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Abstract

This paper studies implementation problems in the wake of a recent trend of implementation

of non-consequentialist nature, which draws on the evidence taken from experimental and

behavioral economics. Specifically, following the seminal works by Matsushima (2008) and

Dutta and Sen (2009), the paper considers implementation problems with partially-honest

agents, which presume that there is at least one individual in society who concerns her-

self with not only outcomes but also honest behavior at least in a limited manner. Given

this setting, the paper provides a general characterization of Nash implementation with

partially-honest individuals. It also provides the necessary and sufficient condition for Nash

implementation with partially-honest individuals by mechanisms with some types of strategy-

space reductions. As a consequence, it shows that in contrast to the case of the standard

framework, the equivalence between Nash implementation and Nash implementation with

strategy space reduction no longer holds.

JEL classification: C72; D71.

Key-words: Nash implementation, canonical-mechanisms, s-mechanisms, partial-honesty,

permissive results.



1 Introduction

The theory of (Nash) implementation aims to reach goals in situations in which the planner

does not have all the relevant necessary information, but needs to elicit it from the agents.1

To this end, the planner designs a mechanism or game form in which the agents will act

strategically in accordance with the solution concept of Nash equilibrium. When the (Nash)

equilibrium outcomes of the mechanism coincide with the goals set by the planner, these

goals are implementable. A seminal paper on implementation is Maskin (1999; the first

version appeared in 1977), who proves that a social choice correspondence (SCC ) - which

summarizes the planner’s goals - is (Maskin) monotonic if it is implementable; when there

are at least three agents, an SCC is implementable if it is monotonic and satisfies an auxiliary

condition called no-veto power ; this is Maskin’s Theorem. Moore and Repullo (1990), Dutta

and Sen (1991), Danilov (1992), Lombardi and Yoshihara (2010), Sjöström (1991), and

Yamato (1992) refined Maskin’s characterization result by providing necessary and sufficient

conditions for an SCC to be implementable.2

A fundamental tenet of implementation theory is the consequentialism axiom. Its core

idea is that the ranking of outcomes of agents should be independent of the process that

generates these outcomes. An immediate implication of this axiom for implementation theory

is that agents should be indifferent between a lie and a truthful statement if they result in

the same material payoffs.3 This axiom is, however, inconsistent with the mounting evidence

from psychology and economics as well as from casual observations and introspection, that

agents may display concern for procedures; that is, they may care about how outcomes are

generated and, therefore, their ranking of outcomes may be structurally dependent on the

outcome-generating process (Camerer, 2003; Sen, 1997). Remarkably, a considerable amount

of experimental data suggests that agents may display preferences for truth-telling; that is,

an agent lies only when she prefers the outcome obtained from false-telling over the outcome

1Henceforth, by implementation we mean Nash implementation.
2For respected introductions to the theory of implementation, see, for instance, Jackson (2001), Maskin

and Sjöström (2002), and Thomson (1996).
3The pioneer work in opening the theory of mechanism design to non-consequentialist considerations is

that of Glazer and Rubinstein (1998), where individuals involved in a mechanism care explicitly about the

process by which their recommendations affect the social decision, as they desire to see their recommendations

coincide with the social choice.
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obtained from truth-telling (Gneezy, 2005; Hurkens and Kartik, 2009). Unexpectedly, these

kinds of preferences even emerge in experiments designed to test the feasibility of classical

mechanisms for implementation (Cabrales et al., 2003). The paper aims to narrow the gap

between these two strands. It follows the non-consequentialist approach by accommodating

concerns for truthful revelation of agents; but like mainstream theory, it keeps the idea that

even these agents respond primarily to material incentives.4 The paper refers to agents

having preferences for truth-telling as being partially-honest or dishonest averse.

Its general thrust goes as follows. Assume, as an example, that the message conveyed

by each agent to the planner involves the announcement of a preference profile (i.e., agents’

preferences over outcomes). A message is truthful if it involves the announcement of the

true preference profile. A partially-honest agent is an agent who strictly prefers to announce

a truthful message rather than a lie when the former (given a message announced by other

agents) produces an outcome which is at least as good as the one that would be achieved if the

agent lied (keeping constant the other agents’ messages). Suppose that agent h is a partially-

honest agent, who believes that the other agents will send the message m−h, and let mh be

the truthful message of agent h and m0
h be not truthful. Moreover, let both the message

profile (mh,m−h) and the message profile (m0
h,m−h) result in the same outcome x. Then,

unlike an agent who is concerned solely with outcomes, the partially-honest agent h strictly

prefers (mh,m−h) to (m0
h,m−h). Put differently, the agent at issue has preferences over

message profiles in which she cares about two dimensions in lexicographic order: primarily

to her outcome, secondarily to her truth-telling behavior.

Seminal works on the role of honesty in implementation theory are Matsushima (2008)

and Dutta and Sen (2011), which show that the assumption that the planner is aware of

the existence of partially-honest agents but ignores their identities drastically improves the

scope of implementation. Yet, the significant impact of the presence of partially-honest

agents upon implementation theory has not been fully appreciated - as described below. In

4In its turn, the impressive body of evidence accumulated by psychologists over the past two decades

has caused scholars to study the implications of weakening other fundamental assumptions in a variety

of ways, and has already turned in a number of alternatives back to the standard implementation model

(for instance, Eliaz, 2002; Renou and Schlag, 2009; Bergemann et al., 2010; Cabrales and Serrano, 2010).

Noteworthy, the first paper on ‘behavioral implementation theory’ dates back to 1986, in which Hurwicz solves

the implementation problem without positing the completeness and the transitivity of agents’ preferences

(Hurwicz, 1986).

2



line with these works, this paper also investigates implementation problems with partially-

honest agents, where an SCC is partially-honest implementable if there is a mechanism whose

equilibrium outcomes are determined with each profile of preferences over message profiles

as well as potential sets of partially honest agents, and coincide with the optimal outcomes

set by this SCC .

Given this setting, the paper provides, in section 3.1, a minimal set of necessary conditions

for partially-honest implementation, though the above seminal works solely study sufficient

conditions. Due to this result in the paper, it is possible to examine which of the SCC s cannot

be partially-honest implemented. For instance, as shown in section 4, the (strong) Pareto

SCC defined in abstract social choice environments is not partially-honest implementable.

Furthermore, under mild and reasonable domain restrictions of preferences and mechanisms,

the paper shows that a slight strengthening of these conditions is necessary and sufficient for

partially-honest implementation in more than two person societies. The set of conditions is

much weaker than the necessary and sufficient condition given by Moore and Repullo (1990)

for the standard implementation, and in particular it contains no variant of the Maskin

monotonicity-like condition. For instance, in rationing problems when agents have single-

plateaued preferences, this characterization shows that the Pareto SCC is partially-honest

implementable, though this SCC violates the Moore and Repullo (1990) condition, and also

satisfies neither monotonicity nor no-veto power.

Note that the aforementioned theorem of this paper applies a canonical mechanism to

show the sufficiency part. This type of mechanism requests agents to announce a feasible

social outcome, an agent index, and moreover a profile of agents’ preferences on outcomes,

which is not an attractive feature, given that an important role of the mechanism is to

economize on communication. Facing this issue, section 3.2 pays attention to informational

decentralization of mechanisms by studying implementation with partially-honest agents via

mechanisms endowed with Saijo (1988)’s message space specification - s-mechanisms. In

this mechanism the message conveyed by each participant to the planner involves the an-

nouncement of only her own and her neighbor’s preferences - in addition to an outcome

and an agent index. Then, the section identifies a minimal set of necessary conditions for

partially-honest implementation by s-mechanisms; moreover, it shows that a slight strength-

ening of these conditions fully identifies the class of partially-honest implementable SCC s by

s-mechanisms. Notably, these conditions contain a weaker variant of (Maskin) monotonicity-
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type conditions, which restricts the class of partially-honest implementable SCC s by this

class of mechanisms.5 These findings have at least two immediate consequences. First, there

is a trade-off between what the planner can achieve when there are partially-honest agents in

the society and the strengthening of informational decentralization in mechanisms. Second,

this conflict breaks down the equivalence between implementation and implementation by

s-mechanism which holds in the standard framework (Lombardi and Yoshihara, 2010).

The paper, then, turns to study partially-honest implementation problems in two-agent

societies. This issue has recently been analyzed by Dutta and Sen (2011) on the assumption

that agents’ preferences are linear orders. Their contribution is that, even in the more

problematic case of two agents, the stringent condition of monotonicity is no longer required.

The paper extends their analysis to the domain of weak orders in view of its potential

applications to bargaining and negotiating. The paper identifies the class of partially-honest

implementable SCC s, not only in the case that the planner knows that exactly one agent

is partially-honest, but also in the more subtle case that she only knows that there exist

partially-honest agents.

As a final entry to this section, it may be worth mentioning other works related to the

analysis presented herein. Corchón and Herrero (2004) introduce decency requirements on

the set of admissible announcements that depend on the true preferences over outcomes of

agents, and investigate their effects on the class of implementable SCC s. For a particular

formulation of these requirements, they show that a stronger variant of no-veto power is

sufficient for implementation in decent strategies. Instead of imposing properties on the

set of messages that an agent can convey to the planner, the present work assumes that

each agent has an ordering over message profiles which is induced by her true preference

over outcomes and the entire profile of true preferences over outcomes. In a recent paper,

Kartik and Tercieux (2011) enrich the standard implementation framework by allowing each

agent to report evidence. In these environments, they identify a necessary condition for

implementability, called evidence-monotonicity; this condition, when combined with no-veto

power, is also sufficient for implementation with evidence. In a society with partially-honest

agents, every SCC is evidence-monotonic because of the very definition of partially-honest

5Similar results are obtained by Lombardi and Yoshihara (2011c) when only self-relevant mechanisms can

be devised. In this mechanism each participant is required to announce, inter alia, only her own preference

(see Tatamitani, 2001).
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agents’ orderings over message profiles.6 As a consequence, the Kartik and Tercieux (2011)

result is similar to Dutta and Sen (2011; Theorem 1). The paper focuses on societies with

partially-honest agents and goes beyond the existing literature of the issue at hand by ex-

amining the necessary and sufficient conditions for implementation.

The paper is organized as follows. Section 2 describes the formal environment. Sec-

tion 3 reports the analysis for the many-person case, whereas Section 4 discusses briefly its

implications. Section 5 reports the analysis for the two-agent case. Section 6 concludes

briefly.

2 The implementation problem

The set of outcomes is denoted byX and the set of agents is N = {1, ..., n}. Unless otherwise
specified, we assume that the cardinality ofX is#X ≥ 2, while the cardinality of N is n ≥ 3.
Let R (X) be the set of all possible weak orders on X.7 Let R` ⊆ R (X) be the (non-empty)
set of all admissible weak orders for agent ` ∈ N .8 Let Rn ⊆ R1 × ... × Rn be the set of

all admissible profiles of weak orders (or states). A generic element of Rn is denoted by R,

where its `th component is R` ∈ R`, ` ∈ N .9 The symmetric and asymmetric factors of any
R` ∈ R` are, in turn, denoted P` and I`, respectively.

10 For any R ∈ Rn and any ` ∈ N , let
R−` be the list of elements of R for all agents except `, i.e., R−` ≡ (R1, ..., R`−1, R`+1, ..., Rn).
Given a list R−` and R` ∈ R`, we denote by (R−`, R`) the preference profile consisting of

these R` and R−`. For any preference profile R ∈ Rn and any ∅ 6= S ⊆ N , let R−S be the
list of elements of R for all agents in N\S. Given a list R−S and a list RS ∈ ×`∈SR`, we

denote by (R−S, RS) the preference profile consisting of these RS and R−S. Let Pn ⊆ Rn

6This is the case when the set of evidence for each agent is the set of all preference profiles. We are

grateful to Olivier Tercieux for this observation.
7A weak order is a complete and transitive binary relation. A relation R on X is complete if, for all

x, x0 ∈ X, (x, x0) ∈ R or (x0, x) ∈ R; transitive if, for all x, x0, x00 ∈ X, if (x, x0) ∈ R and (x0, x00) ∈ R , then
(x, x00) ∈ R.

8The weak set inclusion is denoted by ⊆, while the strict set inclusion is denoted by (.
9(x, y) ∈ R` stands for “x is at least as good as y”.
10(x, y) ∈ P` if and only if (x, y) ∈ R` and (y, x) /∈ R` and P` stands for “strictly better than”. On the

other hand, (x, y) ∈ I` if and only if (x, y) ∈ R` and (y, x) ∈ R` and I` stands for “indifferent to”.
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be the set of all admissible profiles of linear orders.11 Let L (R`, x) denote agent i’s lower

contour set at (R`, x) ∈ R` ×X, that is, L (R`, x) ≡ {y ∈ X| (x, y) ∈ R`}. For any R` ∈ R`

and Y ⊆ X, let maxR` Y be the set of optimal outcomes in Y according to R`, that is,

maxR` Y ≡ {x ∈ Y | (x, y) ∈ R` for all y ∈ Y }. For any (R`, x) ∈ R` ×X, ∂L (R`, x) = {x}
means {x} = maxR` L (R`, x).
A social choice correspondence (SCC ) F on Rn is a correspondence F : Rn ³ X with

∅ 6= F (R) ⊆ X for all R ∈ Rn. Denote the class of such correspondences by F . An SCC
F on Rn is (Maskin) monotonic if, for all R,R0 ∈ Rn, with x ∈ F (R), x ∈ F (R0) holds
whenever L (R`, x) ⊆ L (R0`, x) for all ` ∈ N . An SCC F on Rn satisfies i) no-veto power

if, for all R ∈ Rn, x ∈ F (R) holds whenever x ∈ maxR` X for at least n − 1 agents; ii)
unanimity if, for all R ∈ Rn, x ∈ F (R) holds whenever x ∈ maxR` X for all ` ∈ N . Given
an SCC F , an outcome x is F -optimal at a preference profile R ∈ Rn if x ∈ F (R).
A mechanism or game form is a pair γ ≡ (M, g), where M ≡ M1 × ...×Mn, with each

Mi being a (non-empty) set, and g : M → X. It consists of a message space M , where M`

is the message space for agent ` ∈ N , and an outcome function g. Denote the admissible
class of mechanisms by Γ. Let m` ∈ M` denote a generic message (or strategy) for agent

`. A message profile is denoted by m ≡ (m1, ...,mn) ∈ M . For any m ∈ M and ` ∈ N ,
let m−` ≡ (m1, ...,m`−1,m`+1, ...,mn). Let M−` ≡ ×i∈N\{`}Mi. Given an m−` ∈M−` and an

m` ∈M`, denote by (m`,m−`) the message profile consisting of these m` and m−`. For any

m ∈ M and ∅ 6= S ⊆ N , let m−S ≡ (m`)`∈N\S. Let M−S ≡ ×`∈N\SM`. Given m−S ∈ M−S

and mS ∈MS, denote by (mS,m−S) the message profile consisting of these mS and m−S.

