不完全資本市場下での生産関数の推定について*

北村行伸・西脇雅人・村尾徹士

ミクロレベルの生産関数を推定する際、Olley and Pakes (1996)によって提案された手法が広く用いられている。しかしながら、Olley-Pakes 法は暗黙に完全な資本市場の直面していることを仮定しており、企業が不完全な資本市場に直面しているときには係数推定値は一致性を持たない。多くの実証研究は、途上国経済はもとより先進国経済においてさえ、資本市場が不完全であることを指摘している。本稿では、Olley-Pakes 法を、資本市場の不完全性下でもロバストな推計手法へと改良することを目的としている。改良された手法を用いて日本の企業レベルデータを用いて推計した結果、Olley-Pakes 法は理論通りのバイアスを持つことが明らかになった。その大きさは産業ごとに異なるが、資本分配率で約 8-43% と比較的大きなものであることがわかった。JEL Classification Codes: D24, D43

1. はじめに

経済成長のエンジンとして全要素生産性(total factor productivity; TFP) あるいは単に生産 性と呼ばれる要素の重要性が認識されて久しい. とりわけ, 少子高齢化が進み, 労働投入や資本 蓄積に限界があるときに, 生産性の上昇が経済 成長の鍵を握るといっても過言ではない、経済 政策上も, この生産性動向を正確に把握してお くことが重要になっている。統計上,この生産 性あるいは TFP を計測する方法としては、第 一に、ソローにより考案された成長会計に基づ いて、いわゆるソロー残差を計算するというア プローチがある. 日本の実証研究でも, 例えば, 深尾・権(2003),川本(2004),宮澤(2008), Miyagawa, et al. (2006) などは基本的にこのア プローチを用いている. 第二に,企業統計がパ ネルデータの形で利用可能であれば、固定効果 推定を用いて企業に固定的な生産性を求めるこ ともできる. しかし, 固定効果推定では生産性 が計測期間中一定であるということを意味して おり、経済構造が変動しているような時期には、 現実的に不適切であると考えられる. また,こ れまでの実証研究では, 固定効果推定法では資 本ストックの係数を過小推定してしまう傾向が あると報告されている。第三に、生産性の測定 において, 生産関数の説明変数である労働投入

や資本ストックは内生的に決まっているという 考え方もある。そのような内生変数の最も簡便 な対処の仕方は、操作変数法を用いることであ る。それには労働投入や資本ストックとは強く 相関しているが、生産そのものあるいは生産性 とは無相関な変数を見つける必要がある。 や金利などの投入財価格データは操作変数として 適切だが企業毎に対応する価格は通常利用で きない。また利用できたとしても企業間で、賃 金や金利が大きくばらついて分布しているとは 考えがたい。そのような状況の下では、生産関 数および生産性の適切な推定は難しいことが知 られている。

近年、ミクロレベルの生産関数の推定を行う際、Olley and Pakes (1996)によって提案された代替的手法が広く用いられるようになってきた。企業が生産性ショックを観察した後に可変生産要素投入を行っているにも関わらず、外部観察者(以下ではこれを実証家と呼ぶ)がこのことを考慮に入れずに生産関数を最小二乗(OLS)法によって推定すると、係数推定値には内生性バイアスが発生する。Olley and Pakes (1996)は真の生産性水準を、企業の利潤最大化から導かれる投資関数から示唆される生産性水準により代理することで、このようなバイアスを補正する方法を提案した。完全な資本市場に直面する企業の投資関数は、今期の資本ストックと生

産性のみの関数である。Olley and Pakes (1996)では、企業が暗黙に完全な資本市場に直面していることを前提として、このような投資関数の形状が仮定されていた。

しかしながら、不完全な資本市場に直面する企業の投資関数は、今期の資本ストックと生産性のほか、キャッシュフローや純資産(保有土地評価額)などの変数に依存することが理論研究によって指摘されている(Bernanke and Gertler (1989)、Kiyotaki and Moore(1997)).資本市場が不完全であるにも関わらずこのことを考慮せずに Olley and Pakes(1996)の方法(以下、Olley-Pakes 法とする)を適用してしまうと、推定値は一致性を持たなくなる.

本稿は、Olley-Pakes 法を、資本市場の不完全性下でもロバストな推定手法へと改良することを目的としている。多くの実証研究は、途上国経済はもとより先進国経済においてさえ資本市場が不完全であることを指摘している。例えば、投資関数の推定に関する既存研究は、企業の投資決定が純資産や土地評価額に依存していることを報告している。従ってこの方向でOlley-Pakes 法を改良することは、重要な意味を持つ¹⁾.

通常の Olley-Pakes 法を用いて生産関数の推 定を行った場合, どの程度のバイアスが存在す るのであろうか. 本稿では、実際のデータを用 いて、通常の Olley-Pakes 法と改良された Ollev-Pakes 法の推定結果を比較する. 実証分 析には 1990 年代後半から 2000 年代前半の日本 企業を対象とする。この期間の日本経済は、先 進諸国の中でも資本市場の不完全性が深刻であ ると言われてきた. とすれば我々の提案する改 良された Olley-Pakes 法を用いることの意義は 大きいと考えられる. 改良された手法を用いて 日本の企業レベルデータを用いて推定した結果, 通常の Ollev-Pakes 法には理論通りのバイアス が存在することがわかった. バイアスの大きさ は産業ごとに異なるが、資本ストック係数(資 本分配率)で約8-43%と比較的大きなものであ った。

本稿の構成は以下の通りである。先ず第2節において不完全資本市場下の設備投資行動について,既存研究の理論的含意をまとめる。第3節では資本市場の不完全性下では,投資関数が

純資産の関数となる理論的根拠を提示している. 続く4節では,第2-3節の結果を用いてOlley and Pakes(1996)による生産性の推定手法を不完全資本市場下でもロバストな方法へと改良する.以下は実証研究のパートである.第5節は推定結果を報告し,第6節で結論を述べている.さらに付録 A では企業が退出することによるバイアスの補正方法を述べ,その推定結果を報告した.付録 B ではデータの構築方法について解説をし、付録 C では不完備契約モデルを解説し、投資関数が純資産に依存する代替的な経路があることを論じている.

2. 不完全資本市場下での設備投資行動

幾つかの実証研究は、企業の設備投資行動の 分析を通じて、日本の資本市場が不完全である ことを示唆している2).本節では既存研究を基 に、資本市場の不完全性の下での企業の設備投 資行動に関する含意をまとめておきたい. 主要 な結論は, 不完全資本市場に直面する企業の最 適投資決定は、企業の純資産(キャッシュフロ -,担保資産価値)に依存するということであ る. 不完全資本市場の基礎付けには様々なモデ ルが提案されているが、この結論は非常に広い クラスの不完全資本市場モデルにおいて共通に 成立する. 本節では代表的なモデルとして、貸 し手と借り手の間の情報の非対称性に着目した モデルを取り上げる3). 付録 C において, 他の 代表的なモデルである, Kivotaki and Moore (1997)による不完全コミットメントモデルの含 意を簡単にまとめてある.

