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Abstract

We discuss some inference problems associated with the fractional Ornstein-Uhlenbeck
(fO-U) process driven by the fractional Brownian motion (fBm). In particular, we are
concerned with the estimation of the drift parameter, assuming that the Hurst parameter
H is known and is in [1/2, 1). Under this setting we compute the distributions of the
maximum likelihood estimator (MLE) and the minimum contrast estimator (MCE) for
the drift parameter, and explore their distributional properties by paying attention to the
influence of H and the sampling span M . We shall also derive the asymptotic distributions
of the two estimators as M becomes large. We further deal with the ordinary least squares
estimator (OLSE) and examine the asymptotic relative efficiency. It is shown that the
MCE is asymptotically efficient, while the OLSE is inefficient. We also consider the unit
root testing problem in the fO-U process and compute the power of the tests based on
the MLE and MCE.
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1. Introduction
The present paper is concerned with the inference problem associated with the frac-

tional Ornstein-Uhlenbeck (fO-U) process {YH(t)} defined by

YH(t) = α
∫ t

0
YH(s) ds + BH(t), (0 ≤ t ≤ M), (1)

where α (α ≤ 0) is the drift parameter, whereas {BH(t)} is the fractional Brownian
motion (fBm) with the Hurst parameter H defined shortly. It is assumed that {YH(t)} is
continuously observed in the time interval [0, M ].

The fO-U process in (1) is often expressed as the following differential form:

dYH(t) = αYH(t) dt + dBH(t), YH(0) = 0, (0 ≤ t ≤ M). (2)

We can solve (1) for YH(t) to get

YH(t) = eαt
∫ t

0
e−αs dBH(s), (3)

where the stochastic integral exists as a path-wise Riemann-Stieltjes integral and the
solution is unique (Cheridito, Kawaguchi and Maejima 2003).

The fBm {BH(t)} was invented by Kolmogorov (1940) and was largely developed by
Mandelbrot and Van Ness (1968), who obtained the following integral representation:

BH(t) = cH

[∫ 0

−∞

{
(t − u)H−1/2 − (−u)H−1/2

}
dW (u) +

∫ t

0
(t − u)H−1/2 dW (u)

]
, (4)

where cH = (2HΓ(3/2 − H)/(Γ(H + 1/2)Γ(2 − 2H)))1/2 with Γ(z) being the gamma
function, whereas {W (t)} is the standard Bm. We assume that the Hurst parameter
H is in [1/2, 1) and is assumed to be known throughout this paper. Note that, when
H = 1/2, the fBm reduces to the standard Bm, that is, B1/2(t) = W (t), and the fO-U
process in (1) reduces to the ordinary O-U process.

The covarince kernel of {BH(t)} is given by

KH(s, t) = Cov(BH(s), BH(t)) =
1

2

(
s2H + t2H − |s − t|2H

)
, (5)

which implies that the fBm is self-similar with the self-similarity parameter H , that is,

{BH(γt)} D
= {γHBH(t)} for any γ > 0, where

D
= denotes the distributional equivalence.

The fO-U process is also self-similar because of (3).
It follows from (5) that the fBm has stationary increments in the sense that

V(BH(t) − BH(s)) = |s − t|2H , (1/2 ≤ H < 1), (6)

but, when 1/2 < H < 1, the increments are not independent and are positively correlated,
unlike the standard Bm. In fact, puttting ΔBH(k) = BH(k) − BH(k − 1) for each
k = 1, 2, · · ·, it holds that

r(n) = Cov(ΔBH(k), ΔBH(k + n)) =
1

2

[
(n + 1)2H + (n − 1)2H − 2n2H

]
∼ H(2H − 1)n2H−2, (n = 1, 2, · · ·),
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which further implies that the increments of the fBm have the long-range dependence
property in the sense that

∞∑
n=1

r(n) =
∞∑

n=1

Cov(ΔBH(k), ΔBH(k + n)) = ∞, (1/2 < H < 1).

It is known that the fBm and fO-U processes are neither a Markov process nor a semi-
martingale. As was shown in Gripenberg and Norros (1996), the following infinitesimal
rule holds:

Cov(dBH(s), dBH(t)) = H(2H − 1) |s − t|2H−2 dsdt, (1/2 < H < 1). (7)

This contrasts with the stadard Bm in which the increments are independent. This fact
is closely related with the nonsemimartingale nature of the fBm and fO-U, which makes
various computations complicated. As an example, it is difficult to compute explicitly

V(YH(t)) = H(2H − 1)e2αt
∫ t

0

∫ t

0
e−α(r+s)|r − s|2H−2 dr ds, (1/2 < H < 1),

whereas, when H = 1/2, we have

V(Y1/2(t)) = e2αt
∫ t

0

∫ t

0
e−α(r+s) E(dW (r) dW (s)) = e2αt

∫ t

0
e−2αs ds =

e2αt − 1

2α
.

