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1 Introduction

Are foreign exchange interventions effective? This issue has been debated extensively since the

1980s, but no conclusive consensus has emerged.1 A key difficulty faced by researchers in answering

this question is the endogeneity problem: the exchange rate responds “within the period” to foreign

exchange interventions and the central bank reacts “within the period” to fluctuations in the ex-

change rate. This difficulty would not arise if the central bank responded only slowly to fluctuations

in the exchange rate, or if the data sampling interval were sufficiently fine.

As an example, consider the case of Japan. The central bank of Japan, which is known to

be one of the most active interveners, started to disclose intervention data in July 2001, and this

has rekindled researchers’ interest in the effectiveness of interventions. Studies using this recently

disclosed data include Ito (2003), Fatum and Hutchison (2006), Dominguez (2003), Chaboud and

Humpage (2005), Galati et al. (2005), Fratzscher (2005), Watanabe and Harada (2006), and Fatum

(2008), among others. However, the information disclosed is limited: only the total amount of

interventions on a day is released to the public at the end of a quarter, and no detailed information,

such as the time of the intervention(s), the number of interventions over the course of the day, and

the market(s) (Tokyo, London, or New York) in which the intervention(s) was/were executed, is

disclosed.2 Most importantly, the low frequency of the disclosed data poses a serious problem for

researchers because, as is well known, the Japanese central bank often reacts to intraday fluctuations

in the exchange rate.3

In this paper, we propose a new methodology based on Gibbs sampling to eliminate this endo-

geneity problem due to temporal aggregation. Consider a simple two-equation system. Hourly

changes in the exchange rate, ∆sh, satisfy ∆sh = αIh + disturbance, where Ih is the hourly

amount of interventions. On the other hand, the central bank policy reaction function is given

by Ih = β∆sh−1 +disturbance. Suppose that this two-equation system represents the true structure

of the economy, and that sh is observable at the hourly frequency but Ih is not - researchers are

able to observe only the daily sum of Ih, and in that sense, intervention data suffers from temporal

1See Edison (1993), Dominguez and Frankel (1993), Sarno and Taylor (2003), and Neely (2005) for surveys on this
topic.

2This also applies to monetary authorities in other industrialized countries. Important exceptions are the Bank
of Canada, Denmark’s National Bank, and the Swiss National Bank, which disclose information regarding intraday
transactions to researchers. Studies using the Swiss data to evaluate the efficacy of intraday interventions include
Fischer and Zurlinden (1999) and Payne and Vitale (2003), while Fatum and Pedersen (2009) use the Danish data.

3Chang and Taylor (1998), for example, counting the number of reports by Reuters about Japanese central bank
interventions from October 1, 1992 to September 30, 1993, find that there were reports of 154 interventions on 69
days, implying that, when it intervenes, the Japanese central bank intervenes, on average, two or three times a day.
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aggregation. Given this environment, our task is to estimate the unknown parameters (i.e., α, β,

and the variance of each disturbance term).

The key idea of the methodology we propose is as follows. Suppose we have a guess for the values

of the unknown parameters. Then the exchange rate equation and the policy reaction function allow

us to recover the hourly amount of intervention, subject to the constraint that the sum of hourly

amounts equals the daily amount, which is observable. In the extreme case where the variance

of the disturbance term in the first equation is zero, we estimate Ih as Ih = α−1∆sh using the

first equation. In the other extreme case where the variance of the disturbance term in the second

equation is tiny, we have Ih = β∆sh−1 from the second equation. In more general cases, one can

guess (and we will verify this later) that the estimate of Ih is a weighted average of the two, with

the weights being determined by the relative importance of the two disturbance terms. Once we

obtain an estimate for the hourly amount of intervention in this way, we can estimate the unknown

parameters without encountering an endogeneity problem. By repeating this procedure, we are able

to estimate the unknown parameters as well as the hourly amount of intervention.

Our method can be seen as an application of data augmentation techniques based on Markov-

chain Monte Carlo (MCMC) methods to the endogeneity problem. The idea of using data aug-

mentation to cope with various problems due to temporal aggregation goes back to Liu (1969), who

proposed a simple method to convert low frequency (say, quarterly) observations into high frequency

(say, monthly) observations. Chow and Lin (1971) developed a best linear unbiased method to con-

vert low frequency observations into high frequency observations. Our paper is most closely related

to Hsiao (1979) and Palm and Nijman (1982), whose models consist of two equations in which an

endogenous variable y is determined by an explanatory variable x (i.e., yt = bxt +ut) and x is deter-

mined by an exogenous variable z (i.e., xt = azt + vt). They consider a setting in which researchers

have access to semi-annual observations for y and z but only annual observations for x, and obtain

an ML-estimator for b by integrating out the missing observations.

The model we seek to estimate in this paper differs from those of Hsiao (1979) and Palm and

Nijman (1982) in some important respects. First, the extent to which data is aggregated is much

higher than in these previous studies. Specifically, it is assumed in this paper that the intervention

amount is decided by the central bank on an hourly basis but is observable only at the daily frequency.

Thus, it is necessary to integrate out twenty four missing observations, which is more difficult to

implement. Second, the model to be estimated in this paper is non-linear. Recent studies on the
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central bank policy reaction function, including Almekinders and Eijffinger (1996) and Ito and Yabu

(2007), emphasize that the policy reaction function has the nature of an Ss rule due to the presence

of fixed costs associated with policy changes. In this case, Ih no longer depends linearly on ∆sh−1,

so that the resulting likelihood function is more complicated. Given such a non-linear structure of

the model, it is very hard or no longer possible to compute likelihood functions in the way suggested

by Hsiao (1979) and Palm and Nijman (1982). To overcome this difficulty, we employ the Bayesian

MCMC method.

The idea of applying MCMC methods to data augmentation was first proposed by Tanner and

Wong (1987), and MCMC methods have been employed in several studies, including Eraker (2001)

who used it in the context of estimating parameters in continuous diffusion processes when only

discrete, and sometimes low-frequency, data are available. However, to the best of our knowledge,

this paper is the first application of the Bayesian MCMC approach to the endogeneity problem due

to temporal aggregation.4

The rest of the paper is organized as follows. Section 2 provides a detailed explanation of our

methodology to address the endogeneity problem, while Section 3 presents simulation results to

demonstrate how the methodology works. In Sections 4 and 5, we apply our method to Swiss and

Japanese intervention data. A unique feature of the Swiss data is that it records the amount of

intraday intervention with a time stamp up to the minute. Using the Swiss data, we conduct an

experiment in which we first apply our method to aggregated daily intervention data to estimate

the efficacy of intervention and then compare the estimate with the one obtained using the hourly

intervention data. We find that the two estimates are very close to each other, implying that

endogeneity bias due to temporal aggregation is successfully eliminated by our method. Applying

our method to the Japanese data, we find that an exchange rate intervention (e.g., a sale) of one

trillion yen leads to a 1.7 percent change in the value of the yen (depreciation). This is more than

twice as large as the magnitude reported in previous studies such as Ito (2003) and Fratzscher

(2005), which apply ordinary least squares to daily intervention and exchange rate data. This result

is consistent with the prediction that endogeneity creates a bias toward zero for the intervention

coefficient as long as the central bank follows a leaning-against-the-wind policy. Section 6 concludes

4The issue we discuss in this paper is related to the macroeconomic argument that if agents’ decision intervals do
not coincide with the sampling interval, then inferences made about the behavior of economic agents from observed
time series can be distorted (see Christiano and Eichenbaum 1987 and Sims 1971). McCrorie and Chambers (2006)
investigate the problem of spurious Granger causality relationships that arise from temporal aggregation.
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the paper, while the Appendix provides the technical details of our methodology.

