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Contributing or free-riding? Voluntary participation
in a public good economy
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We consider a (pure) public goods provision problem with voluntary participa-
tion in a quasilinear economy. We propose a new hybrid solution concept, the
free-riding-proof core (FRP-core), which endogenously determines a contribu-
tion group, public goods provision level, and how to share the provision costs.
The FRP-core is always nonempty in public goods economies but does not usu-
ally achieve global efficiency. The FRP-core has support from both cooperative
and noncooperative games. In particular, it is equivalent to the set of perfectly
coalition-proof Nash equilibria (Bernheim et al. 1987) of a dynamic game with
players’ participation decisions followed by a common agency game of public
goods provision. We illustrate various properties of the FRP-core with an exam-
ple. We also show that the equilibrium level of public goods shrinks to zero as the
economy is replicated.

Keywords. Endogenous coalition formation, externalities, public good, perfectly
coalition-proof Nash equilibrium, free-riders, free-riding-proof core, lobbying,
common agency game.
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1. Introduction

The free-riding problem is a central issue in collective decision-making. Examples in-
clude lobbies that are formed to seek a government’s protection. Firms in an industry
may form a lobby to influence the government’s trade and industrial policies, but as long
as a sufficient number of firms participate in the lobbying (so that the resulting protec-
tion level is reasonably high), some firms may want to stay out and free-ride on others.
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Free-riding incentives also exist in other examples of collective decision-making, such
as firms’ cartel formation and international agreements to tackle the problem of global
climate change. The effectiveness of such lobbies, cartels, and international agreements
depends on the composition of the active participants in these activities, which is heav-
ily influenced by free-riding incentives.

These problems can be regarded as pure public goods provision problems with vol-
untary participation. Players are faced with a choice between actively participating in
public goods provision and free-riding on the contributors; if a player participates (and
only in such cases), she needs to share the cost of public goods provision, although she
can then influence the level of provision. A notable feature of the public goods provision
problem is that the expansion of the contribution group is always beneficial to every-
body. Since benefits from public goods will be extended beyond the contribution group
members, however, there always exist free-riding incentives, which generally grow as the
contribution group expands. Therefore, it is important to consider potential coalitional
deviations that are immune to further deviations. A proposal of membership expansion,
which is regarded as a coalitional deviation, may not be immune to free-riding by the in-
cumbents, however, so some of these Pareto-improving proposals may not be credible.
To define an appropriate solution to the public goods provision problem with volun-
tary participation, therefore, we must consider all possible coalitional deviations that
are immune to further deviations.

In this paper, employing a quasilinear economy, or equivalently a transferable utility
(TU) framework, we propose the free-riding-proof core (FRP-core) for the public goods
provision problem with voluntary participation, which is an institution-free solution
concept with farsightedness. The FRP-core is a hybrid solution concept, as it is required
to be immune not only to coalitional deviations to create an alternative contribution
group (in line with cooperative game theory), but to unilateral free-riding deviations
(in line with noncooperative game theory); the FRP-core can be considered as the core
without binding agreements. It determines the formation of a contribution group, pub-
lic goods provision level, and a payoff allocation within the group.

The FRP-core is defined in the following way. First, for every possible contribution
group, we collect all allocations such that (i) they are immune to all coalitional devia-
tions by subsets of the group to reorganize the contribution group and (ii) no member
of the group is better off by unilaterally opting out of the group to free-ride. These al-
locations constitute the set of internally stable allocations for the contribution group.
Second, for each contribution group, we collect all internally stable allocations that are
not blocked by any other contribution group’s deviations with their internally stable al-
locations. The free-riding-proof core (FRP-core) is the union of such stable sets over all
possible contribution groups. In a pure public goods economy, the FRP-core is always
nonempty (Proposition 2).

The FRP-core has not only intuitive appeal, but also useful correspondences with
cooperative and noncooperative game solution (equilibrium) concepts. On one hand,
the FRP-core is equivalent to the core when the set of feasible allocations is restricted to
those of the free-riding-proof (Theorem 1). Thus, the FRP-core is a natural and appeal-
ing solution concept from the viewpoint of cooperative game theory, which provides
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solutions that are robust to changes in detailed specifications of discussed situations.
On the other hand, the FRP-core is equivalent to the set of equilibrium outcomes of a
simple extensive-form game such that players individually decide whether to partici-
pate in the public goods contribution group in the first stage, followed by a common
agency game (Bernheim and Whinston 1986) of public goods provision, with players in
the contribution group as principals and the government as the agent. This equivalence
provides support for the FRP-core from the viewpoint of noncooperative game theory.

The equivalence result requires further explanation. The common agency game in-
troduced by Bernheim and Whinston (1986) is a game in which players (principals) si-
multaneously offer their individual contribution schedules to the agent to try to affect
the agent’s action in their own interests.1 To refine the Nash equilibrium, which tends to
yield a large equilibrium set due to the coordination problem, Bernheim and Whinston
(1986) propose the coalition-proof Nash equilibrium (CPNE), a communication-based
equilibrium concept for the common agency game. In the first stage of our extensive-
form game, players individually decide whether to participate in the contribution group,
which also involves the coordination problem. Therefore, it is natural for us to adopt
a dynamic extension of CPNE, which is the perfectly coalition-proof Nash equilibrium
(PCPNE; Bernheim et al. 1987). The equilibrium concept PCPNE fits particularly well
with the public goods provision problem in which players may communicate with each
other as to whether they join the contribution group.

The equilibrium concept PCPNE has a few merits: (i) it determines a contribution
group, public goods provision level, and how to share the provision costs all together,
(ii) it allows players to propose a (coalitional) deviation plan in which they coordinate
their strategies (including the ones in subgames) through communications, and (iii) it
requires credibility of proposed deviation plans so that no credible deviation remains in
equilibrium. CPNE and PCPNE are strategy profiles that are immune to (recursively de-
fined) credible group deviations with their strategies coordinated. A credible deviation is
a deviation that is immune to further nested credible deviations. The credibility require-
ment enables us to exclude noncredible proposals of membership expansion from con-
sideration. We show the equivalence between the FRP-core and PCPNE’s of the afore-
mentioned extensive-form game of public goods provision (Theorem 2). In contrast, Ap-
pendix C examines some other natural candidates for the equilibrium concept, such as
the subgame perfect Nash equilibrium, and some other forms of the public goods pro-
vision game, and shows that these other equilibrium allocations do not coincide with
the FRP-core allocations. What distinguishes PCPNE from other solution concepts is
property (ii) above. Players in a deviation group can discuss which (credible) strategies
they take in the following subgames, which eliminates ungrounded fears about possibly
unfavorable consequences of the deviation and hence solves the coordination problem.

We examine properties of the set of FRP-core allocations with a simple example in
which players differ only in their willingness to pay for a public good, and show that
(i) there are multiple possible equilibrium contribution groups in general, (ii) an equi-
librium contribution group may not include the player with the highest willingness to

1This game has been widely applied to political economy models with lobbying, especially in the field of
international trade (e.g., Grossman and Helpman 1994).
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pay, and (iii) equilibrium contribution-group members may not be consecutive in their
willingness to pay, i.e., there may be an outsider whose willingness-to-pay lies between
those of two contributors.

We also analyze how equilibrium public goods provision changes as the economy
grows in size. Following Milleron’s (1972) notion of replicating a public goods econ-
omy, we prove that the equilibrium public goods provision level converges to zero as the
economy grows (Theorem 3).2

This paper is organized as follows. The next two subsections briefly discuss some re-
lated literature. Section 2 sets out our public goods provision game and introduces the
FRP-core as a solution concept. We also provide a simple characterization of the FRP-
core (Theorem 1), which indicates that the FRP-core is a natural solution concept for the
public goods provision problem with voluntary participation. In Section 3, we provide
a noncooperative voluntary participation game and propose PCPNE as an equilibrium
concept. In Section 4, we prove the equivalence between PCPNE and the FRP-core (The-
orem 2). In Section 5, we provide an example to reveal some interesting properties of the
FRP-core. Section 6 considers a replica economy and shows that the public goods pro-
vision level shrinks to zero as the economy is replicated in a certain way (Theorem 3).
In Section 7, we conclude with a discussion of the robustness of our results to the utility
specification. In particular, we argue that all the results would be preserved with some
additional mild assumptions even if we adopt Gorman-form utilities (Bergstrom and
Cornes 1983) instead of quasilinear utilities. Appendix A provides useful properties of
the core of convex games and an algorithm that finds a core allocation starting with an
arbitrary utility vector. Appendix B collects proofs of our results. Appendix C examines
some other equilibrium concepts and extensive-form games to be compared with the
PCPNE of our extensive-form game (or the FRP-core).