A mechanism γ induces a class of (non-cooperative) games {(γ, R) |R ∈ Rn}. Given a
game (γ, R), we say that m∗ ∈M is a (pure strategy) Nash equilibrium at R if and only if,

for all ` ∈ N , ¡m∗, ¡m`,m
∗
−`
¢¢ ∈ R` for all m` ∈ M`. Given a game (γ, R), let NE (γ, R)

denote the set of Nash equilibrium message profiles of (γ, R), whereas NA (γ, R) represents

the corresponding set of Nash equilibrium outcomes.

A mechanism γ implements F in Nash equilibria, or simply implements F , if and only

if F (R) = NA (γ, R) for all R ∈ Rn. If such a mechanism exists, then F is (Nash)-

implementable.

Given a mechanism γ, for each agent ` ∈ N a truth-telling correspondence T
γ
` on Rn×F

11A linear order is a complete, transitive, and antisymmetric binary relation. A binary relation R on X is

antisymmetric if, for all x, x0 ∈ X, x = x0 if (x, x0) ∈ R and (x0, x) ∈ R.
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is a correspondence T
γ
` : Rn×F ³M` with ∅ 6= T γ

` (R,F ) ⊆M` for each (R,F ) ∈ Rn×F .
An interpretation of the set T

γ
` (R,F ) is that, given the mechanism γ and the pair (R,F ),

agent ` behaves truthfully at the message profile m ∈ M if and only if m` ∈ T γ
` (R,F ).

In other words, T
γ
` (R,F ) is the set of truthful messages of agent ` under the mechanism

γ, when the current social state is R ∈ Rn and the social goal is given by F . Note that

the type of elements of M` constituting T
γ
` (R,F ) depends on the type of mechanism γ

that one may consider. For example, if the message conveyed by each agent to the planner

involves the announcement of a preference profile, a feasible outcome and an agent index,

and sending the truthful preference profile constitutes the relevant truthful message for each

(R,F ) ∈ Rn × F , then M` may be defined by M` ≡ M1
` ×M2

` , where there is a bijection

σ` : Rn →M1
` such that T

γ
` (R,F ) = {σ` (R)} ×M2

` for each (R,F ) ∈ Rn ×F .
For any ` ∈ N and R ∈ Rn, let <R` be agent `’s weak order over M under the state R.

The asymmetric factor of <R` is denoted ÂR` , while the symmetric part is denoted ∼R` . For
any R ∈ Rn, let <R denote the profile of weak orders over M under the state R, that is,

<R≡ ¡<R` ¢`∈N .
Definition 1. An agent h ∈ N is a partially-honest or dishonest averse agent if, for any

mechanism γ, any R ∈ Rn, and any m ≡ (mh,m−h) ,m0 ≡ (m0
h,m−h) ∈ M , the following

properties hold:

(i) if mh ∈ T γ
h (R,F ), m

0
h /∈ T γ

h (R,F ), and (g (m) , g (m
0)) ∈ Rh, then (m,m0) ∈ÂRh ;

(ii) otherwise, (m,m0) ∈<Rh if and only if (g (m) , g (m0)) ∈ Rh.

An agent ` ∈ N who is a partially-honest agent is denoted by h. If agent ` ∈ N is not a

partially-honest agent, i.e., ` 6= h, then for each game (γ, R), for allm,m0 ∈M : (m,m0) ∈<R`
if and only if (g (m) , g (m0)) ∈ R`.
Unless otherwise specified, the following informational assumption holds throughout the

paper.

Assumption 1. There are partially-honest agents in N . The planner is well aware of the

fact that there are partially-honest agents in N but she does not know their identities.

Thus, while the planner knows that there are partially-honest agents in society and how

these agents behave, the planner knows neither the identity of the partially-honest agents

nor their exact number.
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Let N∗ ⊆ N be the true set of partially-honest agents in N , which is assumed to be fixed.

Let ∅ 6= H ⊆ 2N\∅ be a class of non-empty subsets of N , with N∗ ∈ H. The family H is

viewed as the potential class of partially-honest agents’ groups. That is, if H ∈ H, this H
is a potential group of partially-honest agents in N ; in other words, H is a conceivable set

of partially-honest agents. By Assumption 1, the planner knows that H is non-empty, and

perhaps, she may know what subsets of N belong to H, but she never knows which element
of H is the true set of partially-honest agents in the society. Assumption 1 implies that

#H ≥ 2.
A mechanism γ induces a class of (non-cooperative) games with partially-honest agents©¡
γ,<R

¢ |R ∈ Rn,H ∈ Hª. Given a game ¡γ,<R¢, we say that m∗ ∈ M is a (pure strat-

egy) Nash equilibrium with partially-honest agents at (R,H) if and only if, for all ` ∈ N ,¡
m∗,

¡
m`,m

∗
−`
¢¢ ∈<R` for all m` ∈ M`. Given a game

¡
γ,<R

¢
, let NE

¡
γ,<R

¢
denote the

set of Nash equilibrium message profiles of
¡
γ,<R

¢
, whereas NA

¡
γ,<R

¢
represents the

corresponding set of Nash equilibrium outcomes.

Since by Assumption 1 the planner knows that there are partially-honest agents in N

but not who these agents are, this raises the question of what is an appropriate notion

of implementation in such a setting. To enable the planner to partially-honest implement

SCC s, the paper amends the standard definition of implementation as follows.

Definition 2. An SCC F ∈ F is partially-honest (Nash) implementable if there exists a

mechanism γ = (M,g) ∈ Γ such that F (R) = NA
¡
γ,<R

¢
for all R ∈ Rn and all H ∈ H.

In the conventional implementation theory, the objective of the planner is to design

a mechanism whose equilibrium outcomes coincide with the F -optimal outcomes for each

admissible state R. In contrast, in the presence of partially-honest agents, the planner,

to achieve the implementability of the goal F , has to design a mechanism in which the

equivalence between the set of equilibrium outcomes and the set of F -optimal outcomes

holds not only for each admissible state R, but also for each conceivable set of partially-

honest agents, i.e., for each H ∈ H. Note that the gap between the two definitions becomes
closed when no agent in N is partially-honest.

To conclude, let us introduce two mild conditions imposed on the models of this paper.

One is a condition placed on the domain of agents’ preferences, while the other is a condition

placed on the domain of mechanisms admissible in the society. The first condition basically
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requires that the class of available profiles of preferences is sufficiently rich. Examples of

preference domains satisfying such a condition would be the set of all profiles of weak orders,

linear orders, and single-plateaued preferences onX. Moreover, it is vacuously satisfied in the

classical economic environments. Hence, our models are applicable to those environments.

The condition can be stated as follows.

Rich Domain (RD): For any i ∈ N , any R ∈ Rn, and any x ∈ X, if R0i ∈ Ri (X) is such

that L (R0i, x) = L (Ri, x) with ∂L (R0i, x) = {x}, then (R0i, R−i) ∈ Rn holds.

Next, our informational assumption is that the planner knows that there exist partially-

honest agents but ignores their identities. The partially-honest agent is an agent who prefers

to be truthful if a lie is not beneficial to her. Given this structure, the existence of truthful

messages is presumed since otherwise, the issue reduces to the standard implementation

problem. Moreover, the admissible class of mechanisms should be constituted by those

which involve a simple scheme to punish such a partially-honest agent if she sends a false

message. Within this class, let us consider a type of mechanism in which, if an outcome x is

F -optimal at the state R and the outcome function g selects x as the resulting outcome of the

messages announced by agents, a partially-honest agent can find a truthful message which

results in the same outcome x - keeping constant the messages of all other agents - when

the profile is changed to R0. In such a mechanism, any false statement by a partially-honest

agent can be punished independently of the detailed information about the true state of the

society. The condition on the class of admissible mechanisms Γ can be stated as follows.

Simple Punishment (SP): For any F ∈ F , for any R,R0 ∈ Rn, any x ∈ F (R), any i ∈ N ,
and any m ∈M such that g (m) = x, there is m0

i ∈ T γ
i (R

0, F ) such that g (m0
i,m−i) = g (m).

A mechanism γ is a mechanism with simple punishment if it satisfies SP. Denote the class

of mechanisms with SP by ΓSP .

Before closing this section, it may be worth noting that the simple punishment prop-

erty is satisfied by all classical mechanisms in the literature of Nash implementation (see,

for instance, Repullo, 1987; Moore and Repullo, 1990; Saijo, 1988; Dutta and Sen, 1991;

Tatamitani, 2001).
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3 Characterization results for the many-person case

This section reports the analysis of partially-honest implementation problems in the many-

person case.

Sub-section 3.1 studies partially-honest implementation by canonical mechanisms. First,

this sub-section identifies a minimal set of necessary conditions for partially-honest imple-

mentation with no restriction on the class Γ of admissible mechanisms. The necessary

conditions include only weaker variants of the no-veto power condition. Then, by setting

Γ = ΓSP , it is shown that a slight strengthening of this minimal set of necessary conditions

fully identifies the class of SCC s that are partially-honest implementable when the domain

of preferences is rich enough. The section, then, turns to study partially-honest implemen-

tation by s-mechanisms. Sub-section 3.2 identifies a minimal set of necessary conditions

that an SCC F must satisfy if it is partially-honest implementable by an s-mechanism. The

identified necessary conditions incorporate a Maskin monotonicity-like condition. Finally,

it is reported that a slight strengthening of the necessary conditions for s-mechanisms fully

characterizes partially-honest implementation by s-mechanisms if Γ = ΓSP and the domain

Rn of admissible preferences satisfies condition RD.

The sets of conditions that are necessary and sufficient for partially-honest implemen-

tation are more complex than those obtained by Moore and Repullo (1990) and Lombardi

and Yoshihara (2010), but they are remarkably weaker and do provide additional insights;

we refer the reader to Section 4 for more details.

3.1 Partially-honest implementation: A general characterization

Since Maskin’s Theorem, there have been impressive advances in implementation theory.

Specifically, in societies with at least three agents, Moore and Repullo (1990) established

that an SCC F is implementable if and only if it satisfies Condition μ defined below.

Condition μ (for short, μ): There is a set Y ⊆ X and, for all R ∈ Rn and all x ∈ F (R),
there is a profile of sets (C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y for all ` ∈ N ;
finally, for all R∗ ∈ Rn, the following conditions (i)-(iii) are satisfied:

(i) if C` (R, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ Ci (R, x) ⊆ L (R∗i , y) and y ∈ maxR∗` Y for all ` ∈ N\ {i}, then
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y ∈ F (R∗);
(iii) if y ∈ maxR∗` Y for all ` ∈ N , then y ∈ F (R∗).12

Condition μ(i) is equivalent to monotonicity, while Conditions μ(ii) and μ(iii) are weaker

versions of no-veto power.

Our first task in this sub-section is to find necessary conditions for an SCC to be partially-

honest implementable. These conditions will not include any monotonicity-type condition,

since the injection of a minimal dishonest aversion into implementation theory frees us from

the shackles of Maskin monotonicity. Yet, this task is particularly complicated and subtle

when indifference relations are allowed.13 To explain this aspect, suppose that an SCC F is

partially-honest implementable by a mechanism γ. Let Y be the range of g:

Y ≡ g (M) = {x ∈ X|g (m) = x for some m ∈M}.

Consider a preference profile R∗ ∈ Rn. Suppose that some outcome y = g (m) in Y is an

optimal outcome under the state R∗ in the set Y for all agents so as to fulfill the premises of

Condition μ(iii). In the conventional theory, the message profilem constitutes an equilibrium

of the game (γ, R∗). However, it may not be the case when there are partially-honest agents.

For the sake of simplicity, assume that only agent h is partially-honest. Suppose that the

message mh of the profile m is not a truthful message, i.e., mh /∈ T γ
h (R

∗, F ), while a truthful

statement, say m0
h ∈ T γ

h (R
∗, F ), results in an outcome x = g (m0

h,m−h) distinct from y for

which agent h is indifferent to. Suppose that x is not maximal for one of the other agents.

In this situation, we can no longer conclude that the outcome y is SCC -optimal at R∗, as

the message profile m supporting y is not an equilibrium of the game
¡
γ,<R∗

¢
- since agent

h strictly prefers (m0
h,m−h) to m. This indicates that even when y is maximal in Y under

R∗, not all strategies in g−1 (y) can constitute an equilibrium of g at R∗ when there are

partially-honest agents. Among these strategies, only those in which all partially-honest

agents are making truthful reports may support y as an F -optimal outcome at R∗. This can

be achieved by requiring that for all potential partially-honest agents (since the identities of

12We refer to the condition that requires only one of the conditions (i)—(iii) in Condition μ as Conditions

μ(i)—μ(iii) respectively. Note that Condition μ implies Conditions μ(i)—μ(iii), but the converse is not true.

We use similar conventions below.
13When the domain of preferences contains only linear orders, Condition μ without Condition μ(i) is not

only necessary but sufficient.
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partially-honest agents are unknown), the outcome y must be the unique optimal outcome

under R∗ in the set Y . With this additional requirement, agent h can profitably deviate

from mh /∈ T γ
h (R

∗, F ) to an m00
h ∈ T γ

h (R
∗, F ), but her deviation will not prevent us from

concluding that y is F -optimal at R∗, since the strategy profile (m00
h,m−h), when executed

by g, results in the outcome y.

The complications associated with necessary conditions are not limited to Condition

μ(iii). The difficulties come mainly from two causes. First, the presence of partially-honest

agents breaks down the equivalent relationship between agents’ preferences over outcomes

and their preferences over message profiles, which is implicitly assumed in the conventional

theory. Second, conditions on F are to be formulated only in terms of preferences over

outcomes. Taking these difficulties into account, we obtain the following condition, Condition

μ∗, which basically contains only weaker versions of Conditions μ(ii) and μ(iii).

