linear

combinations of t/T and η1t. Intuitively, we can consider a constant and η0t (t/T and η1t)

to be “cointegrated” in the sense that some linear combinations between the two variables

reduce the original order. This reduction in the original order plays an important role when

making a statistical inference under Assumption A2(b).

Let us express regression (2) as

yt = Θxt + ut

= (x′t ⊗ In)θ + ut, (3)

where Θ = [c0, c1,Φ1, · · · ,Φp,Φp+1, d0, d1], xt = [1, t/T, y′t−1, · · · , y′t−p, y′t−p−1, η0t, η1t]
′ and

θ = vec(Θ). Since we are interested in the first n×(np+2) sub-matrix of Θ ([c0, c1,Φ1, · · · ,Φp]),

we consider the following linear hypothesis:

RLΘRR = Q or equivalently, Rθ = q, (4)

where RL is a k1 × n full row rank matrix; RR = [R′R,1, 0]′ is an {n(p + 1) + 4} × k2 full

column rank matrix with RR,1 = diag{I2, Rφ} so that the restrictions on c0, c1, and Φjs for

j = 1, · · · , p are separate; R = R′R ⊗RL with full row rank k = k1 × k2 and q = vec(Q). We

consider the restrictions on c0, c1, and Φjs to be separate because their convergence orders

are different, as will be shown later. Then, the Wald test statistic for restrictions (4) is given

by

WT = (Rθ̂ − q)′
R


(

T∑
t=1

xtx
′
t

)−1

⊗ Σ̂u

R′

−1

(Rθ̂ − q), (5)

where θ̂ is the least squares estimator of θ and Σ̂u =
∑T

t=1 ûtû
′
t with ût being the regression

residuals.
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In order to derive the asymptotic distribution of the Wald test statistic, we first transform

the regressors in (3), and then investigate the asymptotic property of the transformed coeffi-

cients because the regressors in (3) are asymptotically multicollinear in either the stationary

case or the cointegrated case. Let H be an n(p+ 1) + 4 square full rank matrix given by

H =

 I2 0 −I2

F D 0
0 0 I2

 and H−1 =

 I2 0 I2

−D−1F D−1 −D−1F
0 0 I2

 ,
where D is an n(p+ 1) square full rank matrix and F is an n(p+ 1)× 2 matrix. The exact

definitions of D and F depend on Assumption A2, and are explained below. Using H we

transform (3) as

yt = ΘH−1Hxt + ut

= Θ∗x∗t + ut

= (x∗′t ⊗ In)θ∗ + ut,

where Θ∗ = ΘH−1, x∗t = Hxt, and θ∗ = vec(Θ∗). The centered least squares estimator of θ

normalized by a scaling matrix G∗ ⊗ In is given by

(G∗ ⊗ In)(θ̂∗ − θ∗) =

( T∑
t=1

G∗−1x∗tx
∗′
t G
∗−1

)−1

⊗ In

( T∑
t=1

G∗−1x∗t ⊗ ut

)
.

Let E[yt] = µ0 + µ1(t/T ). Then, for the stationary case under Assumption A2(a), zt =

yt − µ0 − µ1(t/T ) becomes a zero-mean stationary VAR(p) process. In this case, we define

F = F0 =

 −µ0 −µ1
...

...
−µ0 −µ1

 and D = D0 = In(p+1),

so that x∗t = [(1/T λ0)ε0t, (t/T 1+λ1)ε1t, z
′
t−1, · · · , z′t−p, z′t−p−1, η0t, η1t]

′. As a result, the sam-

ple second moment of x∗t using a scaling matrix given by G∗ = G∗0 = diag{T 1/2−λ0 , T 1/2−λ1 ,
√
TIn(p+1)+2}, becomes asymptotically block diagonal as given by