The fO-U process arises naturally from the discrete-time near unit root process whose
innovation error follows a long-memory process. More specifically, let us consider

yj = ρyj−1 + vj , (1 − L)H−1/2vj = εj, ρ = 1 +
α

T
, y0 = 0, (j = 1, · · · , T ). (8)

where L is the lag-operator, {εj} ∼ i.i.d.(0, 1), whereas {vj} is a stationary long-memory
process generated by

vj = (1 − L)−(H−1/2)εj =
∞∑

k=0

Γ(k + H − 1/2)

Γ(H − 1/2)Γ(k + 1)
εj−k, (1/2 < H < 1). (9)

Then it can be shown that

cH Γ(H + 1/2)

TH
y[Tt] ⇒ YH(t), (0 ≤ t ≤ 1),

where ⇒ signifies weak convergence as T → ∞.
The main purpose of the present paper is to discuss the estimation problem of the

drift parameter α in the fO-U process in (1) or (2), assuming the Hurst parameter H
(1/2 ≤ H < 1) to be known. This problem was earlier discussed in Kleptsyna and Le
Breton (2002) and Hu and Nualart (2010). The former derives the maximum likelihood
estimator (MLE) on the basis of the fractional version of Girsanov’s theorem, whereas
the latter establishes some asymptotic properties of the ordinary least squares estimator
(OLSE). In this paper we are more concerned with computational aspects and compute the
distribution of the MLE. We also take up the minimum contrast estimator (MCE) dealt
with in Bishwal (2008) and compute its distribution as well. The asymptotic distributions
of the MLE and MCE as the sampling span M → ∞ are derived. We also consider the
testing problem H0 : α = 0 against H1 : α < 0, which is interpreted as the unit root test
for the discrete-time model in (8).
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This paper is organized as follows. Section 2 defines the OLSE, MLE and MCE of α
and gives a brief discussion of each estimator. We also give the characteristic functions
(c.f.s) associated with the MLE and MCE, but the derivation of the c.f. associated with
the OLSE is much involved and remains to be done. Section 3 computes numerically the
distributions of the MLE and MCE together with their moments, and presents graphs
of those densities for various values of α, H and M . We also derive the asymptotic
distributions of the two estimators. Section 4 considers testing H0 : α = 0 against
H1 : α < 0, and computes the powers of the tests based on the MLE and MCE. Section
5 concludes this paper. Proofs of theorems are given in the Appendix.

2. OLSE, MLE and MCE of α
In this section we discuss the OLSE, MLE and MCE of α for the fO-U process in (1)

or (2). We first deal with the OLSE in Section 2.1, where only the asymptotic properties
as M → ∞ are discussed together with the difference from the OLSE of the coefficient ρ
in the discrete-time model (8), whereas the MLE and MCE are discussed in Section 2.2,
where the c.f.s are given to compute numerically their distributions in the next section.

2.1 Asymptotic properties of the OLSE
The OLS estimation of α was discussed in Hu and Nualart (2010). The OLSE α̂1 can

be obtained formally from (2) as

α̂1 =

∫M
0 YH(t) dYH(t)∫M

0 Y 2
H(t) dt

= α +

∫M
0 YH(t) dBH(t)∫M

0 Y 2
H(t) dt

. (10)

Here the stochastic integral with respect to BH(t) is not the ordinary Ito integral because
BH(t) is not a semimartingale. This integral is defined as follows. Let us denote by pm an
arbitray partition of the interval [0, M ], where pm : 0 = t0 < t1 < · · · < tm = M . Then
consider the following sum:

S(YH, pm) =
m−1∑
i=0

YH(ti)♦(BH(ti+1) − BH(ti)),

where ‘♦’ is called the Wick product (see Duncan, Hu and Pasik-Duncan (2000) for its
definition and various properties). Then we define, putting Δm = max(ti − ti−1),

∫ M

0
YH(t) dBH(t) = lim

Δm→0

m−1∑
i=0

YH(ti)♦(BH(ti+1) − BH(ti)).

Because the Wick product has the property that E(YH(ti)♦(BH(ti+1) − BH(ti))) =
E(YH(ti))E(BH(ti+1) − BH(ti)) = 0, it holds that

E

(∫ M

0
YH(t) dBH(t)

)
= 0.

In particular, it holds that

∫ M

0
BH(t) dBH(t) =

1

2

(
B2

H(M) − M
)

, (1/2 < H < 1),

which also holds when H = 1/2.
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On the other hand there is another definition of the stochastic integral, which is of
Stratonovich type. We denote it as

∫ M

0
YH(t) δBH(t) = lim

Δm→0

m−1∑
i=0

YH(ti)(BH(ti+1) − BH(ti)).

In particular, it holds that∫ M

0
BH(t) δBH(t) =

1

2
B2

H(M), (1/2 < H < 1).

In general, the integrals of Ito type and Stratonovich type are different and the fol-
lowing relationship holds:

∫ M

0
YH(t) δBH(t) =

∫ M

0
YH(t) dBH(t) + E

(∫ M

0
YH(t) δBH(t)

)
. (11)

More specifically, it was shown in Hu and Nualart (2010) that

AH(M) = E

(∫ M

0
YH(t) δBH(t)

)
= H(2H − 1)

∫ M

0

∫ t

0
u2H−2 eαu du dt, (12)

∫ M

0
YH(t) δBH(t) = −α

∫ M

0
Y 2

H(t) dt +
1

2
Y 2

H(M), (13)

∫ M

0
YH(t) dBH(t) = −α

∫ M

0
Y 2

H(t) dt +
1

2
Y 2

H(M) − AH(M). (14)

It follows from the above arguments that

α̂1 =
Y 2

H(M)/2 − AH(M)∫M
0 Y 2

H(t) dt
, (15)

where Hu and Nualart (2010) proved that, when α < 0,

1

M
Y 2

H(M) → 0, (16)

lim
M→∞

AH(M) = H(2H − 1)(−α)1−2H Γ(2H − 1), (17)

1

M

∫ M

0
Y 2

H(t) dt → α−2H H Γ(2H), (18)

where the convergence in (16) and (18) holds almost surely and in mean square. It follows
that, as M → ∞,

α̂1 → −H(2H − 1)(−α)1−2H Γ(2H − 1)

α−2H H Γ(2H)
= α, (α < 0),

almost surely and in mean square.
Hu and Nualart (2010) further proved the asymptotic normality of α̂1. It was shown

that, when 1/2 ≤ H < 3/4 and α < 0, it holds that

√
M(α̂1 − α) → N(0,−ασ2

H), σ2
H = (4H − 1)

(
1 +

Γ(3 − 4H)Γ(4H − 1)

Γ(2 − 2H)Γ(2H)

)
. (19)

5



It can be checked that σ2
H increases monotonically from 2 as H gets away from H = 1/2.