Condition μ∗ (for short, μ∗): There is a set Y ⊆ X and, for all R ∈ Rn and all x ∈ F (R),
there is a profile of sets (C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y for all ` ∈ N ;
finally, for all H ∈ H and all R∗ ∈ Rn, the following conditions (i)-(iii) are satisfied:

(i) if C` (R, x) ⊆ L (R∗` , x) for all ` ∈ N and x /∈ F (R∗), then there exists h ∈ H such that

(x, x0) ∈ I∗h for some x0 ∈ Ch (R, x);
(ii) for all i ∈ N , if y ∈ Ci (R, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\ {i}, and y /∈ F (R∗),
then:

(a) if H = {i}, then (y, y0) ∈ I∗i for some y0 ∈ Ci (R, x) \ {y};
(b) if i ∈ H and #H > 1, then R∗ 6= R or (y, y0) ∈ I∗i for some y0 ∈ Ci (R, x) \ {y};
(iii) if y ∈ maxR∗` Y for all ` ∈ N and y /∈ F (R∗), then there is an h ∈ H such that (y, y0) ∈ I∗h
for some y0 ∈ Y \ {y}.

Notice that Condition μ∗(i) imposes a requirement which is met by all SCC s.

The following theorem shows that Condition μ∗ is a minimal set of necessary conditions

for the partially-honest implementation.

Theorem 1. Let Assumption 1 hold. If an SCC F ∈ F is partially-honest implementable,

then it satisfies Condition μ∗.

Proof. Let Assumption 1 hold. Let γ ≡ (M,g) be a mechanism which partially-honest

implements F ∈ F . Let Y ≡ g (M). Take any H 0 ∈ H, R ∈ Rn, and x ∈ F (R). Then,

12



there is a strategy mH0 ∈ NE ¡γ,<R¢ such that g ¡mH0¢
= x. Then, {x} ⊆ g ¡M`,m

H0
−`
¢ ⊆

L (R`, x) ∩ Y for all ` ∈ N . Let CH0
` (R, x) ≡ g ¡M`,m

H0
−`
¢
for all ` ∈ N . Define C` (R, x) ≡

∪H0∈HCH
0

` (R, x) for all ` ∈ N . Then, x ∈ C` (R, x) ⊆ L (R`, x)∩Y holds for all ` ∈ N . Take
any (R∗, H) ∈ Rn ×H.
As it is easy to see that F satisfies Condition μ∗(i), we omit the proof here. Next, we

show that F meets conditions μ∗(ii)-μ∗(iii).

Pick any i ∈ N and suppose that y ∈ Ci (R, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈
N\ {i}, and y /∈ F (R∗). Then, as F is partially-honestly implemented by γ, it follows

that y /∈ NA ¡γ,<R∗¢ for all H 0 ∈ H. Since Ci (R, x) = ∪H0∈Hg
¡
Mi,m

H0
−i
¢
, there exists

an mH0 ∈ NE ¡γ,<R¢, for some H 0 ∈ H, such that g ¡mH0¢
= x and g

¡
m0
i,m

H0
−i
¢
= y for

some m0
i ∈ Mi. Let m̂ ≡

¡
m0
i,m

H0
−i
¢
. Note that g (m̂) = y /∈ NA ¡γ,<R∗¢ holds for any

H 0 ∈ H. It follows that m̂ /∈ NE ¡γ,<R∗¢ holds for any H 0 ∈ H. Thus, by our suppositions,
we have that for each H 0 ∈ H there should be an h ∈ H 0 such that m̂h /∈ T γ

h (R
∗, F ) and

(g (m∗h, m̂−h) , g (m̂)) ∈ I∗h for some m∗h ∈ T γ
h (R

∗, F ), otherwise we run in a contradiction.

LetH = {i}, and assume, to the contrary, that {y} = maxR∗i Ci (R, x). Then, g (m∗i , m̂−i) =
g (m̂), where m∗i ∈ T γ

i (R
∗, F ) and m̂i /∈ T γ

i (R
∗, F ) are such that (g (m∗i , m̂−i) , g (m̂)) ∈ I∗i

for the unique partially-honest agent {i} = H. Since there cannot be any profitable devia-
tion from (m∗i , m̂−i), we have that y ∈ NA

¡
γ,<R∗

¢
for this H = {i}, a contradiction. Thus,

F satisfies μ∗(ii.a).

Let #H > 1 and i ∈ H. Suppose R∗ = R. Then, (x, y) ∈ I∗i with x 6= y. Note that if
R∗ = R and x = y, then x /∈ NA ¡γ,<R¢ for all H ∈ H, which is a contradiction. Thus,
if R∗ = R, then (y, y0) ∈ I∗i for some y0 ∈ Ci (R, x) \ {y}, since x ∈ Ci (R, x). Therefore, F
satisfies μ∗(ii.b).

Finally, we show that F satisfies condition μ∗(iii). Let y ∈ maxR∗` Y = maxR∗` g (M) for
all ` ∈ N , and y /∈ F (R∗). As F is partially-honestly implemented by γ, it follows that

y /∈ NA ¡γ,<R∗¢ for all H 0 ∈ H. Then, g (m̂) = y for some m̂ ∈M . Assume, to the contrary,
{y} = maxR∗` g (M) for all h ∈ H. As m̂ /∈ NE ¡γ,<R∗¢ for all H 0 ∈ H and y ∈ maxR∗` g (M)
for all ` ∈ N , the only agents that could profitably deviate from m̂ are the agents in the

set H. Let H̄ ⊆ H be the set of all partially-honest agents h such that m̂h /∈ T γ
h (R

∗, F ).

Consider the profile of profitable deviations mH̄ ≡ (m̄h)h∈H̄ such that m̄h ∈ T γ
h (R

∗, F ) for

all h ∈ H̄. As {y} = maxR∗` g (M) for all ` ∈ H, we have that g (m̄H̄ , m̂−H̄) = y. Since there

cannot be any profitable deviation from (m̄H̄ , m̂−H̄), we have that y ∈ NA
¡
γ,<R∗

¢
for the
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given set H, which is a contradiction. Therefore, F satisfies μ∗(iii).

Condition μ∗ alone is not a sufficient condition for partially-honest implementation, but it

is sufficient together with some auxiliary conditions if the domain of preferences is sufficiently

rich. Such a slightly strengthened condition can be stated as follows.

Condition μ∗∗ (for short, μ∗∗): There is a set Y ⊆ X and, for all R ∈ Rn and all x ∈ F (R),
there is a profile of sets (C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y for all ` ∈ N ;
Condition μ∗ and Condition μ(iii) hold;14 finally, for all H ∈ H and all R∗ ∈ Rn, the

following conditions (ii.c) and (iv) are satisfied for all i ∈ N :
(ii.c) if y ∈ Ci (R, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\ {i}, and y /∈ F (R∗), then
[i /∈ H ⇒ R 6= R∗];
(iv) if L (R∗i , x) = L (Ri, x), x ∈ maxR∗` Y for all ` ∈ N\ {i}, R∗−i = R−i, and x /∈ F (R∗),
then H 6= {i}.

Assuming that only mechanisms with simple punishment are admissible, Condition μ∗∗

is necessary and sufficient for partially-honest implementation. Before stating our second

main result, it may be instructive to briefly discuss the devised implementing mechanism.

Let γ = (g,M) be a mechanism where for each agent i ∈ N the message space is

Mi ≡ Rn×Y ×N , with Y ⊆ X.15 Thus, each agent i announces a preference profile, Ri, an
outcome, xi, and an agent index, ki. Since the driving force of our implementation model

is that there is a minimal degree of honesty among agents involved in the mechanism γ, we

shall define accordingly what constitutes an honest message for γ. By endorsing the idea of

Dutta and Sen (2011), a message by agent i is truthful for the mechanism γ if it discloses to

the planner the true preferences of all agents involved in it. Formally, for each i ∈ N , the
set of truth-telling messages is

T
γ
i (R,F ) ≡ R× Y ×N (1)

14Henceforth, Condition μ(iii) is referred to as Condition μ∗∗(iii). Moreover, we refer to the statement

that requires only one of the statements (i) and (ii) in Condition μ∗ as Conditions μ∗∗(i) and μ∗∗(ii).
15The reported indices in a mechanism are used to rule out undesired equilibrium outcomes as equilibria

of the mechanism. This type of device, common in the constructive proofs of the literature, is, however,

subject to criticism on several fronts. For a systematic criticism of the use of “modulo games” and “integer

games” in the literature, see Jackson (1992).
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for any state, R ∈ Rn, and any societal goal, F ∈ F . Finally, let us define the outcome
function g as follows. For any message profile m ∈M ,

Rule 1 : If
¡
R`, x`

¢
=
¡
R̄, x

¢
for all ` ∈ N and x ∈ F ¡R̄¢, then g (m) = x;

Rule 2 : If there exists a unique agent i ∈ N such that
¡
R̄, x

¢
=
¡
R`, x`

¢
for all ` ∈ N\ {i}

and (Ri, xi) 6= ¡R̄, x¢, and x ∈ F ¡R̄¢:
Rule 2.1 : if Ri = R̄, then g (m) = x;

Rule 2.2 : if Ri 6= R̄, then

g (m) =

⎧⎨⎩ xi if xi ∈ Ci
¡
R̄, x

¢
,

x otherwise.

Rule 3 : Otherwise, g (m) = x`
∗(m) where `∗ (m) =

P
i∈N

ki (mod n).16

In words, the mechanism prescribes the following:

Rule 1 applies if agents unanimously agree on a preference profile and an outcome. As a

consequence, the unanimously announced outcome, x, is the outcome of the mechanism.

Rule 2 applies if all agents but one (agent i) state the same outcome and preference profile,

while agent i makes a different outcome announcement or preference announcement. Then,

Rule 2.1 applies if agent i disagrees with others only on the outcome announcement. In

that case, the outcome of the mechanism is the outcome, x, announced by all other agents.

On the other hand, Rule 2.2 applies if agent i announces a preference profile which differs

from that announced by the others. In that case, the outcome of the mechanism is the xi

announced by agent i, if it is an attainable outcome and not better than the outcome x for

i when her true preference is equal to that announced by the other agents. Otherwise, the

outcome is x.

Rule 3 applies in all other cases and the outcome of the mechanism is determined by the

agent who wins the “modulo game”.

The above mechanism is a mechanism with simple punishment. Moreover, it is similar but

not identical to the canonical mechanism used to prove the classical Maskin’s Theorem. The

difference is in the definition of Rule 2. While our mechanism distinguishes whether agent

i announces a different preference profile or not, the canonical Rule 2 does not make this

16If the remainder is zero, the winner of the game is agent n. See Saijo (1988). This convention is applied

throughout the paper.
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distinction.17 Moreover, though both mechanisms satisfy the condition of simple punishment,

our distinction in Rule 2 allows the planner to better exploit the fact that every partially-

honest agent is making a truthful statement in equilibrium.

To explain this aspect, suppose that in equilibrium, the message profile falls into Rule

2.1, so that the message by agent i differs from the message reported by the others only

in the outcome announcement. Then, all partially-honest agents announce truthfully the

preference profile; otherwise, any of the false-telling partially-honest agents can deviate to

Rule 2.2 profitably. Then, if the outcome of the mechanism is the x announced by all

others, we can directly conclude that x is F -optimal at the announced preference profile.

This would not be possible if the mechanism permitted the selection of xi ∈ Ci
¡
R̄, x

¢
, with

xi 6= x, announced by agent i.
One last comment about the constructed mechanism that is worth commenting on is that

the rules apply irrespective of who is a partially-honest agent.

We are now ready to state our second result of this sub-section; Condition μ∗∗ is nec-

essary and sufficient for partially-honest implementation when the domain of preferences is

sufficiently rich and only mechanisms with simple punishment are admissible (the formal

proof is relegated to Appendix).

Theorem 2. Let Assumption 1 and Γ = ΓSP hold, and suppose that Rn satisfies RD. An

SCC F ∈ F is partially-honest implementable if and only if it satisfies Condition μ∗∗.

3.2 Partially-honest implementation by s-mechanisms

This sub-section focuses on partially-honest implementation by s-mechanisms.

The basic idea behind s-mechanisms is to cover each agent’s preference twice. For exam-

ple, agent i’s preference may be covered by her own announcement and by that of another

agent involved in the mechanism. A way to proceed is to arrange agents clockwise facing

inward, and require that each agent ` announces, inter alia, the preference of the agent

standing immediately to her left, that is, of agent ` + 1. Formally, an s-mechanism can be

defined as follows.

Definition 3. A mechanism γ = (M,g) is an s-mechanism if, for any ` ∈ N , M` ≡
17In the canonical mechanism, in all cases in which all agents but one make exactly the same announcement,

the outcome of the mechanism is given in the same way as in our Rule 2.2.
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R` ×R`+1 × Y ×N , with n+ 1 = 1 and Y ⊆ X.

Thus, each agent ` announces her preference, R``, the preference of her neighbor, R
`
`+1, an

outcome, x`, and an agent index, k`. It is important to note that the results reported in this

sub-section hold as long as each agent’s preference is covered twice. It is not crucial that

each agent announces her own and her neighbor’s preferences.

In an s-mechanism, each agent is required to report her neighbor’s preference, too. This

feature generally makes the mechanism subject to information smuggling, since the an-

nounced preference could be used as an encoding devise to smuggle information about pref-

erences of other participants. In other words, mathematical tricks can be employed to defeat

the objective of this sub-section, since the message space of any canonical mechanism can

be smuggled into a smaller message space.18 Thus, to have s-mechanisms make sense, we re-

quire the regularity condition of forthrightness to exclude this possibility.19 Armed with this

regularity condition, we define partially-honest implementation by s-mechanisms as follows.