2 Methodology

2.1 The endogeneity problem in identifying the effects of foreign ex-
change interventions

In this section, we present a detailed description of our methodology to address the endogeneity

problem in identifying the effects of foreign exchange interventions on the exchange rate. Consider

a simple model of the following form:

st,h − st,h−1 = αIt,h + ϵt,h (1)

It,h = β(st,h−1 − st−1,h−1) + ηt,h (2)

where st,h is the log of the exchange rate at hour h of day t (t = 1, ..., T and h = 1, ..., 24), It,h is the

purchase of domestic currency (and the selling of foreign currency) implemented by a central bank

between h−1 and h of day t, and ϵt,h and ηt,h are disturbance terms satisfying ϵt,h ∼ i.i.d. N(0, σ2
ϵ)

and ηt,h ∼ i.i.d. N(0, σ2
η). Equation (1) represents the exchange rate dynamics, while equation

(2) is the central bank’s policy reaction function. We assume that α is negative, implying that

intervention consisting of the selling of domestic currency (It,h < 0) leads to a depreciation of

the domestic currency (st,h − st,h−1 > 0) and vice versa. An important assumption is that the

exchange rate is observable at the hourly frequency, while interventions are observable only at the

daily frequency: namely, we observe It ≡ Σ24
h=1It,h. Note that if we were able to observe It,h at the

hourly frequency, we could obtain unbiased estimators of α and β by applying OLS to each of the

two equations separately.

Taking partial sums of both sides of the equations leads to a daily model of the following form:

st,24 − st−1,24 = αIt + ϵt (3)

It = β
24∑

h=1

(st,h−1 − st−1,h−1) + ηt (4)

where st,24 − st−1,24 =
∑24

h=1(st,h − st,h−1), It =
∑24

h=1 It,h, ϵt ≡ Σ24
h=1ϵt,h, and ηt ≡ Σ24

h=1ηt,h. This

shows that the endogeneity problem arises in this daily model, so that a simple application of OLS

to each of the two equations separately no longer works. To illustrate this, suppose that the central

bank adopts a leaning-against-the-wind policy, so that β takes a positive value. Then an increase in

ϵt,h leads to an increase in st,h − st,h−1 through equation (1), and to an increase in It,h+1 through
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equation (2). This means that It and ϵt in equation (3) are positively correlated, so that an OLS

estimator of α has an upward bias. On the other hand, an increase in ηt,h increases It,h through

equation (2), thereby creating an appreciation of the yen as long as α is negative. This implies that

the error term in equation (4), ηt, and the regressor,
∑

(st,h − st−1,h−1), are negatively correlated

and, as a result, an OLS estimator of β has a downward bias.

2.2 MCMC method

We propose a method for estimating equations (1) and (2) using the daily data for interventions

and the hourly data for the exchange rate. The set of parameters to be estimated is α, β, σ2
ϵ ,

and σ2
η. We first introduce an auxiliary variable, It,h, to substitute missing observations. Then we

obtain a conditional distribution of each parameter, given the other parameters and the values of

the auxiliary variable. Similarly, we obtain a conditional distribution of the auxiliary variable, given

the parameters. Finally, we use the Gibbs sampler to approximate joint and marginal distributions

of the entire parameters and the auxiliary variable from these conditional distributions. See Kim

and Nelson (1999) for more on Gibbs sampling.

2.2.1 Prior distributions

We choose the following priors for the unknown parameters. We adopt a flat prior for α and β. On

the other hand, we assume that the priors for σ2
ϵ and σ2

η, are more informative than the flat ones

but still relatively diffused. Specifically, we assume that the prior of σ2
ϵ is given by

IG

(
ν1

2
,
δ1

2

)
with ν1 = 10 and δ1 = 0.0002, implying that the mean of σϵ is 0.0015 and that the 95 percent

confidence interval is 0.0010 to 0.0025. The prior of σ2
η is given by

IG

(
ν2

2
,
δ2

2

)
with ν2 = 10 and δ2 = 0.35, implying that the mean of ση is 0.2031 and that the 95 percent

confidence interval is 0.1315 to 0.3291.5

5The mean of σϵ and the mean of ση are chosen using the Japanese data. As for the mean of σϵ, we use the
standard error of the hourly log difference in the yen-dollar rate, which is equal to 0.0015. As for the mean of ση , we
guess this not from the standard error of It,h, which is not observable, but from the standard error of It. Specifically,
the standard error of It calculated using the entire observations is 0.0888, while the standard error of It calculated
using only non-zero observations is 0.3174. The average of the two values, 0.2031, is used as the mean of ση .
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2.2.2 Computational algorithm

The above assumptions about the priors and the data generating process provide us with posterior

conditional distributions that are needed to implement Gibbs sampling. The following steps 1

through 5 are iterated to obtain the joint and marginal distributions of the parameters and the

values of the auxiliary variable. The summations are taken from (t, h) = (1, 1) to (T, 24), unless

otherwise stated.

Step 1 Generate α conditional on st,h, It,h and σ2
ϵ . We have the regression st,h−st,h−1 = αIt,h+ϵt,h.

Hence, the posterior distribution is α ∼ N(ϕs, ωs), where ϕs =
∑

It,h(st,h − st,h−1)/
∑

I2
t,h

and ωs = σ2
ϵ/

∑
I2
t,h.

Step 2 Generate σ2
ϵ conditional on st,h, It,h and α. The posterior is σ2

ϵ ∼ IG
(

νs

2 , δs

2

)
where

νs = ν1 + T and δs = δ1 + RSSs with RSSs =
∑

(st,h − st,h−1 − αIt,h)2.

Step 3 Generate β conditional on st,h, It,h and σ2
η. We have the regression It,h = β(st,h−1 −

st−1,h−1)+ηt,h. Hence, the posterior distribution is β ∼ N(ϕI , ωI), where ϕI =
∑

It,h(st,h−1−

st−1,h−1)/
∑

(st,h−1 − st−1,h−1)2 and ωI = σ2
η/

∑
(st,h−1 − st−1,h−1)2.

Step 4 Generate σ2
η conditional on st,h, It,h and β. The posterior distribution is σ2

η ∼ IG
(

νI

2 , δI

2

)
where νI = ν2 + T and δI = δ2 + RSSI with RSSI =

∑
(It,h − β(st,h−1 − st−1,h−1))2.

Step 5 Generate It,h conditional on st,h, It, α, β, σ2
ϵ and σ2

η. Consider the case in which the

aggregated intervention amount is not known. Then, the posterior distribution is as follows:

(It,1, ..., It,24)
′
∼ N (Ξt, Ψ)

where Ξt = (ξt,1, ..., ξt,24)′ and Ψ = diag(φ, ..., φ) with φ = ( 1
σ2

η
+α2

σ2
ϵ
)−1 and ξt,h = (φ 1

σ2
η
)[β(st,h−1−

st−1,h−1)] + (φα2

σ2
ϵ
)[α−1(st,h − st,h−1)]. Note that the expectation of It,h is a weighted average

of the two components, β(st,h−1 − st−1,h−1) and α−1(st,h − st,h−1), with the weights being

determined by σ2
ϵ , σ2

η, and α.6 We consider the posterior distribution of (It,1, ..., It,23, It).