そもそも銀行と借り手企業との間には、借り 手企業の抱える投資プロジェクトの生産性について情報の非対称性が存在すると考えられる。 また、貸借契約が確実に履行されるとの保証も存在しない、すなわちコミットメントの不完全性の問題がある。このとき、内部資金を利用する場合に比べ、銀行などから外部資金を調達する場合に追加的なプレミアムを課せられたり、利用可能な資金に上限が生じたりする(Bernanke et al. (1999), Kiyotaki and Moore (1997))。 より具体的には、外部資金の調達条件は借り手企業の財務状況を反映することとなる。この下では、企業の財務状況の悪化は外部資金調達に 課されるプレミアムを引き上げるので、収益性 のある投資プロジェクトでもファイナンスされにくくなる。これらの研究は、設備投資が純資産の総資本ストック比率(非対称情報モデル)あるいは純資産の水準(不完全コミットメントモデル)に依存することを示している。ただし、設備投資が純資産比率あるいは純資産に依存するという結果は、上記以外の不完全資本市場のモデルにおいても一般的に成立することが知られている4).

3. 資本市場の不完全性

1990年代後半の日本において、収益性のある投資プロジェクトが必ずしも完全にファイナンスされなかった可能性については Nishimura et al.(2005)や Fukao and Kwon(2006)などによって指摘されている。このような状況が生じる理由としてまず考えられるのは、借り手企業の生産性を貸し手が十分に把握できないという情報の非対称性の存在である。

Townsend(1979)に始まる一連の研究は、資 本市場の不完全性の源泉として, Costly State Verification(CSV)と呼ばれる状況をモデル化 した. これは、貸し手は借り手の事後的なペイ オフをモニタリングするには、審査費用を支払 わなければならないという状況である. Williamson(1986, 1987)は、CSV モデルにおいて、 貸し手と借り手の間に結ばれる最適契約が標準 的な債務契約であることを示した. すなわち, 借り手がデフォルトを選択しないときには返済 は定額であり、デフォルトを選択したときは貸 し手は審査費用を支払ってペイオフを査定し、 その全額を回収する. Bernanke and Gertler (1994)は CSV モデルを世代重複モデルに応用 し、また Carlstrom and Feurst(1997), Bernanke et al.(1999) などの研究は、CSV モデル を動学一般均衡モデルに埋め込み、景気循環や 金融政策の含意を考察した.

以下では、Bernanke et~al.(1999)、Gertler et~al.(2007)、Christensen and Dib(2008)による不完全資本市場モデルに従って企業の投資関数が純資産に依存するメカニズムを解説する。生産は前期に購入された資本 k_i と労働投入 k_i により行われる。企業はt期の期初に生産性ショックの実現値を観察した後、労働投入量を決定し、生産を行うと考える。t+1期以降の生産に用

いられる資本は、純資産 n_{t+1} と借入 b_{t+1} を用いてt期の期末に購入される。

$$q_t k_{t+1} = n_{t+1} + b_{t+1} \tag{1}$$

ただし、qt は資本調達価格を表し、純資産にはキャピタルゲインも含まれる.

企業による資本の需要は、資本の期待限界収益と期待限界調達費用が等しくなるように決定される。資本の期待限界費用は、以下のように書ける。

$$E_{t}f_{t+1} = E_{t}\left[\frac{z_{t+1} + (1 - \delta)q_{t+1}}{q_{t}}\right]$$
 (2)

ただし、 z_{t+1} はt+1期における資本の期待限界生産性を表わす。

次に資本調達の限界費用について考える。このモデルにおける資本市場の不完全性は、貸し手が借り手企業の生産性を観察するには、審査費用を支払わなければならない、との仮定から生じる。これは CSV と呼ばれる状況である。Bernanke et al.(1999)は、貸借契約において CSV 問題が存在するとき、外部資金の調達費用として、内部資金の調達費用に加えて追加的なプレミアムが課されることを示した5)。具体的には、外部資金調達プレミアムは以下のように表わされる。

$$\chi_t(\cdot) = \chi\left(\frac{b_{t+1}}{n_{t+1}}\right), \qquad \chi' > 0$$
(3)

従って、資本の需要に関する最適性の条件と して、以下の式が得られる。

 $E_{t}f_{t+1} = (1+\chi_{t}(\cdot))E_{t}\{(1+r_{t})\}$ (4) ただし $E_{t}\{(1+r_{t})\}$ は企業が完全な資本市場に直面する場合の資本調達費用である。この式は次のように解釈できる。企業が負債の発行により資金調達を行うとき,追加的な負債はレバレッジ比率を引き上げ,従って外部資金調達プレミアムを引き上げる。その結果,完全資本市場に比べ資本需要は過少になる。また以上の理由から,企業の投資関数は純資産 n_{t+1} に依存することになる。

4. 不完全資本市場下での生産関数の推定

企業レベルでの生産関数の推定において,技 術や生産性に関する新しい情報を含んでいる誤 差項は,企業の労働投入や資本投入と相関して いる可能性が高いと考えられる。とすれば労働 や資本という変数は内生的に決まっている選択 変数であると考えられる。生産技術上、労働と 資本を独立に選択できる訳ではないので、資本 ストックを固定すると、労働投入は資本ストッ クや生産性の関数として導出できる。Olley and Pakes (1996) は、労働投入に関する内生性 バイアスを回避して生産性を推定する手法を提 案した⁶.

第3節で論じたように、多くの実証研究は、企業が不完全資本市場に直面していることを示唆している。それに対して、Olley-Pakes 法は、暗黙に企業が完全資本市場に直面していることを仮定しており、仮に企業が不完全資本市場に直面している場合にはパラメータ推定値は一致性を持たない。本稿では、不完全資本市場の下でもパラメータ推定値が一致推定となるように、Olley-Pakes 法を改良する。このような不完全資本市場の下での Olley-Pakes 法の改良は企業レベルのパネルデータを用いた生産関数に関する実証研究上有益な貢献だと考えている。

以下ではまず、Olley and Pakes (1996)による完全資本市場のもとでの生産関数の推定手法を簡単に概観する。その上で、不完全資本市場の下での生産性の一致推定について議論する。

Olley-Pakes 法の基本的な設定は次のように要約できる。(1)企業は今期の生産性に関する情報を得てから、労働投入、原材料、投資の規模を決める。(2)今期の資本ストックは前期の資本ストックと今期の投資によって決まるという意味でダイナミックな性質を持っている。(3)生産性は実証家には観察できず、統計データとしても存在しない。(4)生産性と正の投資額の間には、単調増加関係がある。

Olley-Pakes 法の特色は、実証家からは観察不可能な生産性の実現値を、企業の動学的最適化行動から示唆されるコントロール関数によって置換することにある⁷⁾.

Cobb-Douglas 型生産技術を仮定すると,

 $y_t = \beta_0 + \beta_t l_{tt} + \beta_m m_{tt} + \beta_k k_{tt} + \omega_{tt} + \eta_{tt}$ (5) l, m, k はそれぞれ生産に使われる投入要素であり、それぞれ労働、原材料、および資本ストックである。 ω_{tt} は企業には観察可能であるが、実証家には観察不可能な生産性であり、外生かつ1次のマルコフ過程に従うものとする。

 $p(\omega_{tt}|\omega_{t1},\dots,\omega_{tt-1}) = p(\omega_{tt}|\omega_{tt-1})$ (6) また n_{tt} は計測誤差あるいは企業にも予測で きないショックとする. 以上のもとで期初の状態変数は、生産性の実現値 ω_{tt} 、資本ストック k_{tt} 、そして純資産 n_{tt} である.