Definition 4. An SCC F ∈ F is partially-honest implementable by an s-mechanism if there
exists an s-mechanism γ ≡ (M, g) such that:
(i) for all R ∈ Rn and all H ∈ H, F (R) = NA ¡γ,<R¢; and
(ii) for all R ∈ Rn and all x ∈ F (R), if m` =

¡
R`, R`+1, x, k

`
¢ ∈ M` for all ` ∈ N , with

`+ 1 = 1 if ` = n, then m ∈ NE ¡γ,<R¢ and g (m) = x.
In Definition 4, it is required not only that all F -optimal outcomes coincide with partially-

honest Nash equilibrium outcomes of the game
¡
γ,<R

¢
defined by an s-mechanism - for any

state R ∈ Rn and any H ∈ H -, but also that such an s-mechanism satisfies forthright-

ness. Forthrightness requires that if the outcome x is F -optimal at the state R, each agent

announces truthfully her preference and that of her neighbor, and this x is unanimously

announced, then the message profile should be a Nash equilibrium of an s-mechanism and

its equilibrium outcome be the announced F -optimal outcome.

Before turning to the findings of this sub-section, we discuss what constitutes a truthful

message for s-mechanisms. Since our objective is to examine what societal goal F can be

18See Lombardi and Yoshihara (2010) for more on this.
19To exclude information smuggling, requirements similar to ours are imposed in economic environments

by Dutta et al. (1995) and Saijo et al. (1996), and in abstract social choice contexts by Tatamitani (2000).

Finally, mechanisms satisfying these types of conditions are ‘simple’ in the sense that it is easy to compute

the outcome of an equilibrium strategy profile.
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implemented when there are agents who have a minimal dishonesty aversion, we define a

message of agent ` as truthful if this agent states to the planner her true preference and the

true preference of her neighbor. Formally, given an s-mechanism γ = (M, g), a preference

profile R ∈ Rn, and a societal goal F ∈ F , the range of the truth-telling correspondence of
agent ` ∈ N is

T
γ
` (R,F ) ≡ {(R`, R`+1)} × Y ×N , (2)

where n+ 1 = 1.

The issue of what constitutes the necessary and sufficient condition for implementation

by s-mechanisms in the conventional framework has been recently addressed by Lombardi

and Yoshihara (2010), who introduce a new condition - Condition Ms -, which is similar to

Condition M appearing in Sjöström (1991) and equivalent to Condition μ. The condition

can be stated as follows.

Condition Ms (for short, Ms): There exists a set Y ⊆ X and, for all R ∈ Rn and all

x ∈ F (R), there exists a profile of sets (C` (R`, x))`∈N such that x ∈ C` (R`, x) ⊆ L (R`, x)∩Y
for all ` ∈ N ; finally, for all R∗ ∈ Rn, the following conditions (i)-(iii) are satisfied:

(i) if C` (R`, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ Ci (Ri, x) ⊆ L (R∗i , y) and y ∈ maxR∗` Y for all ` ∈ N\ {i}, then
y ∈ F (R∗);
(iii) if y ∈ maxR∗` Y for all ` ∈ N , then y ∈ F (R∗).
Notice that ConditionMs differs from Condition μ only in that the set of attainable outcomes

C` (R`, x) of agent ` depends solely on her preference R` rather than on the entire profile

R ∈ Rn.

In what follows, our first task is to find necessary conditions for partially-honest imple-

mentation by s-mechanisms. For the same reasons highlighted in sub-section 3.1, Condition

Ms is too strong to constitute a necessary condition for partially-honest implementation by

the type of mechanism at issue. A weaker variant of ConditionMs, which is relevant for our

study, can be stated as follows.

Condition M∗
s (for short, M

∗
s ): There exists a set Y ⊆ X and, for all R ∈ Rn and all

x ∈ F (R), there exists a profile of sets (C` (R`, x))`∈N such that x ∈ C` (R`, x) ⊆ L (R`, x)∩Y
for all ` ∈ N ; finally, for all H ∈ H and all R∗ ∈ Rn, the following conditions (i)-(iii) are

satisfied:
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(i) if C` (R`, x) ⊆ L (R∗` , x) for all ` ∈ N and x /∈ F (R∗), then there exists H 0 ⊆ H such that

for all h ∈ H 0, (Rh, Rh+1) 6=
¡
R∗h, R

∗
h+1

¢
;

(ii) for all i ∈ N , if y ∈ Ci (Ri, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\ {i}, and
y /∈ F (R∗), then there exists H 0 ⊆ H such that:

(a) if H 0 = {i}, then (y, y0) ∈ I∗i for some y0 ∈ Ci (Ri, x) \ {y};
(b) otherwise, (Rh, Rh+1) 6=

¡
R∗h, R

∗
h+1

¢
for all h ∈ H 0\ {i};

(iii) if y ∈ maxR∗` Y for all ` ∈ N and y /∈ F (R∗), then there is an ` ∈ H such that (y, y0) ∈ I∗`
for some y0 ∈ Y \ {y}.

Condition M∗
s stands in stark contrast to Condition μ∗∗ in including a weaker variant of

the Maskin monotonicity. This weakening requires that if an outcome x is F -optimal at

state R, and this outcome is not preferred less by any agent ` ∈ N than any other outcome

in C` (R`, x) at R
∗, then x must be F -optimal at R∗ when the preference of any potential

partially-honest agent and that of her neighbor are identical between R and R∗. In contrast,

Conditions M∗
s (ii) and M

∗
s (iii) are weaker versions of Conditions Ms(ii) and Ms(iii).

The next theorem shows that Condition M∗
s is necessary for partially-honest implemen-

tation by s-mechanisms.

Theorem 3. Let Assumption 1 hold. If an SCC F ∈ F is partially-honest implementable

by an s-mechanism, then it satisfies Condition M∗
s .

Proof. Let Assumption 1 hold. Let ¦ ∈ N be an arbitrary agent index. Let γ ≡ (M, g)
be an s-mechanism which partially-honest implements F ∈ F . Let Y ≡ g (M). Take any
H ∈ H, any R ∈ Rn, and any x ∈ F (R). For all ` ∈ N , let C` (R`, x) ≡ g (M`,m−` (R, x))

where m−` (R, x) is such that mi (R, x) = (Ri, Ri+1,x, ¦) ∈ Mi for all i ∈ N\ {`}, with
n+ 1 = 1. By forthrightness, m (R, x) = (m` (R, x) ,m−` (R, x)) ∈ NE

¡
γ,<R

¢
holds for all

H 0 ∈ H, and g (m (R, x)) = x. Then, C` (R`, x) = g (M`,m−` (R, x)) ⊆ L (R`, x) ∩ Y for all
` ∈ N . We show that F satisfies ConditionsM∗

s (i)-M
∗
s (iii). As it is easy to see that F meets

M∗
s (iii), we omit its proof here. Take any H ∈ H and any R∗ ∈ Rn.

Suppose thatC` (R`, x) ⊆ L (R∗` , x) for all ` ∈ N and x /∈ F (R∗). Then, sinceC` (R`, x) =
g (M`,m−` (R, x)) for all ` ∈ N , it follows that there exists an H 0 ⊆ H such that for

all h ∈ H 0, mh (R, x) /∈ T γ
h (R

∗, F ) and (g (m0
h,m−h (R, x)) , g (m (R, x))) ∈ I∗h for some

m0
h ∈ T γ

h (R
∗, F ). Thus,

¡
R∗h, R

∗
h+1

¢ 6= (Rh, Rh+1) for all h ∈ H 0. Hence, F satisfies Condition

M∗
s (i).
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Pick any i ∈ N . Suppose that y ∈ Ci (Ri, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\ {i},
and y /∈ F (R∗). Then, since Ci (Ri, x) = g (Mi,m−i (R, x)), g (mi,m−i (R, x)) = y for

some mi ∈ Mi. Let m̂ ≡ (mi,m−i (R, x)). Moreover, as y /∈ F (R∗) = NA
¡
γ,<R∗

¢
for

all H ∈ H, it follows that, for each H ∈ H, there exists a ∅ 6= H 0 ⊆ H such that, for

all h ∈ H 0, m̂h /∈ T γ
h (R

∗, F ) and (g (m∗h, m̂−h) , g (m̂)) ∈ I∗h for some m∗h ∈ T γ
h (R

∗, F ).

Let H 0 = {i} ⊆ H for the given H ∈ H, and {y} = maxR∗i Ci (Ri, x). It follows that

g (m∗i ,m−i) = y which leads to (m
∗
i ,m−i) ∈ NE

¡
γ,<R∗

¢
for this H, a contradiction. Thus,

F satisfies M∗
s (ii.a). Finally, let H

0 6= {i} for H 0 ⊆ H. It can readily be obtained by the
definition of H 0 that F satisfies M∗

s (ii.b).

A slight strengthening of Condition M∗
s is required for the sufficiency result. The two

auxiliary conditions which are required are the standard Condition μ(iii) - or equivalently,

Condition Ms(iii) - and Condition μ∗∗(iv). The condition can be stated as follows.

Condition M∗∗
s (for short, M∗∗

s ): There exists a set Y ⊆ X and, for all R ∈ Rn and all

x ∈ F (R), there exists a profile of sets (C` (R`, x))`∈N such that x ∈ C` (R`, x) ⊆ L (R`, x)∩Y
for all ` ∈ N ; Condition M∗

s and Condition Ms(iii) hold; finally, for all H ∈ H and all

R∗ ∈ Rn, Condition μ∗∗(iv) holds.20

The above condition is not only sufficient when the domain of preferences is rich enough,

but also necessary when only s-mechanisms with simple punishments are admissible. Before

stating this result (whose proof is relegated to Appendix), it may be worthwhile describing

the mechanism constructed to obtain the sufficiency part.

The implementing mechanism uses the idea of cyclic announcement of messages proposed

in Saijo (1988), and is identical to the s-mechanism used to prove that Condition Ms is

necessary and sufficient for implementation by s-mechanisms in the conventional framework

(Lombardi and Yoshihara, 2010). In line with Lombardi and Yoshihara (2010), for an s-

mechanism γ = (M,g), we say that the message profile m ∈M is:

(i) consistent with R and x if, for all j ∈ N , Rjj = Rj−1j = Rj and x
j = x;

(ii) m−i quasi-consistent with R and x, where i ∈ N , if for all j ∈ N , xj = x, and for all
j ∈ N\{i, i+ 1}, Rjj = Rj−1j = Rj, R

i−1
i = Ri, R

i+1
i+1 = Ri+1, and [R

i
i 6= Ri or Rii+1 6= Ri+1];

20Henceforth, ConditionMs(iii) and Condition μ
∗∗(iv) are referred to as ConditionM∗∗s (iii) and Condition

M∗∗s (iv), respectively. Moreover, we refer to the statement that requires only one of the statements (i) and

(ii) in Condition M∗s as Conditions M
∗∗
s (i) and M

∗∗
s (ii).
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(iii) m−i consistent with R and x, where i ∈ N , if for all j ∈ N\{i}, xj = x 6= xi, and for all
j ∈ N\{i, i+ 1}, Rjj = Rj−1j = Rj, R

i−1
i = Ri, R

i+1
i+1 = Ri+1;

where 1− 1 = n and n+ 1 = 1.

In words, a message profile m is consistent with an outcome x and a preference profile

R if there is no break in the cyclic announcement of preferences and all agents announce

the outcome x. On the other hand, it is m−i quasi-consistent with x and R if there are

at most two consecutive breaks in the cyclic announcement of preferences, these breaks

happen in correspondence of the preferences announced by agent i, and x is unanimously

announced. Finally, a message profile m is m−i consistent with x and R if agent i announces

an outcome different from the outcome x announced by the others, if there are no more than

two consecutive breaks in the cyclic announcement of preferences, and, finally, these breaks

(if any) happen in correspondence of the preferences announced by agent i.

Define the outcome function g as follows. For any message profile m ∈M ,

Rule 1 : If m is consistent with
¡
R̄, x

¢ ∈ Rn × Y and x ∈ F ¡R̄¢, then g (m) = x.
Rule 2 : If for some i ∈ N , m ism−i is quasi-consistent with

¡
R̄, x

¢ ∈ Rn×Y and x ∈ F ¡R̄¢,
then g (m) = x.

Rule 3 : If for some i ∈ N , m is m−i consistent with
¡
R̄, x

¢ ∈ Rn × Y , x ∈ F ¡R̄¢, and
Ci
¡
R̄i, x

¢ 6= Y , then
g (m) =

⎧⎨⎩ xi if xi ∈ Ci
¡
R̄i, x

¢
x otherwise.

Rule 4 : Otherwise, g (m) = x`
∗(m) where `∗ (m) ≡ P

i∈N
ki (mod n).

The above mechanism is one with simple punishment. Moreover, its rules apply irrespective

of who is a partially-honest agent.

Like in Saijo (1988), in Rules 2-3, agent i is a deviator. However, in Rule 2, agent i

is not necessarily the only deviator whenever there is exactly one break in the preference

announcement profile between agent i’s preference announcement and that of agent i − 1,
i.e., Rii 6= Ri−1i = R̄i and R

i
i+1 = Ri+1i+1 = R̄i+1. Indeed, agents i − 1 and i could be both

deviators if

x ∈ F ¡R̄¢ ∩ F ¡R̄−i, Rii¢ .
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On the other hand, in Rule 3, as agent i is the only agent reporting an outcome different

from that reported by all other participants, the mechanism identifies agent i as the unique

deviator. Another important property of Rule 3 is that deviator i’s preference announcement¡
R̄ii, R̄

i
i+1

¢
does not affect the evaluation of the SCC F as it does not enter into the evaluation

of the preference announcement profile

¡
R11, ..., R

i−1
i−1, R

i−1
i , Ri+1i+1, ..., R

n
n

¢
=
¡
R̄1, ..., R̄i−1, R̄i, R̄i+1, ..., R̄n

¢
.

Finally, in the definition of Rule 3, the outcome selected by the outcome function lies in the

set Ci
¡
R̄i, x

¢
= Ci

¡
Ri−1i , x

¢
. This guarantees that whenever an equilibrium message profile

m falls into Rule 2 and there are two potential deviators, say agent i and agent i−1, the sets
of outcomes that these agents can attain are the same both in the case that the preference

announcement R̄ is taken as the true state of the world and in the case that the preference

announcement
¡
R̄−i, Rii

¢
is taken as the true state of world.

Before turning to our characterization result, it may be worthwhile to provide the rea-

son why Condition M∗
s (i) is required to guarantee partially-honest implementation by s-

mechanisms. To this end, let R be the true state of the world and m be an Nash equilibrium

message profile of the game
¡
γ,<R

¢
which falls into Rule 1. When a canonical mechanism is

employed and an equilibrium message profile falls into Rule 1 of the mechanism described in

the previous sub-section, the preference profile Ri is announced truthfully; that is, Ri = R,

and this permitted us to conclude in Theorem 2 that the unanimously announced outcome

was F -optimal at R. This conclusion, however, is no longer possible when we are dealing

with s-mechanisms. The reason is that even though all partially-honest agents are reporting

truthfully, it is in general not possible to reconstruct the true state R from their reports.