Note that when we know (It,1, ..., It,23, It), the intervention in the last hour, It,24, is already

determined. The posterior distribution is as follows:

(It,1, ..., It,23, It)
′
∼ N (Ξ∗

t , Ψ
∗)

6Note that our method to deduct intraday timing works even if intervention is not effective at all. In an extreme case
in which intervention is not effective at all, i.e., α = 0, the expectation of It,h is simply equal to β(st,h−1 − st−1,h−1),
implying that It,h is estimated only from the reaction function.
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where Ξ∗
t = BΞt and Ψ∗ = BΨB′ with

B =


1 0 ... 0

0 1 ... 0
...

...
. . .

...

1 1 ... 1

 . (5)

We can partition the matrices Ξ∗
t and Ψ∗ as follows:

Ξ∗
t =

 Ξ∗
t,1

Ξ∗
t,2

 , Ψ∗ =

 Ψ∗
11 Ψ∗

12

Ψ∗
21 Ψ∗

22

 ,

where Ξ∗
t,1 is 23 × 1, Ξ∗

t,2 is 1 × 1, Ψ∗
11 is 23 × 23, Ψ∗

12 is 23 × 1, Ψ∗
21 is 1 × 23, and Ψ∗

22 is

1 × 1. Finally, we can construct the posterior distribution of (It,1, ..., It,23) conditional on It

as follows:

(It,1, ..., It,23| It)
′
∼ N

(
Ξ∗

t,1 + Ψ∗
12(Ψ

∗
22)

−1(It − Ξ∗
t,2),Ψ

∗
11 − Ψ∗

12(Ψ
∗
22)

−1Ψ∗
21

)
.

By generating the values of the auxiliary variable It,1, ..., It,23 from this posterior distribution

conditional on the parameters, the hourly exchange rate, and the aggregated intervention, we

can construct the intervention in the last hour as It,24 = It − Σ23
h=1It,h.

We iterate steps 1 through 5 M + N times and discard the realizations of the first M iterations

but keep the last N iterations to form a random sample of size N on which statistical inference

can be made. M must be sufficiently large so that the Gibbs sampler converges. Also, N must be

large enough to obtain the precise empirical distribution. In our simulations, we set M = 2000 and

N = 2000 and run 3 independent Markov chains.

3 Simulation Analysis

In this section we conduct Monte Carlo simulations to evaluate the performance of our methodology.

We start by assuming that the data generating process is given by equations (1) and (2) with

s0,24 = ln(100), α = −0.015, β = 3.2, σϵ = 0.0015, and ση = 0.2031. We borrow the estimates of α

and β from the study on intervention in Japan by Kearns and Rigobon (2005):7 α = −0.015 implies

that a 1 trillion yen intervention by the Japanese monetary authorities moves the yen/dollar rate

by 1.5 percent; on the other hand, β = 3.2 implies that a one percent deviation of the exchange
7We divide their estimate of β by 24 to convert their estimate, which is based on a daily frequency, to one based

on an hourly frequency.
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rate from its target level causes the Japanese monetary authorities to intervene with 32 billion yen.

Note that our framework is a classical one in that parameters are treated as unknown constants to

be estimated.

We generate bivariate time series {st,h, It,h} by (1) and (2). The length of the time series is set

to 100 days (T = 100), and 500 replications of this length are generated. We repeat this for T = 250

and 500. We then estimate the unknown parameters under the following three cases. The first case

is what we refer to as the “infeasible estimator.” We assume that the hourly amount of intervention,

It,h, is observable to researchers, and we simply apply OLS to the hourly data of intervention and

exchange rates. This estimator can be seen as the best one (although it is infeasible), and will be

used as a benchmark. The second case is what we refer to as the “naive OLS estimator,” where

we assume that intervention data is available only at the daily frequency, and we apply OLS to the

daily intervention and exchange rate data. Specifically, we estimate equations (3) and (4) separately.

This estimator suffers from the endogeneity problem, as explained earlier. The third case is what

we refer to as the “MCMC estimator,” where we assume that exchange rate data is available at the

hourly frequency, but intervention data is available only at the daily frequency, and we apply our

MCMC method to these data. The MCMC method provides us with a posterior distribution for

each of the parameters. We use the mean of the distribution as a point estimate.

Table 1 presents the simulation results. We evaluate the performance of the three estimators in

terms of the Mean, which is defined as the mean of estimated values of α and β over 500 replications,

as well as the corresponding root mean squared error, which is denoted by
√

MSE. We see from

the table that the infeasible estimators for α and β are close to the true values (i.e., α = −0.015 and

β = 3.2), and that the corresponding root mean squared errors are small. On the other hand, the

naive OLS estimators perform badly; the estimate of α is of the opposite sign, and so is the estimate

of β. Importantly, we see no clear sign of improvement in the performance of these estimators

as sample size T increases. In contrast, the MCMC estimator performs as well as the infeasible

estimator: the means of α and β are almost the same as those of the infeasible estimator, and

although the root mean squared errors are slightly larger, the difference tends to become smaller as

T increases.8

The MCMC estimators reported in Table 1 are obtained based on the assumption that the

8As a robustness check, we repeated simulations using different true parameter values for α and β, including the
case of α = 0. We confirmed that the MCMC estimator performs as well as the infeasible estimator.
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disturbance terms, εt,h and ηt,h, are both normally distributed. One may wonder to what extent

the results depend on this assumption. To check this, we conduct the following experiment. We

use the same data generating process as before, but we now assume that the disturbance terms

follow t distributions with different degrees of freedom, or ARCH innovations with different degrees

of persistence.9 The results are shown in Table 2, in which the number in each cell represents the

estimate of α for different specifications of εt,h and ηt,h. We see that the estimate of α is quite close

to the true value even when the disturbance terms are not Gaussian, suggesting that the MCMC

estimator is robust to changes in the specification of the disturbance terms.

4 An Experiment Using Swiss Data

In the simulation analysis conducted in the previous section, we artificially generated hourly interven-

tion data; however the monetary authorities in some countries (see footnote 2) disclose information

about intraday interventions. Therefore, we are able to conduct a similar exercise using actual (not

artificial) intraday intervention data. This is what we do in this section. Specifically, we conduct two

different estimations regarding the efficacy of intervention: one with (actual) intraday intervention

data, and the other one with aggregated daily intervention data. We then compare the two estimates

in order to see how our method performs.

We use intraday intervention data disclosed by the Swiss National Bank. The Swiss National

Bank discloses the amount of intervention with an up-to-the-minute time stamp for various currency

pairs, including the Swiss franc (CHF) versus the US dollar (USD), the Swiss franc versus the German

mark, and the US dollar versus the German mark, for the period of October 1986 to August 1995.

We produce hourly intervention data for the pair CHF/USD for the period of January 1991 to

August 1995.10

In applying our method to the Swiss data, we modify the policy reaction function described by

equation (2) in the following way. Equation (2) implies that interventions are every-day events:

namely, the central bank intervenes (by a small amount) even on quiet days when the exchange

rate is fairly stable. But this is not consistent with the fact that interventions were carried out

only on 1.2 percent of the total business days (namely, 20 out of 1735 business days), during the
9Note that the variance of the t distribution with d degrees of freedom is given by d/(d − 2) for d > 2. To adjust

the variance, we multiply the disturbance term generated from the t distribution by
√

σ2
ε(d − 2)/d or

√
σ2

η(d − 2)/d.
10Payne and Vitale (2003) suggest that there may exist a structural break somewhere around the year 1990, so we

decided not to use the entire sample but a subsample for the period after 1990. The data we use is downloaded from
the website operated by the Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/fei/).
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sample period. In this sense, Swiss interventions have an “all or nothing” property, suggesting that

we need to incorporate some form of transaction costs associated with the conduct of interventions.