The asymptotic efficiency of α̂1 will be compared with the MLE later.
It is of some interest to consider another OLSE α̂2 based on the integral of Stratnovich

type, which is

α̂2 =
Y 2

H(M)/2∫M
0 Y 2

H(t) dt
= α +

∫M
0 YH(t) δBH(t)∫M

0 Y 2
H(t) dt

. (20)

Note that this estimator is closely related with the OLSE ρ̂ of ρ in the discrete-time near
unit root process (8). In fact, when 1/2 < H < 1, it holds that, as T → ∞,

T (ρ̂ − 1) =
1

T 2H

T∑
j=2

yj−1(yj − yj−1)

/
1

T 2H+1

T∑
j=2

y2
j−1

⇒ Y 2
H(1)/2∫ 1

0 Y 2
H(t) dt

D
= M

Y 2
H(M)/2∫M

0 Y 2
H(t) dt

. (21)

This last distributional equivalence comes from the self-similarity property of {YH(t)}.
Note that, because of ρ = 1 + (α/T ) so that α = T (ρ − 1), the limiting distibution of
T (ρ̂ − 1) may be interpreted as that of the OLSE of α in ρ = 1 + (α/T ).

Returning to the OLSE in (20), it turns out that, when α < 0, α̂2 → 0 almost surely
and in mean square as M → ∞ because of (16) and (18). Thus α̂2 is not consistent for
α < 0. When α = 0, α̂2 is consistent because

α̂2
D
=

1

M

Y 2
H(1)/2∫ 1

0 Y 2
H(t) dt

.

On the basis of the fact described in (18), Hu and Nualart (2010) suggested a practical
estimator defined by

α̂3 = −
(

1

HΓ(2H)M

∫ M

0
Y 2

H(t) dt

)−1/2H

, (22)

and proved that, when 1/2 < H < 3/4,

√
M(α̂3 − α) → N

(
0,− α

4H2
σ2

H

)
, (23)

where σ2
H is defined in (19). It is seen that the estimator α̂3 attains lower variances

asymptotically than α̂1. When H = 1/2, this estimator is known as the MCE, which we
discuss in the next subsection.

2.2 Derivation of the c.f.s associated with the MLE and MCE
To consider the MLE α̂ we follow Kleptsyna and Le Breton (2002). Let us rewrite

YH(t) in (2) as Y α
H (t) so that the dependence on α is explicit. Then the differential

equation (2) becomes

dY α
H (t) = αY α

H (t)dt + dBH(t), Y α
H (0) = 0, (0 ≤ t ≤ M). (24)

We also define the auxiliary process

dY β
H(t) = βY β

H(t)dt + dBH(t), Y β
H(0) = 0, (0 ≤ t ≤ M), (25)
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where β is a parameter to be determined later.
Let (C[0, M ],B(C)) be the measurable space of continuous functions on [0, M ] with

the associated σ-field generated under teh supremum norm. Let μY α
H

and μY β
H

be the

probability measures on (C[0, M ],B(C)) induced by {Y α
H (t)} and {Y β

H(t)}, respectively,
by the relation

μY α
H
(A) = P (ω : Y α

H ∈ A), μY β
H
(A) = P (ω : Y β

H ∈ A), A ∈ B(C).

Then the fractional version of Girsanov’s theorem was obtained by Kleptsyna, Le Breton
and Roubaud (2000), which says that measures μY α

H
and μY β

H
are equivalent and the

Radon-Nikodym derivative evaluated at Y γ
H = {Y γ

H(t)} ∈ C[0, M ] is given by

dμY α
H

dμY β
H

(Y γ
H) = exp

[
(α − β)

∫ M

0
Qγ

H(t)dZγ
H(t) − α2 − β2

2

∫ M

0
{Qγ

H(t)}2 dvH(t)

]
, (26)

where vH(t) = t2−2HΓ(3/2 − H)/(2HΓ(3 − 2H)Γ(H + 1/2)), and

Qγ
H(t) =

d

dvH(t)

∫ t

0
gH(t, s) Y γ

H(s) ds

=
ηH

4(1 − H)

{
t2H−1Zγ

H(t) +
∫ t

0
s2H−1 dZγ

H(s)
}

, (27)

Zγ
H(t) =

∫ t

0
gH(t, s) dY γ

H(s), (28)

with ηH = 2HΓ(3 − 2H)Γ(H + 1/2)/Γ(3/2 − H) and gH(t, s) = (2HΓ(3/2 − H)Γ(H +
1/2))−1(s(t − s))1/2−H .

It is shown in Kleptsyna and Le Breton (2002) that the sample paths of the process
{Qγ

H(t)} in (27) belong to L2([0, M ], dvH), and the process {Zγ
H(t)} in (28) is a Gaussian

semimartingale with the decomposition

Zγ
H(t) = γ

∫ t

0
Qγ

H(t) dvH(t) + MH(t), MH(t) =
∫ t

0
gH(t, s) dBH(s), (29)

where {MH(t)} is shown to be a Gaussian martingale by Norros, Valkeila and Virtamo
(1999).