Therefore, Condition M∗∗
s (i) is required to guarantee that x is F -optimal at R.

To conclude, the following theorem shows that ConditionM∗∗
s is necessary and sufficient

for partially-honest implementation by s-mechanisms under the same mild requirements

stated in Theorem 2.

Theorem 4. Let Assumption 1 and Γ = ΓSP hold, and let Rn satisfy RD. An SCC F ∈ F
is partially-honest implementable by an s-mechanism if and only if F satisfies Condition

M∗∗
s .
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4 Implications

This section briefly discusses the implications of the results reported in section 3.

Before going into detail, let us note that we cannot specify in advance the structure of the

set H in which the analysis takes place. By our assumption, H could be anything whenever

H ⊆ 2N\∅ and #H = 2 hold. However, when we examine the performance of each SCC

in terms of its partially-honest implementability, it seems most plausible to proceed with

this examination by assuming H = 2N\∅. This is because such an assumption implies the
severest situation for the planner in the sense that she cannot know even the class of potential

sets of partially-honest agents, and so she cannot help but simply presume H = 2N\∅, and
then design a mechanism which can implement her goal, F . Indeed, by covering the case that

H = 2N\∅, the planner is ensured of the implementability of F for any other form that the
set H may take. For this reason, we turn to analyze some implications of the aforementioned
theorems under the specification that the structure of H is H = 2N\∅.
The first proposition is an impossibility, showing that Condition μ∗ imposes non-trivial

restrictions on the class of partially-honest implementable SCC s. To show this result, let us

define the Pareto SCC. For each R ∈ Rn, the Pareto set, PO (R), is:21

PO (R) ≡ {x ∈ X|@y ∈ X: (y, x) ∈ Ri for all i ∈ N and (y, x) ∈ Pi for some i ∈ N} .

An SCC F on Rn is the Pareto SCC, denote FPO, if F (R) = PO (R) for all R ∈ Rn. Our

next result shows that this SCC violates Condition μ∗.

Proposition 1. Let Assumption 1 hold. FPO on Rn is not partially-honest implementable

if H = 2N\∅.

Proof. Let Assumption 1 hold and H = 2N\∅. Assume, to the contrary, that FPO

satisfies Condition μ∗∗. Let N = {1, 2, 3} with #N = 3, X = {x, y, z} with #X = 3, and

R3 = {R,R∗}, where agents’ preferences are as follows:

R R∗

1 2 3 1 2 3

x y z x x, y x, y

y z x y z z

z x y z

21Henceforth, the symbol @ denotes the negation of the existence quantifier, ∃.
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where, as usual, xy means that the agent in question strictly prefers x to y, while x, y means

that the agent at issue is indifferent between x and y.

As y ∈ PO (R), there exists a profile (C` (R, y))`∈N such that y ∈ C` (R, y) ⊆ L (R`, y)∩Y
for all ` ∈ N . Since PO (R) = X, it follows that Y = X. Notice that Condition μ∗(ii.a)

is vacuously satisfied if H = {i} ⊆ {2, 3}. Then, let H = {1}. Observe y ∈ maxR∗` X for

all ` ∈ {2, 3} and y ∈ C1 (R, y) ⊆ L (R1, y) = L (R∗1, y). Condition μ∗(ii.a) implies that

y ∈ FPO (R∗) 6= PO (R∗) = {x}, a contradiction.

The next proposition is a possibility result, showing that while the Pareto SCC, FPO,

defined on the domain of single-plateaued preferences violates both Condition μ(i) and Con-

dition μ(ii), it is partially-honest implementable by virtue of Theorem 2. Before proving this

result, let us define the environment in which the result is formulated.

Let M ∈ R++ be an amount of some infinitely divisible commodity which has to be
allocated among a set of agents N , with n ≥ 3. An allocation is a list x ∈ Rn+ such thatP
x` = M .

22 Let X ≡ ©x ∈ Rn+|Px` =M
ª
be the set of feasible allocations. Each agent

` ∈ N is equipped with a continuous and single-plateaued preference relationR` defined onX
as follows: there exists a continuous and quasi-concave real-valued function uR` : [0,M ]→ R

such that, for any x, x0 ∈ X, uR` (x`) ≥ uR` (x
0
`) ⇔ (x, x0) ∈ R`. For each ` ∈ N , the

preference relation R` defined on X is called single-plateaued when there exist two numbers

x̄`, x` ∈ [0,M ] such that x` ≤ x̄` and for all x`, y` ∈ [0,M ]: (i) if x` < y` ≤ x` or x` > y` ≥ x̄`,
then (y0, x0) ∈ P` for any x0, y0 ∈ X, with x0` = x` and y0` = y`; (ii) if x`, y` ∈ [x`, x̄`], then
(x0, y0) ∈ I` for any x0, y0 ∈ X, with x0` = x` and y

0
` = y`. The interval p (R`) ≡ [x`, x̄`]

is the plateau of R`, where x is the left end-point of the plateau of R`, and x̄ is the right

end-point. Let R̄` be the class of all such preference relations for each agent ` ∈ N . Note
that by definition of R` ∈ R̄`, it follows that R` is single-peaked if x` = x̄`.

23 Given

x` ∈ [0,M ], let r` (x`) be the consumption bundle on the other side of agent `’s plateau
amounts that she finds indifferent to x` if such consumption exists, and the end-point of

[0,M ] on the other side of her plateau amounts otherwise. Given a profile of preferences

R ∈ R̄n, p (R) ≡ (p (R1) , ..., p (Rn)) denotes its associated profile of plateau amounts.
We are now in a position to establish our possibility result.

22When its bounds are not explicitly indicated, a summation should be understood to cover all agents.
23When preferences are single-peaked, we refer the reader to Thomson (2010) for a detailed analysis of

implementable solutions to problems of fair division.
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Proposition 2. Let FPO on R̄n be the Pareto SCC. Then, (i) FPO satisfies neither of

Conditions μ(i) and μ(ii); (ii) given Assumption 1, FPO satisfies Condition μ∗∗.

Proof. Let FPO on R̄n be the Pareto SCC.

We illustrate part (i) by considering the following three-agent example.24

Let M = 1, N ≡ {1, 2, 3}, with #N = 3, and R,R∗ ∈ R̄n be such that R1 = R
∗
1, p (R) =¡

1
4
, 1, [0, 1]

¢
, and p (R∗) =

¡
1
4
,
£
1
2
, 1
¤
, [0, 1]

¢
. Let x =

¡
1
6
, 5
6
, 0
¢
and y =

¡
1
5
, 4
5
, 0
¢
. First, note

that x, y ∈ X, x ∈ PO (R), L (R1, x) = L (R∗1, x) =
©
z ∈ X | 0 ≤ z1 ≤ 1

6
or r1 (x1) ≤ z1 ≤ 1

ª
,

L (R2, x) =
©
z ∈ X | 0 ≤ z2 ≤ 5

6

ª
, and L (R3, x) = L (R∗3, x) = L (R∗2, x) = X. Moreover,

note that y /∈ L (R1, x) while y ∈ L (R2, x). Suppose that FPO satisfies Conditions μ(i) and
μ(ii). Note that x, y ∈ maxR∗2 X ∩ maxR∗3 X. Furthermore, for any C1 (R, x) ⊆ L (R1, x),
it follows that C1 (R, x) ⊆ L (R∗1, x). Condition μ(ii) implies that x ∈ FPO (R∗). However,
x /∈ PO (R∗) since y Pareto dominates it, a contradiction. Also, since x ∈ FPO (R) and
L (R`, x) ⊆ L (R∗` , x) for all ` ∈ N , Condition μ(i) implies that x ∈ FPO (R∗), a contradic-
tion.

To show part (ii), let (R, x, `) ∈ R̄n × X × N with x ∈ FPO (R), and let C` (R, x) ≡
L (R`, x). Also,X = Y as FPO satisfies unanimity. We will show that FPO satisfies Condition

μ∗∗ under these specifications. Pick any arbitrary (R,R∗, x) ∈ R̄n × R̄n × X, with x ∈
FPO (R). Condition μ∗∗(i) is always satisfied. Moreover, FPO meets Condition μ∗∗(iii).

Next, we show that FPO satisfies μ∗∗(ii) and μ∗∗(iv).

Take any (H, i) ∈ H × N . Suppose that y ∈ Ci (R, x) = L (Ri, x) ⊆ L (R∗i , y) and

y ∈ maxR∗` X for all ` ∈ N\ {i}.
Let H = {i} and y /∈ FPO (R∗). We show that {y} 6= maxR∗i Ci (R, x). As y /∈ FPO (R∗),

it follows that there exists an allocation z ∈ X such that (z, y) ∈ R∗j for all j ∈ N and

(z, y) ∈ P ∗j for some j ∈ N . As y ∈ maxR∗` X for all ` ∈ N\ {i}, it follows that (z, y) ∈ P ∗i
and (z, y) ∈ I∗` for all ` ∈ N\ {i}; moreover, z /∈ L (R∗i , y) ⊇ L (Ri, x) as (z, x) ∈ P ∗i . Then,
y is not a plateau amount for agent i, and so L (R∗i , y) 6= X. Let y0 ≡ (yi, w−i) 6= y where
w−i ∈ Rn−1+ such that

P
`∈N\{i}w` =

P
`∈N\{i} y`. The allocation y

0 exists and belongs to the

set L (Ri, x) as (x, y) ∈ Ri and (y, y0) ∈ Ii. As y0 ∈ L (Ri, x) \ {y} and (y, y0) ∈ I∗i , we have
that {y} 6= maxR∗i Ci (R, x). Hence, FPO satisfies Condition μ∗∗(ii.a).

24The Pareto SCC is monotonic and satisfies no-veto power when R̄n consists only of single-peaked

preference profiles.
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Let i ∈ H and#H > 1. Assume, to the contrary, thatR∗ = R and {y} = maxR∗i Ci (R, x).
Thus, x = y, and so y ∈ FPO (R∗), a contradiction. Therefore, FPO satisfies Condition
μ∗∗(ii.b).

Let i /∈ H and R∗ = R. It follows that (y, x) ∈ Ii and (y, x) ∈ R` for all ` ∈ N\ {i}.
Suppose that y /∈ FPO (R). Then, there exists a z ∈ X such that (z, y) ∈ Rj for all j ∈ N
and (z, y) ∈ Pj for some j ∈ N . Since for each j ∈ N the preference relation Rj is transitive,

it follows that z Pareto dominates x under the state R. Then, x /∈ FPO (R), producing a
contradiction. Therefore, FPO satisfies Condition μ∗∗(ii.c).

Let H = {i}, x = y, R−i = R∗−i, and L (Ri, x) = L (R∗i , x). We show that x ∈ FPO (R∗).
Assume, to the contrary, that x /∈ FPO (R∗). Then, there exists an allocation z ∈ X such

that (z, x) ∈ R∗j for all j ∈ N and (z, x) ∈ P ∗j for some j ∈ N . As x ∈ maxR∗` X for all

` ∈ N\ {i}, it follows that (z, x) ∈ P ∗i and (z, x) ∈ I∗` for all ` ∈ N\ {i}; and (z, x) ∈ I` for
all ` ∈ N\ {i} as R−i = R∗−i. Thus, z /∈ L (R∗i , x) = L (Ri, x) as (z, x) ∈ P ∗i . It follows that
x /∈ FPO (R), which is a contradiction. Hence, FPO satisfies μ∗∗(iv).

In their seminal paper, Dutta and Sen (2011) showed that only no-veto power is sufficient for

partially-honest implementation. The above finding shows that the scope of implementation

is further enlarged to include many SCC s which are non-monotonic and violate the auxiliary

condition of no-veto power.

The last objective of this section is to investigate how the monotonicity-type condition in-

corporated in Condition M∗∗
s affects partially-honest implementability. The analysis reveals

that this condition is restrictive, though it is weaker than Maskin monotonicity. Remark-

ably, it shows that the equivalent relationship between implementation and implementation

by s-mechanisms holding in the classical implementation framework no longer holds when

there exist agents who are dishonest averse.

To this end, let us turn to define the environment in which the analysis is carried out.

Let X be a finite set of outcomes. For any x, y ∈ X, with x 6= y, and R ∈ Pn, let
NR (x, y) ≡ {i ∈ N | (x, y) ∈ Ri}.25 Let us denote (x, y) ∈ TR if and only if #NR (x, y) ≥
#NR (y, x), which implies that x is majority preferred to y at the profile R. For the sake

of simplicity, suppose that n is an odd number so that the majority relation TR on X is a

tournament for any R ∈ Pn.26 The set of all top-cycle outcomes at state R ∈ Pn can be
25Pn ⊆ Rn is the set of all available profiles of linear orders.
26A relation T on X is a tournament if it is complete and asymmetric.
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defined as follows:

x ∈ TC (R)⇔ ∀y ∈ X\ {x} , there exist x0, x1, . . . , xm ∈ X, with m ∈ Z++, such that¡
xk, xk+1

¢ ∈ TR for k = 0, . . . ,m− 1, with x0 = x & xm = y.
An SCC F TC on Pn is the top-cycle SCC if, for all R ∈ Pn, F TC (R) = TC (R).
The next proposition shows that F TC is partially-honest implementable, while it cannot

be partially-honest implemented by any s-mechanism.

Proposition 3. Let Assumption 1 hold and H = 2N\∅. (i) F TC is partially-honest

implementable; (ii) F TC is not partially-honest implementable by any s-mechanism.

Proof. Observe that Condition μ∗∗(i) is vacuously satisfied by any SCC. Then, to see that

F TC is partially-honest implementable, it suffices to observe that F TC satisfies the require-

ment of no-veto power which, in turn, implies Conditions μ∗∗(ii)-μ∗∗(iv). This completes

part (i) of the statement.

To show part (ii), assume, to the contrary, that F TC is partially-honest implementable

by an s-mechanism. Then, F TC satisfies ConditionM∗
s , and, in particular, ConditionM

∗
s (i).