今期の投資と労働投入の選択は、今期の生産性 ω_{tt} を観察した後に行われる。よって企業の労働需要は(部分的に) ω_{tt} に依存する。このことを考慮に入れずに(5)式を単にOLS推定した場合、パラメータ推定値は内生性バイアスを持つ。

企業レベルの生産性の推定における以上のような問題に対し、Olley and Pakes (1996) は、コントロール関数を用いることでパラメータを一致推定するための方法を提案した。彼らは、 ω_{tt} のコントロール関数として、投資関数の逆関数を用いた。以下ではまず、Olley and Pakes (1996) による 2 段階推定について簡単に述べる。

企業の資本蓄積の推移は,

$$k_{it}=i_{t-1}+(1-\delta)k_{it-1}$$
 (7) で与えられる.企業の投資決定は利潤の割引現在価値を最大化するように決まる.

企業の設備投資に関する最適決定ルールは, 完全情報下の状態変数である今期の資本量と生 産性に加え,前節の議論から純資産 nt にも依 存する.前述したように,これは純資産が,外 部資金を調達する際のプレミアムを通じて最適 な投資規模に影響を与えるためである.従って 不完全資本市場のもとでの企業の投資関数は以 下のように書くことができる8.

$$i_{it} = i_t(\omega_{it}, k_{it}, n_{it}) \tag{8}$$

(第1段階)

 i_{tt} と ω_{tt} に単調増加な関係が存在すると仮定すれば、(8) 式を ω_{tt} について解くことができる。この投資関数の逆関数を $h_{tt}(...)$ とする。

$$\omega_{it} = h_{it}(k_{it}, i_{it}, n_{it}) \tag{9}$$

これを(5)式に代入すると,

 $y_t = \beta_l l_{it} + \beta_m m_{it} + \phi_t (i_{it}, k_{it}, n_{it}) + \eta_{it}$ (10) が得られる。ただし

 $\phi_{tt}(i_{tt}, k_{tt}) = \beta_0 + \beta_k k_{tt} + h_{tt}(i_{tt}, k_{tt}, n_{tt})$ (11) である. (10) 式はノンパラメトリック関数 ϕ_{tt} を含む部分線形回帰モデルであるが、パラメター β_{tt}, β_{m} についてはパラメトリックモデルと同等な一致推定量を得ることができる(Robinson (1988)、Yatchew (2000) を参照). ここでは

Robinson(1988)に従って、観測値と推定された条件付き期待値との誤差を用いて、 β_l と β_m の推定を行う。

(10)式の条件付き期待値は

$$E[y_{tt}|k_{tt}, i_{tt}, n_{tt}] = E[l_{tt}|k_{tt}, i_{tt}, n_{tt}] + E[m_{tt}|k_{tt}, i_{tt}, n_{tt}] + \phi_{it}(i_{tt}, k_{tt}, n_{tt})$$
(12)

と書ける.ここで,条件付き期待値 $E[y_{tt}|k_{tt}, i_{tt}, n_{tt}]$, $E[l_{tt}|k_{tt}, i_{tt}, n_{tt}]$, $E[m_{tt}|k_{tt}, i_{tt}, n_{tt}]$ は, それぞれ y_{tt} , l_{tt} , m_{tt} を k_{tt} , i_{tt} , n_{tt} に (ノンパラメトリック) 回帰して得ることができる 9 . (10) 式から条件付き期待値 (12) 式を引けば,

$$(y_{tt}-E[y_{tt}|k_{tt},i_{tt},n_{tt}])$$

$$=\beta_{t}(l_{tt}-E[l_{tt}|k_{tt},i_{tt},n_{tt}])$$

$$+\beta_{m}(m_{tt}-E[m_{tt}|k_{tt},i_{tt},n_{tt}])+\eta_{tt} \quad (13)$$
となり、(13)式を線形回帰すれば、パラメター
 β_{tt},β_{m} の推定値が得られる。

(第2段階)

第2段階では残りの資本ストックのパラメター β_k を推定する。企業の資本ストックの動き考えてみると、t 期の資本ストック k_t はt-1 期の投資によって決定されている。したがって、企業の投資決定はt-1 期での情報を下に将来の生産性の動きを予測して決定されていることになる。t-1 期でのt 期の生産性 ω_t の実現値は、

$$\omega_{it} = E[\omega_{it} | \omega_{it-1}] + \xi_{it}$$

と書ける。ここで, $E[\omega_{tt}|\omega_{tt-1}]$ はt-1期での生産性ショックの予測値であり, ξ_{tt} は予測の誤差である。当然,予測誤差 ξ_{tt} はt-1期の投資決定とは無相関であり,これはすなわちt期の資本ストック k_{tt} とは独立であることを意味する。第2段階では予測誤差 ξ_{tt} とt期の資本ストック k_{tt} とが無相関であることを利用すれば,パラメター k_{tt} を推定することができる。

まず、第1段階の推定から $\hat{\phi}_{tt}$ を得ているので、資本ストック k_{tt} のパラメータ β_{k} を所与とすればすべてのiとtについて

$$\widehat{\omega}_{it}(\overline{\beta}_k) = \widehat{\phi}_{it} - \overline{\beta}_k k_{it} \tag{14}$$

を計算でき、(14)式を用いて企業の生産性ショックの予測値を推定する。すなわち $\omega_{tt}(\bar{\beta}_k)$ を $\omega_{tt-1}(\bar{\beta}_k)$ に(ノンパラメトリック)回帰することで、条件付き期待値 $E[\omega_{tt}(\bar{\beta}_k)|\omega_{tt-1}-(\bar{\beta}_k)]$ を得ることができる。予測誤差 $\xi_{tt}(\bar{\beta}_k)$ は

 $\xi_{tt}(\overline{\beta}_k) = \omega_{tt}(\overline{\beta}_k) - E[\omega_{tt}(\overline{\beta}_k) | \omega_{tt-1} - (\overline{\beta}_k)]$ と計算できる。

先に述べたように、 $\xi_{tt}(\overline{\beta_k})$ はt-1期の投資 決定には影響を与えることはなく、したがって t期の資本ストックとは無相関である。したがって、モーメント条件を

$$E[\xi_{it}(\overline{\beta}_k)k_{it}] = 0$$

と書くことができるので、サンプルで上のモーメント条件を近似すると,

$$\frac{1}{N} \frac{1}{T} \sum_{i} \sum_{t} \xi(\overline{\beta}_{k}) x_{it} = 0$$
 (15)

となり、(15)式の二次形式を最小化するように β_k を決める。

5. 推定結果

本稿の実証分析では日本政策投資銀行データベース(DBJ データ)を用いた. 生産性の測定は,産業ごとに生産関数の形状が異なりうる可能性を考慮し,小分類ごとに行った. データの詳細については,付録を参照されたい.