The Radon-Nikodym derivative in (26) is composed of various complicated processes
and contain two types of integrals. One is the Ito integral with respect to a semimartingale
and the other the ordinary Rieman-Stieltjes integral. Suppose that H = 1/2. Then it
is seen that we have v1/2(t) = t and Qγ

1/2(t) = Zγ
1/2(t) = Y γ

1/2(t) so that both Qγ
1/2(t)

and Zγ
1/2(t) follow the same ordinary O-U process as Y γ

1/2(t). Thus the Radon-Nikodym
derivative reduces to

dμY α
1/2

dμY β
1/2

(Y γ
1/2) = exp

[
(β − α)

∫ 1

0
Y γ

1/2(t) dY γ
1/2(t) −

α2 − β2

2

∫ 1

0

{
Y γ

1/2(t)
}2

dt

]
.

This formula was initially given by Liptser and Shiryaev (1977).
Now we can define the likelihood for α as l(α) = dμY α

H
(Y α

H )/dμY 0
H
, that is,

l(α) =
dμY α

H

dμY 0
H

(Y α
H ) = exp

[
α
∫ M

0
Qα

H(t) dZα
H(t) − α2

2

∫ M

0
{Qα

H(t)}2 dvH(t)

]
. (30)
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Maximizing l(α) yields the MLE

α̃MLE =

∫M
0 Qα

H(t) dZα
H(t)∫M

0 {Qα
H(t)}2 dvH(t)

=
U(H, M, α)

V (H, M, α)
, (31)

where

U(H, M, α) =
∫ M

0
Qα

H(t) dZα
H(t), V (H, M, α) =

∫ M

0
{Qα

H(t)}2 dvH(t). (32)

Note that, when α = 0 and H = 1/2, we have

α̃MLE =

∫M
0 Q0

1/2(t) dZ0
1/2(t)∫M

0 {Q0
1/2(t)}2 dv1/2(t)

=

∫M
0 W (t) dW (t)∫M

0 W 2(t) dt

D
=

1

M

∫ 1
0 W (t) dW (t)∫ 1

0 W 2(t) dt
, (α = 0, H = 1/2), (33)

which is also the OLSE under this situation.
We now consider

FMLE(x) = P (α̃MLE < x) = P (xV (M, H, α) − U(M, H, α) > 0). (34)

To compute FMLE(x) we need the joint moment generating function (m.g.f.) of U(M, H, α)
and V (M, H, α), which we can derive from Kleptysna and Le Breton (2002) and the frac-
tional version of Girsanov’s theorem described above. We have

Thorem 1. The joint m.g.f. m(θ1, θ2) of U(M, H, α) and V (M, H, α) is given by

m(θ1, θ2) = E [exp{θ1U(H, M, α) + θ2V (H, M, α)}]
= e−M(α+θ1)/2

[(
1 +

(α + θ1)
2

μ2

)
cosh2 μM

2
− α + θ1

μ
sinh μM

+
πM

4 sin πH

{
−(α + θ1)

2

μ
I−H

(
μM

2

)
IH−1

(
μM

2

)

+μI1−H

(
μM

2

)
IH

(
μM

2

)}]−1/2

, (35)

where μ =
√

α2 − 2θ2, whereas Iν(z) is the modified Bessel function of the first kind
defined by

Iν(z) =
∞∑

k=0

(z/2)ν+2k

k!Γ(ν + k + 1)
. (36)

Theorem 1 enables us to compute FMLE(x) employing Imhof’s formula in the following
way:

FMLE(x) =
1

2
+

1

π

∫ ∞

0

1

θ
Im [m(−iθ, iθx)] dθ, (37)

where m(−iθ, iθx) is the c.f. of xV (H, M, α)−U(M, H, α). The computation of FMLE(x)
will be done in the next section together with that of the probability density. The asymp-
totic distribution of α̃MLE as M → ∞ will also be derived.
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The MCE of α was derived in Bishwal (2008) as follows. The score function s(α)
based on the likelihood l(α) in (30) is obtained as

s(α) =
d log l(α)

dα
=
∫ M

0
Qα

H(t) dZα
H(t) − α

∫ M

0
{Qα

H(t)}2 dvH(t)

=
1

2

[
ηH

2(1 − H)
Zα

H(M)
∫ M

0
t2H−1 dZα

H(t) − M

]
− α

∫ M

0
{Qα

H(t)}2 dvH(t),

where this last equality is due to Kleptsyna and Le Breton (2002). Then the MCE is
defined as the solution to the estimating equation

e(α) = −M

2
− α

∫ M

0
{Qα

H(t)}2 dvH(t) = 0,

which yields the following MCE:

α̂MCE =
−M/2∫M

0 {Qα
H(t)}2 dvH(t)

. (38)

It is seen that the support of α̂MCE is nonpositive, which may be desirable because α is
also assumed to be nonpositive.

It follows from Theorem 1 that the distribution of α̂MCE is computed as

FMCE(x) = P (α̂MCE < x) = P (xV (H, M, α) + M/2 > 0)

=
1

2
+

1

π

∫ ∞

0

1

θ
Im

[
eiMθ/2 m(0, iθx)

]
dθ, (39)

where eiMθ/2 m(0, iθx) is the c.f. of xV (H, M, α) + M/2. The computation of FMCE(x)
will be done in the next section together with the derivation of its asymptotic distribution
as M → ∞.

3. Computation of the distributions of the MLE and MCE
In this section we first compute the distribution functions of the MLE and MCE

together with their moments. Then the asymptotic distributions of the two estimators as
the sampling span M becomes large will be derived. We also compare these estimators
with the OLSE in terms of the asymptotic relative efficiency.

