Acknowledgements

My heartfelt gratitude and immense indebtedness to my supervisor Dr. Kazumi Asako, Professor, Institute of Economic Research, Hitotsubashi University, Tokyo, Japan for his constant supervision, valuable suggestions, thoughtful criticism, proper guidance and endless cooperation throughout the period of my research work and preparation of this thesis. Without his guidance, I would not have been able to finish the dissertation.

I would like to express my appreciation and gratitude to Professors Hidetoshi Yamashita, Kentaro Nakajima, Shinkichi Taniguchi, Shun'ichi Teranishi, Takashi Kurosaki, Takeshi Sakurai and Yutaka Arimoto who provided me with invaluable and insightful comments, and without whose help this dissertation could not have reached its present form.

I am thankful to all of the participants at Professor Asako Seminar, Professors Teranishi and Yamashita Seminar, Professors Kurosaki, Sakurai, Arimoto and Nakajima Seminar in Hitotsubashi University, gave me a lot of help and advice on studying economics, I have benefited from their useful suggestions. Thanks to all the people whom I interviewed for data collection. I would like to express my appreciation and gratitude to Dr. Masao Tsuri and Dr. Kazuya Wada for their valuable suggestions and constructive criticisms.

I duly acknowledge my indebtedness to Dr. Islam and Dr. Akhtar for allowing me to use the relevant data in the chapter two.

I gratefully acknowledge all officer and staffs of the Hitotsubashi University especially Yukie Hada San for their excellent cooperation, help and support during this study.

I am grateful to my beloved family members specially my father and mother, my wife and my daughter for their continuous support, heartiest help, co-operation, affection and encouragement throughout my study period.

Finally, I am also very grateful to the Ministry of Education, Culture, Sports, Science and Technology, Japan for offering four and an half years scholarship to carry out this research work.

The Author

Graduate School of Economics Hitotsubashi University

Chapter	Title	Pages
	Acknowledgements	i
	List of Contents	iii
	List of Tables	viii
	List of Figures	xi
	List of Abbreviations	xii
	Abstract	xiv
1	General Introduction	1
1.1	What is the Arsenic?	1
1.2	What is the Arsenic Threat for Human Health?	2
1.3	Sources of Arsenic	7
1.4	Discovery of Arsenic in South Asia	7
1.5	International and National Standards for Arsenic Intake	8
1.6	Situation Analysis	10
1.6.1	Global Situation	10
1.6.2	Asian Situation	14
1.6.3	Situation of Bangladesh	19
1.7	Ownership of Hand Tube-Wells	28
1.8	Options of Safe Water	28
1.8.1	Arsenic Remove from Existing Contaminated Source	28
1.8.2	Switching to Alternative Arsenic Free Water Sources	29
1.9	Economic Loss for Arsenic Related Health Burden	29
1.10	Arsenic Threat and Millennium Development Goals	31
1.11	Organization of the Dissertation	34

List of Contents

List of contents (contd.)

2		Assessment of Arsenic Exposure to Human,	36
		Concentrations in Tube Well Water And Urine, and	
		Body Mass Index	
	2.1	Introduction	36
	2.2	Methodology	38
	2.2.1	Survey Area	38
	2.2.2	Selection of Survey Sample	39
	2.2.3	Survey Instruments	40
	2.2.4	Assessment of Arsenic Exposure	40
	2.2.5	Statistical Analysis	41
	2.3	Results and Discussion	41
	2.3.1	Characteristics of Survey Sample	41
	2.3.2	Skin Lesion of Sampled Arsenicosis Patients	43
	2.3.3	Pathway of Arsenic	47
	2.3.4	Assessment of Arsenic in the Tube Well Water Sample	49
	2.3.5	Assessment of Arsenic Concentration in Urine Sample	51
	2.3.6	Body Mass Index of Sample Respondents	52
	2.3.7	Association Between BMI and Arsenic Concentration in	53
		Urine	
	2.4	Conclusion	54
3		Social and Psychological Implications of Arsenic	56
		Poisoning and Arsenicosis Patients' Perception about	
		Arsenic Poisoning through Groundwater	
	3.1	Introduction	56
	3.2	Material and Methods	58