1.1 Related literature in the theory of coalition formation

Since the public good in our problem is pure, so that outsiders can enjoy the benefits
from public goods provision, our problem belongs to the class of coalition formation
problems with spillovers (externalities). The literature on this subject is very large (see
Bloch 1997 and Ray 2007 for overviews); here we discuss only the papers most closely
related to ours.

CPNE has been adopted as an equilibrium concept in the theory of coalition for-
mation. Thoron (1998) examines the formation of a single cartel and shows that the
coalition-proof stable cartel is uniquely determined by adopting the CPNE as a solution
concept. Yi and Shin (2000) investigate a joint research venture that allows the formation
of multiple research and development cartels; they examine the existence of a CPNE and
its properties. In these papers, credible coalitional deviations are considered only at the

2Muench (1972), Milleron (1972), and Conley (1994) discuss the difficulty of replicating a public goods
economy and offer various possible methods. Milleron’s notion of replication is to split endowments with
replicates and adjust preferences so that agents’ concerns for the private good are relative to the size of their
endowments. This notion is employed by Healy (2010).
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stage of players’ decisions as to whether to participate in a coalition. In the extensive-
form game of this paper, we require both participation and contribution decisions of
players to be immune to credible coalitional deviations. To our knowledge, this paper is
the first to use PCPNE as a solution concept of the coalition formation problem, which
endogenously determines the coalition formation and the allocation of payoffs within
the coalition.

The literature also includes studies on coalition formation regarding the public
goods provision. Assuming identical players and nontransferable payoffs, Bloch (1997)
provides a complete comparison of the equilibrium coalition structures, employing var-
ious solution concepts and game forms. Also assuming identical players, Ray and Vohra
(2001) characterize the equilibrium coalition structure and payoff allocations for a stan-
dard sequential coalitional bargaining game of public goods provision. These authors
allow multiple coalitions to form for public goods provision. In contrast, we assume
that there is only one coalition and its members are the only ones who provide the pub-
lic good.3 But we allow players to be heterogeneous and, more importantly, provide a
simple characterization of the set of PCPNE allocations by utilizing its equivalence with
the FRP-core.

Last but not least, there is the literature on noncooperative coalition bargaining
games that discusses the relationship between the equilibrium outcome(s) in the limit
cases and the core. Chatterjee et al. (1993) show that the Markov equilibrium outcome is
a subsolution of the core (in convex TU games). Perry and Reny (1994) and Moldovanu
and Winter (1995) provide coalitional bargaining games that implement the core.4 The
latter two papers are particularly related to our paper, since the set of outcomes of CPNE
is equivalent to the core in our common agency game.5 In Appendix C, we compare the
set of PCPNE’s of our game with equilibrium outcomes of these noncooperative bar-
gaining games preceded by a voluntary participation game.

1.2 Related literature on voluntary participation mechanisms in a public goods economy

It is well known that public goods provision is subject to free-riding incentives. Although
Samuelson’s (1954) view of this problem is pessimistic, Groves and Ledyard (1977) show
that efficient public goods provision can be achieved in Nash equilibrium if individ-
ual rationality is not required. Hurwicz (1979) and Walker (1981) show that the Lindahl
mechanism is implementable. Subsequently, numerous mechanisms have been pro-
posed to improve the properties of mechanisms. They all assume, however, that players
have no freedom to make participation decisions about the mechanism, i.e., players’
participation in the mechanism is always assumed.

3With our second-stage common agency game, this difference turns out to be unimportant. Even if mul-
tiple coalitions are formed, the equilibrium public goods provision level will be the same as when the union
of them is the contribution group. We need to assume, however, that nonparticipants cannot contribute in
the second stage.

4We thank a referee for bringing our attention to this literature.
5Laussel and Le Breton (2001) show that the set of CPNE outcomes is equivalent to the core when the

underlying TU game of a common agency game is convex. Convexity of the TU game is satisfied in the
common agency game in a public goods provision problem.
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Introducing outside opportunities by a “reversion function” (such that each out-
come is mapped to another outcome in the case of no participation), Jackson and Pal-
frey (2001) analyze the implementation problem when players’ participation in a mech-
anism is voluntary. Although their reversion function is very general, it assigns the same
outcome no matter who deviates from the original outcome. Thus, the method may not
be suitable for a public goods provision problem in which different players’ deviations
from participation may generate different outcomes. Taking this consideration into ac-
count, Healy (2010) analyzes the implementation problem in a public goods economy
that demands all players’ participation in equilibrium (i.e., equilibrium participation).
He shows that as the economy is replicated in Milleron’s (1972) sense, the set of equi-
librium allocations of any mechanism that satisfies the equilibrium participation con-
dition converges to the endowment. Although the equilibrium public goods provision
level also converges to zero as the economy is replicated in our model, we allow players
not to participate in the contribution group in equilibrium, and it is indeed a source of
underprovision of the public good, unlike Healy’s (2010).

Closest to our noncooperative framework is the one by Saijo and Yamato (1999), who
are the first to consider a two-stage voluntary participation game of a public goods econ-
omy, without requiring all players’ participation in equilibrium.6 They show a negative
result on the efficiency of public goods provision and then characterize subgame perfect
equilibria in the case of symmetric Cobb–Douglas utility. In contrast, we show that the
set of PCPNE of a common agency game with a participation decision is equivalent to
our FRP-core, allowing heterogeneous players who have quasilinear utility functions.

Palfrey and Rosenthal (1984) show that in a binary public goods provision game
where symmetric players voluntarily make participation decisions, all pure-strategy
Nash equilibria are efficient (if contributions are not refundable in the case of no pro-
vision). With asymmetric players, there are many Nash equilibria with different levels
of cooperation. Shinohara (2009) examines a public goods provision problem with de-
creasing marginal benefits, and shows in the case of homogeneous players that it be-
comes harder to support efficient allocations as the efficient level of the public good
rises and hence the number of participants needed to provide the public good increases.
Our Theorem 3 is somewhat similar to this result.

2. The model

This section sets out the contribution game in which all players’ interests accord with
each other, although the intensity of their interests can be heterogeneous. We first de-
scribe the problem of interest and then propose the FRP-core as an appealing solution
to the problem.

6In the field of international trade, Bombardini (2008) and Paltseva (2009) extend Grossman and Help-
man’s (1994) menu-auction political-economy model to incorporate firms’ voluntary participation in lob-
bies; they consider the cases in which firms in oligopolistic, import-competing industries make participa-
tion decisions. Unlike our noncooperative game framework, Bombardini (2008) considers only the most
efficient contribution group, while Paltseva (2009) assumes that firms are symmetric and derives subgame
perfect equilibrium as opposed to PCPNE.
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2.1 Public goods provision problem

A stylized public goods model is defined as follows. There is a public good whose pro-
vision level is denoted by a ∈ A = R+.7 Provision cost function C :A → R+ is contin-
uous and strictly increasing with C(0) = 0. The government provides the public good
and its cost is regarded as the government’s disutility from the provision; the govern-
ment’s utility from providing a units of the public good is vG(a) = −C(a). Player i’s
utility function is quasilinear such that her utility from the consumption of the public
good is vi(a) and the net consumption x of the private goods enters the function lin-
early, i.e., vi(a) + x, where vi :A → R+ is strictly increasing with vi(0) = 0. To guarantee
the existence of a nontrivial solution, we assume that (i) there exists ã ∈ A such that
vi(ã) − C(ã) > 0 for all i ∈ N , where N is the set of n players, and (ii) there is â ∈ A such
that

∑
i∈N vi(a) − C(a) < 0 for all a > â. The only new element in this standard public

goods provision game is that every player has a choice as to whether to participate in
the contribution group. The contribution group, therefore, may be a proper subset of all
players.