Let N = {1, 2, 3}, with #N = 3, X = {x, y, z}, with #X = 3, and R3 = {R,R∗}, where
agents’ preferences are as follows:

R R∗

1 2 3 1 2 3

x y z x y x

y z x y z z

z x y z x y

With abuse of notation, we write xTRy for (x, y) ∈ TR. In terms of the tournament relation,
we have that xTRyTRzTRx, while xTR∗a for all a ∈ {y, z} and yTR∗z. Since y ∈ TC (R) = X,
there exists a profile of sets (C` (R`, y))`∈N such that y ∈ C` (R`, y) ⊆ L (R`, y) ∩X for all

` ∈ N . Since (R`, R`+1) 6=
¡
R∗` , R

∗
`+1

¢
for ` ∈ {2, 3}, it follows that Condition M∗

s (i) is

satisfied if H ∩ {2, 3} 6= ∅. The only case that we are left to verify is H = {1}. Since
(R1, R2) = (R∗1, R

∗
2) and L (R`, y) = L (R∗` , y) for all ` ∈ N , Condition M∗

s (i) implies that

y ∈ F TC (R∗) 6= TC (R∗) = {x}, a contradiction.
Before closing this section, it is important to note that the Walrasian correspondence

and the egalitarian-equivalent solution (Pazner and Schmeidler, 1978), defined in the clas-

sical exchange economies, are other well-known examples of non-monotonic SCC s. Neither
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of these SCC s are partially-honest implementable by any s-mechanism, though they are

partially-honest implementable by virtue of Theorem 2.

5 Two-agent implementation problems

Seminal papers on two-agent implementation are those of Moore and Repullo (1990) and

Dutta and Sen (1991), who independently refined Maskin’s characterization result (Maskin,

1999) by providing necessary and sufficient conditions for an SCC to be implementable.27

Since Dutta and Sen’s Condition β and Moore and Repullo’s Condition μ2 coincide in sub-

stance, we state only Condition μ2.

Condition μ2 (for short, μ2): There exists a set Y ⊆ X and, for all R ∈ Rn and all

x ∈ F (R), there exists a profile of sets (C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x)∩Y
for all ` ∈ N ; furthermore, Condition μ holds; finally, for all R∗ ∈ Rn, the following condition

(iv) is satisfied:

(iv) for each (x0, R0) ∈ X ×R2 with x0 ∈ F (R0),
(a) there exists an e ≡ e (x0, R0, x, R) ∈ C1 (R0, x0) ∩ C2 (R, x), with e (x,R, x,R) = x;
(b) if C1 (R

0, x0) ⊆ L (R∗1, e) and C2 (R, x) ⊆ L (R∗2, e), then e ∈ F (R∗).

Condition μ2 is markedly stronger than Condition μ, as it includes a punishment condition

- Condition μ2(iv). While the first part of Condition μ2(iv) requires the existence of a pun-

ishment outcome, the second part requires that if the punishment outcome is an equilibrium

outcome, it should be F -optimal.

In the next two sub-sections, we identify the class of partially-honest implementable

SCC s, not only in the case where the planner knows that exactly one agent is partially-

honest, but also in the case where the exact number of partially-honest agents is unknown

to her - Assumption 1. We present two new conditions which are not only necessary and suf-

ficient conditions for SCC s to be partially-honest implementable, but also markedly weaker

than Condition μ2. Significantly - and in line with earlier results and Theorem 2 - our

characterizations confirm that when agents hold preferences for truth-telling, the scope of

implementation is enlarged. Yet, limits still remain. Particularly, what still limits imple-

mentability are the weaker variants of Condition μ2(iv) embedded in our conditions on

27See also Busetto and Codognato (2009).
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implementation.

5.1 Exactly one partially-honest agent

In this sub-section, we make the informational assumption that there exists exactly one

partially-honest agent in society. The planner knows that there exists a dishonest averse

agent but not who she is.

For the same reason highlighted in sub-section 3.1, Condition μ2 is not a necessary

condition for partially-honest implementation. We amend this condition in the following

way.

Condition μ2∗ (for short, μ2∗): Conditions μ∗ holds; moreover, for all H ∈ H, and for all
R∗ ∈ R2, the following condition (iv) is satisfied:

(iv) for each (x0, R0) ∈ X ×R2 with x0 ∈ F (R0),
(a) there exists an e ≡ e (x0, R0, x, R) ∈ C1 (R0, x0) ∩ C2 (R, x), with e (x,R, x,R) = x;
(b) if x0 6= x, R0 6= R, C1 (R0, x0) ⊆ L (R∗1, e), C2 (R, x) ⊆ L (R∗2, e), and
(b.1) if H = {1} and {e} = maxR∗1 C1 (R0, x0), then e ∈ F (R∗);
(b.2) if H = {2} and {e} = maxR∗2 C2 (R, x), then e ∈ F (R∗).

In the next theorem, we show that the above Condition μ2∗ is necessary for implemen-

tation when exactly one agent holds preferences for truth-telling.

Theorem 5. Let Assumption 1 hold and H = {{1} , {2}}. If an SCC F ∈ F defined on R2

is partially-honest implementable, then it satisfies Condition μ2∗.

Proof. Let Assumption 1 hold and let H = {{1} , {2}}. Let γ ≡ (M,g) be a mechanism
which partially-honest implements F ∈ F , which is defined on R2. The proof that F

satisfies Condition μ∗ follows from Theorem 1. Finally, we show that F meets Condition

μ2∗(iv). Take any H ∈ H. Take any (x0, R0, x, R) ∈ X × R2 × X × R2 with x ∈ F (R)
and x0 ∈ F (R0). Then, there exists an equilibrium strategy m ≡ (m1,m2) ∈ NE

¡
γ,<R

¢
such that g (m) = x. Similarly, m0 ≡ (m0

1,m
0
2) ∈ NE

¡
γ,<R0

¢
and g (m0) = x0. Let

e ≡ e (x0, R0, x, R) = g (m1,m
0
2). Then, defining C1 (R

0, x0) ≡ g (M1,m
0
2) and C2 (R, x) ≡

g (m1,M2), e ∈ C1 (R0, x0)∩C2 (R, x) holds, as sought. Finally, it is also clear that F satisfies
Condition μ2∗(iv.b) as, for instance, in the case of μ2∗(iv.b.1), if e /∈ F (R∗), then the only
deviator is the partially-honest agent 1, but her deviation to an m∗1 ∈ T γ

1 (R
∗, F ) results
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in the same outcome e because {e} = maxR∗1 C1 (R0, x0), which is a contradiction. Thus, F
satisfies μ2∗(iv).

Though Condition μ2∗ is a necessary condition for partially-honest implementation, it

may not guarantee the sufficiency result. To this end, other requirements exist. These

requirements are that the domain of preferences must be large enough, and that F satisfies

Condition μ∗∗ and an extra auxiliary condition. The condition as a whole can be stated as

follows.

Condition μ2∗∗ (for short, μ2∗∗): Condition μ∗∗ holds;28 moreover, for all H ∈ H, and for
all R∗ ∈ R2, the following condition (v) is satisfied:

(v) for each (x0, R0) ∈ X ×R2 with x0 ∈ F (R0),
(a) there exists an e ≡ e (x0, R0, x, R) ∈ C1 (R0, x0) ∩ C2 (R, x), with e (x,R, x,R) = x;
(b) if x0 6= x, R0 6= R, C1 (R0, x0) ⊆ L (R∗1, e), C2 (R, x) ⊆ L (R∗2, e), and e /∈ F (R∗), then;
(b.1) if R = R∗, then H = {2};
(b.2) if R0 = R∗, then H = {1};
(c) if R = R0 = R∗, x0 6= x, (e, x0) ∈ I∗1 , and (e, x) ∈ I∗2 , then e ∈ F (R∗).

The next theorem shows that this condition is not only sufficient, but also necessary

for partially-honest implementation, when only game forms with simple punishment are

admissible (the formal proof is relegated to Appendix).

Theorem 6. Let Assumption 1, Γ = ΓSP , and RD hold, and let H = {{1} , {2}}. An SCC
F ∈ F defined on R2 is partially-honest implementable if and only if it satisfies Condition

μ2∗∗.

5.2 There are partially-honest agents

This sub-section makes the informational assumption that the planner knows that there are

partially-honest agents, but she knows neither their identities nor their exact number. Its

objective is to fully identify the class of partially-honest implementable SCC s under this

informational assumption.

28We refer to the condition that requires only one of the statements (i)—(iv) in Condition μ∗∗ as Conditions

μ2∗∗(i)—μ2∗∗(iv) respectively.
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To this end, as done in the previous sub-section, let us lay down the condition that every

SCC F must meet if it is partially-honest implementable. The condition can be stated as

follows.

Condition μ2◦ (for short, μ2◦): Condition μ2∗ holds; moreover, for all R∗ ∈ R2, the

following condition (v) is satisfied:

(v) for all i ∈ N and all H ∈ H, if H = N , R = R∗, y ∈ Ci (R, x) ⊆ L (R∗i , y), and

y ∈ maxR∗` Y for all ` ∈ N\ {i}, then y ∈ F (R∗) whenever x = y.

It is easy to confirm that Condition μ2◦(v) is necessary. By virtue of Theorem 5, the next

theorem states that Condition μ2◦ is necessary for partially-honest implementation, while

omitting the proof of it.

Theorem 7. Let Assumption 1. If an SCC F ∈ F defined on R2 is partially-honest

implementable, then it satisfies Condition μ2◦.

Condition μ2◦ alone does not suffice to guarantee partial-honest implementation. Let us

strengthen it as follows.

Condition μ2◦◦ (for short, μ2◦◦): Condition μ2∗∗ holds;29 moreover, for all R,R∗ ∈ R2, the

following condition (vi) is satisfied:

(vi) for all H ∈ H, all x ∈ F (R), and all i ∈ N , if H = N , R = R∗, y ∈ Ci (R, x) ⊆ L (R∗i , y),
and y ∈ maxR∗` Y for all ` ∈ N\ {i}, then y ∈ F (R∗).

This condition guarantees the sufficiency result when the domain of preferences is suffi-

ciently rich. However, to close the gap between what constitutes a necessary condition and

what constitutes a sufficient condition, we focus on game forms which satisfy the following

stronger variant of punishment condition.

Strong Punishment (StP): For any R,R0 ∈ R2, any i ∈ N , and any m ≡ (mi,m`) ∈ M
such that g (m) = x, there exists an m0

i ∈ T γ
i (R

0, F ) such that g (m0
i,m`) = g (m).

A mechanism γ is a mechanism with strong punishment if it satisfies StP. Denote the class

of mechanisms satisfying StP by ΓStP .

The above condition has a similar flavor to SP. However, with condition StP, the planner

is required to design a game form in which if x is an attainable outcome at state R - in

29We refer to the condition that requires only one of the statements (i)—(v) in Condition μ2∗∗ as Conditions

μ2◦◦(i)—μ2◦◦(v) each.
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the sense that there is a message profile m leading to it under this state - then an agent

i should be able to reach this x by replacing the untruthful message mi with a truthful

one m0
i (while keeping constant the messages of all others) when the state moves from R

to R0. Therefore, differently from SP, every attainable outcome can be supported by a

truthful message profile, regardless of whether it is an F -optimal outcome. In this sense,

the above condition can be considered a strong punishment requirement. Similar to SP,

the requirement of StP is satisfied by all classical mechanisms in the literature of Nash

implementation (see, for instance, Repullo, 1987; Moore and Repullo, 1990; Saijo, 1988;

Dutta and Sen, 1991; Tatamitani, 2001).

The following theorem shows that Condition μ2◦◦ is necessary and sufficient for partially-

honest implementation, when the domain of preferences is sufficiently rich and the focus is

on mechanisms with strong punishment (the formal proof is relegated to Appendix).

Theorem 8. Let Assumption 1, Γ = ΓStP , and RD hold. An SCC F ∈ F defined on R2 is

partially-honest implementable if and only if it satisfies Condition μ2◦◦.

Before closing this sub-section, it may be worth mentioning briefly that if the planner

knows that both agents are partially-honest, the class of partially-honest implementable

SCC s becomes larger, since neither Condition μ2∗∗(ii), Condition μ2∗∗(iv), nor Condition

μ2∗∗(v.b) is required. This result is readily obtained by Theorem 8.

Corollary 3. Let Assumption 1 and H = {N}. An SCC F ∈ F defined on R2 is partially-

honest implementable by a mechanism in ΓStP if and only if it satisfies Condition μ2◦◦

without Condition μ2∗∗(ii), Condition μ2∗∗(iv), or Condition μ2∗∗(v.b)

Notice that the above result does not postulate any requirement on the domain of pref-

erences.

Condition μ2◦◦ - and so Condition μ2∗∗ - imposes non-trivial restrictions on F . For

example, the Pareto SCC is not partially-honest implementable by virtue of Proposition 1.

Despite this, the results of the above sub-sections are quite permissive. A detailed discussion

is presented in Lombardi and Yoshihara (2011c; sub-section 5.3).
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6 Concluding remarks

In this closing section, rather than restating the main contributions of the paper, we conclude

with a word of caution and with a couple of alleys for research.

Working from the framework developed by Moore and Repullo (1990), this paper has

studied the consequences of injecting a minimal dishonesty aversion in implementation the-

ory. While it is undeniable that there are people who care not only about welfaristic features

of the consequences, but also - to some extent - non-consequential features of lying, it is

equally undeniable that it would be a mistake to apply the kind of aversion studied here

carelessly. Caution seems advisable in all applied fields in which the idea of partial-honesty

may not be appealing or plausible, like in the playground of auction design. Nonetheless,

this idea can be fruitfully applied to a wide range of public decision making problems. Ap-

plications to problems of public goods provision, externalities, voting, taxation, and income

distribution seem to hold exciting potential. The tools developed and the results reported

herein can provide useful arguments and insights in this respect.

Second, while the paper has focussed on a minimal aversion to lying by agents involved

in a mechanism, the departure from the standard assumption that agents are unconcerned

about the non-welfaristic features of the consequences can be modelled in a variety of ways.

An interesting direction has been taken up in a recent work by Lombardi and Yoshihara

(2011b), where the authors explore the consequences of injecting a ‘stronger’ degree of hon-

esty in implementation problems by also connecting the outcome announcement with the

deception. It is certainly worth considering other views on modelling agents’ preferences.