Specifically, following Almekinders and Eijffinger (1996) and Ito and Yabu (2007), we assume that the

Swiss monetary authorities have to pay some fixed costs on intervention days in the form of political

costs. These political costs may include, for example, the costs incurred by the Swiss government

in conducting negotiation with governments of relevant countries, as pointed out by Ito and Yabu

(2007). The Swiss monetary authorities are assumed to compare the benefits of intervention (greater

stability in the exchange rate) and the fixed costs they have to incur in implementing interventions.

As is well known, the solution to this type of optimization with fixed costs is characterized by a state-

dependent rule: namely, the monetary authorities carry out interventions only when the optimal

level of intervention for that day exceeds a certain threshold. Specifically, we use a state-dependent

rule of the form:

It,h = 1(|I∗t,1 − µI | > c)I∗t,h (6)

I∗t,h = µI + β(st,h−1 − st−1,h−1) + ηt,h (7)

Equation (7) describes how the optimal level of intervention, I∗t,h, is determined, while equation (6)

represents a state-dependent policy reaction function, where 1(·) is an indicator variable, which is

equal to unity if the condition stated in the parentheses is satisfied and zero otherwise. In equation

(7), we assume that the optimal level of intervention depends on the change in the exchange rate

over the last 24 hours. In equation (6), we assume that intervention is carried out if the optimal

level of intervention at the beginning of a day (i.e., 9am Swiss time), I∗t,1, exceeds a prespecified

threshold c, which is determined by the size of the political costs. Note that It,h equals I∗t,h for any

h as long as I∗t,1 exceeds the threshold. In other words, once the monetary authorities decide to

intervene on day t at the beginning of that day, they are allowed to intervene for every hour of day

t without incurring any extra political costs. In this sense, the monetary authorities’ decision on

whether to intervene or not is made only once a day, although the amount of intervention for every

hour of the day is decided during the day depending on fluctuations in the exchange rate over the

course of the day.

We estimate the effect of intervention on the exchange rate using the model, consisting of equa-

tions (1), (6), and (7), as well as daily intervention data and hourly exchange rate data.11 The result

11We employ an estimation procedure different from the one described in Section 2, which is for the model without
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is presented in Table 3. We see from the table that the infeasible estimator of α is -0.198, implying

that intervention of 10 million CHF moves the CHF/USD rate by 0.0198 percent.12 On the other

hand, the naive OLS estimator of α is -0.122, which is closer to zero than the infeasible estimator.

Turning to the MCMC estimator, the estimate of α is -0.221, which is quite close to the infeasible

estimator. Also note that the 95 percent confidence intervals for the infeasible estimator and the

MCMC estimators overlap. This result confirms the finding in the previous section that the estimate

produced by the MCMC method using daily observations of intervention is almost as precise as the

one obtained by using hourly intervention data. As for the other parameters, the estimates of β and

c are consistent with the theoretical prediction. In particular, the point estimate of β is positive

and, as shown in the column labeled “Pr(< 0),” the probability that the estimate of β falls below

zero is small, indicating that intraday intervention by the Swiss National Bank is characterized by

a leaning-against-the-wind policy.

To investigate the precision of the MCMC estimator in greater detail, we look at whether the

model correctly predicts the presence of intervention for hours in which the Swiss National Bank

actually intervened, as well as whether the model correctly predicts the absence of intervention for

hours in which the Swiss National Bank did not intervene. The result is presented in Table 4, in

which we say that “the model predicts intervention” for a particular hour h on a particular day t

if the 99 percent posterior interval of It,h does not include zero, and otherwise we say “the model

predicts no intervention.” The number of days on which the Swiss National Bank intervened is 20

in the sample period, and the number of hours in which intervention took place in these 20 days

is 29 (29 hours out of the 480 hours). We see from the table that the model successfully predicts

the presence of intervention for 12 hours out of the 29 hours in which intervention actually took

place, while it fails to do so for the remaining 17 hours. In other words, the ratio of correct signals

turns out to be 0.413 (= 12/29). On the other hand, the model correctly predicts the absence of

intervention for 427 hours out of the 451 hours in which intervention did not take place, and fails

to do so for the remaining 24 hours. In other words, the ratio of false signals is 0.053 (= 24/427).

Thus, the noise-to-signal ratio, which is calculated by dividing the ratio of false signals by the ratio

political costs. The estimation procedure for the model with political costs is given in the Appendix. As for the mean
of σϵ and the mean of ση , they are chosen in the same way as in Section 2 (see footnote 5) except that the Swiss
data, rather than the Japanese data, is now used.

12Payne and Vitale (2003) estimate the effect of Swiss intervention using intraday intervention data and report that
the immediate impact of an intervention of 50 million USD on the exchange rate is 0.15 percent, which is larger than
the value implied by our estimate (i.e., 0.08 percent). A possible reason for this difference is that while Payne and
Vitale (2003) estimate the immediate impact, our result in Table 3 shows the hourly impact.
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of correct signals, turns out to be 0.128 (= 0.053/0.413).

Ito and Yabu (2007) estimate a policy reaction function for Japan using the daily intervention

data and then calculate a similar noise-to-signal ratio to see how well their estimated reaction

function tracks the actual intervention behavior. Specifically, they consider a situation in which a

researcher, using the estimated policy reaction function, forecasts whether intervention will occur

on day t or not at the beginning of that day. Note that the exercise Ito and Yabu (2007) conducted

is to predict the presence or absence of intervention at the daily frequency, while the exercise we

conduct in Table 4 is to predict the presence or absence of intervention at the hourly frequency,

which doubtlessly is a more difficult exercise. They report that the ratio of correct signals and the

ratio of false signals are 0.143 and 0.0094 respectively, so that the noise-to-signal ratio is 0.066.

Comparing the results, our model outperforms theirs in terms of the ratio of correct signals, but it

performs worse in terms of the ratio of false signals. As a result, the noise-to-signal ratio for our

model is slightly higher than the one for their model.

5 Application to Japanese Data

5.1 Baseline specification

In this section, we apply our method to the Japanese data with daily observations of intervention

and hourly observations of the yen/dollar exchange rate. Figures 1 and 2 show the hourly movement

of the yen/dollar exchange rate and the daily amount of intervention implemented by the Japanese

monetary authorities, both for the period from April 1991 to December 2002.13 An important thing

to note from Figure 2 is that there is a structural break somewhere around 1995: interventions are

small in size but frequent during the period before 1995, while they are larger in size but less frequent

during the period after 1995. As noted by, among others, Ito (2003), this break coincides with a

change in the person in charge of the conduct of interventions in June that year.14 Kearns and

Rigobon (2005) make use of this shift in Japanese intervention policy as a key piece of information

in identifying the effects of Japanese intervention on the yen/dollar rate.

13Note that our sample period does not include the period of “Great Intervention” in 2003 and 2004, during which
the Japanese monetary authorities aggressively purchased US dollars and sold yen as part of their “quantitative easing”
policy. We deliberately exclude this period, because, as shown by previous studies, the motivation for interventions
was quite different from that in preceding periods. See Taylor (2006), Ito (2007), and Watanabe and Yabu (2009) for
more on the intervention policy during this period.

14In Japan, decisions on exchange rate interventions fall under the aegis of the Internal Finance Bureau of the
Ministry of Finance. On June 21, 1995, Eisuke Sakibara (subsequently known as “Mr. Yen”) was appointed as
Director General of the International Finance Bureau.
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To incorporate this structural change in the policy reaction fucntion, we modify equation (6) as

follows:

It,h =

 1(|I∗t,1 − µI | > c1)I∗t,h for t < TB

1(|I∗t,1 − µI | > c2)I∗t,h for t ≥ TB

(8)

where TB is the break date (namely, June 1995), and c1 and c2 are different thresholds for the

two subperiods. Here we assume that the change in the Japanese policy reaction function can be

represented solely by a change in threshold c, or the size of political costs, and that the other

parameters are identical across the two subperiods. We make this assumption simply to obtain

empirical results that are comparable to those of Kearns and Rigobon (2005), whose identification

method requires such an assumption. Note that our identification method does not require imposing

this assumption.