2.2 Free-riding-proof core

We first define an intuitive hybrid solution concept, the free-riding-proof core (FRP-
core). In short, the FRP-core is the Pareto-optimal set of the Foley core allocations of all
contribution groups that are immune to free-riding incentives. The FRP-core is shown
to be always nonempty in the public goods provision problem.

Our interests in the public goods provision problem are twofold: (i) which group
provides how much of the public goods, and (ii) how the benefits and costs of the public
good are shared by group members. For S ⊆N with S �= ∅, we define

V (S)≡ max
a∈A

[∑
i∈S

vi(a)−C(a)

]

and

a∗(S)≡ arg max
a∈A

[∑
i∈S

vi(a)−C(a)

]
�

An allocation for S is (S�a�u) such that u ∈ Rn+,
∑

i∈S ui ≤ ∑
i∈S vi(a) − C(a), and uj =

vj(a) for all j /∈ S. An efficient allocation for S is an allocation (S�a�u) such that
∑

i∈S ui =
V (S) with a ∈ a∗(S). (Henceforth, we assume that a∗(S) is a singleton just for simplicity.)
Note that N \ S are passive free-riders and they do not contribute at all. Let X(S) be the
collection of all efficient allocations for S. A free-riding-proof efficient allocation for S is
an efficient allocation for S, (S�a∗(S)�u) ∈ X(S), such that

ui ≥ vi
(
a∗(S \ {i})) for any i ∈ S�

7For our equivalence results (Theorems 1 and 2), we need only comonotonic preferences over an abstract
agenda set A. The extension is straightforward. We focus on the one-dimensional public goods economy
just for simplicity.
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That is, under a free-riding-proof efficient allocation, no player in S has an incentive to
opt out of the contribution group while enjoying the public good provided by the re-
maining players in S. Let XFRP(S) be the set of all free-riding-proof efficient allocations
for S. It should be emphasized that XFRP(S) can be empty when S is a large set; with a
large number of members, it becomes harder to satisfy free-riding-proofness.

Given that S is the contribution group, a natural way to allocate utility among the
members is to use the core (Foley 1970).8 Focusing on coalition S and its subsets, we
write Core(S) = {(S�a∗(S)�u) ∈ X(S) :

∑
i∈T ui ≥ V (T)� ∀T ⊆ S}, the set of all core allo-

cations for S, which is immune to all subcoalitions’ group deviations. Obviously, a core
allocation for S may not be immune to free-riding incentives for the members of S. Thus,
we define the FRP-core allocation for S by CoreFRP(S)= Core(S)∩XFRP(S). An FRP-core
allocation for S is a core allocation for S that is immune to unilateral free-riding devi-
ations, and CoreFRP(S) is the set of all FRP-core allocations for S.9 The set CoreFRP(S)

is a collection of internally stable allocations for S in the sense that no subgroup of S
has an incentive to deviate to form an alternative contribution group and no player in S

has an incentive to free-ride. Similarly to XFRP(S), CoreFRP(S) may be empty for a large
group S, but it is nonempty for small groups (for singleton groups in particular).

Now, we consider allocations that are “fully” stable against any coalitional blocking.
A coalition T (weakly) blocks an allocation (S�a∗(S)�u) via an allocation (T�a∗(T)�u′) if
and only if (i) u′

i ≥ ui for all i ∈ T and u′
j > uj for at least one member j ∈ T , (ii)

∑
i∈T u′

i =
V (T), and (iii)

∑
i∈T ′ u′

i ≥ V (T ′) for all T ′ ⊂ T .10 The solution concept free-riding-proof
core (FRP-core) is a collection of all FRP-core allocations for all S, which are not blocked
by any coalitions T with an FRP-core allocation for T . That is,

CoreFRP =
{
(S�a∗(S)�u) ∈

⋃
S′⊆N

CoreFRP(S′) : for any T , there does not exist

(T�a∗(T)�u′) ∈ CoreFRP(T) that (weakly) blocks (S�a∗(S)�u)
}
�

The FRP-core is a collection of internally stable allocations for some coalition that are
not blocked by any other coalition with an internally stable allocation; we impose a cred-
ibility constraint for legitimate coalitional deviations, regarding non-internally-stable

8The Foley core is the standard core concept of a public goods economy. In the definition of the Foley
core, when a subset of the contribution group decides to deviate from an allocation, the original agreement
on the level of public goods provision and the cost sharing are totally abandoned, and the public good is
provided solely by the deviating coalition. Others, including the members (if any) of the original contribu-
tion group in question who are not in the deviating coalition, are still able to enjoy the public good. In the
Foley notion of the core, what is important is whether members of a blocking coalition would be better off
by the deviation, while the well-being of other players is not the issue.

9The FRP-core allocations would not be affected even if we allow free-riding deviations by multiple play-
ers in our public goods provision game. If an efficient allocation is immune to any unilateral free-riding de-
viation, it is also immune to any free-riding deviations by multiple players, since the reduction of the public
good would become larger if more players free-ride, so that every player prefers free-riding by herself if she
free-rides at all.

10We use “weak” blocking and weak Pareto domination in this paper, partly because it will give us clearer
results in the noncooperative game we consider in the next section.
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coalitional deviations as noncredible because there would be further deviations from
such deviations.

The above hybrid solution concept is natural and appealing, but it might not appear
to be easy to work with when applied to specific problems. For example, it is not im-
mediately clear if FRP-core is nonempty. The following proposition provides a useful
property of the core for subsets of N .

Proposition 1. If a core allocation for T , (T�a∗(T)�u′) ∈ Core(T), blocks (S�a∗(S)�u) ∈
Core(S), then a∗(S) < a∗(T) and (T�a∗(T)�u′) ∈ Core(T) (weakly) Pareto-dominates
(S�a∗(S)�u) ∈ Core(S).

Proposition 1 claims that if a core allocation for T is preferred to a core allocation
for S by all members of T , then the former allocation Pareto-dominates the latter in
our pure public goods economy. This proposition simplifies the characterization of the
FRP-core, allowing us to rewrite it as

CoreFRP =
⋃

S′∈2N
CoreFRP(S′)�

where �, for an arbitrary set of allocations �, denotes the Pareto frontier of � (i.e., an
allocation (S�a�u) is in a set � if and only if there is no allocation (T�a′�u′) ∈� such that
u′ ≥ u with u′

i > ui for some i ∈N). This property assures that CoreFRP is nonempty.

Proposition 2. CoreFRP = ⋃
S′∈2N CoreFRP(S′) �= ∅.

We can also characterize CoreFRP using the standard core concept on a restricted
allocation set. Take the union of all free-riding-proof efficient allocations for S over all
S ⊆ N to obtain XFRP = ⋃

S⊆N XFRP(S). Then we apply the core concept to the set of
free-riding-proof allocations XFRP:

Core〈XFRP〉 = {
(S�a∗(S)�u) ∈XFRP : there does not exist (T�a∗(T)�u′) ∈XFRP

such that u′
i ≥ ui for all i ∈ T , and u′

j > uj for some j ∈ T
}
�

We have the following theorem.

Theorem 1. CoreFRP = Core〈XFRP〉.

Two remarks follow. First, for the standard transferable utility (TU) and nontransfer-
able utility (NTU) characteristic-function-form game, Ray (1989) defines credible coali-
tions recursively on nested coalitions and defines the credible core; he shows that the
core and the credible core are equivalent. Despite the facts that our game has external-
ities due to spillovers of the public good and that the grand coalition usually does not
support the FRP-core, his argument extends to our case such that the credible core of
XFRP coincides with CoreFRP. Second, we impose efficiency on the allocations in the
definition of XFRP only for simplicity. We can easily allow inefficient allocations in the
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definition of feasible allocations by using X̃FRP(S) = {(S�a∗(S)�u) :
∑

i∈S ui ≤ V (S) and
ui ≥ vi(a

∗(S \ {i})) for all i ∈ S} and letting X̃FRP = ⋃
S⊆N X̃FRP(S). However, we would

still require each contribution group S to provide the public good at the efficient level,
i.e., a(S) = a∗(S). We need to assign a public goods provision level to every S ⊂N so as to
define the free-riding-proof allocations; the efficient public goods provision level a∗(S)
is a natural candidate to be assigned to each group S.