The distribution functions FMLE in (37) and FMCE in (39) of α̃MLE and α̂MCE , re-
spectively, can be computed numerically using Simpson’s rule. The probability densities
of these distributions can also be computed by numerical differentiation of the distribu-
tion functions. Care, however, needs to be taken in the computation of the c.f.s because
they contain the square roots of complex-valued quantities. To overcome this difficulty a
modified algorithm as shown in Tanaka (1996) may be necessary.

In the actual computations, we used the change of variables formula. More specifically,
in computing (37), we used∫ ∞

0

1

θ
Im [m(−iθ, iθx)] dθ = 2

∫ ∞

0

1

u
Im

[
m(−iu2, iu2x)

]
du.

This makes the numerical computation faster and the computation of the integrand at
the origin unnecessary.

The c.f.s involve Iν(z), the modified Bessel function of the first kind, the computaion of
which may be troublesome if ν is negative or z is complex because some software packages
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do not allow for this case. In that case we can proceed as follows. When ν is negative,
but ν + 1 is positive, we use the following relation (Watson 1958):

Iν(z) =
2(ν + 1)

z
Iν+1(z) + Iν+2(z). (40)

When z is complex, we can further use the following relation:

Iν(z) = i−ν Jν(iz), (41)

where Jν(z) is the Bessel function of the first kind defined by

Jν(z) =
∞∑

k=0

(−1)k (z/2)ν+2k

k! Γ(ν + k + 1)
.

It is assumed here that, when z is complex, the computation of Iν(z) is not available, but
that of Jν(z) is available. Thus, to deal with the modified Bessel funcions of the first kind
involved in the c.f.s, we can compute them as

I−H(ξ)IH−1(ξ) = −4H(1 − H)

ξ2
iJ1−H(iξ)JH(iξ) − 2(1 − H)

ξ
JH+1(iξ)J1−H(iξ)

−2H

ξ
J2−H(iξ)JH(iξ) + iJ2−H(iξ)JH+1(iξ),

I1−H(ξ)IH(ξ) = −iJ1−H(iξ)JH(iξ),

where ξ = M
√

α2 − 2iθx/2.
Figure 1 draws the probability densities of α̃MLE for various values of M when α = 0

and H = 1/2, that is, densities given in (33). It is seen that the distribution tends to
be concentrated around α = 0 as M becomes large, which is also implied by the last
expression in (33). Though not shown here, the distributions shrink to some extent as
H becomes large. Figure 2 is concerned with the probability densities of α̂MCE when
α = 0 and H = 1/2. The distributions are quite different from those of α̃MLE . They have
a negative support only and tends to be monotonically increasing as M becomes large.
Though not shown here, the distributions are shifted to the right with smaller variances
as H becomes large.

Figure 1 Figure 2

When α = 0 and H is arbitrary, there is an exact relationship among the percent
points of each of two estimators under various sampling spans M , which we describe as

Theorem 2. Assume that the true value of α is 0, and let α̃MLE(H, M) and α̂MCE(H, M)
be the MLE and MCE under H and M , respectively. Then it holds that

α̃MLE(H, M)
D
= α̃MLE(H, 1)/M, α̂MCE(H, M)

D
= α̂MCE(H, 1)/M.

Theorem 2 implies that, when α = 0, there also exist the relations xγ(H, M) = xγ(H, 1)/M
and yγ(H, M) = yγ(H, 1)/M , where xγ(H, M) and yγ(H, M) are the 100γ% points of the
distributions of α̃MLE and α̂MCE, respectively, under H and M .
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Figures 3 and 4 are concerned with distributions of α̃MLE for nonzero α. The former
is for α = −3, H = 0.7, whereas the latter for α = −5, H = 0.9. It is seen that
the distributions tend to normality as M becomes large, unlike the case α = 0, and
the variation is larger for α smaller. The distributions do depend on α, but little on
H , although not shown here. This last fact will be theoretically confirmed shortly. The
distributions of α̂MCE are found to be quite close to those of α̃MLE in the present case as
M becomes large, which is also verified now.

Figure 3 Figure 4

The following theorem describes the asymptotic distributions of two estimators as
M → ∞.

Theorem 3. When α < 0, both α̃MLE and α̂MCE are
√

M-consistent and it holds that,
as M → ∞,

√
M (α̃MLE − α) → N(0, −2α),

√
M (α̃MCE − α) → N(0, −2α). (42)

On the other hand, when α = 0, the asymptotic distributions of two estimators are
different, but they are M-consistent, and M α̃MLE and M α̂MCE have non-degenerate
distributions.

Table 1 reports the means and variances of α̃MLE and α̂MCE . Note that we can use
the following formulas to compute moments of these estimators:

E(α̃k
MLE) =

1

(k − 1)!

∫ ∞

0
θk−1
2

∂m(θ1,−θ2)

∂θk
1

∣∣∣∣∣
θ1=0

dθ2, (43)

E(α̃k
MCE) =

(−M

2

)k 1

(k − 1)!

∫ ∞

0
θk−1
2 m(0,−θ2) dθ2, (44)

where m(θ1, θ2) is the joint m.g.f. defined in (35). In the actual computation, we applied
the change of variables formula to put

√
α2 + 2θ2 = x−α, that is, θ2 = x2/2−αx so that

dθ2 = (x − α) dx.

Table 1

Table 1 confirms what was mentioned before. These may be summarized as

i) When α = 0, it holds that the means of α̃MLE and α̂MCE under M are equal to
those under M = 1 divided by M , respectively. The corresponding variances reduce
to those dvided by M2. These facts come from Theorem 2.

ii) When α < 0, the means and variances of the two estimators are quite close to each
other, especially when M is large. They tend to be independent of H . This is
because it holds that both α̃MLE and α̂MCE tend to N(α,−2α/M), which does not
depend on H .