サンプル期間は1996年から2006年とした. 1990年代後半の金融危機以降, 日本の資本市 場の不完全性は高まった可能性がある. そこで, 従来の Ollev-Pakes 法によるバイアスが深刻で あると考えられるこの期間のデータを用いた. なお, この時期は企業の純資産が急速に増加す る一方で、設備投資が低迷したことも知られて いる. Holmström and Tirole(1998) やその DSGE(動学的確率的一般均衡モデル)バージョ ンである Kato(2006)はこのような状況を動学 モデルによって考察した.彼らのモデルによれ ば,将来の支出に備えて純資産を流動性資産と して保有するために、現在の設備投資が減退す る¹⁰⁾. Kato(2006)はこのような「流動性モデ ル」の投資関数が、Bernanke et al.(1999) や Kiyotaki and Moore (1997) と同様に純資産の関 数となることを示している.

分析に用いた産業は、電気機械器具、輸送用機械器具、化学工業、一般機械の各産業である。なお、純資産の代理変数として、キャッシュフローを用いた¹¹⁾.

5.1 生産関数の推定結果

個別企業の生産関数の推定結果は以下の通りである.

表 1. 生産関数の推定(OLS, OP法, 改良 OP法)

	OLS		OP		OP with cashflow	
_	係数	標準誤差	係数	標準誤差	係数	標準誤差
電気機械器具(184 社)						
Labor	0.382	0.026	0.344	0.021	0.325	0.021
Intermidiate Imput	0.430	0.020	0.404	0.017	0.342	0.016
Capital	0.197	0.024	0.255	0.093	0.360	0.127
Time	0.074	0.006	0.081	0.014	0.099	0.047
輸送用機械器具(135 社	:)					
Labor	0.247	0.015	0.214	0.016	0.194	0.015
Intermidiate Imput	0.610	0.014	0.642	0.018	0.595	0.016
Capital	0.136	0.015	0.054	0.015	0.095	0.115
Time	0.021	0.003	0.007	0.003	0.030	0.016
化学工業(200 社)						
Labor	0.356	0.015	0.361	0.015	0.325	0.015
Intermidiate Imput	0.269	0.013	0.283	0.012	0.284	0.013
Capital	0.362	0.017	0.347	0.065	0.380	0.066
Time	0.016	0.004	0.019	0.006	0.018	0.015
一般機械(212 社)						
Labor	0.258	0.018	0.262	0.019	0.242	0.017
Intermidiate Imput	0.404	0.016	0.392	0.018	0.385	0.018
Capital	0.291	0.019	0.284	0.099	0.310	0.105
Time	0.014	0.004	0.028	0.009	0.030	0.023

注) OP とは, Olley-Pakes 法の省略.

表 2. OP 法の資本ストック係数に関するバイアス

	バイアス(レベル)	バイアス(%)
電気機械器具	0.105	0.291
輸送用機械器具	0.041	0.433
化学工業	0.033	0.088
一般機械	0.026	0.082

表1では、化学工業以外の諸産業において、推定された労働投入及び中間投入の係数は、完全資本市場を仮定した場合の推定値よりも小っな値となった。化学工業においても労働投入の係数は同様だが、中間投入の係数は完全資資本を仮定した場合の推定値よりも若干大きなった。また資本ストック係数は、完全資色となった。すなわち、通常のOlley-Pakes 法は労働投入及び中間の係数に対して上方バイイアスを持ち、資本ストック係数に対して下方バイアスを持つことがわかった12)。資本ストック係数に対して下方がイアスの大きさは、表2の通りである。

資本市場の不完全性を考慮しないことによる Olley-Pakes 法のバイアスは一般機械で8%, 最も大きい輸送用機械器具で43.3%であった.

5.2 解釈

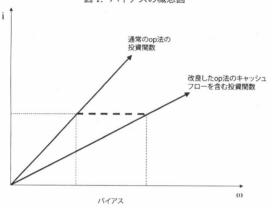
推定結果の Olley-Pakes 法のバイアスの方向は、前節の理論とも整合的である.

まず、理論的には前期 のキャッシュフロー η;;-1 と今期の生産性 ω;; は, 生産性の確率過程を 通じて正の相関が存在し, また今期の投資itとキ ャッシュフロー nit-1 に は正の相関が存在する. 従って以上の経路を無視 した通常の Olley-Pakes 法では, 労働投入および 中間投入の係数推定値に は上方バイアスが発生し, さらにこれを打ち消すよ うに資本ストックには下 方バイアスが存在すると 予想される. 実際, 推定 結果は以上の予想を支持

している.

表3は投資関数(8)式を(16)式から計算された生産性ショックを利用して推定した結果である。なお、第3節で議論した不完全資本市場下における改良されたOP法の推定結果を用いて、生産性指標(productivity)は以下のように計算される。

 $b_{it} = \exp\left(y_{it} - \hat{\beta}_0 - \hat{\beta}_i l_{it} - \hat{\beta}_k k_{it} - \hat{\beta}_m m_{it}\right) \quad (16)$ キャッシュフローを考慮した場合にはそうで ない場合に比べ、すべての産業で生産性ショッ クの係数が小さくなっている. これは前期のキ ャッシュフローと今期の生産性ショックとの正 の相関を反映する結果であり、投資関数でキャ ッシュフローをコントロールしない場合に生産 関数の係数の推定値に生じるバイアスの要因と いえる. 生産関数を推定する際にはコントロー ル関数(投資関数の逆関数)を用いて生産性ショ ックを代理しているが, Olley and Pakes (1996)のようにキャッシュフローを考慮しない と真の生産性ショックの一部のみしかコントロ ール関数は捉えることができない. つまり, 図 1に示されるようにバイアスが発生していると 考えられる.


6. 結論

本稿では、実証産業組織論において広く用い られる Olley and Pakes(1996)によるミクロレ

表 3. 投資関数の推定

	with cashflow		without	without cashflow			
	係数	標準誤差	係数	標準誤差			
電気機械器具							
Productivity	0.012	0.004	0.017	0.004			
Capital	0.763	0.052	0.932	0.025			
Cashflow	0.180	0.048					
輸送用機械器具							
Productivity	5.55E-06	0.004	0.004	0.004			
Capital	0.780	0.062	0.999	0.027			
Cashflow	0.220	0.056					
化学工業							
Productivity	0.002	0.012	0.013	0.012			
Capital	0.610	0.076	0.919	0.036			
Cashflow	0.310	0.068					
一般機械							
Productivity	-0.004	0.006	-0.001	0.006			
Capital	0.752	0.062	0.980	0.029			
Cashflow	0.252	0.061					

図1. バイアスの概念図

ベルの生産関数推定法を不完全資本市場の下でもロバストな推定値を得られるべく改良した.また改良した手法を用いて、資本市場の不完全性がより深刻であったと考えられる 1990 年代後半の日本におけるいくつかの製造業のデータを用いて実証分析を行った。本稿で得られた結果は以下のようにまとめられる。まず通常のOlley-Pakes 法から得られる係数推定値には、理論通りのバイアスが存在した。またバイアスの大きさは産業ごとに異なるが、約8-40%と比較的大きなものであった。