3. A voluntary participation game

We discuss the endogenous contribution-group formation and its consequences on
public goods provision. We first define the extensive-form, public goods contribution
game with voluntary participation; the first stage is a group-formation game, followed by
the second-stage common agency game played by group S that has been formed in the
first stage. For this extensive-form game, we require not only that the common agency
stage of public goods provision be coalition-proof, but also that the contribution-group
formation itself be coalition-proof. As an extension of CPNE for strategic-form games to
the one for extensive-form games, Bernheim et al. (1987) define the perfectly coalition-
proof Nash equilibrium (PCPNE) as the coalition-proof Nash equilibrium for multistage
games.

The first-stage group-formation game is such that each player i ∈ N chooses her ac-
tion from the set �1

i = {0�1}, where 0 and 1 represent nonparticipation and participa-
tion, respectively, i.e., player i announces her participation decision. Once action profile
σ1 = (σ1

1 � � � � �σ
1
n) ∈ �1 = ∏

j∈N �1
j is selected, then the contribution game takes place in

the second stage with the set of active players S(σ1) = {i ∈ N :σ1
i = 1}. Since the agent’s

(the government’s) choice in the third stage is a mechanical decision problem, we in-
corporate this stage into the second-stage contribution game (following Bernheim and
Whinston 1986).

The second-stage game is a common agency game played by participating princi-
pals S(σ1), as analyzed by Bernheim and Whinston (1986). The set N \S(σ1) is the set of
passive free-riders. Each player i ∈ S(σ1) simultaneously offers a contribution schedule
τi :A → R+. Given the profile of contribution schedules τS(σ1) = (τi(a))i∈S(σ1), the gov-
ernment G (the agent) chooses a public goods provision level a ∈ A that maximizes its
net payoff:

uG(a�τS(σ1)) =
∑

i∈S(σ1)

τi(a)+ vG(a)

=
∑

i∈S(σ1)

τi(a)−C(a)�

where the first term on the right-hand side of the last equation is the total contribution
and the second term is the cost of public goods provision. If the government chooses
a ∈A, then player i obtains her payoff

ui(a�τi(a)) = vi(a)− τi(a)
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for i ∈ S(σ1) and

ui(a) = vi(a)

for i /∈ S(σ1). The government’s optimal choice is described by

a∗(S� τS(σ1)) ∈ arg max
a∈A

uG(a�τS(σ1))�

with a slight abuse of notation. Let T be the set of all contribution schedules τi :A → R+.
Player i’s second-stage strategy σ2

i is a mapping σ2
i : 2N \ {∅} → T ; i.e., a contribu-

tion schedule is assigned to each subgame. Note that in subgame S ∈ 2N \ {∅}, where
i /∈ S, σ2

i (S) :A → R+ is irrelevant to the outcome. Nevertheless, we include nonpartici-
pant’s second-stage strategies for notational simplicity. The set of player i’s second-stage
strategies is denoted by �2

i .

3.1 Perfectly coalition-proof Nash equilibrium for the contribution-group
participation game

Following Bernheim et al. (1987), we define PCPNE for our two-stage game. Let � ≡∏
i∈N �i. Player i’s strategy is σi = (σ1

i �σ
2
i ) ∈ �i = �1

i × �2
i and her payoff function is

ui :� → R as described above.
For T ⊆ N , we consider a reduced game �(T�σ−T ) in which only players in T are

active while players in N \T are passive such that they always choose σ−T . We also con-
sider proper subgames for everyσ1 ∈ �1, and reduced subgames �(T�σ1�σ2

−T ) in a similar
way. A perfectly coalition-proof Nash equilibrium (PCPNE) (σ∗� a∗) ≡ ((σ1∗

i �σ2∗
i )i∈N�a∗)

is defined recursively as follows.

Definition (Bernheim et al. 1987).

(i) In a single-player, single-stage subgame �({i}�σ1�σ2
−{i}), strategy σ2∗

i (S(σ1)) ∈ T
and agenda a∗ chosen by the agent is PCPNE if σ2∗

i maximizes ui through the
choice of a∗.

(ii) Let (n� t) be the pair of the number of players and the number of stages of the
reduced (sub-)game, where t ∈ {1�2}. Let (n� t) �= (1�1). Assume that PCPNE has
been defined for all games with m players and r stages, where (m� r) ≤ (n� t) with
(m� r) �= (n� t).

(a) For any game � with n players and t stages, (σ∗� a∗) ∈ � × A is perfectly self-
enforcing if for all proper subset T of the n players, (σ∗

T �a
∗) is PCPNE in the

reduced game �(T�σ∗
−T ) and if the restriction of σ∗ to any proper subgame

forms a (P)CPNE in that subgame.

(b) For any game � with n players and t stages, (σ∗� a∗) is a PCPNE if it is perfectly
self-enforcing and if there does not exist another perfectly self-enforcing pair
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(σ�a) ∈ �×A such that ui(a�σi) ≥ ui(a
∗σ∗

i ) for all i = 1� � � � � n with at least one
strict inequality.11

For any T ⊆ N and any strategy profile σ , let PCPNE(�(T�σ−T )) denote the set
of PCPNE strategy profiles for T in the reduced game �(T�σ−T ). A strategic coali-
tional deviation (T�σ ′

T �a
′) from any strategy profile (σ�a) is credible if (σ ′

T �a
′) ∈

PCPNE(�(T�σ−T )). A PCPNE is a strategy profile that is immune to any credible
coalitional deviation. An outcome allocation for (σ∗� a∗) is a list (S(σ1∗)�a∗�u�uG) ∈
2N × A × RN × R, where (u�uG) is the resulting utility allocation for players and the
government.

There are two remarks to be made about PCPNE.
First, if a coalition T wants to deviate in the first stage, it can orchestrate the whole

plan of the deviation by assigning a new CPNE to each subgame so that the target allo-
cation (by the deviation) would be attained as a PCPNE of the reduced game �(T�σ−T ).

Second, the definition of PCPNE coincides with the coalition-proof Nash equilib-
rium (CPNE) in the (static) second stage. Thus, a CPNE needs to be assigned to each
subgame. There are useful characterizations of CPNE of a common agency game in
the literature. The first characterization is provided by Bernheim and Whinston (1986).
Consider a subgame S and let τi :A → R+ denote player i’s strategy σ2

i (S) :A → R+ in
this subgame. They introduce a concept, called truthful strategies, where τi is truthful
relative to ā if and only if for all a ∈A, either vi(a)−τi(a) = vi(ā)−τi(ā) or vi(a)−τi(a) <

vi(ā) − τi(ā) with τi(a) = 0. A truthful Nash equilibrium (τ∗
S�a

∗) is a Nash equilibrium
such that τ∗

i is truthful relative to a∗ ∈ A for all i ∈ S. Bernheim and Whinston (1986)
show that (i) every truthful Nash equilibrium is a CPNE, and (ii) the set of truthful equi-
libria and that of CPNE in the utility space are equivalent, and they provide a useful char-
acterization of CPNE in the utility space. Laussel and Le Breton (2001) further analyze
CPNE in utility space. One of their results provides a nice characterization of CPNE when
payoff functions satisfy a special (yet useful) property, the comonotonic payoff property:
ui(a) ≥ ui(a

′) if and only if uj(a) ≥ uj(a
′) for all i� j ∈ S and all a�a′ ∈ A. Obviously, this

property is satisfied in our public goods provision problem.

Fact 1 (Laussel and Le Breton 2001). Consider a common agency problem � =
(S�A� (T � vi)i∈S�C) played by the set S of the principals and the agent G with a comono-
tonic payoff property. Then, in all CPNE’s of the common agency game, agent G obtains
uG = maxa∈A[−C(a)] (no-rent property) and the set of CPNE in utility space is equivalent
to the core of the characteristic-function game (Ṽ (T))T⊆S , where Ṽ (T ) = V (T) − uG =
maxa∈A(

∑
i∈T vi(a)−C(a))− uG.