T∑
t=1

G∗−1
0 x∗tx

∗′
t G
∗−1
0

p−→


1 0 0 0
0 1/3 0
0 0 Γ0

1 1/2
0 1/2 1/3

 =

[
Ω0,11 0

0 Ω0,22

]
= Ω0,
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where Γ0 is the expectation of the second moment of [z′t−1, · · · , z′t−p−1]′ and Ω0,11 is the first

n(p+ 1) + 2 square block of Ω0. On the other hand, we have, from the FCLT,

T∑
t=1

G∗−1
0 (x∗t ⊗ ut)

d−→ (Ω0 ⊗ Σu)1/2B0(r),

where B0(r) is an n2(p+ 1) + 4n-dimensional standard Brownian motion. Since Ω0 is block

diagonal, we have

(G∗0 ⊗ In)(θ̂∗ − θ∗) d−→ (Ω−1
0 ⊗ Σu)1/2B0(r) ∼

 N
(

0,Ω−1
0,11 ⊗ Σu

)
N
(

0,Ω−1
0,22 ⊗ Σu

)  . (6)

In the cointegrated case under Assumption A2(b), the matrices F and D are defined as

F = F1 =


−µ1/T 0

...
...

−µ1/T 0
−β′µ0 −β′µ1

−β′⊥µ0 −β′⊥µ1

 and D = D1 =



In −In 0
In −In

. . .
. . .

In −In

0

[
β′

β′⊥

]
,


,

so that x∗t = [(1/T λ0)ε0t, (t/T 1+λ1)ε1t,∆z
′
t−1, · · · ,∆z′t−p, (β′zt−p−1)′, (β′⊥zt−p−1)′, η0t, η1t]

′.

Note that in this case, ∆zt−js and β′zt−p−1 are zero mean stationary processes while β′⊥zt−p−1

is a zero mean purely integrated process. By letting G∗ = G∗1 = diag{T 1/2−λ0 , T 1/2−λ1 ,
√
TInp+r, T In−r,

√
TI2}, we have from the WLLN and the FCLT that

T∑
t=1

G∗−1
1 x∗tx

∗′
t G
∗−1
1

p−→


1 0 0 0
0 1/3 0
0 0 Γ1

0
∫ 1

0 B̃(r)B̃(r)′dr


=

[
Ω1,11 0

0
∫ 1

0 B̃(r)B̃(r)′dr

]
= Ω1,

where Γ1 is the expectation of the second moment of [∆z′t−1, · · · ,∆z′t−p, (β′zt−p−1)′]′, Ω1,11

is the first np + r + 2 square block of Ω1, and B̃(r) = [B⊥(r)′, 1, r]′ with B⊥(r) being an

(n− r)-dimensional Brownian motion induced by β′⊥zt−p−1. On the other hand, we have

T∑
t=1

G∗−1
1 (x∗t ⊗ ut)

d−→
[

(Ω1,11 ⊗ Σu)1/2B1(r)∫ 1
0 B̃(r)⊗ dBu(r)

]
,
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where B1(r) is an n(np + r + 2)-dimensional standard Brownian motion while Bu(r) is an

n-dimensional Brownian motion induced by the partial sums of ut. Again, since Ω1 is block

diagonal, we can see that

(G∗1 ⊗ In)(θ̂∗ − θ∗) d−→

[
(Ω−1

1,11 ⊗ Σu)1/2B1(r)(∫ 1
0 B̃(r)B̃(r)′dr ⊗ In

)−1 (∫ 1
0 B̃(r)⊗ dBu(r)

) ] . (7)

From (6) and (7), we can see that the limiting distribution of θ̂∗ changes depending on As-

sumptions A2(a) and (b): if yt is (trend) stationary, then the estimators of all the coefficients

are asymptotically normal, whereas for the I(1) case, only the first n(np+ r+ 2) elements of

θ̂∗ have the asymptotic normality and the rest have the non-normal distribution. However,

the following theorem shows that the Wald test statistic WT is asymptotically chi-square

distributed irrespective of whether yt is stationary, integrated or cointegrated. Intuitively,

this is because the original parameters of interest are expressed as a linear transformation of

the first n{n(p + 1) + 2} or the first n(np + r + 2) elements of θ̂∗ plus the negligible term

depending on Assumptions A2(a) and (b), respectively, those of which are asymptotically

normal.

Theorem 1 Under Assumptions A1 and A2, if the restrictions Rθ = q hold, then WT
d−→

χ2
k.