本稿に残された課題としては、第1に、通常の Olley-Pakes 法と改良された Olley-Pakes 法とで、推定された生産性(ω_{tt} あるいは TFP)がどの程度違うのかを厳密に調べる必要がある。第2に、退出行動が生産関数の推定に及ぼすバイアスについても、データを精査して、Olley-Pakes 法で想定されている退出行動を識別した

上で、その効果を再評価する必要があるだろう。 第3に、投資額がゼロ以下の企業を本稿では除外しているが、投資額ゼロ以下の企業行動と生産性がどのような関係があるのかを検討して、それらのサンプルも含めたデータで分析を行うことも考えてみる価値はある。実際にこのような制約によって除外されているサンプルが34.5%もあることを考えると、これら企業が持っている情報を無駄にするコストはかなり大きいと考えられる。また、企業が投資額を負にしているということは、資本ストックを削減しているととで意味する。これはいわば、企業再生を極めて意味のあることであろう。

本稿で提案した生産関数の推定方法は、資本 市場の不完全性を明示的に考慮しているので. 1990年代の日本における資源配分の機能不全 の問題を考える上で有益かもしれない. 企業の ミクロレベルのデータを用いた既存研究は. 1996年以降、幾つかの産業において退出企業 の平均生産性が存続企業の平均生産性を上回っ ていたという結果を報告している。 すなわち、 1990年代の日本では、生産性の低い企業が市 場から退出し、生産性の高い企業が市場に残る、 という市場による「自然淘汰」が有効に機能し ていなかった可能性を指摘している(Nishimura et al. (2005), Fukao and Kwon (2006). Caberello, Hoshi and Kashyap (2008)). Fukao and Kwon(2006)は、多くの実証研究が TFP 上昇率の停滞が製造業においてより深刻であっ たことを指摘した上で、製造業における TFP 上昇率停滞の要因を探っている。Nishimura et al.(2005) 及び Fukao and Kwon(2006) は、1990 年代における製造業の TFP 停滞が参入, 退出, 再配分による資源配分機能の不全によるもので あることを示唆している.彼らの推論が正しけ れば、1990年代後半の日本のおいて、何らか の理由によって収益性のある投資機会に必ずし も効率的に資金が配分されなかったことを示し ていると言えるだろう13). また, 別の分野では あるが, Baneriee and Moll(2009). Hsieh and Klenow (2008) などでは資本分配の失敗が発展 途上国の集計した生産性を必要以上に停滞させ ていることを示唆している.

本稿で提案した推定手法は,市場の不完全性についてのミクロ的基礎付けを持つので,生産性変動のメカニズムを分析する上でも,有効であるう.

(一橋大学経済研究所・一橋大学大学院経済学研究科大学院生・一橋大学大学院経済学研究科大学院生)

付録 A. 退出によるバイアスの補正

ここでは、本文の基本モデルに内生的な退出決定を考慮した推定について議論する。Olley and Pakes (1996) にならい、企業は今期の生産性ショックが実現した後に生産を行うか、または生産価値を受け取り市場から退出するかを毎期選択するものとする。その場合、企業が今期営業を続けるかどうかは、 ε_{tt} にも依存することになり、観察される k_{tt} と予測誤差 ε_{tt} との間に相関が生まれる。その結果、資本ストック k_{tt} のパラメター β_{k} にバイアスが生じる。

まず、t-1期における情報および、t期に市場に残ることで条件付けした(5)式の期待値は、

$$E[y_{tt}|I_{tt-1}, \chi_{tt} = 1]$$

$$= E[\beta_{0} + \beta_{t}l_{tt} + \beta_{m}m_{tt} + \beta_{k}k_{tt} + \omega_{tt} + \eta_{tt}|I_{tt-1}, \chi_{tt} = 1]$$

$$= \beta_{0} + \beta_{t}l_{tt} + \beta_{m}m_{tt} + \beta_{k}k_{tt} + E[\omega_{tt}|I_{tt-1}, \chi_{tt} = 1]$$
(17)

となる。今,推定したいものは資本ストックのパラメター β_k であり $(\beta_l$ および β_m に関しては退出の有無にかかわらず推定ができる),そのためには ω_{tt} の条件付き期待値である $E[\omega_{tt}|I_{tt-1},\chi_{tt}=1]$ を何らかの形で置き換えることが必要になってくる。

企業は操業を選ぶ場合に得られる便益が清算価値を下回るときに退出を選択するので、企業の退出決定は、生産性ショックに関する閾値戦略によって与えられる。不完全資本市場の下では追加的な状態変数として今期の純資産が加わることに注意すれば、退出に関するカットオフ・ルールは次式で与えられる。

$$X_{tt} = \begin{cases} 1 & \text{if } \omega_{tt} \ge \overline{\omega}_{tt}(k_{tt}, n_{tt}) \\ 0 & \text{otherwise} \end{cases}$$
 (18)

企業が退出するかどうかについて、カットオフ・ルールを用いていることから、生産性ショックの条件付き期待値は以下のようにカットオフ・ポイントと前期の生産性ショックの関数として書くことができる.

$$E[\omega_{tt}|I_{tt-1}, \chi_{tt} = 1] = E[\omega_{tt}|I_{tt-1}, \omega_{tt} \geq \overline{\omega}(k_{tt}, n_{tt})]$$

$$= \frac{\int_{\overline{\omega}(k_{tt}, n_{tt})}^{\infty} \omega_{tt} p(\omega_{tt}|\omega_{tt-1}) d\omega_{tt}}{\int_{\overline{\omega}(k_{tt}, n_{tt})}^{\infty} p(\omega_{tt}|\omega_{tt-1}) d\omega_{tt}}$$

$$= g(\omega_{tt-1}, \overline{\omega}(k_{tt}, n_{tt}))$$
(19)

従って、前期の生産性ショックとカットオフ・ポイントとを知ることができれば、バイアスを除去できることがわかる。しかしながら、第1段階の推定から前期の生産性ショックは計算できるが ((14)式参照)、カットオフ・ポイント $\overline{\omega}(k_{tt},n_{tt})$ は 観察することはできない。したがって、カットオフ・ポイントを観察できる変数のみで表現し直す必要がある。

カットオフ・ルールはその特徴ゆえに以下のように確率で表現することができる.

$$\Pr(\chi = 1 | \omega_{tt-1}, \overline{\omega}(k_{tt}, n_{tt})) = \psi(\omega_{tt-1}, \overline{\omega}(k_{tt}, n_{tt}))$$

$$= \psi'(\omega_{tt-1}, k_{tt}, n_{tt})$$

$$= \psi''(k_{tt-1}, n_{tt-1}, i_{tt-1})$$

$$\equiv P_{tt} \qquad (20)$$

3番目の等式は生産性ショック $\omega_{tt-1}=h_{tt-1}(k_{tt-1},i_{tt-1},n_{tt-1})$ および k_{tt},n_{tt} は $k_{tt-1},n_{tt-1},i_{tt-1}$ の関数であることによる。企業が次期にデータに表れる確率 P_{tt} は、観察されるデータから企業の生存行動を k_{tt-1},n_{tt-1} にノンパラメトリック回帰することで推定することができる。この推定式から得られる予測値を \hat{P}_{tt} とする140。すると以下のように観察不能なカットオフ・ポイントを、推定された確率 \hat{P}_{tt} と ω_{tt-1} の関数として書くことができる。

$$\overline{\omega}(k_{tt}, n_{tt}) = \psi^{-1}(\omega_{tt-1}, \widehat{P}_{tt})$$
 (21)