	3.2.1	Study Area	58
	3.2.2	Data Collection	59
	3.2.3	Variables	60
	3.2.4	Statistical Analyses	61
	3.2.4.1	Descriptive Statistics	61
	3.2.4.2	Logit Regression	61
	3.3	Results	63
	3.3.1	Socio-Demographic Background	63
	3.3.2	Social Implication of Arsenicosis	65
	3.3.2.1	Gender Wise Distribution of Perception of Social	65
		Implications	
	3.3.2.2	Arsenic Poisoning and Child Development	66
	3.3.2.3	Arsenicosis Problems for Seeking Marriage	66
	3.3.2.4	Problems in Married Life	67
	3.3.3	Perception of Psychological Implications of Arsenicosis	68
	3.3.4	Logit Analysis for the Respondents' Knowledge about	68
		Arsenicosis	
	3.4	Discussion	70
	3.5	Conclusion	73
4		Spatial Analysis of Households' Knowledge about	74
		Arsenic Contaminated Drinking Water	
	4.1	Introduction	74
	4.2	Methods	77
	4.2.1	Spatial Regression Model	77
	4.2.1.1	Spatial Lag Model	80

	4.2.1.2	Spatial Error Model	83
	4.2.2	Spatial Weights Matrix	86
	4.2.2.1	Binary Contiguity/Join Matrix	87
	4.2.2.1.1	Row Standardized Spatial Weight Matrix	88
	4.2.2.2	Inverse Distance Matrix	89
	4.2.3	Association between Rho (P) and Lamda (λ)	90
	4.2.4	Empirical Models	92
	4.2.4.1	District Model	92
	4.2.4.2	Divisional and Regional Models	94
	4.2.5	Model Comparison	94
	4.2.6	Background of the Explanatory Variables	95
	4.2.6	Data Sources	97
	4.3	Results and Discussion	99
	4.3.1	Descriptive Statistics of Variables	99
	4.3.2	Spatial Framework of Different Districts	99
	4.3.3	Spatial Estimates with Binary Join Weights	99
	4.3.4	Spatial Estimates with Inverse Distance Weights	101
	4.3.5	Divisional and Regional Spatial Estimates	102
	4.3.6	Equality of Spatial Coefficients of Divisional and	103
		Regional Models	
	4.4	Conclusion	104
5		Modeling of the Factors Influence on Arsenicosis Health	115
		Status, Averting Behavior and Willingness to Pay	
	5.1	Introduction	115
	5.2	Methodology	120

List of contents (contd.)

5.2.1	Study Area	120
5.2.2	Data Collection	221
5.2.3	Definition of Variables	122
5.2.3.1	Dependent Variables	123
5.2.3.1.1	Arsenicosis Health Status	123
5.2.3.1.2	Averting Status	123
5.2.3.1.3	Willingness to Pay	124
5.2.3.2	Explanatory Variables	125
5.2.3.2.1	Demographic Variables	125
5.2.3.2.2	Traditional Socioeconomic Status Variables	126
5.2.3.2.3	Lifestyle Factor	126
5.2.3.2.4	Nutritional Variables	127
5.2.3.2.5	Arsenic Status	127
5.2.4	Estimation Method	127
5.3	Results and Discussion	131
5.3.1	Descriptive Statistics	131
5.3.2	Arsenicosis Health Status	132
5.3.3	Switching from Red to Green Source	135
5.3.4	Willingness to Pay for Arsenic Free Water	136
5.4	Conclusion and Policy Recommendation	137
	References	150

List of contents (contd.)

-

List of Tables

Table No.	Title	Pages
1.1	Currently accepted national standards of selected countries for arsenic in drinking water	9
1.2	Chronology of recommended WHO values for arsenic in drinking water	10
1.3	Lists of 48 countries with arsenic contaminated drinking water	13
1.4	Summary of the distribution, nature, and scale of documented arsenic problems (>50 μ g l ⁻¹) in aquifers in south and East Asia	14
1.5	Frequency distribution of arsenic concentrations in groundwater from the Huhhot Basin, Inner Mongolia	15
1.6	Summary arsenic data for groundwater from tubewells in the Red River Plain, Vietnam, divided into those from the Holocene and Pleistocene aquifers	15
1.7	Summary arsenic data for groundwater from tube wells in the Mekong Valley of Cambodia	16
1.8	Frequency distribution of arsenic concentrations in groundwater samples from Northern Punjab, Pakistan	16
1.9	Frequency distribution of arsenic concentrations in ground water from the alluvial aquifer of Myanmar	17
1.10	Frequency distribution of arsenic concentrations in analyzed groundwater samples from Nepal	17
1.11	Present groundwater arsenic contamination status of West Bengal, India	18
1.12	Proportion of wells exceeding 50 μ g/L standard at different scales in Bangladesh	21
1.13	Arsenic related basic statistics of Bangladesh, 2007	25
1.14	Estimated health impact of arsenic contamination of tube wells in Bangladesh	27

List of tables (Contd.)