11



It is also of interest to compare the efficiency of the OLSE α̂1 in (15) and the practical
estimator α̂3 in (22) with the MLE α̃MLE . For this purpose we obtain, from (19), (23)
and (42), the asymptotic relative efficiencies for 1/2 < H < 3/4 as follows:

eff1 = lim
M→∞

V(
√

M(α̃MLE − α))

V(
√

M(α̂1 − α))
=

2

σ2
H

, eff3 = lim
M→∞

V(
√

M(α̃MLE − α))

V(
√

M(α̂3 − α))
=

8H2

σ2
H

, (45)

where σ2
H is defined in (19).

Figure 5 draws eff1 and eff3 for 1/2 < H < 3/4. It is seen that the relative efficiencies
of α̂1 and α̂3 decrease monotonically from 1 to 0 as H approaches H = 3/4, although the
former is slightly better than the latter.

Figure 5

4. The unit root test under the fBm
In this section we deal with the testing problem about α. Suppose that we are given

the observations from the fO-U process (1), and consider

H0 : α = 0 vs. H1 : α < 0. (46)

In terms of the discrete-time near unit root process (8), this problem may be interpreted
as testing if the coefficient ρ = 1+(α/T ) is equal to unity. Thus the above testing problem
may be referred to as the unit root test.

We conduct the unit root tests based on α̃MLE and α̂MCE . Table 2 reports percent
points of the null distributions of the two estimators under various values of H with M = 1
fixed. The distributions of α̃MLE shrink to some extent as H becomes large so that, as
H becomes large, the percent points below the median increase, whereas those above the
median decrease. The distributions of α̂MCE are continually shifted to the right as H
becomes large so that the percent points monotonically increase with H . Note that the
percent points under M > 1 can be restored from those under M = 1 by dividing the
corresponding value by M , as Theorem 2 ensures.

Table 2

As for the power properties of the unit root tests considered here, we have

Theorem 4. Given H , the powers of the unit root tests based on α̃MLE and α̂MCE

depend only on α × M .

Due to Theorem 4 we have only to examine powers of the unit root tests in terms of
the values of α×M . Table 3 reports powers at the 5 % significance level for various values
of α×M under H = 0.5, 0.7, 0.9. It is seen that the test based on the MLE dominates, but
the difference is only slight. It is also noted that the powers are higher when H is larger.
Figure 6 draws the power functions of the two tests when H = 0.9. We note inpassing
that, when H = 0.5, the test based on the MLE gives completely the same limiting local
power of the usual unit root test under ρ = 1 + (α/T ) as T → ∞ (Tanaka 1996, p. 347).
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Table 3 Figure 6

5. Concluding remarks
We have discussed the MLE anc MCE estimation of the drift parameter α in the fO-U

process. Distribution functions of theses estimators have been computed together with
their moments. It turned out that the distributions are quite different between α = 0
and α < 0. We have also derived the asymptotic distributions as the sampling span M
becomes large. It was found that, when α < 0, the two estimators are

√
M -consistent

and tend to normality, whereas, when α = 0, the estimators multiplied by M become
nondegenerate distributions independent of M so that they are M-consistent.

We also considered the testing problem H0 : α = 0 against H1 : α < 0, which may
be interpreted as the unit root test in the discrete-time near unit root process. We have
conducted the tests based on the MLE and MCE, and computed the powers. It was found
that the powers depend only on α × M .

The MLE and MCE have further been compared with the OLSE in terms of the
asymptotic relative efficiency. It is desirable to study the exact distributional property of
the OLSE, for which the derivation of the associated c.f. is necessary. This seems difficult
and remains to be done.
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Appendix

Proof of Theorem 1. It follows from the fractional version of Girsanov’s theorem that

m(θ1, θ2) = E

[
exp

{
θ1

∫ M

0
Qα

H(t)dZα
H(t) + θ2

∫ M

0
{Qα

H(t)}2 dvH(t)

}]

= E

[
exp

{
θ1

∫ M

0
Qβ

H(t)dZβ
H(t) + θ2

∫ M

0

{
Qβ

H(t)
}2

dvH(t)

}

× dμY α
H

dμY β
H

(Y β
H)

⎤
⎦

= E

[
exp

{
(θ1 + α − β)

∫ M

0
Qβ

H(t)dZβ
H(t)

+

(
θ2 − α2 − β2

2

)∫ M

0

{
Qβ

H(t)
}2

dvH(t)

}]

= E

[
exp

{
(θ1 + α − β)

∫ M

0
Qβ

H(t)dZβ
H(t)

}]

= eM(β−α−θ1)/2E

[
exp

{
κZβ

H(M)
∫ M

0
t2H−1 dZβ

H(t)

}]
,

where κ = (θ1 + α − β)ηH/(4(1 − H)) and we have put β =
√

α2 − 2θ2. Then it follows
from Kleptsyna and Le Breton (2002) that this last quantity yields

m(θ1, θ2) = eM(β−α−θ1)/2

(
4 sinπH

πβM

)1/2
⎡
⎣
(

1 +
β − α − θ1

β
ez sinh z

)2

I−H(z)IH−1(z)

−
(

1 − β − α − θ1

β
ez cosh z

)2

I1−H(z)IH(z)

⎤
⎦
−1/2

= eM(−α−θ1)/2
(

4 sin πH

πM

)1/2
[
1

β
(β cosh z − (α + θ1) sinh z)2 I−H(z)IH−1(z)

− 1

β
(β sinh z − (α + θ1) cosh z)2 I1−H(z)IH(z)

]−1/2

,

where z = βM/2. Then, using the relation

IH(z)IH−1(z) − I1−H(z)IH(z) =
4 sinπH

2πz
,

it can be verified that m(θ1, θ2) is given by (35), which establishes Theorem 1.