In the public goods provision problem, uG = −C(0) = 0 and thus Ṽ (T ) = V (T) for
all T ⊆ S. A payoff vector uS = (ui)i∈S is in the core if and only if

∑
i∈S ui = V (S) and∑

i∈T ui ≥ V (T) for all T ⊂ S.

11Bernheim et al. (1987) define the PCPNE based on strictly improving coalitional deviations. We adopt,
however, a definition based on weakly improving coalitional deviations, since the theorem on menu auc-
tion in Bernheim and Whinston (1986), to which we appeal, uses CPNE based on weakly improving devia-
tion. For details on these two definitions, see Konishi et al. (1999).
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4. The main result

This section shows our main result that the set of FRP-core allocations coincides with the
set of PCPNE outcomes of the voluntary participation game. In the public goods provi-
sion problem, Fact 1 (Laussel and Le Breton 2001) implies that the second-stage CPNE
outcomes coincide with the set of all core allocations of a characteristic-function-form
game for S with (V (T))T⊆S , where V (T) = maxa∈A(

∑
i∈T vi(a) − C(a)).12 This is noth-

ing but Foley’s (1970) core in a public goods economy for S. This observation gives us
some insight into our two-stage noncooperative game. First, for each subgame played
by S′ = S(σ1′), the utility outcome uS′ must be in the core of (V (T))T⊆S′ . Second, given
the setup of our group-formation game in the first stage, if a CPNE outcome u in a sub-
game S can be realized as the equilibrium outcome (on the equilibrium path), it is nec-
essary that u ∈ CoreFRP(S), since otherwise some member of S would deviate in the first
stage, obtaining a secured free-riding payoff. This observation is useful in our analysis of
the equivalence theorem. With a careful construction of equilibrium strategies, we can
show the following proposition.

Proposition 3. If an allocation (S�a∗(S)�u) is in the FRP-core, then there is a PCPNE σ

whose outcome is (S�a∗(S)�u).

We relegate a proof of Proposition 3 to Appendix B (with some preliminary analyses
in Appendix A). Here, we briefly describe how to construct PCPNE σ .

First, in defining σ , we need to assign a CPNE utility profile to every subgame
that corresponds to a coalition S ⊆ N . Since the second-stage strategy profile is de-
scribed by utility allocations assigned to each subgame, we partition the set of sub-
games (expressed in terms of active players) S = {S ∈ 2N :S �= ∅} into three categories:
(i) S1 = {S∗} on the equilibrium path, which is the contribution group formed in equilib-
rium, (ii) S2 = {S ∈ S :S∩S∗ = ∅}, and (iii) S3 = {S ∈ S \ S1 :S∩S∗ �= ∅}. As Laussel and Le
Breton (2001) show, a CPNE outcome in a subgame S′ corresponds to a core allocation
for S′. To support the equilibrium path (S∗� a∗(S∗)�u∗) ∈ CoreFRP by a PCPNE, we need
to show that there is no credible deviation in the first stage. This requires careful and
nontrivial assignment of a core allocation to every single subgame.

We prove Proposition 3 by contradiction. Consider a deviation from S∗ by a coali-
tion T , which leads to the formation of a new contribution group S′. As Figure 1 shows,
T consists of players who change their first-stage actions ((i) and (ii) in the figure) and
players who change their second-stage actions ((iv) in the figure). Suppose to the con-
trary that this deviation is credible. Then, for all members of T , both profitability of
deviation and free-riding-proofness must be satisfied. Thus, for every player i ∈ T , the
postdeviation payoff u′

i must satisfy u′
i ≥ ūi = max{u∗

i � vi(S
′ \ {i})}, where u∗

i denotes
player i’s payoff in the prescribed equilibrium. The case where S′ ∩ S∗ �= ∅ as depicted
in Figure 1 is the most subtle. We show that even in such cases, if there were such
a credible deviation, there would exist an allocation (S′� a∗(S′)�u′) ∈ CoreFRP(S′) that

12Indeed, CPNE and strong Nash equilibrium (Aumann 1959) with weakly improving deviations are
equivalent in a common agency game with the no-rent property. See Konishi et al. (1999).
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Figure 1. A deviation from S∗. T , deviating coalition (i) + (ii) + (iv); S∗, equilibrium lobby;
S′, off-equilibrium lobby.

Pareto-dominates (S∗� a∗(S∗)�u∗). By the characterization in Proposition 2, however,
this contradicts the supposition that (S∗� a∗(S∗)�u∗) ∈ CoreFRP. We show Pareto domi-
nation by using the fact that the utility allocation assigned to subgame S′ under σ is a
core allocation and we construct the core allocation by the algorithm that is provided in
Appendix A.

Once this direction of the relationship between the FRP-core and PCPNE is es-
tablished, the converse is trivial. The PCPNE requires free-riding-proofness, so every
PCPNE must be an FRP-core allocation for some S. Since CoreFRP is the Pareto fron-
tier of

⋃
S⊆N CoreFRP(S), Proposition 3 indeed implies that any Pareto-dominated FRP-

core allocation for S can be defeated by an FRP-core allocation, which is supported by a
PCPNE.

Theorem 2. An allocation (S�a∗(S)�u) is in the FRP-core if and only if there is a PCPNE
σ whose outcome is (S�a∗(S)�u).

Proof. We prove the converse of the relationship described in Proposition 3, i.e., we
show that every PCPNE σ generates an FRP-core allocation as its outcome. It is easy to
see that the outcome (S�a∗(S)�u) of a PCPNE σ is an FRP-core allocation (and not just
a core allocation) for S, since otherwise a player would have an incentive to free-ride in
the first stage of the extensive-form game and hence the resulting allocation would not
be a PCPNE. Thus (S�a∗(S)�u) ∈ CoreFRP(S). Now, suppose that u /∈ CoreFRP. Then there
is an FRP-core allocation (S′� a∗(S′)�u′) ∈ CoreFRP with u′ > u. Proposition 3 further im-
plies that a deviation by the grand coalition N that induces (S′� a∗(S′)�u′) can attain u′
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with a PCPNE σ ′. This means that there is a credible coalitional deviation from σ , which
leads to a contradiction. Thus, every PCPNE achieves an FRP-core allocation. �

This result depends crucially on the “comonotonicity of preferences” (Laussel and
Le Breton 2001) and perfectly nonexcludable public goods (free-riders can fully enjoy
public goods). Without these assumptions, the above equivalence does not hold in gen-
eral.

Although the FRP-core is much easier to grasp than PCPNE, it may still not be clear
what the FRP-core looks like. A simple example in the next section illustrates the prop-
erties of FRP-core allocations and thus the outcomes of PCPNE of our voluntary contri-
bution game.

5. An example: Linear utility and quadratic cost

Let vi(a) = θia for any i ∈ N and C(a) = a2/2, where θi > 0 is a preference parameter. In
this section, we identify players by their preference parameters, i.e., θi = i for any i ∈ N .
Then the optimal level of the public good for group S is determined by the first-order
condition

∑
i∈S θi − a= 0, i.e.,

a∗(S)=
∑
i∈S

θi�

Consequently, the value of S is written as

V (S) =
∑
i∈S

θi

(∑
i∈S

θi

)
− 1

2

(∑
i∈S

θi

)2

= 1
2

(∑
i∈S

θi

)2

�

For an outsider j ∈N \ S, the payoff is

vj(a
∗(S)) = θj

(∑
i∈S

θi

)
�

Consider the following example.

Example 1. Let N = {11�5�3�1}, where θi = i for each i ∈N .
First we check whether the grand coalition S = N is supportable. When S = N , we

have a∗(N) = ∑
i∈N i = 20, and V (N) = 202/2 = 200. For the allocation to be free-riding-

proof, each player must obtain the following payoff at the very least:

v11
(
a∗(N \ {11})) = (20 − 11)× 11 = 99

v5
(
a∗(N \ {5})) = (20 − 5)× 5 = 75

v3
(
a∗(N \ {3})) = (20 − 3)× 3 = 51

v1
(
a∗(N \ {1})) = (20 − 1)× 1 = 19�
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The sum of all these values exceeds the value of the grand coalition V (N). As a result,
we can conclude CoreFRP(N) = ∅.

• The FRP-core for the grand coalition N may be empty. Thus, the FRP-core may be
suboptimal.