5.2 Baseline result

In our baseline regressions, we use equations (1), (7) and (8). Table 5 presents the results. We

run regressions with and without the lagged intervention term It−1, with the left half of the table

showing the result without that term, and the right half showing that with that term. We see from

the left hand side of the table that the coefficient on the intervention variable, α in equation (1),

is negative and significantly different from zero. Note that the frequency of finding negative values,

Pr(< 0), equals unity, indicating that we never find positive values in 10,000 draws. The estimated

value of α is equal to -0.0164, implying that a yen-selling (yen-buying) intervention of one trillion

yen leads to a 1.64 percent depreciation (appreciation) of the yen. The result for the specification

with the lagged intervention variable, which is reported on the right hand side of the table, is almost

the same.

Our estimate regarding the impact of foreign exchange interventions is more than twice as large as

that obtained in previous studies. Ito (2003), for example, applying OLS to daily data of Japanese

interventions and the yen/dollar rate, arrived at a corresponding change of 0.6 percent for the

sample period of April 1991 to March 2001 and 0.9 percent for the subperiod from June 1995 to

March 2001. Similarly, Fratzscher (2005), applying a similar regression as Ito (2003) using daily

data for the period 1990-2003, found that Japanese interventions of ten billion dollars, which is

approximately equal to one trillion yen, moves the yen/dollar rate by 0.8 percent. Our much larger

estimation result suggests that these previous studies suffer from the endogeneity problem, so that

their estimates of the effectiveness of interventions on the exchange rate was biased toward zero.
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Kearns and Rigobon (2005), who identified the effects of intervention by making use of the structural

change in the policy reaction function, report that an intervention of one billion dollars moves the

yen/dollar rate by 1.5 percent, which is relatively close to our estimate, although it is still outside

our 95 percent posterior interval.

Turning to the coefficients in the policy reaction function, we find that the coefficient on the

change in the exchange rate, β, is positive and significantly different from zero, indicating that a

leaning-against-the-wind policy was adopted by the Japanese monetary authorities. We also find

that the estimates of c1 and c2 are both positive as predicted, and more importantly, c2 is significantly

larger than c1, providing an explanation of the fact that interventions during the latter sample period

were larger but less frequent.

Our MCMC approach gives us a posterior distribution for the auxiliary variable, It,h, for each t

and h. Figure 3 shows the estimate of this variable and the yen/dollar rate for each hour on April

10, 1998, when the Japanese monetary authorities purchased 2.6 trillion yen, the largest yen-buying

intervention in our sample period. The solid line represents the mean of the posterior distribution of

It,h, while the dotted lines indicate the 99 percent confidence interval. We see from the figure that

the estimated hourly amount of intervention is almost always positive (i.e., almost all interventions

were yen-buying interventions). The estimated hourly amount takes the largest value, 0.5 trillion

yen, at 6-7am GMT (i.e., 2-3pm in Tokyo), and this is exactly the time when the yen exhibits a

sharp appreciation and records its highest level on this day. This concurrence can be interpreted as

evidence of aggressive yen-buying intervention during this hour causing a sharp appreciation.

Figure 4 shows the movement of the yen/dollar rate before and after the hour that a yen-selling

intervention is carried out. To construct this figure, we collected the estimates of It,h for 148 business

days when yen-selling interventions were implemented. We then identified h when the estimate of

It,h is significantly different from zero (i.e., the 99 percent confidence interval of It,h does not include

zero). Note that τ = 0 in the figure represents the hour of intervention and that the yen/dollar rates

for other hours are divided by the exchange rate levels at the hour of intervention for normalization.

The solid line represents the 50th percentile of the distribution of the exchange rate, while the

two dotted lines represent the 40th and 60th percentiles, respectively. We see from the figure that

there is a trend of yen appreciation prior to the hour of yen-selling intervention. The yen falls very

quickly in response to the intervention and stays there for at least twelve hours after the intervention,

indicating that interventions have a persistent effect on the level of the yen/dollar rate.
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Finally, we decompose the yen-amount of intervention per business day into an extensive margin

(i.e., the probability of intervention for a given day) and an intensive margin (i.e., the yen-amount

per intervention day). Furthermore, we decompose the yen amount per intervention day into an

extensive margin (the probability of intervention in a given hour on a day that interventions were

conducted) and an intensive margin (the yen-amount per intervention hour). The results are shown

in Table 6. We see from the first three rows of the table that the post-1995 period is characterized

by a lower extensive margin and a higher intensive margin; this confirms what we saw in Figure

2. More importantly, we see from the last two rows that the larger yen-amount per intervention

day in the post-1995 period comes partly from the larger extensive margin, but mostly from the

larger intensive margin. These results indicate that the post-1995 period is characterized by a higher

intensive margin not only at the daily frequency, but also at the hourly frequency.

5.3 Robustness to changes in the specification of the policy reaction func-
tion

An important feature of our MCMC approach is that it makes use of knowledge about the structure

of the economy, which is represented by the equation for exchange rate dynamics and the equation

for the policy reaction function. This implies that the performance of the entire estimation process

crucially depends on whether the structure of the economy is properly specified or not. In this

subsection we check the sensitivity of the baseline results to various changes in the specification of

the policy reaction function.

5.3.1 Alternative assumptions regarding the policy lag

In the baseline case, we assumed that the central bank can respond to exchange rate changes that

occurred at least an hour earlier, but not to changes less than an hour earlier. The baseline result

might still suffer from the endogeneity problem if the central bank can respond in less than one hour.

To address this issue, we examine whether the baseline results are sensitive to changes in the

frequency of observations. We consider the same structure of the model as in the baseline case (the

model without the lagged intervention term) but change the frequency h at which the exchange

rate is observed. Specifically, the frequencies considered here are: 12 hours, 8 hours, 6 hours, 4

hours, 2 hours, 1 hour, 30 minutes, and 15 minutes. For example, for the 30 minute frequency,

we assume that the central bank is able to respond to exchange rate changes that occurred more

than 30 minutes earlier, but not to change that took place less than 30 minutes earlier. Figure 5
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shows the estimate of α and its 95 percent confidence interval for different frequencies chosen in the

estimation. The figure shows that when the frequency is as low as 12 hours, the estimated value of

α is −0.0076, which is very close to the estimate obtained by Ito (2003) using the daily data. As

the frequency increases, the value of α converges to the baseline estimate. Importantly, the value

of α does not differ much for h = 1 hour, h = 30 minutes, and h = 15 minutes, suggesting that the

Japanese monetary authorities did not respond in less than one hour. Therefore, the frequency of

one hour is sufficiently fine to eliminate the endogeneity problem.

5.3.2 Higher political costs at night

What time of the day were interventions conducted? Neely (2001) asked this question to 44 central

banks and collected 22 responses. He provided the following options: “prior to normal business

hours,” “morning of the business day,” “afternoon of the business day,” and “after normal business

hours.” One of the interesting features we learn from the responses to this question is that about

56 percent of central banks answered that they never intervene “prior to normal business hours,”

and similarly about 35 percent answered that they never intervene “after normal business hours.”