Proof of Theorem 2. When α = 0, the distibution function of α̃MLE is defined by

FMLE(x) =
1

2
+

1

π

∫ ∞

0

1

θ
Im [m(−iθ, iθx)] dθ

=
1

2
+

1

π

∫ ∞

0

1

u
Im [m(−iu/M, iux/M)] du, (A.1)
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where

m(−iu/M, iux/M) = eiu/2

[(
1 − iu

2Mx

)
cosh2 z + u

sinh 2z

2z

+
π

4 sinπH

(
2zI1−H(z)IH(z) +

u2

2z
I−H(z)IH−1(z)

)]−1/2

,

z =
1

2

√−2iuMx.

Then, it follows from the form of the integrand, where x is always coupled with M as
M × x, we can confirm the statement in the theorem.

As for the MCE, we have

FMCE(x) =
1

2
+

1

π

∫ ∞

0

1

θ
Im

[
eiMθ/2 m(0, iθx)

]
dθ

=
1

2
+

1

π

∫ ∞

0

1

u
Im

[
eiu/2 m(0, iux/M)

]
du, (A.2)

where

m(0, iux/M) = eiu/2
[
cosh2 z +

π

4 sin πH
2zI1−H(z)IH(z)

]−1/2

.

The same reasoning as before applies here, which establishes Theorem 2.

Proof of Theorem 3. The MLE α̃MLE is defined in (31) as U(H, M, α)/V (H, M, α) =
U/V . Suppose first that α < 0 and let us consider the joint m.g.f. n1(θ1, θ2) of (U −
αV )/

√
M and V/M , which is, from Theorem 1,

n1(θ1, θ2) = m

(
θ1√
M

,
θ2

M
− αθ1√

M

)

=

[
e
√

Mθ1+αM

{(
1 +

(θ1/
√

M + α)2

μ2

)
cosh2 z − θ1/

√
M + α

μ
sinh 2z

+
πM

4 sin πH

(
μI1−H(z)IH(z) − (θ1/

√
M + α)2

μ
I−H(z)IH−1(z)

)}]−1/2

,

where

μ =
(
α2 − 2θ2/M + 2αθ1/

√
M
)1/2

= −α − θ1√
M

+
θ2

αM
+

θ2
1

2αM
+ o

(
M−1

)
,

z =
1

2
μM =

1

2

(
−αM −

√
Mθ1 +

θ2

α
+

θ2
1

2α

)
+ o(1).

Since it holds (Abramowitz and Stegun 1965) that, as M → ∞,

Iν(z) =
ez

√
2πz

(
1 + O(z−1

)
=

eμM/2

√
πμM

(
1 + O(M−1)

)
,

for fixed ν and, evidently,

cosh2(z) =
1

4
eμM + O(1), sinh 2z =

1

2
eμM + O(1),
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we have

μ =

[
eθ2/α+θ2

1/(2α)

{
1

4

(
1 +

α2 + o(1)

α2 + o(1)

)
− 1

2

α + o(1)

−α + o(1)
+

1

4 sinπH

(
1 − α2 + o(1)

α2 + o(1)

)}]−1/2

→ exp

{
θ2

(−2α)
+

1

2

θ2
1

(−2α)

}
.

Thus we conclude that

U − αV√
M

→ N(0, 1/(−2α)),
V

M
→ 1/(−2α),

so that

√
M (α̃ − α) =

(U − αV )/
√

M

V/M
→ N(0,−2α).

We consider next the case for α = 0. The joint m.g.f. j1(θ1, θ2) of U/M and V/M2 is
given by

j1(θ1, θ2) = m(θ1/M, θ2/M
2)

= e−θ1/2

[(
1 − θ2

1

2θ2

)
cosh2 w − θ1

sinh 2w

2w
+

π

4 sin πH

×
{

2wI1−H(w)IH(w) − θ2
1

2w
I−H(w)IH−1(w)

}]−1/2

,

where w =
√−2θ2/2. Then we can coclude that M ×U/V = M × α̃MLE is nondegenerate

and is independent of M, which implies that α̃MLE is M-consistent.
The case of α̂MCE proceeds similarly. The definition of α̂MCE is given in (38) as

α̂MCE =
−M/2∫M

0 {Qα
H(t)}2 dvH(t)

. (A.3)

Suppose that α < 0 and consider the joint m.g.f. n2(θ1, θ2) of (−M/2 − αV )/
√

M and
V/M , which is given by

n2(θ1, θ2) = e−θ1

√
M/2m

(
0, θ2/M − αθ1/

√
M
)

=

[
e
√

Mθ1+Mα

{(
1 +

α2

μ2

)
cosh2 z − α

μ
sinh 2z

+
πM

4 sin πH

(
μI1−H(z)IH(z) − α2

μ
I−H(z)IH−1(z)

)}]−1/2

=

[
exp

{
θ2

α
+

θ2
1

2α

}{
1

4

(
1 +

α2

μ2

)
− α

2μ
+

1

4 sin πH

(
1 − α2

μ2

)}
+ o(1)

]−1/2

→ exp

{
θ2

(−2α)
+

1

2

θ2
1

(−2α)

}
,

which ensures that
√

M(α̂MCE − α) tends to N(0,−2α).
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When α = 0, the joint m.g.f. j2(θ1, θ2) of (−M/2)/M = −1/2 and V/M2 is given by

j2(θ1, θ2) = e−θ1/2m(0, θ2/M
2)

= e−θ1/2
[
cosh2 w +

π

4 sin πH
2wI1−H(w)IH(w)

]−1/2

,

which implies that Mα̂MCE is independent of M and α̂MCE is M-consistent. Theorem 3
has now been established.