Next, consider S = {11�5}. Then a∗(S) = 16 and V (S) = 128. To check whether the
FRP-core for S is nonempty, we first check again the free-riding incentives:

v
(
a∗(S \ {11})) = (16 − 11)× 11 = 55

v
(
a∗(S \ {5})) = (16 − 5)× 5 = 55�

Thus, if there is an FRP-core allocation for S, u = (u11�u5) must satisfy

u11 + u5 = 128

u11 ≥ 55

u5 ≥ 55

u11 ≥ 11×11
2 = 60�5

u5 ≥ 5×5
2 = 12�5�

where the last two conditions follow from the core requirement. That is, we have13

Core({11�5}) = {u ∈ R5+ :u11 + u5 = 128�u11 ≥ 60�5�u5 ≥ 12�5�u3 = 48�u2 = 32�u1 = 16}

and

CoreFRP({11�5}) = {u ∈ R5+ :u11 + u5 = 128�u11 ≥ 60�5�u5 ≥ 55�u3 = 48�u2 = 32� u1 = 16}�

It is readily seen that CoreFRP({11�5}) �= ∅, but it is a smaller set than Core({11�5}).

• Free-riding-proof constraints may narrow the set of attainable core allocations for
a coalition.

Note that in this case, only the free-riding incentive constraint for player 5 is binding.
It is better for player 11 to provide public goods alone than to free-ride on player 5. ♦

Now, let us analyze the FRP-core. Since the FRP-core requires Pareto efficiency on
the union of FRP-cores over all subsets S of the players, we first need to find the FRP-
core for each S. In general, even a minimal task of checking the nonemptiness of the
FRP-core for S is cumbersome, since the FRP-core for S demands two almost unrelated
requirements: immunity to coalitional deviation attempts and immunity to free-riding
incentives. However, it is easy to narrow down the candidates by using a necessary con-
dition for the nonemptiness of the FRP-core for S.

13For notational simplicity, we abuse notations by dropping irrelevant arguments of allocations. Thus,
in this subsection, allocations are simply expressed by utility allocations.
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Observation 1. In the case of linear utility and quadratic cost, if the FRP-core for S is
nonempty, then S satisfies the aggregate “no free-riding condition”


(S) ≡ V (S)−
∑
i∈S

θia
∗(S \ {i})

=
∑
i∈S

θia
∗(S)− 1

2(a
∗(S))2 −

∑
i∈S

θia
∗(S \ {i}) ≥ 0�

which is equivalent to

∑
i∈S

θ2
i ≥ 1

2

(∑
i∈S

θi

)2

�

The proof is straightforward and hence omitted.
By utilizing this proposition, we can characterize the FRP-core of the public goods

economy in Example 1.

Example 1 continued. The FRP-core allocations are attained by groups {11�5�1},
{11�3�1}, {11�5}, {11�3}, and {5�3}.

First, by applying Observation 1, we find that there are 12 contribution groups that
satisfy the necessary condition for the nonempty FRP-core for S: {11�5�1}, {11�3�1},
{11�5}, {11�3}, {11�1}, {5�3}, {5�1}, {3�1}, {11}, {5}, {3}, and {1}.

The FRP-core for S = {11�5�3} is empty, for example. For S = {11�5�3}, we have
a∗(S) = 19 and V (S) = 180�5. Since 11v(a∗(S \ {11})) = 88, 5v(a∗(S \ {5}) = 70,
3v(a∗(S \ {3})) = 48, and 88 + 70 + 48 > 180�5, the necessary condition for S = {11�5�3} to
give an FRP-core allocation is violated. As we will see, however, CoreFRP({11�5�1}) is not
empty. Thus {11�5�1} is the group that achieves the highest level of public goods while
having a nonempty FRP-core. This analysis provides an interesting observation.

• Members of the contribution group that achieves an FRP-core allocation may not
be consecutive.14

The intuition behind this result is simple. Suppose 
(S) is positive (say, S = {11�5}).
Now, we try to find S′ ⊃ S that still satisfies 
(S′) ≥ 0. If the value of 
(S) is positive and
yet not too large, then adding a player with a high θ (say, player 3) may make 
(S′) < 0,
since adding such a player may greatly increase a∗(S′), making the free-riding problem
more severe. By contrast, adding a player with a low θ (say, player 1) does not make the
free-rider problem too severe, so 
(S′)≥ 0 may be satisfied relatively easily.

Among the above 12 groups, it is easy to see that groups {5�1}, {3�1}, {11}, {5}, {3},
and {1} do not survive the test of Pareto domination. For example, consider S′ = {11�5}
and u′ = (73�55�48�16) ∈ CoreFRP({11�5}). This is the best allocation for player 11 in
CoreFRP({11�5}) as the characterization of CoreFRP({11�5}) in the above indicates. Play-
ers other than 11 and 5 are free-riders, and their payoffs are directly generated from

14Although the context and approach are very different from ours, the formation of such nonconsecutive
coalitions has attracted tremendous interest in the fields of political science and sociology. For a game-
theoretic treatment of this line of literature (known as Gamson’s law), see Le Breton et al. (2008).
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a∗({11�5}) = 16. Now it is straightforward to see that the allocation u′ dominates all
allocations for the above six groups; public goods provision levels of those groups are
insufficient compared with a∗({11�5}) = 16.

By contrast, {5�3} is not dominated by any FRP-core allocations for any contribution
group. We can show that player 11 can obtain at most 73 in as FRP-core allocation for
any S � 11, whereas she obtains 88 by free-riding on {5�3}. Thus, player 11 would not
join a deviation. Without player 11’s cooperation, no free-riding core allocation that
dominates those of {5�3} can be realized.

Similarly, FRP-core allocations for S = {11�1} are dominated by the one for S′ =
{11�5}. Under S = {11�1}, player 5 obtains 60, but S′ can attain u′ = (63�65�48�16). Free-
riding-proof core allocations for {11�3�1} and {11�3} cannot be beaten, however, by the
ones for S′ = {11�5}; player 5, for example, gets 70 even under {11�3}, while she would
obtain at most 67.5 under S′ = {11�5}, as we can see from CoreFRP({11�5}) derived above.

Finally, consider S = {11�5}, {11�3}. The FRP-core allocations for S = {11�5} are
characterized by u11 + u5 = 128, u11 ≥ 60�5, and u5 ≥ 55, with u3 = 48 and u1 = 16.
Now, consider S′ = {11�5�1}, for which the FRP-core allocations are characterized by
u′

11 +u′
5 +u′

1 = 144�5, u′
11 +u′

5 ≥ 128, u′
11 ≥ 66, u′

5 ≥ 60, and u′
1 ≥ 16, with u′

3 = 51. (Condi-
tions u′

5 + u′
1 ≥ 18 and u′

11 + u′
1 ≥ 72 are satisfied because u′

11 ≥ 66, u′
5 ≥ 60, and u′

1 ≥ 16.)
Here, S′ can attain u′

11 + u′
5 = 144�5 − 16 = 128�5 as long as u′

11 ≥ 66 and u′
5 ≥ 60. Thus, if

u ∈ CoreFRP({11�5}) satisfies u11 + u5 = 128, 60�5 ≤ u11 ≤ 68�5, and 55 ≤ u5 ≤ 62�5, then u

is improved upon by an allocation in CoreFRP({11�5�1}). However, if u ∈ CoreFRP({11�5})
satisfies u11 + u5 = 128, u11 > 68�5, or u5 > 62�5, then u cannot be improved upon by
group {11�5�1}. The FRP-core allocations for S = {11�3} have a similar property with
possible deviations by group S′ = {11�3�1}. This phenomenon illustrates another inter-
esting observation.

• An expansion of a group definitely increases the total value of the group, while
it gives less flexibility in allocating the benefits among the group members since
free-riding incentives increase as the level of the public goods provision rises. As
a result, some unequal FRP-core allocations for the original group may not be im-
proved upon by the group expansion.

In summary, the FRP-core is the union of the following sets of allocations attained
by the five different contribution groups.