Using theorem 1, we can make a statistical inference about the original coefficients irre-

spective of the order of integration/cointegration. This is a major advantage over the exiting

methods because they usually need the knowledge of the I(0)/I(1) properties of the time

series for statistical inference. On the other hand, our estimator is not efficient because the

convergence orders are partially reduced as compared to the standard methods, as can be

seen from (6) and (7). However, our new method is useful in practical analyses when we want

to avoid the pre-test bias and also when we want to test for the parameter restrictions before

determining the order of integration/cointegration, as explained in the next section.

In order to apply our method in practice, we need to determine the values of λ0 and

λ1. For simplicity, we consider the case where there is no linear trend in the regressors. In

this case, the estimator of c∗0, which corresponds to the first column of Θ∗, is asymptotically
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normal with the convergence order given by T 1/2−λ0 in both the I(0) and I(1) cases; see the

(1,1) element of G∗0 and G∗1. In this case, it can be shown that the off-block-diagonal elements

of
∑T

t=1G
∗−1x∗tx

∗′
t G
∗−1 are at most Op(1/T

λ0), and then, we can see that

T 1/2−λ0(ĉ∗0 − c∗0) = the dominating term +Op

(
1

T λ0

)
.

Thus, we may want to set λ0 as large as (as close to 1/2 as) possible in order to approximate

the distribution of the left-hand side by the dominating term on the right-hand side, while we

would prefer that λ0 be small considering the convergence order of ĉ∗0. From the viewpoint of

statistical testing, the larger values of λ0 will result in the size of the Wald test being better

controlled, while the smaller values of λ0 will result in the test being more powerful. That

is, there is a trade-off between controlling for size and the power of the test, in terms of the

values of λ0. Since the order of the remaining term is Op(1/T
λ0) while the local alternative

associated with the dominating term is of order T λ0−1/2, we propose to set λ0 = 1/4 as a

compromise to equalize the two orders. In fact, the preliminary simulations show that it is

difficult to control the size of the test when λ0 is close to zero, and that we have the problem

of low power for the larger values of λ0. By the same reason, we also consider λ1 = 1/4 in

the following sections.

4. Tests for Structural Changes

One of the important applications of the statistical method developed in the previous section

is testing for structural changes. As discussed in the Introduction, the knowledge of the

order of integration/cointegration is required to test for structural changes in general but we

usually do not know whether the time series is stationary, purely integrated, or cointegrated.

Hence, it is important and useful in practical analyses to construct structural change tests

that are robust to the I(0)/I(1) properties of the time series.

Let us consider the following VAR(p) model with m structural changes for the j-th regime

(j = 1, · · · ,m+ 1):

yt = cj0 + Φj1yt−1 + · · ·+ Φjpyt−p + ut (t = Tj−1 + 1, · · · , Tj), (8)
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where T1, · · · , Tm are the break points. Note that we exclude a linear trend from the regres-

sion, and as such, we also assume that cj0 = 0 if yt is purely integrated in the j-th regime

and that cj0 is orthogonal to α⊥ if yt is cointegrated, as explained in Assumption A2(b).

As in the previous section, we estimate (8) by augmenting an extra lag and an artificial

regressor. That is, we estimate

yt = cj0 + Φj1yt−1 + · · ·+ Φjpyt−p + Φjp+1yt−p−1 + dj0η0t + ut, (9)

for t = Tj−1 + 1, · · · , Tj (j = 1, · · · ,m + 1), where Φjp+1 = 0, dj0 = 0, and η0t is defined as

in the previous section. In each regime, we define a matrix Hj in the same way as H, and

transform (9) such that

yt = ΘjH
−1
j Hjxt + ut

= Θ∗jx
∗
jt + ut

= (x∗′jt ⊗ In)θ∗j + ut,

for the j-th regime, where Θj = [cj0,Φj1, · · · ,Φjp,Φjp+1, dj0], Θ∗j = ΘjH
−1
j , x∗jt = Hjxt, and

θ∗j = vec(Θj). In this case, the full set of parameters is expressed as Θ = [Θ1,Θ2, · · · ,Θm+1],

θ = [θ′1, θ
′
2, · · · , θ′m+1]′, Θ∗ = [Θ∗1,Θ

∗
2, · · · ,Θ∗m+1], and θ∗ = [θ∗′1 , θ

∗′
2 , · · · , θ∗′m+1]′, with Θ̂, θ̂,

Θ̂∗, and θ̂∗ being the corresponding least squares estimators.