Proof of Theorem 4. Let xγ(H, M) be the 100γ% point of the distribution of α̃MLE

for α = 0 under H and M . Then the power of the test at the level γ is computed as

P (α̃MLE < xγ(H, M) |α < 0) =
1

2
+

1

π

∫ ∞

0

1

θ
Im [φ(θ; xγ(H, M))] dθ,

=
1

2
+

1

π

∫ ∞

0

1

u
Im [φ(u/M ; xγ(H, M))] du,

where

φ(u/M ; xγ(H, M)) = m(−iu/M, iuxγ(H, m)/M)

= eiu−αM

[(
1 +

(iu − αM)2

4z2

)
cosh2 z + (iu − αM)

sinh 2z

2z

+
π

4 sin πH

{
2zI1−H(z)IH(z) − (iu − αM)2

2z
I−H(z)IH−1(z)

}]−1/2

,

z =
1

2

(
(αM)2 − 2iuMxγ(H, M)

)1/2
.

Noting that Mxγ(H, M) is independent of M because of Theorem 2, it is seen from the
form of the c.f. that the power depends only on αM . We can also prove this fact for the
power based on α̂MCE, which establishes Theorem 4.
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Table 1. Means and variances of α̃MLE and α̂MCE

(M, H) (1, 0.5) (40, 0.5) (1, 0.7) (40, 0.7) (1, 0.9) (40, 0.9)

α = 0

E(α̃MLE) −1.781 −0.045 −1.763 −0.044 −1.578 −0.039
E(α̂MCE) −2.781 −0.070 −2.671 −0.067 −2.094 −0.052

V(α̃MLE) 10.112 0.0063 9.924 0.0062 8.731 0.0055
V(α̂MCE) 9.221 0.0058 8.986 0.0056 7.601 0.0048

α = −1

E(α̃MLE) −2.882 −1.050 −2.874 −1.050 −2.752 −1.050
E(α̂MCE) −3.700 −1.063 −3.583 −1.060 −2.931 −1.037

V(α̃MLE) 11.761 0.056 11.551 0.056 10.284 0.054
V(α̂MCE) 11.329 0.056 11.106 0.056 9.771 0.056

α = −3

E(α̃MLE) −4.954 −3.050 −4.953 −3.050 −4.895 −3.050
E(α̂MCE) −5.626 −3.063 −5.506 −3.060 −4.769 −3.035

V(α̃MLE) 15.410 0.156 15.175 0.155 13.729 0.154
V(α̂MCE) 15.426 0.156 15.216 0.156 14.026 0.156

α = −5

E(α̃MLE) −6.976 −5.050 −6.976 −5.050 −6.940 −5.050
E(α̂MCE) −7.593 −5.063 −7.472 −5.060 −6.690 −5.035

V(α̃MLE) 19.272 0.256 19.031 0.255 17.480 0.254
V(α̂MCE) 19.460 0.256 19.253 0.256 18.183 0.256
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Table 2. Percent points of the distributions of α̃MLE and α̂MCE for α = 0 and M = 1

Probability of a smaller value

H 0.01 0.05 0.1 0.5 0.9 0.95 0.99

α̃MLE

0.5 −13.696 −8.039 −5.714 −0.853 0.928 1.285 2.033
0.6 −13.676 −8.023 −5.699 −0.850 0.921 1.277 2.022
0.7 −13.608 −7.964 −5.648 −0.836 0.899 1.250 1.989
0.8 −13.446 −7.822 −5.523 −0.789 0.856 1.195 1.924
0.9 −12.988 −7.415 −5.154 −0.636 0.767 1.084 1.791

α̂MCE

0.5 −14.510 −8.856 −6.533 −1.721 −0.418 −0.302 −0.179
0.6 −14.465 −8.814 −6.493 −1.695 −0.409 −0.295 −0.175
0.7 −14.314 −8.673 −6.359 −1.606 −0.378 −0.272 −0.161
0.8 −13.983 −8.364 −6.067 −1.420 −0.317 −0.228 −0.134
0.9 −13.196 −7.630 −5.376 −1.027 −0.209 −0.149 −0.087

20



Table 3. Percent powers of the unit root tests at the 5% level based on α̃MLE and α̂MCE

α × M −0.5 −1 −5 −10 −15 −20

H = 0.5

MLE 6.30 7.86 31.42 75.57 96.94 99.88
MCE 6.25 7.74 30.02 73.12 96.15 99.83

H = 0.7

MLE 6.32 7.89 31.86 76.37 97.20 99.90
MCE 6.26 7.77 30.36 73.78 96.40 99.85

H = 0.9

MLE 6.41 8.13 35.26 82.20 98.62 99.97
MCE 6.31 7.88 31.70 76.00 97.05 99.89
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Figure 1. Probability densities of α̃MLE when α = 0 and H = 1/2
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Figure 2. Probability densities of α̂MCE when α = 0 and H = 1/2
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Figure 3. Probability densities of α̃MLE when α = −3 and H = 0.7
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Figure 4. Probability densities of α̃MLE when α = −5 and H = 0.9
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Figure 5. Asymptotic relative efficiencies of α̂1 and α̂3
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Figure 6. Powers of the unit root tests at the 5% level based on α̃MLE and α̂MCE

27