1. Contribution group S = {11�5�1} chooses a∗(S) = 17 and all FRP-core allocations
for S are included:

CoreFRP({11�5�1}) = {u ∈ R5+ :u11 + u5 + u1 = 144�5�u3 = 51�u11 ≥ 66�u5 ≥ 60�u1 ≥ 16}�

2. Contribution group S = {11�3�1} chooses a∗(S) = 15 and all FRP-core allocations
for S are included:

CoreFRP({11�3�1}) = {u ∈ R5+ :u11 + u3 + u1 = 112�5�u5 = 75�u11 ≥ 60�5�u3 ≥ 36�u1 ≥ 14}�
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3. Contribution group S = {11�5} chooses a∗(S) = 16 and only a subset of FRP-core
allocations for S is included:

{
u ∈ CoreFRP({11�5}) : u11 > 68�5 or u5 > 62�5

}
= {u ∈ R5+ :u11 + u5 = 128�u3 = 48�u1 = 16�68�5 < u11 ≤ 73 or 62�5 < u5 ≤ 67�5}�

4. Contribution group S = {11�3} chooses a∗(S) = 14 and only a subset of FRP-core
allocations for S is included:

{
u ∈ CoreFRP({11�3}) : u11 > 62�5

}
= {u ∈ R5+ :u11 + u3 = 98�u5 = 70�u1 = 14�62�5 < u11 ≤ 65}�

5. Contribution group S = {5�3} chooses a∗(S) = 8 and all FRP-core allocations for S
are included:

CoreFRP({5�3}) = {u ∈ R5+ : u5 + u3 = 32�u11 = 88�u1 = 8�u5 ≥ 15�u3 ≥ 15}� ♦

Before closing this section, we compare the FRP-core allocations with a Nash equi-
librium of a simultaneous-move voluntary public goods provision game studied by
Bergstrom et al. (1986). Each player i chooses her monetary contribution mi ≥ 0 to fi-
nance a public good. The public goods provision level is given by a(m) = √

2
∑

i∈N mi,
reflecting the cost function of public goods production C(a) = a2/2. Consider player i.
Given that others contribute M−i in total, player i chooses mi so as to maximize
θi

√
2(mi +M−i) − mi. The best response for player i is m∗

i = max{(θ2
i /2) − M−i�0}. It

is easy to see that in our example, only player 11 contributes, so the public goods provi-
sion level is 11.15 Thus, by forming a contribution group in the first stage, it is possible to
increase the equilibrium level of the public goods provision. But it is also possible that
the level of public goods provision is lower than the Nash equilibrium provision level of
the standard voluntary contribution game, as we have found that group {5�3} achieves
some FRP-core allocations in our example.

• There may be FRP-core allocations that achieve lower public goods provision lev-
els than the Nash equilibrium outcome of a simple voluntary contribution game
studied by Bergstrom et al. (1986).

This occurs because in our setup, player 11 can commit to being an outsider in the
first stage, which cannot happen in a simultaneous-move voluntary contribution game.
Finally, needless to say, we have the following conclusion.

• The FRP-core may be a highly nonconvex set, as different allocations may be real-
ized by different contribution groups.

15Contribution is made only by the highest willingness-to-pay player. This observation is true for all
quasilinear utility players (with no income effect).
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6. Replicated economies

In this section, we analyze whether public goods provision and the participation rate
decrease as the economy is replicated.

There is a tricky issue in replicating a (pure) public goods economy. If the set of
consumers is simply replicated, the amount of resources in the economy grows to in-
finity, while maintaining the same cost function for public goods production. Following
Milleron’s (1972) method, Healy (2010) makes each consumer’s endowment shrink pro-
portionally to the population as the economy is replicated to overcome this problem;
consumers’ preferences are also modified in the replication process.16 We adopt the
same preference modification in the replication of a quasilinear economy. We shrink
each consumer’s willingness to pay proportionally as the economy is replicated. This
method of replication is natural for a quasilinear economy, since the aggregate willing-
ness to pay and cost functions stay the same in the replication process.

The original economy is a list E = (N� (vi)i∈N�C). Let r = 1�2�3� � � � be a natu-
ral number. The rth replica of E is a list Er = (Nr� (vriq)i∈N�q=1�����r �C), where Nr =⋃

i∈N{i1� � � � � ir} and vriq(a) = vri (a) = (1/r)vi(a) for all q = 1� � � � � r.17 Let a characteristic-

function-form game generated from Er be V r .
We analyze FRP-core allocations (S�a∗(S)�u∗) of the characteristic-function-form

game V r by focusing on the free-riding-proofness condition. Note that for any r and
for any S ⊆ Nr , the public goods provision level a = a∗(S) is determined so that the
sum of willingness to pay across all members of S equals the marginal cost of public
goods provision, i.e.,

∑
iq∈S v

r′
iq
(a) = C ′(a). Furthermore, we need

∑
iq∈S(v

r
iq
(a∗(S)) −

vriq(a
∗(S \ {iq})) ≥ C(a∗(S)) so as to satisfy the free-riding-proofness, where the terms in

the parentheses on the left-hand side indicate how much each player can pay without
sacrificing free-riding-proofness. Let mi(S) ∈ {0� � � � � r} denote the number of type i play-
ers in S. Then the above necessary condition for free-riding-proofness can be rewritten
as ∑

i∈N
mi(S)

(
vri (a

∗(S))− vri
(
a∗(S \ {iq})

)) ≥ C(a∗(S))�

where it should be understood that S \ {iq} denotes the set of all players but one player
of type i in S; equivalently,

∑
i∈N

mi(S)

r

[
vi(a

∗(S))− vi
(
a∗(S \ {iq})

)] ≥C(a∗(S))� (1)

Now, consider the kth replication, where k = 1�2� � � � , of this rth replica of the original
economy, which implies that each player in the rth replica of the original economy is
divided into k players. Let Sk be a coalition in this k× rth replica economy that contains

16Conley (1994) uses a different definition of replicated economy and investigates the convergence of
the core.

17Let x and a denote the consumption level of a private good and the level of a public good, and let �i

and �r
i be preference relations in the original and rth replica economy, respectively. According to Milleron’s

(1972) preference modification, relation �r
i is generated such that (x�a) �r

i (x
′� a′) if (rx�a) �i (rx

′� a′). In
the quasilinear economy where �i is described by the utility function x+ vi(a), this implies vri (a) = vi(a)/r.
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all k replica players of all members of S in the rth replica economy. Obviously, a∗(S) in
the rth replica economy equals a∗(Sk) in the k×rth replica economy. However, although
the coefficients satisfy mi(S)/r = mi(S

k)/(kr), a∗(Sk \ {i}) converges to a∗(Sk) = a∗(S) as
k goes to infinity. Thus, the k×rth replica economy’s counterpart of inequality (1) would
be violated at some point. Formally, we have the following result.

Proposition 4. Suppose that C and vi are twice continuously differentiable for any
i ∈ N with (i) C(0) = 0, C ′(a) > 0, C ′′(a) > 0, and lima→0 C

′(a) = 0, and (ii) v′
i(a) > 0

and v′′
i (a) ≤ 0 for all i ∈ N . Then, for any ā > 0, there exists a natural number r̄(ā) such

that for any r ≥ r̄(a), a∗(S∗) < ā holds for any (S∗� a∗(S∗)�u∗) ∈ CoreFRP(V r).

Together with Theorem 1, Proposition 4 immediately implies the following theorem.

Theorem 3. Suppose that C and vi are twice continuously differentiable for any i ∈ N

with (i) C(0) = 0, C ′(a) > 0, C ′′(a) > 0, and lima→0 C
′(a) = 0, and (ii) v′

i(a) > 0 and
v′′
i (a) ≤ 0 for all i ∈ N . Then the public goods provision levels for all FRP-core allocations

shrink to zero as the economy is replicated.

Although this result has some similarity to the main result of Healy (2010), the mod-
els and the objectives are very different. Unlike our model, Healy requires that all play-
ers (voluntarily) participate in equilibrium, while he does not ask contribution groups
to achieve efficient provision of public goods. Thus, the reasons for the convergence are
very different in his and our papers. Note also that unlike Theorems 1 and 2, Theorem 3
(and Proposition 4) relies on the concavity and convexity of utility and cost functions,
respectively, as well as the differentiability of them.