1.15	Impact of arsenic contamination on millennium development targets	32
2.1	Some basic characteristics of the sample respondents	43
2.2	Information on skin lesion of sampled arsenicosis patients	44
2.3	Distribution of arsenic concentration in the tube well water	50
2.4	Distribution of arsenic concentration in urine	51
2.5	Distribution of body mass index of the respondents	52
2.6	Join frequency distribution of BMI and arsenic concentration in urine	54
3.1	Socio-demographic characteristics of the surveyed Arsenicosis patients	64
3.2	Distribution of respondents by gender and their perception on any social implication of arsenic exposure	66
3.3	Distribution of respondents by gender and their perception about psychological implication of arsenicosis	68
3.4	Results of the estimated logit equation of respondents' perception about arsenicosis (t statistics in parentheses)	69
4.1	Descriptive Statistics of Variables	108
4.2	Entries of sixty four districts of Figure 4.3	110
4.3	Spatial estimates with binary weights of the knowledge of households about arsenic contaminated drinking water	111
4.4	Spatial estimates with inverse-distance weights of the knowledge of households about arsenic contaminated drinking water	112
4.5	Divisional and regional spatial estimates of the knowledge of households about arsenic pollution	113
4.6	Spatial coefficients equality with binary join weights for divisions and regions	114

List of tables (Contd.)

5.1	Data characteristics and variable scoring	140
5.2	Descriptive Statistics of Variables	141
5.3	Order logit regression results on arsenicosis based health status	143
5.4	Marginal effect of risk of being arsenicosis	144
5.5	Coefficients from the binary logit regression on the switching from red to green tube well	145
5.6	Marginal effect of switching from red tube well to green tube well	146
5.7	Distribution of WTP data	147
5.8	Maximum likelihood regression coefficients of willingness to pay for arsenic free water	149

List of Figures

Figure No.	Title	Pages
1.1	Hand of an Arsenicosis patient	4
1.2	Feet of an Arsenicosis patient	5
1.3	Hand and Feet of Arsenicosis patient	6
1.4	Global map of arsenic contaminated countries	12
1.5	Groundwater arsenic contamination in Bangladesh in 2002-	22
	2003	
1.6	Arsenic contamination of household drinking water in	23
	Bangladesh in 2009	
1.7	Arsenic contamination of household drinking water in	24
	Bangladesh in 2009	
2.1	Spots of the Arsenicosis patients	46
2.2	Pathway of the Arsenic Exposure to Human	49
4.1	Relationship among the variables in case of spatial lag	106
4.2	Relationship among the variables in case of spatial error	107
4.3	Spatial framework of 64 districts of Bangladesh	109
5.1	Summary of Tube well status and WTP	142
5.2	Demand curve for arsenic free water	148

List of Abbreviations

Abbreviation	Full Word
AHS	Arsenicosis Health Status
AIC	Akaike's Information Criterion
As	Arsenic
AVSTA	Averting Status
BBS	Bangladesh Bureau of Statistics
BGS	British Geological Survey
BIC	Bayesian Information Criterion
BLUE	Best Linear Unbiased Estimator
BMI	Body mass index
CV	Contingent Valuation
CVM	Contingent Valuation Method
DMA	Dimethylarsinic Acid
DPHE	Department of Public Health Engineering
DTW	Deep Tube Well
DW	Dug Well
FAO	Food and Agricultural Organization
GED	General Economics Division
HS	Health Status
HSC	Higher Secondary Certificate
HTWs	Hand Tube Wells
IARC	International Agency for Research on Cancer
ICDDR, B	International Centre for Diarrhoeal Disease Research,
	Bangladesh
kg	Kilogram

List of abbreviations (Contd.)

m	Meter
MDGs	Millennium Development Goals
MICS	Multiple Indicator Cluster Survey
ML	Maximum Likelihood
MMA	Monomethylarsonic Acid
MRSA	Mixed Regressive Spatial Autoregressive Model
NAMIC	National Arsenic Mitigation Information Centre
NGOs	Non-Governmental Organizations
NIPSOM	National Institute of Preventive and Social Medicine
NRC	National Research Council
PSUs	Primary Sampling Units
SAR	Spatial Autoregressive
SC	Schwarz Criterion
SES	Socio-Economics Status
SMA	Spatial Moving Average
SOES	School of Environmental Studies
SSC	Secondary School Certificate
STW	Shallow Tube Well
UAs	Urinary arsenic
UNDP	United Nations Development Programme
UNICEF	United Nations Children's Fund
WHO	World Health Organization
WTP	Willingness to Pay
$\mu g \; L^{1}$ or $\mu g \; /L$	Microgram per Liter
µg/g	Microgram per gram