Since we are interested in whether or not structural changes occurred in the original VAR

model (8), the null hypothesis is given by

Θ̃1 = Θ̃2 = · · · = Θ̃m+1 or equivalently, θ̃1 = θ̃2 = · · · = θ̃m+1,

where Θ̃j = [cj0,Φj1, · · · ,Φjp] is the first n× (np+ 1) block of Θj , and θ̃j = vec(Θ̃j). Then,

for a given set of change points T = {T1, T2, · · · , Tm}, the Wald test statistic becomes

WT (T ) = (Rθ̂)′
[
R
(

Σ̂−1 ⊗ Σ̂u

)
R′
]−1

(Rθ̂),

where Σ̂−1 = diag{Σ̂−1
1 , Σ̂−1

2 , · · · , Σ̂−1
m+1} with Σ̂j =

∑Tj
t=Tj−1+1 xtx

′
t for j = 1, · · · ,m+ 1, Σ̂u

is defined as in the previous section, and R = R′R ⊗ In with

RR =


R̃R 0

−R̃R
. . .
. . . R̃R

0 −R̃R

 where R̃R =

[
Inp+1

0

]
.
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Because we usually do not know the break points, we consider the sup-type test proposed by

Andrews (1993) and Bai and Perron (1998).

Sup-FT (m) = sup
T ∈Tε

1

mn(np+ 1)
WT (T ),

where Tε = {(τ1, · · · , τm+1); |τj+1−τj | ≥ ε (j = 0, · · · ,m)} for a given ε > 0 with τj = Tj/T ,

T0 = 0, and Tm+1 = T as per convention. Because Σ̂ is asymptotically degenerate, we need

to consider the transformation of the regression model to derive the limiting distribution of

the above test statistic. However, we do not have to explain the derivation of the limiting

distribution in detail because as shown in the proof of Theorem 1, we know that WT (T )

is asymptotically equivalent to a test for linear restrictions on a part of θ̃∗ associated with

the transformed stationary variables, whose limiting distributions are expressed as a linear

transformation of a standard Brownian motion as given in (6) and (7). Thus, following

Theorem 6 in Bai and Perron (1998) and Kurozumi (2011), we have the following theorem.

Theorem 2 Under the null hypothesis of no structural change,

Sup-FT (m)
d−→ sup
T ∈Tε

1

m(n2p+ n)
W (m) where W (m) =

m∑
j=1

‖τjW (τj+1)− τj+1W (τj)‖2

τjτj+1(τj+1 − τj)
.

The critical values of the above distributions are given in Bai and Perron (1998, 2003).

Theorem 2 is concerned with the sup-type test but we can easily see that the exponential-

type and the averaging-type tests by Andrews, Lee and Ploberger (1996) are available. For

example, in a special case of one time change, these test statistics are given by

Exp-WT (1) = log

 1

(τ̄ − τ)T

τ̄T∑
t=τT+1

exp

(
1

2
WT (T )

) , Avg-WT (1) =
1

(τ̄ − τ)T

τ̄T∑
t=τT+1

WT (T ),

where τ and τ̄ are the lower and the upper bounds of the possible break fraction τ . The

critical values given in Andrews and Ploberger (1994) are applicable in this case.

The above tests suppose that the number of structural changes under the alternative can

be specified from the outset. However, in some cases, we do not want to prespecify m but

just suppose M , the possible maximum number of breaks under the alternative. In such a

case, we can construct the double maximum tests proposed by Bai and Perron (1998). The
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test statistics are given by

UDmax-FT (M) = max
1≤m≤M

Sup-FT (m), WDmax-FT (M) = max
1≤m≤M

c(k, α, 1)

c(k, α,m)
Sup-FT (m),

where c(k, α,m) is a critical value of Sup-FT (m) with significance level α. Again, as in

Theorem 2, we can see that the limiting distributions of the above two test statistics are the

same as those given by Bai and Perron (1998), and hence, we can use the critical values given

in Bai and Perron (1998, 2003).