推定されたカットオフ・ポイント(21)を(19)式に 代入して(17)式を書き換えると

$$E[y_{tt}|I_{tt-1}, \chi_{tt} = 1] = \beta_0 + \beta_t l_{tt} + \beta_m m_{tt} + \beta_k k_{tt} + g(\omega_{tt-1}, \phi^{-1}(\omega_{tt-1}, \widehat{P}_{tt}))$$

$$= \beta_0 + \beta_t l_{tt} + \beta_m m_{tt} + \beta_k k_{tt} + g'(\phi_{tt-1}, -\beta_0 - \beta_k k_{tt-1}, \widehat{P}_{tt})$$

$$= \beta_t l_{tt} + \beta_m m_{tt} + \beta_k k_{tt} + \widetilde{g}(\omega_{tt-1}, \widehat{P}_{tt})$$
(22)

と、今期の生産性ショックを前期の生産性ショック ω_{tt-1} と生存確率 \hat{P}_{tt} の関数で代理することができる(ただし ω_{tt-1} は β_k に依存している). また ノンパラメトリック関数 \bar{g} によって β_0 は消去できる.

最終的に、パラメター β_k は次の式を非線形最小二乗法(NLLS)で推定することで得られる.

$$y_{it} - \hat{\beta}_i l_{it} + \hat{\beta}_m m_{it} = \beta_k k_{it} + \tilde{g} \left(\omega_{it-1}, \hat{P}_{it} \right) + \eta_{it}$$

表 4. 退出を考慮した電気機械産業の生産関数の推定

	OP		OP with cashflow	
,	係数	標準誤差	係数	標準誤差
Labor	0.344	0.021	0.325	0.021
Intermediate input	0.404	0.017	0.342	0.017
Capital	0.247	0.080	0.329	0.101
Time	0.068	0.039	0.051	0.045

表 5. 電気機械産業における退出決定

exit	Probit			線形確率モデル		
	係数	標準誤差	z 値	係数	標準誤差	t 値
Productivit	-0.154	0.142	-1.080	0.000	0.000	-0.850
Capital	-0.564	0.494	-1.140	-0.002	0.003	-0.820
Cashflow	0.643	0.522	1.230	0.002	0.003	0.930
Time	0.213	0.137	1.560	0.001	0.001	1.450
Const.	-425.661	273.015	-1.560	-2.084	1.445	-1.440

退出を考慮した生産関数の推定

以上の方法で退出決定のセレクション・バイアスを考慮し、電気機械器具について生産関数の推定を行った、結果は、表4の通りである.

パラメータ推定値は、完全資本市場を想定した場合、不完全資本市場を想定した場合、ともに退出を考慮しない場合の結果とほぼ同様であった。通常、企業が市場から(内生的に)退出することを無視して生産関数を推定してしまうと資本の係数にはネガティブ・バイアスが生じる(Olley and Pakes (1996)). 従って、企業の退出行動を考慮に入れて生産関数の推定を行えば、そうしない場合に比べ資本の係数は正の方向に大きくなるはずである。ところが表1と表4について比べると、有意な差ではないものの想定される結果とは反対になっており、退出バイアスはコントロールできなかった。

退出分析の推定

次に前節で得られた個別企業の生産性の推定結果を用いて企業の退出がどのような要因により決定されているかを分析する.

仮に個別企業が完全な資本市場に直面しているとするならば、退出決定は生産性と資本ストックの水準により完全に説明され、キャッシュフローはいかなる説明力も持たないはずである。逆に企業が不完全な資本市場に直面しているならば、企業の退出は前期のキャッシュフローに依存する、

そこで資本ストック,前期の)キャッシュフロー,推定されたTFPを説明変数とする退出に関するプロビット推定および線形確率モデル推定を行った(表5参照).

まず、効率的な資源配分が行われているならば、 生産性の係数は有意に負の推定値を持つはずであ る. 実際、Olley and Pakes(1996)は生産性の係数 について有意に負の値を得ている。さらに、企業 が完全な資本市場に直面しているならば、キャッ

> シュフロー変数の係数推定値は0と なるはずである.推定の結果,いず れの係数推定値についても統計的に 有意とはならなかった.このことは, 効率的な資源配分が行われていない 可能性と資本市場が完全であること を同時に意味しており,さらに詳細 な識別が必要であることを示唆して

いる. 本稿で用いたデータセットでは退出分析に関しては、理論的に想定される退出行動以外の退出も含まれており、本データセットを用いてこれ以上深い分析はできないと判断した.

付録 B. データ

本稿の実証分析では日本政策投資銀行データベース(DBJ データ)を用いた.生産性の測定は,産業ごとに生産関数の形状が異なりうる可能性を考慮し,小分類ごとに行った.サンブル期間は1996年から2006年とした.

分析に用いた産業は、比較的企業数が多く、参入退出行動も見られる産業を選んだ¹⁵⁾. すなわち、製造業のうち、電気機械器具(初期サンプル 197社)、輸送用機械器具(同 140社)、化学工業(同 207社)、一般機械(同 224社)の各産業である. これらの産業毎の変数の基本統計量やその分布を事前に確認したが、取り立てて大きな歪みや外れ値は見いだされなかった. 以下で説明するように、投資やキャッシュフローで負の値をとるサンプルを除外し、投資関数でラグをとった結果、いくつかのサンプルが落ちているが、それ以外の理由ではデータの除外は一切行っていない.

次に各変数の作成方法について述べる. 価格インデックスは, 産出物, 資本, 中間投入に関しては JIP2006 の価格指数を, 労働投入に関しては消費者物価指数を用いた.

資本

Hayashi and Inoue(1991)をもとに作成した. 資本 財は以下から構成される.

1. 非住居用建物

- 2. 建造物(structures)
- 3. 機械
- 4. 運送設備
- 5. 機器・工具(instruments and tools) 資本は以下の式に従って作成する.

$$K_{it} = bvK_{it} \times (iK_{jt}/ibvK_{jt})$$
 (23)

ただし bvK_{tt} が簿価有形固定資産額(土地を除く), iK_{tt} は企業 i が属する産業 j の純資本ストック, $ibvK_{tt}$ は産業 j の簿価資本ストックを表わす.産業の純資本ストックは

$$iK_{it} = I_{it} + (1 - \delta) iK_{it-1}$$
 (24)

により、1990年の資本ストックを初期値として計算する。ただし1995年の資本財価格を用いることとする。 δ_t は産業別減価償却率で、JIP 産業分類別に求めたものである。

名目投資

名目投資変数は,以下の手順により作成した.

 $NOMI_t = KNB_t - KNB_{t-1} + DEP_t$ (25) ただし、 KGB_t :期末の粗資本ストックの簿価。 KNB_t :期末の純資本ストックの簿価。 AD_t :簿価。 DEP_t :期間内の減価償却。である。上式の定義上、全観察値 13354 件中 4604 件が負の値をとっている。回帰分析に際して対数をとる関係上,負の投資は除外してある。これは全観察値の 34.5% を占めている。

労働投入

労働投入として、給与支払い総額を用いた.