Third, while a considerable amount of experimental data suggests that agents may display

preferences for truth-telling, all lab experiments designed to test whether or not agents

consider more than “just” their material payoffs in strategic situations are not geared towards

implementation theory. There is little evidence that experimental subjects are willing to

uphold the truth when called to perform implementation tasks if consequences of doing so

are not costly - e.g., Cabrales et al. (2003). The design of experimental tests for dishonesty

aversion specifically tailored towards implementation theory is highly desirable and promise

to be a fruitful and interesting area of research for years to come.

Finally, while the paper sets solid foundations for implementation with partially-honest

agents, it falls short in many important aspects. For example, while the paper specified

33



the set of properties that an SCC should satisfy in order to be partially-honest imple-

mentable, the devised mechanisms present the disadvantage of involving complex strategy

spaces. In particular, strategies include either whole preference profiles or whole indiffer-

ence sets of several agents. This implies that the message space is of infinite dimension in

many economic applications. Furthermore, the components of the strategy space do not

have a straightforward economic interpretation such as consumption bundles, allocations,

and prices. Therefore, there is a need for specifying the scope of the analysis reported herein

away from abstract social choice environments. In this regard, the exploration of the rich

set of implications that arise from the injection of a minimal dishonesty aversion to eco-

nomic agents involved in a mechanism can take many directions. One interesting direction

is explored in a recent work of Lombardi and Yoshihara (2011a) in which implementation

of efficient SCC s by natural mechanisms is analyzed in classical exchange economies and

results in line with those reported herein are unveiled.
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7 Appendix

Proof of Theorem 2. Let Assumption 1 hold and let Rn satisfy RD. Take any F ∈ F .
Let ¦ ∈ N be an arbitrary agent index.

1. The necessity of Condition μ∗∗.

Let F be partially-honest implemented by γ ≡ (M,g) ∈ ΓSP . Let Y ≡ g (M). Take

any R ∈ Rn and any x ∈ F (R). Then, there exists an m (R, x) ∈ NE
¡
γ,<R

¢
such

that g (m (R, x)) = x and mh (R, x) ∈ T γ
h (R,F ) for any h ∈ H 0 and any H 0 ∈ H, be-

cause γ ∈ ΓSP . For all ` ∈ N , let C` (R, x) ≡ g (M`,m−` (R, x)). Then, C` (R, x) ≡
g (M`,m−` (R, x)) ⊆ L (R`, x) ∩ Y for all ` ∈ N . Take any R∗ ∈ Rn and any H ∈ H. By
Theorem 1, it follows that F satisfies Condition μ∗. Thus, we only show that F satisfies

μ∗∗(ii.c)-μ∗∗(iv).

Given i ∈ N , suppose that y ∈ Ci (R, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\ {i},
and y /∈ F (R∗). Thus, g (mi,m−i (R, x)) = y for some mi ∈ Mi. Assume, to the contrary,

that R = R∗ and i /∈ H. Then, (mi,m−i (R, x)) ∈ NE
¡
γ,<R∗

¢
for this specific H, a

contradiction. Hence, F satisfies Condition μ∗∗(ii.c).

Suppose that y ∈ maxR∗` Y for all ` ∈ N . Then, there exists an m̄ ∈M such that g (m̄) =

y. Consider R̄ ≡ ¡R̄`¢`∈N ∈ Rn such that L
¡
R̄`, y

¢
= L (R∗` , y) with ∂L

¡
R̄`, y

¢
= {y} for

all ` ∈ N . Since Rn satisfies RD, such a profile is admissible. Condition μ∗(iii) implies

that y ∈ F ¡R̄¢, given that F satisfies Condition μ∗. Suppose that there exists a non-empty

set S ⊆ N such that m̄` /∈ T γ
` (R

∗, F ) for all ` ∈ S; otherwise g (m̄) ∈ F (R∗), as sought.
Then, by SP, for each ` ∈ S, there exists an m̄0

` ∈ T γ
` (R

∗, F ) such that g (m̄0
`, m̄−`) = y.

By repeatedly applying SP from `1 ∈ S to `s ∈ S, where S = {`1, . . . , `s}, it follows that
g (m̄0

S, m̄−S) = y. Thus, (m̄
0
S, m̄−S) ∈ NE

¡
γ,<R∗

¢
for any H 0 ∈ H. Therefore, F satisfies

Condition μ∗∗(iii).

Take any i ∈ N . Suppose that L (Ri, x) = L (R∗i , x), x ∈ maxR∗` Y for all ` ∈ N\ {i},
R−i = R∗−i, and x /∈ F (R∗). Then, since x = g (m (R, x)) and g (Mi,m−i (R, x)) ⊆
L (Ri, x) = L (R

∗
i , x), it follows from the implementability of F that R

∗
i 6= Ri and m (R, x) /∈

NE
¡
γ,<R∗

¢
holds for any H 0 ∈ H. It follows that there is an h ∈ H such that mh (R, x) /∈

T
γ
h (R

∗, F ) and (g (mh,m−h (R, x)) , g (m (R, x))) ∈ I∗h for some mh ∈ T γ
h (R

∗, F ). Assume,

to the contrary, that H = {i}. Then, the only deviator is agent i. Since γ satisfies SP, there
exists an m∗i ∈ T γ

i (R
∗, F ) such that g (m∗i ,m−i (R, x)) = g (m (R, x)) = x. This implies that
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(m∗i ,m−i (R, x)) ∈ NE
¡
γ,<R∗

¢
and so x ∈ NA ¡γ,<R∗¢ for this H = {i}, a contradiction.

Therefore, F satisfies Condition μ∗∗(iv).

2. The sufficiency of Condition μ∗∗.

Suppose that F satisfies Condition μ∗∗. Let γ ≡ (M, g) be the mechanism defined in

sub-section 3.1. For each ` ∈ N , the set of truthful message is that defined in (1). By
construction, γ ∈ ΓSP . Take any R ∈ Rn.

To show that F (R) ⊆ NA
¡
γ,<R

¢
for any H ∈ H, let x ∈ F (R) and suppose that,

for all ` ∈ N , m` = (R, x, ¦) ∈ T γ
` (R,F ). Rule 1 implies that g (m) = x. Suppose that

` ∈ N deviates from m` to m
∗
` ∈M`. It follows from Rules 2 that g (M`,m−`) = C` (R, x) ⊆

L (R`, x). We conclude that m ∈ NE
¡
γ,<R

¢
and so x ∈ NA ¡γ,<R¢ for any H ∈ H, since

m` = (R, x, ¦) ∈ T γ
` (R,F ) for each ` ∈ N .

To show that NA
¡
γ,<R

¢ ⊆ F (R) for any H 0 ∈ H, taking any H ∈ H, let m ∈
NE

¡
γ,<R

¢
for this H, and let us consider the following cases.

Case 1 : m corresponds to Rule 1.

Suppose that R 6= R̄ = R` for all ` ∈ N\ {i}. Then, mh /∈ T γ
h (R,F ) for all h ∈ H.

Take any m0
h ∈ T γ

h (R,F ) such that the outcome announced is x
h = x. Rule 2.2 implies

that g (m0
h,m−h) = x so that ((m

0
h,m−h) ,m) ∈ÂRh , producing a contradiction. Otherwise,

R = R̄ and so x ∈ F (R).

Case 2 : m corresponds to Rule 2.1.

Then, Y ⊆ L (R`, x) for all ` ∈ N\ {i} and Ci
¡
R̄, x

¢ ⊆ L (Ri, x). Suppose thatRi = R` =
R̄ 6= R. Let i /∈ H and there is another h ∈ H. Agent h can induce Rule 3 by unilaterally
deviating to m0

h =
¡
R, x, kh

¢ ∈ T γ
h (R,F ). By choosing k

h so as to have h = `∗ (m−h,m0
h),

she obtains g (m−h,m0
h) = x. Then, ((m−h,m

0
h) ,m) ∈ÂRh , a contradiction. Otherwise, let

i ∈ H. As agent i can induce Rule 2.2 by deviating to m0
i = (R, x, ¦) ∈ T γ

i (R,F ), we

have that g (m−h,m0
h) = x, which again leads to a contradiction. Therefore, R̄ = R and so

x ∈ F (R).

Case 3 : m corresponds to Rule 2.2.

Then, Y ⊆ L (R`, g (m)) for all ` ∈ N\ {i} and Ci
¡
R̄, x

¢ ⊆ L (Ri, g (m)). Suppose

that mh /∈ T γ
h (R,F ) for some h ∈ H\ {i}. Then, agent h ∈ H\ {i} can induce Rule 3

by deviating to a suitable m0
h ∈ T γ

h (R,F ) so as to obtain g (m
0
h,m−h) = g (m), which

leads to m /∈ NE ¡γ,<R¢, a contradiction. Therefore, mh ∈ T γ
h (R,F ) for all h ∈ H\ {i}.
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Suppose that #H > 1 and i ∈ H. As mh ∈ T γ
h (R,F ) for all h ∈ H\ {i}, it follows

that R = R̄ and x ∈ F (R). Since m falls into Rule 2.2, it follows that Ri 6= R, so that

mi /∈ T γ
i (R,F ). It follows from x ∈ Ci (R, x) ⊆ L (Ri, g (m)) and g (m) ∈ Ci (R, x) ⊆

L (Ri, x) that (x, g (m)) ∈ Ii. Agent i can deviate to m0
i = (R, x, k

i) ∈ T γ
i (R,F ) so that she

induces Rule 1 and obtains g (m0
i,m−i) = x, which contradicts m ∈ NE

¡
γ,<R

¢
. Therefore,

#H ≯ 1 or i /∈ H. Suppose that #H ≥ 1 and i /∈ H. Since R = R̄, Condition μ∗∗(ii.c)

implies that g (m) ∈ F (R). Otherwise, let H = {i}. Observe that R 6= R̄ = R` for all

` ∈ N\ {i}; otherwise agent i can induce Rule 1 by deviating to a suitable truthful message
and obtain a profitable deviation. Notice that mi ∈ T γ

i (R,F ), otherwise agent i can induce

Rule 2.2 by deviating to an m0
i = (R, g (m) , ki) ∈ T γ

i (R,F ) and obtain g (m
0
i,m−i) =

g (m), which leads to m /∈ NE ¡γ,<R¢, a contradiction. Take an R̂i ∈ Ri (X) such that

L
³
R̂i, g (m)

´
= L (Ri, g (m)) with ∂L

³
R̂i, g (m)

´
= {g (m)}. As Rn satisfies RD, we have

that R̂ ≡
³
R̂i, R−i

´
∈ Rn. Then, μ∗∗(ii.a) implies that g (m) ∈ F

³
R̂
´
. Since F satisfies

μ∗∗, there exists a profile
³
C`

³
R̂, g (m)

´´
`∈N

such that C`

³
R̂, g (m)

´
⊆ L

³
R̂`, g (m)

´
∩ Y

for all ` ∈ N . As L
³
R̂i, g (m)

´
= L (Ri, g (m)), R−i = R̂−i, and H = {i}, Condition μ∗∗(iv)

implies that g (m) ∈ F (R).

Case 4 : m corresponds to Rule 3.

Then, g (m) ∈ maxR` Y for all ` ∈ N . So, by Condition μ∗∗(iii), g (m) ∈ F (R), as sought.

As the above arguments hold for any H ∈ H and any R ∈ Rn, the statement follows.

Proof of Theorem 4. Let Assumption 1 hold and let Rn satisfy RD. Take any F ∈ F
and let ¦ ∈ N be an arbitrary agent index. Let γ ≡ (M, g) be an s-mechanism.

1. The necessity of Condition M∗∗
s .

Suppose that F is partially-honest implemented by γ ≡ (M, g) ∈ ΓSP . From Theorem

3, it follows that F satisfies Condition M∗
s . Furthermore, by using the same reasoning used

in Theorem 2, it can readily be obtained that F satisfies Condition M∗∗
s (iii) and Condition

M∗∗
s (iv).

2. The sufficiency of Condition M∗∗
s .

Suppose that F satisfiesM∗∗
s . Then, for all (R, x) ∈ Rn×X with x ∈ F (R), x ∈ Y . Let

γ ≡ (M, g) be the mechanism defined in sub-section 3.2. For each ` ∈ N , the set of truthful
messages is that defined in (2). By construction, γ ∈ ΓSP . Suppose that R ∈ Rn is the
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true state. The proof that F (R) ⊆ NA ¡γ,<R¢ for any H 0 ∈ H can be given similar to the

corresponding part in the proof of Theorem 2, so we omit it here. Conversely, to show that

NA
¡
γ,<R

¢ ⊆ F (R) for any H 0 ∈ H, taking any H ∈ H, let m ∈ NE ¡γ,<R¢ for this H,
and let h be an arbitrary partially-honest agent in H. Let us consider the following cases.

Case 1 : m falls into Rule 1.

Then, m is consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢. Thus, g (m) = x. Moreover,
C`
¡
R̄`, x

¢ ⊆ L (R`, x) for all ` ∈ N . Suppose that mh /∈ T γ
h (R,F ) for some h ∈ H. Suppose

that Ch
¡
R̄h, x

¢
= Y . By changing her strategy mh into m

0
h ∈ T γ

h (R,F ), agent h can trigger

the modulo game and choose an agent index kh so that ` = `∗ (m0
h,m−h) 6= h. This implies

g (m0
h,m−h) = x. Hence, m /∈ NE ¡γ,<R¢, a contradiction. Otherwise, let Ch ¡R̄h, x¢ 6= Y .

By changing her strategy mh into m
0
h = (Rh, Rh+1, x, ¦) ∈ T γ

h (R,F ), (m
0
h,m−h) falls into

Rule 2 so that g (m0
h,m−h) = x. Then, m /∈ NE ¡γ,<R¢, a contradiction. Therefore,

mh ∈ T γ
h (R,F ) for all h ∈ H. This reasoning is applied to any H ∈ H, thus Condition

M∗∗
s (i) implies x ∈ F (R).

Case 2 : m falls into Rule 2.