Various pieces of anecdotal evidence regarding the intervention behavior of Japan’s monetary au-

thorities suggest that they are active during hours in which the Tokyo market is open, while they

are much less active during other hours, which is more or less similar to what Neely’s (2001) survey

results indicate.

The fact that central banks seldom intervene during night hours may be interpreted as reflecting

that the political costs are much higher at night than during the daytime, so that central banks

hesitate to intervene at night even if the optimal level of intervention is not zero. Based on this line

of reasoning, we assume that It,h is equal to zero at night (h = 9, . . . , 24, or between 5pm and 9am

Tokyo time). Specifically, we replace equation (8) by:

It,h =


1(|I∗t,1 − µI | > c1)I∗t,h for h = 1, . . . , 8, and t < TB

1(|I∗t,1 − µI | > c2)I∗t,h for h = 1, . . . , 8, and t ≥ TB

0 for h = 9, . . . , 24

(9)

and repeat the same exercise as before. The regression result is presented in Table 7, showing

that the baseline result is not sensitive to this change in the policy reaction function. That is, the

coefficient associated with the effectiveness of intervention, α, is negative and significantly different

from zero as before, although it is now a little smaller; the coefficient on the change in the exchange
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rate in the policy reaction function, β, is positive and significantly different from zero, suggesting

again a leaning-against-the-wind policy; the coefficients related to the size of the political costs, c1

and c2, are both positive and significantly different from zero as before, and the political costs are

significantly larger in the latter sample period.

5.3.3 Ito-Yabu (2007) specification

Equation (7), which is basically identical to the intervention function adopted by Kearns and Rigobon

(2005), may be too simple to capture the details of Japanese intervention policy. Ito and Yabu (2007)

derive a policy reaction function that can be regarded as a better approximation to the Japanese

policy reaction function. Specifically, the optimal amount of intervention depends on the deviation

of the actual exchange rate from its target level, which is determined by the weighted average of

st−1,h−1, st−21,h−1, and sMA
t−1,h−1, where sMA

t,h is defined as the moving average of the exchange rate

over the last one year. To incorporate this idea into our model, we replace equation (7) by:

I∗t,h = µI + β1(st,h−1 − st−1,h−1) + β2(st,h−1 − st−21,h−1) + β3(st,h−1 − sMA
t,h−1) + ηt,h (10)

Note that equation (7) is a special case of the above equation, with both β2 and β3 being equal to

zero.

We conduct the same exercise as before and the results are presented in Table 8. We confirm

that the coefficient associated with the effectiveness of intervention, α, is negative and significantly

different from zero; the coefficients related to political costs, c1 and c2, are both positive and sig-

nificantly different from zero. Turning to the new coefficients in the policy reaction function, β1

and β2 are both positive, but β3 is very close to zero, indicating that Japan’s monetary authorities

take a leaning-against-the-wind policy with respect to changes in the exchange rate at the daily and

monthly frequencies, but not at the annual frequency.

6 Conclusion

Estimating the effects of foreign exchange interventions is not an easy task because central banks

react even to intraday changes in the exchange rate, while intervention data is usually available

only at the daily frequency. In this paper, we therefore proposed a new methodology based on

Markov Chain Monte Carlo simulation to cope with this endogeneity problem. We first conduct

“imputation” or “data augmentation” to obtain intraday amounts of intervention and then estimate
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the efficacy of interventions using the augmented data. Although a number of previous studies have

pursued the idea of augmenting observed low-frequency data with simulated high-frequency data by

applying MCMC methods, especially in the area of finance, this paper is the first application of the

MCMC approach to the endogeneity problem due to temporal aggregation.

We applied this method to Swiss and Japanese intervention data. The Swiss data is unique in

that the amounts of intraday interventions with up-to-the-minute time stamps are available. Using

the Swiss data, we conducted an experiment in which we first applied our method to aggregated daily

intervention data to estimate the efficacy of intervention and then compared it with the estimate

obtained using the hourly intervention data. We found that the two estimates are very close to

each other, implying that endogeneity bias due to temporal aggregation is successfully eliminated

by employing our method. Applying our method to Japanese data, we found that an intervention

of one trillion yen moves the yen/dollar exchange rate by 1.7 percent, which is more than twice

as much as the magnitude reported in previous studies applying OLS to daily observations. We

interpreted this difference as highlighting the quantitative importance of the endogeneity problem

due to temporal aggregation.

19



A Estimation procedure of the model with political costs

The methodology for estimating the model without political costs given by equations (1) and (2) is

presented in Section 2.2. The purpose of this appendix is to provide details regarding the estimation

of the model in which the policy reaction function is given by equations (6) and (7). The parameters

to be estimated are µs, α, µI , β, c1, c2, σ2
ϵ , and σ2

η. In addition to these parameters, we estimate

auxiliary variables, It,h and I∗t,h, for each h and t. A flat prior is adopted for µs, α, µI , β, c1, and

c2. As for σ2
ϵ and σ2

η, priors are the same as those used in the main text.

The posterior conditional distributions, which are needed to implement Gibbs Sampling, are

obtained from the priors and the assumptions of the data generating process. The following steps 1

through 6 are iterated to obtain joint and marginal distributions of the parameters and the auxiliary

variables.

Step 1 Generate µs and α conditional on st,h, It,h and σ2
ϵ . We have the regression st,h − st,h−1 =

µs + αIt,h + ϵt,h. Hence, the posterior distribution is (µs, α)
′ ∼ N(ϕs, ωs) where ϕs =

(X
′

sXs)−1X
′

sYs and ωs = (X
′

sXs)−1σ2
ϵ with the matrices Xs = {1, It,h} and Ys = {st,h −

st,h−1}.

Step 2 Generate σ2
ϵ conditional on st,h, It,h, µs and α. The posterior is σ2

ϵ ∼ IG
(

νs

2 , δs

2

)
where

νs = ν1 + T and δs = δ1 + RSSs with RSSs =
∑

(st,h − st,h−1 − µs − αIt,h)2.

Step 3 Generate µI and β conditional on st,h, I∗t,h and σ2
η. We have the regression I∗t,h = µI +

β(st,h−1 − st−1,h−1) + ηt,h. Hence, the posterior distribution is (µI , β)
′ ∼ N(ϕI , ωI) where

ϕI = (X
′

IXI)−1X
′

IYI and ωI = (X
′

IXI)−1σ2
η with the matrices XI = {1, st,h−1 − st−1,h−1}

and YI = {I∗t,h}.

Step 4 Generate σ2
η conditional on st,h, I∗t,h, µI and β. The posterior is σ2

η ∼ IG
(

νI

2 , δI

2

)
where

νI = ν2 + T and δI = δ2 + RSSI with RSS =
∑

(I∗t,h − µI − β(st,h−1 − st−1,h−1))2.

Step 5 Generate It,h and I∗t,h conditional on st,h, It, µs, α, µI , β, c1, c2, σ2
ϵ and σ2

η. Consider the

case without the political costs. The posterior distribution without knowing It is as follows:

(It,1, ..., It,24)
′
∼ N (Ξt, Ψ)

where Ξt = (ξt,1, ..., ξt,24)′ and Ψ = diag(φ, ..., φ) with φ = ( 1
σ2

η
+ α2

σ2
ϵ
)−1 and

ξt,h = (φ 1
σ2

η
) [µI + β(st,h−1 − st−1,h−1)] + (φα2

σ2
ϵ
)
[
α−1(st,h − st,h−1 − µs)

]
. Hence, the poste-

20



rior distribution of (It,1, ..., It,23, It) is as follows:

(It,1, ..., It,23, It)
′
∼ N (Ξ∗, Ψ∗)

where Ξ∗
t = BΞt and Ψ∗ = BΨB′ with B defined by (5). We can partition the matrices Ξ∗

t

and Ψ∗ as follows:

Ξ∗
t =

 Ξ∗
t,1

Ξ∗
t,2

 , Ψ∗ =

 Ψ∗
11 Ψ∗

12

Ψ∗
21 Ψ∗

22


where Ξ∗

t,1 is 23× 1, Ξ∗
t,2 is 1× 1, Ψ∗

11 is 23× 23, Ψ∗
12 is 23× 1, Ψ∗

21 is 1× 23, and Ψ∗
22 is 1× 1.