産出物

産出物として,営業収入を用いた.

中間投入

中間投入は、DBJ データの項目のうち、「原材料使用額」、「電気・水道使用額」、「外注委託費」、「輸送費」の合計とした。デフレーターは日本銀行企業物価指数を用いた。

キャッシュフロー

キャッシュフロー変数は以下の定義に従って作成した.

キャッシュフロー = (当期利益)

- +(減価償却費)
- (株主配当金)

-(役員賞与) (26)

ここでも回帰分析に際して、対数をとる関係上、 負の値をとるキャッシュフローは除外した。全観 察値 13360 件中 1704 件、12.8% が負の値をとって いた。

付録 C. 不完備契約モデル

本文でも述べたように、企業の最適な投資決定が純資産に依存するとの結果は、非常に広いクラスの不完全資本市場の理論において成立する結果である。本文では CSV のケースを見たが、ここでは Kiyotaki and Moore(1997)に代表される不完全コミットメントに基づく不完全資本市場の理論においても、このような結果が成立することを簡略に説明しておきたい。

清滝(1996)によれば、貸し手と借り手の間の情報の非対称性は、必ずしも資本市場の不完全が存在するための必要条件ではない、彼は貸し手が借り手に債務契約の履行を強制できないために生じる資本市場の不完全性に注目して次のような議論を展開した。

企業家は資本に関して線形の生産技術を有し、 投資は自己資本に加えて借り入れによってもファイナンスできる。その際、以下の2つの仮定によ り貸し手は借り手に返済を強制できず、それゆえ 負債には上限が存在する。

- ・企業家に生産を強制できない.
- ・プロジェクトの実施には固有の経営能力が必要であり、外部の企業家が経営を引き継ぐことはできない.

企業家から貸し手への返済が行われる場面を見てみよう。負債があまりに多額になると、企業家は負債を減免しないと生産を放棄すると貸し手を脅迫する。負債の減免に応じない場合、貸し手は土地を差し押さえるしかない。これを見越した企業家は、負債を土地の担保価値まで圧縮することを要求する160。以上を見越した貸し手は、負債返済額が土地の担保価値を超えないように貸出額を抑制する。その結果、企業家の投資選択は土地の担保価値の制約を受けることとなる。

注

* 一橋大学経済研究所定例研究会報告(2009年3 月4日)に対する討論者であった深尾京司教授(一橋大 学)のコメントに感謝したい、また、阿部修人准教授、植杉威一郎准教授、小田切宏之教授、川口大司准教授、塩路悦朗教授、都留康教授、安井健悟講師、松浦寿幸講師(以上、一橋大学)、清田耕造(横浜国立大学)、鈴木史馬氏(一橋大学大学院)および一橋大学経済研究所定例研究会出席者からは有益なコメントをいただいた、記して感謝したい、安藤浩一氏(日本政策投資銀行)には、データに関する質問に丁寧に答えていただいた。また北村は2004年度全国銀行学術研究振興財団より「企業金融と企業業績に関するミクロ計量経済学的分析」に対して助成を受けている。記して感謝したい、言うまでもなく、ありうべき誤りは筆者に帰する。

- 1) Olley-Pakes 法のその他の方面での拡張としては、Levinsohn and Petrin(2003)が投資関数ではなく原材料を生産性の代理関数として用いることを提案し、Ackerberg. Caves and Frazer(2006)では労働と原材料間の共線性問題を回避する方法を提案している.
- 2) 例えば, Ogawa et al. (1996), Ogawa and Suzuki (1998, 2000), 大久保・浅子 (1999) を参照.
- 3) 具体的には、Costly State Verification(CSV)と呼ばれるモデルである.
- 4) 他の不完全資本市場のモデルとして,例えば Kato(2006)がある.後述するように Kato(2006)は,1990年代後半の日本の企業行動の一側面を説明するモデルとして優れていると考えられる.
- 5) 厳密な議論は Bernanke *et al.*(1999) を参照のこと、このアプローチの日本の景気循環への応用に関しては Fukunaga (2002) がある。
- 6) Olley and Pakes(1996)では、もう一つの内生性問題として、企業の退出も検討している。すなわち、企業は生産性情報を見た上で、企業を存続させるか退出するかを決定すると考えると、労働などの投入などの決定以前に、生産性と継続か退出かのセレクションの間に相関がある可能性が考えられる。この企業の市場からの退出によるセレクション・バイアスを補正した Olley-Pakes 法については付録 A で詳細に論じている。
- 7) このような対処の仕方は一般にコントロール関数法(control function approach)と呼ばれている。ある説明変数が被説明変数に影響を与えることはわかっているが、変数として観察不可能である場合に、それを近似するような変数あるいは関数を用いて、その説明変数が含まれない場合に生じる推定バイアスを緩和しようとするものである。
- 8) Olley and Pakes (1996) では投資がゼロ以下の値を取る場合は除外しており、本稿でもそれを踏襲している。これは投資 i_{tt} と生産性 ω_{tt} が単調増加関数であることを確保するための仮定であるが、Ackerberg, Benkard, Berry and Pakes (2007, pp. 4220-4222) で論じているように投資額ゼロあるいは負の値をとる企業行動は広範に見られる。Levinsohn and Petrin (2003) は OP 法は一致推定を得られるかもしれないが、有効推定ではないという点から、ゼロ以下のデータを除外することの問題を指摘している。解決方法としてはLevinsohn and Petrin のように投資額ではなく中間投入財と生産性の関係を用いるというものがある。代替的に投資がゼロ以下の値を取る場合の生産性との関

- 係を明示化した上で,OP 法を拡張する方法も考えられる
- 9) Kernel は標準正規分布を用い, bandwidth は 産業毎に任意に設定している.
- 10) 流動性に関する理論・実証研究を総括した邦 語文献として、齊藤・柳川(2002)がある。
- 11) 純資産として、他に土地評価額も考えられるが、当該データからは正確な値を計算することが困難なため用いていない.
- 12) ここで論じているバイアスとは通常の Olley-Pakes 法と改良された Olley-Pakes 法によって得られた推定係数の違いを指している. 計量経済学の推定法に関して通常行うモンテカルロ実験のように真のパラメータからの乖離をバイアスとして計測している訳ではない.
- 13) Nishimura *et al.*(2005) 及び Fukao and Kwon (2006) は具体的に、何らかの理由により銀行の審査能力が低下したのではないかと推測している.
- 14) サンプル・セレクションに関する研究分野では、 \hat{P}_{tt} はプロペンシティ・スコアと呼ばれている。Olley-Pakes 法とサンプル・セレクション分野との違いは、Olley-Pakes 法では \hat{P}_{tt} をコントロールするだけではなく、 ω_{t-1} とカットオフ・ポイントである $\overline{\omega}_{t-1}$ もコントロールすることを要求している点にある。
- 15) 産業構造や競争条件の違いが生産性やその他のパラメータの推定にどのような影響を与えるかを考えることは重要な課題であるが、本稿ではその問題は扱っていない。
- 16) 厳密には、企業家の脅迫に直面した貸し手にとって、プロジェクトを引き継ぐことと負債の減免に応じることは無差別である。しかし、ここでは貸し手は必ず負債減免に応じると仮定する。その結果、企業家は生産を行い、債務は履行される。