5. Simulation Results

To demonstrate the performance of the proposed tests in finite samples, we conduct two sets

of numerical simulations. The first set is for the investigation of the single break tests, namely

Sup-F (1), Exp-WT (1), and Avg-WT (1); the second set is for Sup-F (m), UDmax-FT (M), and

WDmax-FT (M) with two breaks.

5.1 Single break case

We first report the simulation results regarding the size and power properties of the structural

break tests dealing with a single break. We consider, as a data generating process, the

following AR(1) process with a single break in a constant as a leading case:

DGP1:

yt =

{
c10 + φyt−1 + εt. for t = 1, ..., T1

c20 + φyt−1 + εt for t = T1 + 1, ..., T,
(10)

where εt is i.i.d. N(0, 1) with initial value y0 = 0.

The null rejection probabilities are simulated for the grid values of φ covering the range

[0, 1] with increments of 0.05. The parameters c10 and c20 are set to zero because the test

statistics are invariant to their values. The sample sizes used are T = 50, 100, 150, and

200, with 5, 000 replications for each. The trimming parameter is set at ε = 0.15, so that

the admissible range of change point is [0.15, 0.85]. Figure 1 plots the finite sample sizes

of Sup-F (1), Exp-WT (1), and Avg-WT (1); in all the cases, the rejection frequencies are

calculated at the nominal 5% level. We can see from the figure that the empirical sizes of all

the tests are close to the nominal size for φ < 0.9. On the other hand, when φ is close to one,
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the sup-type test slightly overly rejects the null hypothesis whereas the averaging-type test

tends to be conservative. The empirical size of the sup-type test is not much affected by the

true values of φ, and is close to the nominal size in all the cases.

To investigate the finite sample power properties, we consider DGP (10) with a break at

the half of the sample. The sample sizes of T = 100 and T = 200 are used for the power

simulations, with four distinct configurations for each. These configurations correspond to

the stationary (φ = 0.5), the moderate deviation from a unit root (φ = 0.9), the near unit

root (φ = 0.95), and the unit root (φ = 1) cases. The data are generated accordingly, for a

grid of values for the magnitude of the break, δ = c20 − c10, covering the range [0, 2] in steps

of 0.05.

From Figures 1 and 2, we can see that the powers increase as the magnitude of the break

or the sample size increases. We can also see that these powers are sensitive to the values

of φ; the power of each test statistic is uniformly higher for the larger values of φ. Among

the three tests, Sup-F (1) and Exp-WT (1) show similar finite sample properties and generally

have higher power than Avg-WT (1), which is consistent with the theoretical investigation by

Kim and Perron (2009). In particular, Avg-WT (1) has poor finite sample properties with

regard to power when φ = 1. Considering the size and the power properties, in our approach,

the sup-type test seems most reliable for the single break case.

5.2 Two breaks case

To assess the finite sample properties of Sup-FT (m) for m ≥ 2 and the double maximum

tests, we use the following data generating process, in addition to DGP1:

DGP2:

yt = c10 + φyt−1 + ut, t = 1, · · · , T1 (11)

yt = c20 + φyt−1 + ut, t = T1 + 1, · · · , T2

yt = c30 + φyt−1 + ut, t = T2 + 1, · · · , T

where y0 = 0 and ut ∼ i.i.d.N(0, 1). Again, the trimming parameter ε is set at 0.15 while the

maximum number of allowable breaks is set at M = 3.
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Table 1 reports the simulation results for the sizes of Sup-FT (m), UDmax-FT (M), and

WDmax-FT (M). We can see from the table that the empirical sizes of Sup-FT (m) with

m = 1 and 2 and UDmax-FT are relatively close to the nominal sizes whereas Sup-FT (3) is

oversized. As in the first simulation, all the tests tend to overly reject the null hypothesis

when φ is close to one, although the overall size distortion is mitigated as the sample size

increases.

We then investigate the empirical powers of the tests in the presence of a single break

(DGP1) and two breaks (DGP2). We first consider the case of one break in an intercept

occurring at the half of the sample, that is, λ0 = 0.5. Table 2 reports the results for three

values of break magnitudes δ = c20− c10 = 0.5, 0.7, 1.0 for each specification. As can be seen

from Table 2, the power (expectedly) increases as the break magnitude increases. We can

also see that Sup-FT (3) has the highest power in all the specifications, although this may be

because of the oversize distortions under the null hypothesis. The other tests have similar

finite sample properties with regard to power.