Then we can construct the posterior distribution of (It,1, ..., It,23) conditional on It as follows:

(It,1, ..., It,23|It)
′
∼ N

(
Ξ̂, Ψ̂

)
where Ξ̂ = Ξ∗

1 + Ψ∗
12(Ψ

∗
22)

−1(It − Ξ∗
2) and Ψ̂ = Ψ∗

11 − Ψ∗
12(Ψ

∗
22)

−1Ψ∗
21. We can partition the

matrices Ξ̂ and Ψ̂ as follows:

Ξ̂t =

 Ξ̂t,1

Ξ̂t,2

 , Ψ̂ =

 Ψ̂11 Ψ̂12

Ψ̂21 Ψ̂22


where Ξ̂t,1 is 1 × 1, Ξ̂t,2 is 22 × 1, Ψ̂11 is 1 × 1, Ψ̂12 is 1 × 22, Ψ̂21 is 22 × 1, and Ψ∗

22 is

22×22. Then the posterior distribution of It,1 conditional on It is It,1| It ∼ N(Ξ̂t,1, Ψ̂11). The

posterior distribution of (It,2, ..., It,23)
′
conditional on It and It,1 is as follows:

(It,2, ..., It,23| It, It,1)
′
∼ N

(
Ξ̂t,2 + Ψ̂21(Ψ̂11)−1(It − Ξ̂t,1), Ψ̂22 − Ψ̂21(Ψ̂11)−1Ψ̂12

)
(11)

Since we have the political costs, It,h and I∗t,h are generated from the following:

t ∈ { It ̸= 0, t < TB} : Generate It,1 from a truncated normal distribution such as N(Ξ̂t,1, Ψ̂11)

conditional on |It,1 − µI | > c1. Then generate (It,2, ..., It,23)
′

from (11) and construct

It,24 = It −
∑23

h=1 It,h. Set I∗t,h = It,h for h = 1, ..., 24.

t ∈ {It = 0, t < TB} : Generate I∗t,1 from a truncated normal distribution such as N(µI +

β1(st−1,24 − st−2,24), σ2
η) conditional on |I∗t,1 −µI | < c1. Then generate I∗t,h from N(µI +

β1(st,h−1 − st−1,h−1), σ2
η) for h = 2, ..., 24. Set It,h = 0 for h = 1, ..., 24.

t ∈ {It ̸= 0, t ≥ TB} : Generate It,1 from a truncated normal distribution such as N(Ξ̂t,1, Ψ̂)

conditional on |It,1 − µI | > c2. Then generate (It,2, ..., It,23)
′

from (11) and construct

It,24 = It −
∑23

h=1 It,i. Set I∗t,h = It,h for h = 1, ..., 24.
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t ∈ {It = 0, t ≥ TB} : Generate I∗t,1 from a truncated normal distribution such as N(µI +

β1(st−1,24 − st−2,24), σ2
η) conditional on |I∗t,1 −µI | < c2. Then, generate I∗t,h from N(µI +

β1(st,h−1 − st−1,h−1), σ2
η) for h = 2, ..., 24. Set It,h = 0 for h = 1, ..., 24.

Step 6 Generate c1 and c2 conditional on µs, α, µI , β, σ2
ϵ and σ2

η. Define the cumulative distribution

functions of N(Ξ̂t,1, Ψ̂11) and N(µI +β1(st−1,24−st−2,24), σ2
η) as ΦIt ̸=0

t and ΦIt=0
t , respectively.

The posterior distribution of c1 is

Πt<TB

[
ΦIt=0

t (c1 + µI) − ΦIt=0
t (−c1 + µI)

]1(It=0) [
1 − ΦIt ̸=0

t (c1 + µI) + ΦIt ̸=0
t (−c1 + µI)

]1(It ̸=0)

.

Similarly, the posterior distribution of c2 is

Πt≥TB

[
ΦIt=0

t (c2 + µI) − ΦIt=0
t (−c2 + µI)

]1(It=0) [
1 − ΦIt ̸=0

t (c2 + µI) + ΦIt ̸=0
t (−c2 + µI)

]1(It ̸=0)

.

These densities are intractable and hence we implement the Metropolis-Hastings algorithm to

draw from them.

We iterate steps 1 through 6 M + N times and discard the realizations of the first M iterations

but keep the last N iterations to form a random sample of size N on which statistical inference can

be made. We set M = 10, 000 and N = 10, 000.
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Table 1: Finite Sample Properties of the Three Estimators

Infeasible estimator Naive OLS estimator MCMC estimator

Mean
√

MSE Mean
√

MSE Mean
√

MSE

T = 100 α -0.0150 0.0013 0.0082 0.0021 -0.0150 0.0017

β 3.2199 0.0450 -0.9848 6.9027 3.2416 0.0777

T = 250 α -0.0151 0.0011 0.0088 0.0012 -0.0149 0.0015

β 3.2114 0.0376 -0.7797 3.9145 3.2251 0.0626

T = 500 α -0.0152 0.0006 0.0091 0.0008 -0.0155 0.0006

β 3.2094 0.0237 -1.0747 1.7552 3.2050 0.0378

Note: The data generating process is given by equations (1) and (2) with α = −0.015 and β = 3.2.

“Mean” is defined as the mean of estimators over 500 replications. “
√

MSE” represents the root
mean squared error for each estimator. We estimate three chains from independent starting points
in each replication. Each chain runs 4, 000 draws and the first 2, 000 are discarded as the burn-in-
phase.

Table 2: MCMC Estimators of α for Different Error Distributions

Distribution of ηt,h

N(0, σ2
η) t10 t5 t3 ARCH(0.3) ARCH(0.85)

N(0, σ2
ε) -0.0150 -0.0153 -0.0157 -0.0152 -0.0157 -0.0154

t10 -0.0154 -0.0144 -0.0149 -0.0148 -0.0152 -0.0152

Distribution t5 -0.0150 -0.0159 -0.0150 -0.0154 -0.0143 -0.0152

of εt,h t3 -0.0146 -0.0144 -0.0151 -0.0153 -0.0162 -0.0150

ARCH(0.3) -0.0151 -0.0148 -0.0146 -0.0150 -0.0152 -0.0151

ARCH(0.85) -0.0159 -0.0152 -0.0165 -0.0154 -0.0149 -0.0170

Note: The data generating process is given by equations (1) and (2) with α = −0.015 and β = 3.2. We consider
various distributions to generate the disturbance terms. We set σε and ση to 0.01 and 0.1, respectively. We multiply

the disturbance terms generated from a t distribution by
√

σ2
ε(1 − d)/d or

√
σ2

η(1 − d)/d. On the other hand, if εt,h

is ARCH(λ), εt,h follows N(0, σ2
t,h), where σ2

t,h = (1 − λ)σ2
ε + λε2

t,h−1 with λ = 0.3, 0.85. Each chain runs 4, 000
draws and the first 2, 000 are discarded as the burn-in-phase. We estimate three chains from independent starting

points in each replication.
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Table 3: Interventions by the Swiss National Bank

Infeasible estimator Naive OLS estimator MCMC estimator

Mean Pr(< 0)

α -0.198 -0.122 -0.221 1.000
[-0.234, -0.152] [-0.278, 0.034] [-0.269, -0.175]

β 0.050 0.053
[-0.010, 0.105]

c 0.023 0.000
[0.020, 0.028 ]

Note: The values in brackets are the 95 percent confidence intervals of the parameters. The
column labeled “Mean” shows the mean of the marginal distribution of a parameter. The
column labeled “Pr(< 0)” shows the frequency of finding negative values for a parameter. The

MCMC estimation is conducted by five chains from independent starting points. Each chain
runs 20, 000 draws and the first half is discarded as the burn-in-phase.