参考文献

- 深尾京司・権赫旭(2003)「日本の生産性と経済成長: 産業レベル・企業レベルデータによる実証分析」, ESRI Discussion Paper Series No. 66.
- 川本卓司(2004)「日本経済の技術進歩率計測の試み: 修正ソロー残差は失われた10年について何を語る か?」『金融研究』第23巻第4号, pp.147-186.
- 清滝信宏(1996)「信用と景気循環の理論」岩井克人・ 伊藤元重編著『現代の経済理論』所収,東京大学出版会。
- 宮澤健介(2008)「90 年代における稼働率の低下と TFP」,RIETI Discussion Papers Series 08-J-054.
- 大久保正勝・浅子和美(1999)「土地評価と資金調達 — 電気機械と化学工業の設備投資をめぐって — 」『住宅問題研究』6月号, pp. 3-24.
- 齊藤誠・柳川範之(編著)(2002)『流動性の経済学』東 洋経済新報社,
- Ackerberg, D., K. Caves and G. Frazer (2006) "Structural Identification of Production Functions," *Econometrica*, Vol. 64, No. 6, pp. 1263–1297.
- Ackerberg, D., L. Benkard, S. Berry and A. Pakes (2007) "Econometric Tools for Analyzing Market

- Outcomes," in J. J. Heckman (ed) *Handbook of Econometrics*, vol. 6A, North-Holland. Chapter 63, pp. 4171–4276.
- Banerjee, A. V. and B. Moll (2009) "Why Does Misallocation Persist?" *mimeo*, MIT.
- Bernanke, B. and M. Gertler (1989) "Agency Costs, Net Worth and Business Fluctuations," *American Economic Review*, Vol. 79, No. 1, pp. 14–31.
- Bernanke, B., M.Gertler and S. Gilchrist (1999) "The Financial Accelerator in a Quantitative Business Cycle Framework," in J. Taylor and M. Woodford. (eds), *Handbook of Macroeconomics*. vol. 1C, North-Holland. Chapter 21, pp. 1341–1393.
- Cabarello, R. J., T. Hoshi, and A. K. Kashyap (2008) "Zombie Lending and Depressed Restructuring in Japan," *The American Economic Review*, Vol. 98, No. 5, pp. 1493–1977.
- Carlstrom, G. and T. S. Fuerst (1997) "Agency Costs, Net Worth, Business Fluctuations: A Computable General Equilibrium Analysis," *American Economic Review*, Vol. 87, No. 5, pp. 893–910.
- Christensen, I. and A. Dib (2008) "The Financial Accelerator in An Estimated New Keynesian Model," *Review of Economic Dynamics*, Vol. 11, No. 1, pp. 155–178.
- Gertler, M., S. Gilchrist and F. M. Natalucci (2007) "External Constraints on Monetary Policy and The Financial Accelerator," *Journal of Money, Credit,* and Banking, Vol. 39, No. 2/3, pp. 295–330.
- Fukao, K. and Kwon, Hyeog ug (2006) "Why did Japan's TFP Growth Slow Down in The Lost Decade? An Empirical Analysis Based on Firmlevel Data of Manufacturing Firms," *The Japanese Economic Review*, Vol. 57, No. 2, pp. 185–228.
- Fukunaga, I. (2002) "Financial Accelerator Effects in Japan's Business Cycles," Research and Statistics Department, Bank of Japan, Working Paper Series, 02-6.
- Hayashi, F. and T. Inoue (1991) "The Relation between Firm Growth and Q with Multiple Capital Goods: Theory and Evidence from Panel Data on Japanese Firms," *Econometrica*, Vol. 59, No. 3, pp. 731-753.
- Holmström, B. and J. Tirole (1998) "Private and Public Supply of Liqudity," *Journal of Political Economy*, 106, pp. 1-40.
- Hsieh, C-T, and P. J. Klenow. (2008) "Misallocation and Manufacturing TFP in China and India," *Quarterly Journal of Economics*, forthcoming.
- Kato, R. (2006) "Liquidity, Infinite Horizons and Macroeconomic Fluctuations," European Economic Review, Vol. 50, No. 5, pp. 1105–1130.
- Kim, Young Gak. (2007) "Estimating Production

- Function with R & D Investment and Endogeneiry," *mimeo*, Hitotsubashi University.
- Kiyotaki, N. and J. Moore (1997) "Credit Cycles," Journal of Political Economy, Vol. 105, No. 2, pp. 211–248.
- Levinsohn, J. and A. Petrin (2003) "Estimating Production Functions Using Inputs to Control for Unobservables," *Review of Economic Studies*, Vol. 70, No. 243, pp. 317–341.
- Miyagawa, T., Y. Sakuragawa, and M. Takizawa. (2006) "Productivity and Business Cycles in Japan: Evidence from Japanese Industry Data," *Japanese Economic Review*, Vol. 57, No. 2, pp. 161–186.
- Nishimura, K. G., T. Nakajima and K. Kiyota. (2005) "Does the Natural Selection Mechanism Still Work in Severe Recessions? Examination of the Japanese Economy in the 1990s," *Journal of Economic Behavior and Organization*, Vol. 58, No. 1, pp. 53–78.
- Ogawa, K., Kitasaka, S., Yamaoka, H. and Y. Iwata (1996) "Borrowing Constraints and the Role of Land Asset in Japanese Corporate Investment Decision," *Journal of the Japanese and International Economies*, Vol. 10, No. 2, pp. 122–149.
- Ogawa, K. and K. Suzuki. (1998) "Land Value and Corporate Investment: Evidence from Japanese Panel Data," Journal of the Japanese and International Economies, Vol. 12, No. 3, pp. 232–249.
- Ogawa, K. and K. Suzuki. (2000) "Demand for Bank Loans under Borrowing Constraints: A Panel Study Japanese Firm Data," *Journal of the Japanese and International Economies*, Vol. 14, No. 1, pp. 1–21.
- Olley G. S. and A. Pakes. (1996) "The Dynamics of Productivity in The Telecommunications Equipment Industry," *Econometrica*, Vol. 64, No. 6, pp. 1263–1297.
- Robinson, P. (1988) "Root-N-Consistent Semiparametric Regression," *Econometrica*, Vol. 56, No. 4, pp. 931–954.
- Townsend, R. M. (1979) "Optimal Contracts and Competitive Markets with Costly State Verification," *Journal of Economic Theory*, Vol. 21, No. 2, pp. 265–293.
- Williamson, S. (1986) "Costly Monitoring, Financial Intermediation, and Equilibrium Credit Rationing," *Journal of Monetary Economics*, Vol. 18, No. 2, pp. 159–179.
- Williamson, S. (1987) "Costly Monitoring, Optimal Contracts, and Equilibrium Credit Rationing," Quarterly Journal of Economics, Vol. 102, No. 1, pp. 135–145.
- Yatchew, A. (2000) "Scale Economies in Electricity Distribution," *Journal of Applied Econometrics*, Vol. 15, No. 2, pp. 187–210.