Finally, we consider the case where there exist two breaks in an intercept occurring at

the locations (τ1, τ2) = (1/3, 2/3) and (0.4, 0.6). We generate DGP2 with break magnitudes

satisfying δ = c20 − c10 = c30 − c20 for T = 100. From Table 3, we can see that the overall

properties are preserved in this case. We obtained a similar result for T = 200, but do not

report it to save space.

6. Conclusion

In this paper, we proposed an estimation method for the VAR processes that are (trend)

stationary, purely integrated, or cointegrated. Our approach is based on the lag augmented

method by Toda and Yamamoto (1995) and the ART-VAR approach by Yamamoto (1996).

Although our method is not necessarily efficient, it has an advantage over the existing meth-

ods in that the Wald test statistic for linear restrictions weakly converges to a chi-square

distribution irrespective of whether the time series is stationary, integrated, or cointegrated;

thus, we can make a statistical inference about the coefficients without the knowledge of

the order of integration/cointegration. The useful application of our method is testing for

structural changes. We show that the sup-type, the exponential-type, and the averaging-type
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tests, and the UDmax and WDmax tests based on our estimators are available using the

existing tables of critical values. Our approach can be seen as a benchmark for a robust

statistical inference about the VAR models, and would prove useful to develop more efficient

methods in the future.

Appendix

Proof of Theorem 1: Let G = diag{T 1/2−λ0 , T 1/2−λ1 ,
√
TIk2−2} be a k2×k2 scaling matrix.

Then, because θ∗ = (H ′−1 ⊗ In)θ, θ̂∗ = (H ′−1 ⊗ In)θ̂, and x∗t = Hxt, the Wald test statistic

(5) can be expressed as

WT =
[
(G⊗ Ik1)R∗(θ̂∗ − θ∗)

]′
(G⊗ Ik1)R∗


(

T∑
t=1

x∗tx
∗′
t

)−1

⊗ Σ̂u

R∗′(G⊗ Ik1)

−1 [
(G⊗ Ik1)R∗(θ̂∗ − θ∗)

]
,(12)

where R∗ = R(H ′ ⊗ In) = R′RH
′ ⊗ RL. In the stationary case under Assumption A2(a),

noting that H is defined using F = F0 and D = D0 = In(p+1) and that the last n+ 2 rows of

RR are all zeroes, we can see that

(G⊗ Ik1)R∗ = GR′RH
′ ⊗RL

= R′RG
∗
0H
′ ⊗RL

= R′R(H̃ ′0 +O(T−λ))G∗0 ⊗RL,

where λ = min(λ0, λ1) and H̃0 is defined in the same way as H with F = F0 replaced by

zeroes. Then, from (6) and the structure of H̃0, we have

(G⊗ Ik1)R∗(θ̂∗ − θ∗) = (R′RH̃
′
0 ⊗RL)(G∗0 ⊗ In)(θ̂∗ − θ∗) + op(1)

d−→ N
(
0, R′R,1Ω11

0,11RR,1 ⊗RLΣuR
′
L

)
, (13)

16



where Ω11
0,11 is the first np+ 2 square block of Ω−1

0,11 and

(G⊗ Ik1)R∗


(

T∑
t=1

x∗tx
∗′
t

)−1

⊗ Σ̂u

R∗′(G⊗ Ik1)

=

R′RH̃ ′0
(

T∑
t=1

G∗−1
0 x∗tx

∗′
t G
∗−1
0

)−1

H̃0RR

⊗RLΣ̂uRL + op(1)

p−→ R′R,1Ω11
0,11RR,1 ⊗RLΣuR

′
L. (14)

Thus, from (13) and (14), we can see that WT weakly converges to a chi-square distribution

with k = k1 × k2 degrees of freedom.