Table 4: Does the Model Predict Interventions Correctly?

Hours in which Hours in which
the SNB intervened the SNB did not intervene

The model predicts intervention 12 24

The model predicts no intervention 17 427

Total 29 451

Note: We say that “the model predicts intervention” in a particular hour h if the 99 percent
posterior interval of It,h does not include zero. Otherwise, we say that “the model does not
predict intervention” in that hour.
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Table 5: Japanese Intervention: Baseline Results

Without lagged intervention term With lagged intervention term

Mean Std. Dev. Pr(< 0) R̂ Mean Std. Dev. Pr(< 0) R̂

Equation for exchange rate dynamics

α -0.0164 0.0008 1.000 1.18 -0.0167 0.0006 1.000 1.09
[ -0.0180, -0.0148] [ -0.0179, -0.0154]

Equation for policy reaction function

β 0.2556 0.0801 0.000 1.01 0.2414 0.0714 0.000 1.00
[ 0.1045, 0.4168] [ 0.1000, 0.3852]

ρ 0.0143 0.0087 0.050 1.00
[ -0.0027, 0.0315]

c1 0.1089 0.0059 0.000 1.16 0.1070 0.0046 0.000 1.07
[ 0.0983, 0.1210] [ 0.0974, 0.1163]

c2 0.1820 0.0100 0.000 1.16 0.1789 0.0076 0.000 1.07
[ 0.1633, 0.2021] [ 0.1656, 0.1975]

Note: Constants are estimated but not reported. The columns labeled “Mean” and “Std. Dev.” refer to the mean and
standard deviation of the marginal distribution of a parameter. The columns labeled “Pr(< 0)” refer to the frequency
of finding negative values. The columns labeled R̂ refer to the Gelman-Rubin statistic to monitor the convergence of
the Markov chains. R̂ < 1.1 is considered as a sign of convergence. The values in brackets are the 95 percent posterior

bands of the parameter. We estimate five chains from independent starting points. Each chain runs 20, 000 draws
and the first half is discarded as the burn-in-phase.

Table 6: Intensive and Extensive Margins of Japanese Interventions

1991-2002 1991-1995 (A) 1995-2002 (B) B/A

Yen-amount per business day [trillion] 0.010 0.007 0.012 1.84

Probability of intervention day 0.070 0.149 0.025 0.16

Yen-amount per intervention day [trillion] 0.155 0.047 0.519 11.06

Probability of intervention hour 0.084 0.064 0.151 2.35

Yen-amount per intervention hour [trillion] 0.077 0.030 0.143 4.69

Note: “Yen-amount of intervention per business day” is defined as the total amount of intervention during
the observation period divided by the number of business days. “Probability of intervention day” is defined

as the number of intervention days divided by the number of business days. “Yen-amount per intervention
day” is defined as the total amount of intervention during the observation period divided by the number of
intervention days. “Probability of intervention hour” is defined as the number of intervention hours divided
by the number of intervention days multiplied by 24. “Yen-amount per intervention hour” is defined as the

total amount of intervention during the observation period divided by the number of intervention hours.
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Table 7: Intervention Only During the Daytime

Without lagged intervention With lagged intervention

Mean Std. Dev. Pr(< 0) R̂ Mean Std. Dev. Pr(< 0) R̂

Equation for exchange rate dynamics

α -0.0114 0.0006 1.000 1.10 -0.0114 0.0005 1.000 1.18
[ -0.0125, -0.0104] [ -0.0124, -0.0105]

Equation for policy reaction function

β 0.5727 0.1916 0.001 1.02 0.5220 0.1855 0.000 1.00
[ 0.1935, 0.9481] [ 0.1756, 0.9170]

ρ 0.0428 0.0216 0.028 1.00
[ -0.0008, 0.0850]

c1 0.1534 0.0083 0.000 1.11 0.1534 0.0071 0.000 1.26
[ 0.1375, 0.1698] [ 0.1405, 0.1672]

c2 0.2621 0.0132 0.000 1.12 0.2618 0.0115 0.000 1.24
[ 0.2368, 0.2882] [ 0.2395, 0.2851]

Note: Constants are estimated but not reported. The columns labeled “Mean” and “Std. Dev.” refer to the mean and
standard deviation of the marginal distribution of a parameter. The columns labeled “Pr(< 0)” refer to the frequency
of finding negative values. The columns labeled R̂ refer to the Gelman-Rubin statistic to monitor the convergence of
the Markov chains. R̂ < 1.1 is considered as a sign of convergence. The values in brackets are the 95 percent posterior

bands of the parameter. We estimate five chains from independent starting points. Each chain runs 20, 000 draws
and the first half is discarded as the burn-in-phase.
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Table 8: Ito-Yabu (2007) Specification

Without lagged intervention With lagged intervention

Mean Std. Dev. Pr(< 0) R̂ Mean Std. Dev. Pr(< 0) R̂

Equation for exchange rate dynamics

α -0.0160 0.0006 1.000 1.06 -0.0161 0.0008 1.000 1.08
[ -0.0173, -0.0150] [ -0.0180, -0.0148]

Equation for policy reaction function

β1 0.1923 0.0856 0.012 1.00 0.2020 0.0932 0.015 1.00
[ 0.0257, 0.3571] [ 0.0241, 0.4027]

β2 0.0849 0.0566 0.072 1.00 0.0633 0.0586 0.137 1.00
[ -0.0232, 0.1937] [ -0.0557, 0.1721]

β3 -0.0109 0.0253 0.665 1.00 -0.0053 0.0251 0.567 1.02
[ -0.0655, 0.0373] [ -0.0548, 0.0460]

ρ 0.0128 0.0096 0.092 1.00
[ -0.0062, 0.0317]

c1 0.1117 0.0041 0.000 1.05 0.1107 0.0062 0.000 1.07
[ 0.1039, 0.1194] [ 0.0963, 0.1217]

c2 0.1868 0.0075 0.000 1.06 0.1862 0.0095 0.000 1.08
[ 0.1717, 0.1996] [ 0.1631, 0.2024]

Note: Constants are estimated but not reported. The columns labeled “Mean” and “Std. Dev.” refer to the mean and
standard deviation of the marginal distribution of a parameter. The columns labeled “Pr(< 0)” refer to the frequency
of finding negative values. The columns labeled R̂ refer to the Gelman-Rubin statistic to monitor the convergence of

the Markov chains. R̂ < 1.1 is considered as a sign of convergence. The values in brackets are the 95 percent posterior
bands of the parameter. We estimate five chains from independent starting points. Each chain runs 20, 000 draws
and the first half is discarded as the burn-in-phase.
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Figure 1: Hourly Fluctuations in the Yen-Dollar Rate 

 

 

 

 

Figure 2: Daily Amounts of Intervention by Japan’s Monetary Authorities 
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Figure 3: Estimated Hourly Amounts of Intervention on April 10, 1998
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