Abstract

Adverse human health effects ranging from skin lesions to internal cancers as well as widespread social and psychological problems are associated with chronic arsenic exposure from arsenic contaminated drinking water. Arsenic in drinking water is a major public health concern in Bangladesh, affecting several millions of people who live in rural areas, because of insufficient financial resources and public health infrastructure and lack of awareness. The present study empirically analyzes the arsenic exposure to human, arsenic concentration in urine and tube well water, the determinants of arsenicosis patients' perception about chronic arsenic poisoning, social and psychological implications of arsenicosis, the determinants and spatial dependence of households' knowledge about arsenic contamination, various factors influence arsenicosis health status, averting behavior and willingness to pay for arsenic free water.

A five-stage sampling procedure was undertaken for the selecting the 418 sample respondents for examining the arsenic concentration in urine and body mass index and 86 sample tube well for testing the arsenic concentration in drinking water. A three-stage sampling procedure was undertaken for selecting 150 (90 female and 60 male) respondents from 458 patients for identifying the determinants of arsenicosis patients' perception about chronic arsenic poisoning, social and psychological implications of arsenicosis. The data was collected from the six different sources for the examining the determinants and spatial dependence of households' knowledge about arsenic contamination. A two-stage sampling procedure was under taken for selecting the sample respondents for investigating the factors influence arsenicosis health status, averting behavior and willingness to pay for arsenic free water.

The present study shows that the highest amount of skin lesion was melanosis in palm (43.74%) and the second highest in trunk (37.49%). Melanosis in the palm, sole and trunk were the common signs in the patients. It was found that the sample respondents had an average body mass index of 19.52 while the BMI of the sample respondents varied from 14.06 to 33.4 with standard deviation 3.02 which was represent the broad characteristics of BMI of rural residents. The average level of arsenic concentration in the drinking water was $285.37 \pm 193.13 \mu g/L$ with the ranging from 0 to 715.63 $\mu g/L$. The mean arsenic concentration in the urine of the sample respondents was $637.85 \pm 478.69\mu g/L$ creatinine. The concentration levels varied from 93.03 - $3198.00\mu g/L$ creatinine. This study found high arsenic concentration in urine and drinking water and low body mass index.

Respondents informed that arsenic poisoning causes a wide range of social and psychological problems. Female respondents were less vulnerable in the case of social problems (p<.01) and more vulnerable for the psychological problems (p<.001) of arsenicosis than male respondents. The results based on logit analysis showed that education (p<.01) and household income (p<.05) were significantly correlated to respondents' perception about arsenicosis. The analysis showed that the positive spatial correlation in households' knowledge across neighboring districts at district, divisional and regional levels but the strength of this spatial correlation varied considerably based on spatial weight. The results also found that the literacy rate, daily wage rate of agricultural labour, arsenic status, percentage of red mark tube well of a district contributed positively significantly to the households' knowledge. The ordered logit results from different specifications show that the age, age square, household size, BMI, education, household monthly income, vegetable consumption and smoking behavior had strong consistent association with arsenicosis heath status. The binary logit specifications were used to estimate the association between outcomes and key

household attributes. Among the determinants, the present study is focused on whose education was the most influential factor for switching from red source to green source for drinking water. Structure of the model allowed to estimate the marginal effects of latent status of red mark tube wells. Maximum likelihood regression analysis results showed that the education level of respondents, gender, household monthly income, vegetable consumption and participation of NGO(s) activities had a statistically significant association with willingness to pay for arsenic free water.

The arsenicosis related special program (s) needs for clear understanding of people's perception about arsenic exposure for abating the health burden as well as social and psychological problems. These findings have several policy implications those agencies and policy initiatives operating at local and or national levels concerned with tackling the arsenic contaminated drinking water related problems that are primarily concerned with sound health and poverty alleviation agenda. Therefore, key issues for policy development are how to create income generating activities and provide greater opportunities for educational attainment of rural peoples of developing countries like Bangladesh can enhance their ability to access in arsenic free drinking water.