Similarly, in the cointegrated case under Assumption A2(b), we can see that

(G⊗ Ik1)R∗ = R′R(H̃ ′1 +O(T−λ))G∗1,

where H̃1 is defined in the same way as H with F = F1 replaced by zeroes. Then, from (7),

we have

(G⊗ Ik1)R∗(θ̂∗ − θ∗) = (R′RH̃
′
1 ⊗RL)(G∗1 ⊗ In)(θ̂∗ − θ∗) + op(1)

d−→ N =
(

0, R′R,1H̃
′
11Ω−1

1,11H̃11RR,1 ⊗RLΣuR
′
L

)
. (15)

where H̃11 is the first (np+ 2) square block of H̃1 and

(G⊗ Ik1)R∗


(

T∑
t=1

x∗tx
∗′
t

)−1

⊗ Σ̂u

R∗′(G⊗ Ik1)

=

R′RH̃ ′1
(

T∑
t=1

G∗−1
1 x∗tx

∗′
t G
∗−1
1

)−1

H̃1RR

⊗RLΣuRL + op(1)

p−→ R′R,1H̃
′
11Ω−1

1,11H̃11RR,1 ⊗RLΣuR
′
L. (16)

Then, from (15) and (16), we obtain the desired weak convergence.�
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Table 1: Finite Sample Sizes of Sup-FT , UDmax-FT and WDmax-FT

Sup UDmax WDmax
specification m = 1 m = 2 m = 3

T = 100 φ = 0.5 0.06 0.08 0.11 0.07 0.08
φ = 0.95 0.07 0.08 0.11 0.08 0.09
φ = 1.0 0.08 0.07 0.13 0.09 0.10

T = 200 φ = 0.5 0.05 0.07 0.09 0.06 0.07
φ = 0.95 0.06 0.07 0.09 0.07 0.09
φ = 1.0 0.08 0.07 0.11 0.08 0.09



Table 2: Finite Sample Powers of Sup-FT , UDmax-FT and WDmax-FT (Single Break)

Sup WDmax WDmax
specification m = 1 m = 2 m = 3

T = 100 φ = 0.5 δ = 0.5 0.54 0.49 0.52 0.54 0.51
δ = 0.7 0.76 0.71 0.71 0.77 0.74
δ = 1.0 0.97 0.91 0.90 0.97 0.95

φ = 0.95 δ = 0.5 0.72 0.84 0.92 0.83 0.90
δ = 0.7 0.80 0.88 0.95 0.88 0.92
δ = 1.0 0.86 0.93 0.97 0.93 0.96

φ = 1.0 δ = 0.5 0.65 0.73 0.84 0.71 0.76
δ = 0.7 0.68 0.71 0.79 0.72 0.76
δ = 1.0 0.86 0.81 0.85 0.86 0.88

T = 200 φ = 0.5 δ = 0.5 1.0 0.99 0.98 1.0 0.95
δ = 0.7 1.0 0.98 0.98 1.0 0.92
δ = 1.0 1.0 1.0 1.0 1.0 1.0

φ = 0.95 δ = 0.5 0.75 0.80 0.93 0.88 0.90
δ = 0.7 0.84 0.92 0.93 0.90 0.95
δ = 1.0 0.97 0.97 1.0 0.98 1.0

φ = 1.0 δ = 0.5 0.71 0.73 0.78 0.71 0.76
δ = 0.7 0.73 0.76 0.82 0.78 0.81
δ = 1.0 0.88 0.87 0.86 0.90 0.89



Table 3: Finite Sample Powers of Sup-FT , UDmax-FT and WDmax-FT (Two Breaks, T =
100)

Sup WDmax WDmax
(τ1, τ2) specification m = 1 m = 2 m = 3

(1/3, 2/3) φ = 0.5 δ = 0.5 0.87 0.79 0.82 0.86 0.85
φ = 1.0 δ = 0.5 0.51 0.56 0.68 0.55 0.62

(0.4, 0.6) φ = 0.5 δ = 0.5 0.93 0.88 0.87 0.93 0.91
φ = 1.0 δ = 0.5 0.66 0.66 0.74 0.68 0.73



Figure 1: Finite sample size comparisons at 5% level



Figure 2: Finite sample power comparisons at 5% level. Sample size is T = 100.



Figure 3: Finite sample power comparisons at 5% level. Sample size is T = 200.