Then, m is m−i quasi-consistent with
¡
R̄, x

¢ ∈ Rn × Y , where x ∈ F
¡
R̄
¢
. Thus,

g (m) = x. We proceed accordingly the following sub-cases: 1) Rii 6= R̄i and Rii+1 6= R̄i+1

and 2) Rii 6= R̄i and Rii+1 = R̄i+1.30

Sub-case 2.1. Rii 6= R̄i and Rii+1 6= R̄i+1.
So, Ci

¡
R̄i, x

¢ ⊆ L (Ri, x) and x ∈ maxR` Y for all ` ∈ N\ {i}. By the definition of g,
mh ∈ T γ

h (R,F ) for all h ∈ H; otherwise a contradiction can be obtained. Observe that
if agent i is a partially-honest agent, it must be the case that Ri−1i 6= Ri or R

i+1
i+1 6= Ri+1.

To show this, suppose that Ri−1i = Ri and R
i+1
i+1 = Ri+1. Then, agent i ∈ H can change

mi into m
0
i = (Ri, Ri+1, x, k

i) ∈ T γ
i (R,F ) and induce Rule 1. Then, g (m

0
i,m−i) = x and

so ((m0
i,m−i) ,m) ∈ÂRi , which contradicts m ∈ NE

¡
γ,<R

¢
for this H. Therefore, for any

H ∈ H, if m ∈ NE ¡γ,<R¢ falls into Rule 2 and i ∈ H, it has to be the case that Ri−1i 6= Ri
or Ri+1i+1 6= Ri+1. It follows that i− 1 /∈ H or i+ 1 /∈ H if i ∈ H.
Suppose that #H > 1. Condition M∗∗

s (ii.b) implies that x ∈ F (R). Otherwise, let
#H = 1. If H ⊆ N\ {i}, Condition M∗∗

s (ii.b) implies that x ∈ F (R). Finally, suppose that
30The sub-case Rii = R̄i and R

i
i+1 6= R̄i+1 is not explicitly considered as it can be proved similarly to the

sub-case 2.2 shown below.
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H = {i}. By following the same reasoning used in Case 3 of the proof of Theorem 2, RD,

Condition M∗∗
s (ii.a), and Condition M

∗∗
s (iv) imply that x ∈ F (R).

Sub-case 2.2. Rii 6= R̄i and Rii+1 = R̄i+1
Let Rii = R

0
i and R̄

0 ≡ ¡R̄−i, R0i¢. We distinguish whether x ∈ F ¡R̄0¢ or not. Suppose
that x /∈ F ¡R̄0¢. Then, since x ∈ F ¡R̄¢, the same reasoning used above for sub-case 2.1
carries over into this sub-case, so that x ∈ F (R). Otherwise, let x ∈ F ¡R̄0¢. Then, there
are two potential deviators, i− 1 and i. Agent ` ∈ N\ {i− 1, i} can attain any y ∈ Y \ {x}
by inducing Rule 4, so that x ∈ maxR` Y as m ∈ NE (γ, R). Consider agent i− 1. Take any
y ∈ Ci−1

¡
R̄i−1, x

¢
= Ci−1

¡
Ri−2i−1, x

¢
. Suppose that Ci−1

¡
R̄i−1, x

¢ 6= Y . By changing mi−1 to

m∗i−1 =
¡
Ri−1i−1, R

i−1
i , y, ¦¢ ∈Mi−1, agent i−1 can obtain y = g

¡
m∗i−1,m−(i−1)

¢
via Rule 3. In

the case that Ci−1
¡
R̄i−1, x

¢
= Y , by changing mi−1 to m∗i−1 =

¡
Ri−1i−1, R

i−1
i , y, ki−1

¢ ∈ Mi−1,

agent i − 1 can attain y = g
¡
m∗i−1,m−(i−1)

¢
via Rule 4 by an appropriate choice of ki−1.

It follows that Ci−1
¡
R̄i−1, x

¢ ⊆ g
¡
Mi−1,m−(i−1)

¢
; then, Ci−1

¡
R̄i−1, x

¢ ⊆ L (Ri−1, x) as

m ∈ NE (γ, R). As a similar argument applies to agent i, we have that Ci
¡
R̄i, x

¢ ⊆
g (Mi,m−i) ⊆ L (Ri, x) as m ∈ NE (γ, R). Furthermore, by definition of g, mh ∈ T γ

h (R,F )

for all h ∈ H. Therefore, x ∈ F (R) by M∗∗
s (i).

Case 3 : m falls into Rule 3.

Then, m is m−i consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢. Moreover, Ci ¡R̄i, x¢ 6=
Y . By the definition g andm ∈ NE ¡γ,<R¢, we have that g (m) ∈ Ci ¡R̄i, x¢ ⊆ L (Ri, g (m))
and g (m) ∈ maxR` Y for all ` ∈ N\ {i}.31 Moreover,mh ∈ T γ

h (R,F ) for all h ∈ N ; otherwise
a contradiction can be obtained. Suppose that #H > 1. Condition M∗∗

s (ii.b) implies that

g (m) ∈ F (R). Otherwise, let #H = 1. If H ⊆ N\ {i}, Condition M∗∗
s (ii.b) implies that

g (m) ∈ F (R). Finally, suppose that H = {i}. By following the same reasoning used in
Case 3 of Theorem 2, it follows from RD, Condition M∗∗

s (ii.a), and ConditionM
∗∗
s (iv) that

g (m) ∈ F (R).

Case 4 : m falls into Rule 4.

Then, Y = g (M`,m−`) for all ` ∈ N . As m ∈ NE
¡
γ,<R

¢
, g (m) ∈ maxR` Y for all

` ∈ N . Then, Condition M∗∗
s (iii) implies that g (m) ∈ F (R).

As the above arguments hold for any H ∈ H and any R ∈ Rn, the statement follows.

31A detailed and exhaustive argument is provided in Lombardi and Yoshihara (2010).
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Proof of Theorem 6. Let Assumption 1 and RD hold. Let H = {{1} , {2}}. Take
any F ∈ F defined on R2. Let γ ≡ (M,g) be a mechanism. Let h denote the unique

partially-honest agent in N .

1. The necessity of Condition μ2∗∗.

Let F be partially-honest implemented by γ ∈ ΓSP . Let Y ≡ g (M). Take any R ∈ R2

and any x ∈ F (R). Then, there exists an m (R, x) ∈ NE ¡γ,<R¢ for all H 0 ∈ H such

that g (m (R, x)) = x. Observe that mh (R, x) ∈ T γ
h (R,F ) as γ ∈ ΓSP . For all ` ∈ N , let

C` (R, x) ≡ g (M`,mi (R, x)), where i ∈ N\ {`}. Then, g (M`,mi (R, x)) ⊆ L (R`, x) ∩ Y
for all ` ∈ N . From Theorem 2, it follows that F satisfies Conditions μ∗∗. Next, we

show that F satisfies Condition μ2∗∗(v). Pick any (x0, R0) ∈ X × R2 with x0 ∈ F (R0),
and take any R∗ ∈ R2. Since x0 ∈ F (R0), it follows that there exists an m (R0, x0) ∈
NE

¡
γ,<R0

¢
for all H 0 ∈ H such that g (m (R0, x0)) = x0, where mi (R

0, x0) ∈ T γ
i (R

0, F ) for

each i ∈ N as γ ∈ ΓSP . Let e ≡ e (x0, R0, x,R) = g (m1 (R, x) ,m2 (R
0, x0)). Then, defining

C1 (R
0, x0) ≡ g (M1,m2 (R

0, x0)) and C2 (R, x) ≡ g (m1 (R, x) ,M2), e ∈ C1 (R0, x0)∩C2 (R, x)
holds. Thus, F satisfies μ2∗∗(v.a). It is also clear that F meets Condition μ2∗∗(v.c), since

R = R0 = R∗ implies that every agent is truthful and e is optimal at state R∗. Finally, we

check μ2∗∗(v.b). Let x 6= x0 and R 6= R0. Moreover, suppose that C1 (R0, x0) ⊆ L (R∗1, e),
C2 (R, x) ⊆ L (R∗2, e), and e /∈ F (R∗). Suppose that R = R∗. Assume, to the contrary, that
H = {1}. Then, m1 (R, x) ∈ T γ

1 (R
∗, F ). Since there cannot be any profitable deviation, we

have that e ∈ NA ¡γ,<R∗¢ for H = {1}, a contradiction. Thus, H = {2}. Similarly, we
obtain H = {1} if R0 = R∗. In summary, F satisfies Condition μ2∗∗(v).

2. The sufficiency of Condition μ2∗∗.

Suppose that F satisfies Condition μ2∗∗. Then, F (R2) ⊆ Y . For each ` ∈ N , define M`

as follows

M` ≡
©
m` =

¡
R`, x`, y`, k`

¢ ∈ R2 ×X × Y × Z+ | x` ∈ F
¡
R`
¢ª
,

where Z+ is the set of nonnegative integers. The set of truthful messages is that defined in

(1).

Define the outcome function g : M → X as follows: For all m ∈ M , for i, j ∈ N , with
i 6= j:

Rule 1: If (Ri, xi) = (Rj, xj) and ki = kj = 0, then g (m) = xi.
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Rule 2: If ki > kj = 0, then

g (m) =

⎧⎨⎩ yi if yi ∈ Ci (Rj, xj)
e ≡ e (x2, R2, x1, R1) otherwise.

Rule 3: If (R1, x1) 6= (R2, x2) and k1 = k2 = 0, then

g (m) =

⎧⎨⎩ x1 if x1 = x2

e ≡ e (x2, R2, x1, R1) otherwise.

Rule 4: If k1 ≥ k2 > 0, then, g (m) = y1.
Rule 5: Otherwise, g (m) = y2.

The outcome e ≡ e (x2, R2, x1, R1) is the outcome specified in Condition μ2∗∗(v.a). Observe

that γ ∈ ΓSP , by construction.

Suppose that R ∈ R2 is the true state and take any H ∈ H.
Let x ∈ F (R) and suppose that for all ` ∈ N , m` (R, x) = (R, x, x, 0) ∈ T γ

` (R,F ).

Rule 1 implies that g (m) = x. By the definition of g, any deviation by agent ` ∈ N leads

to an outcome in C` (R, x), so that g (M`,mi (R, x)) = C` (R, x), where i ∈ N\ {`}. Since
C` (R, x) ⊆ L (R`, x), such deviations are not profitable. It follows that x ∈ NA

¡
γ,<R

¢
for

this H. To show that NA
¡
γ,<R

¢ ⊆ F (R), let m ∈ NE ¡γ,<R¢ and let us consider the
following cases.

Case 1: m corresponds to Rule 1.

Suppose that m falls into Rule 1. Then, g (m) = x1. By the definition of g, it follows

that mh ∈ T γ
h (R,F ). Then, x

1 = x2 ∈ F (R).

Case 2: m corresponds to Rule 2.

Without loss of generality, let i = 1. Then, g (m1,M2) = Y ⊆ L (R2, g (m)) and

C1 (R
2, x2) = g (M1,m2) ⊆ L (R1, g (m)). By the definition of g, mh ∈ T γ

h (R,F ). Sup-

pose that H = {2}. Condition μ2∗∗(ii.c) implies that g (m) ∈ F (R) as R2 = R. Otherwise,
let H = {1}. Following the same reasoning used in Case 3 of Theorem 2, it follows from

RD, Condition μ2∗∗(ii.a), and Condition μ2∗∗(iv) that g (m) ∈ F (R).

Case 3: m corresponds to Rule 3.

Then, C1 (R
2, x2) = g (M1,m2) ⊆ L (R1, g (m)) andC2 (R1, x1) = g (m1,M2) ⊆ L (R2, g (m)).

Observe that mh ∈ T γ
h (R,F ). If x

1 = x2, then g (m) ∈ F (R). Otherwise, let x1 6= x2. Sup-
pose that R1 = R2. Then, since F satisfies Condition μ2∗∗, it follows that (g (m) , x2) ∈ I1
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and (g (m) , x1) ∈ I2. Condition μ2∗∗(v.c) implies that g (m) ∈ F (R). Finally, let R1 6= R2.
Suppose that H = {1}, so that R1 = R. Condition μ2∗∗(v.b.1) implies that g (m) ∈ F (R).
Otherwise, let H = {2}, and so R2 = R. Condition μ2∗∗(v.b.2) implies that g (m) ∈ F (R).

Cases 4: m corresponds to Rule 4 or Rule 5.

Then, g (M1,m2) = Y ⊆ L (R1, g (m)) and g (m1,M2) = Y ⊆ L (R2, g (m)). Condition
μ2∗∗(iii) implies that g (m) ∈ F (R).

As the above arguments hold for any H ∈ H and any R ∈ Rn, the statement follows.

Proof of Theorem 8. Let Assumption 1 and RD hold. Take any F ∈ F defined on R2.

Let γ ≡ (M,g) be a mechanism.

1. The necessity of Condition μ2◦◦.

Suppose that F is partially-honest implemented by γ ∈ ΓStP . FromTheorem 6, Condition

μ2∗∗ is satisfied. Furthermore, as it is clear that F satisfies Condition μ2◦◦(vi), we conclude

that F meets Condition μ2◦◦.

2. The sufficiency of Condition μ2◦◦.

Suppose that F satisfies Condition μ2◦◦. Then, F (R2) ⊆ Y . Consider the mechanism γ

constructed in Theorem 6. Clearly, γ ∈ ΓStP . Moreover, let the set of truthful messages be

that defined in (1).

Suppose that R ∈ R2 is the true state and pick any H ∈ H. The proof that F (R) ⊆
NA

¡
γ,<R

¢
follows from Theorem 6. Then, to show that NA

¡
γ,<R

¢ ⊆ F (R) for the

given H, let m ∈ NE ¡γ,<R¢ for this H. As in Theorem 6, we have to consider several

cases. The proof that g (m) ∈ F (R) follows from the same arguments used in Theorem 6

whenever Rule 1, Rule 3, Rule 4, or Rule 5 applies to m. Therefore, suppose that m falls

into Rule 2. Without loss of generality, let i = 1. Then, g (m1,M2) = Y ⊆ L (R2, g (m))
and C1 (R

2, x2) ⊆ g (M1,m2) ⊆ L (R1, g (m)). By the definition of g, we have that mh ∈
T
γ
h (R,F ) for all h ∈ H. Suppose that #H = 1. Then, g (m) ∈ F (R) by Case 2 of Theorem
6. Suppose that #H = 2. Then, Condition μ2◦◦(vi) implies that g (m) ∈ F (R), as sought.

As the above arguments hold for any H ∈ H and any R ∈ Rn, the statement follows.
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