7. Conclusion

This paper has added players’ participation decisions to a (pure) public goods provi-
sion problem. We propose a free-riding-proof core (FRP-core), which is a hybrid solu-
tion concept based on the credibility of coalitional deviations. The FRP-core is always
nonempty in a public goods economy, but does not usually achieve global efficiency.
The FRP-core has support from both cooperative and noncooperative games. In particu-
lar, it is equivalent to the set of perfectly coalition-proof Nash equilibria (Bernheim et al.
1987) of a dynamic game with participation decisions followed by a common agency
contribution game. With a simple example, we have found that the equilibrium contri-
bution group may not be consecutive (with respect to players’ willingness to pay), and
the public good may be underprovided (compared with the case of the voluntary con-
tribution game studied by Bergstrom et al. 1986, for example). Furthermore, the public
goods provision level decreases to zero as the economy grows.

Although we have restricted our analysis to the public goods problem with transfer-
able utility (assuming that all players have quasilinear utilities), we can extend our anal-
ysis to a Gorman-form utility function (Bergstrom and Cornes 1983) to allow the (posi-
tive) income effect for the public goods.18 Suppose that player i’s preferences are repre-
sented by a utility function of the form ui(a�x) = α(a)x+βi(a) for all i = 1� � � � � n, while

18We thank a referee for bringing our attention to this possible extension.
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the government’s utility is u0(a�x) = α(a)(x − C(a)). As long as players have enough
endowments such that their budget constraints would not be binding, the characteri-
zation results of Bernheim and Whinston (1986) extend to this utility specification. We
can show that if α(a) is nondecreasing and the ratio βi(a)/α(a) is nondecreasing for all
i ∈ N , the efficient public good provision level a∗(S) is nondecreasing with respect to
group expansion and hence the resulting game (V (S))S⊆N is a convex game. Thus, our
equivalence theorem continues to hold in this class of public goods economies. Relax-
ing the assumption on utility functions (even further) is of interest, since then we would
be able to examine how the income distribution across players affects free-riding incen-
tives and equilibrium public goods provision levels, for example. Indeed, Theorem 1
of our analysis extends to a general NTU game. To obtain our main equivalence result,
however, we have appealed to the results obtained by Bernheim and Whinston (1986),
who analyze TU games. Thus, we first need to extend their analysis to NTU games to ex-
amine the equivalence between the FRP-core and PCPNE. We leave this interesting and
nontrivial exercise to our future research.

Appendix A: Preliminary analysis on the core of convex games

In this appendix, we list a few useful preliminary results on the core of convex games.
In our public goods (comonotonic) domain, the characteristic-function game gener-
ated from a (public goods) economy is convex. Let V : 2N → R with V (∅) = 0 be
a characteristic-function-form game. Game V is convex if V (S ∪ T) + V (S ∩ T) ≥
V (S) + V (T) for all pairs of subsets S and T of N . The core of game V is Core(N�V ) =
{u ∈ RN :

∑
i∈N ui = V (N) and

∑
i∈S ui ≥ V (S) for all S ⊂ N}. Shapley (1971) analyzes the

properties of the core of convex games in detail. One of his results that is useful for us is
the following.

Property 1 (Shapley 1971). Let ω : {1� � � � � |N|} → N be an arbitrary bijection, and
let uω(1) = V ({ω(1)}), uω(2) = V ({ω(1)�ω(2)}) − V ({ω(1)}), � � � , and uω(|N|) = V (N) −
V (N \ {ω(|N|)}). Then u = (ui)i∈N ∈ Core(N�V ) and the set of all such allocations forms
the set of vertices of Core(N�V ).

Now, we consider a reduced game, in which outsiders always join coalitions and
walk away with the payoffs they could obtain by forming their own coalition. Let T

be a proper subset of N . A reduced game of V on T is ṼT : 2T → R such that ṼT (S) =
V (S ∪ (N \ T))− V (N \ T) for all S ⊆ T . We have the following result.

Property 2. Suppose that V :N → R is a convex game. Let uN\T = (ui)i∈N\T be a core
allocation of a game V :N \ T → R. Then uT ∈ Core(T� ṼT ) if and only if (uT �uN\T ) ∈
Core(N�V ).

Proof. First, we show that uT ∈ Core(T� ṼT ) if (uT �uN\T ) ∈ Core(N�V ). Since
(uT �uN\T ) ∈ Core(N�V ),

∑
i∈S∪(N\T) ui ≥ V (S ∪ (N \ T)) holds for all S ⊂ T . Rewriting

this, we have
∑

i∈S ui ≥ V (S ∪ (N \T))−∑
i∈N\T ui = V (S ∪ (N \T))−V (N \T) = ṼT (S).

Thus, uT ∈ Core(T� Ṽ ).
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Second, we show that uT ∈ Core(T� ṼT ) implies (uT �uN\T ) ∈ Core(N�V ). Suppose
this is not the case. Then there is S ⊂N such that

V (S) >
∑
i∈S

ui =
∑

i∈S∩T
ui +

∑
i∈S∩(N\T)

ui� (2)

Since uT ∈ Core(T� Ṽ ) and V is a convex game, we have
∑

i∈S∩T ui ≥ V (S ∪ (N \ T)) −
V (N \ T) ≥ V (S) − V (S ∩ (N \ T)). Substituting this inequality into (2), we have
V (S) > V (S) − V (S ∩ (N \ T)) + ∑

i∈S∩(N\T) ui, which leads to a contradiction since
uN\T ∈ Core(N \ T�V ) implies

∑
i∈S∩(N\T) ui ≥ V (S ∩ (N \ T)). �

Now, we rewrite the core. Let u = (ui)i∈N be an arbitrary utility vector. Let

Q+(u) =
{
S ∈ 2N :

∑
j∈S

uj > V (S)

}

Q0(u) =
{
S ∈ 2N :

∑
j∈S

uj = V (S)

}

Q−(u) =
{
S ∈ 2N :

∑
j∈S

uj < V (S)

}
�

That is, sets Q+(u) and Q−(u) denote the collections of coalitions in which players as a
whole are satisfied and unsatisfied (in the strict sense) with the utility vector u, respec-
tively. The set Q0(u) is the collection of coalitions in which players are just indifferent
collectively between deviating and not deviating. Obviously, a utility vector u is in the
core, i.e., u ∈ Core(N�V ), if and only if Q−(u) = ∅ (or S ∈ Q+(u) ∪ Q0(u) for all S ∈ 2N )
and N ∈ Q0(u). Let η(S�u) ≡ [V (S) − ∑

i∈S ui]/|S| be the (per capita) shortage of payoff
for coalition S for any S ∈ Q−(u). Let

Q−
max(u) ≡ {S ∈ Q−(u) :η(S�u) ≥ η(S′�u) for all S′ ∈ Q−(u)}

and

Q−
max(u) =

⋃
S∈Q−

max(u)

S�

Using the above definitions, we now construct an algorithm that starts from an arbitrary
utility vector u and terminates with a core allocation û.

Algorithm 1. Let u ∈ RN and let V :N → R be a convex game. Let u(t) be the utility
vector at stage t ∈ R+ and let u(0) = u (the initial value).

(a) Suppose Q−(u) = ∅. Then 2N \ {∅} = Q0(u) ∪ Q+(u). If N ∈ Q0(u(0)), then the
algorithm terminates immediately. Otherwise,

∑
i∈N ui > V (N) holds and we re-

duce each ui for i ∈ N \ (
⋃

S∈Q0(u) S) continuously at a common speed as t in-

creases.19 Since all elements in Q0(u) continue to be in Q0(u(t)), while some

19It follows from the definition of a convex game that
⋃

Q∈Q0(u) Q = N implies N ∈ Q0(u). To prove this

claim, it suffices to show that if T�T ′ ∈ Q0(u), then T ∪T ′ ∈ Q0(u) when Q−(u) = ∅ as is assumed. We have



242 Furusawa and Konishi Theoretical Economics 6 (2011)

elements of Q+(u(t)) switch to Q0(u(t)) in the process, Q0(u(t)) monotonically
expands as t increases. Thus, N ∈ Q0(u(t̂)) occurs at some stage t̂. Then we termi-
nate the process. The final outcome is û= u(t̂).

(b) Suppose Q−(u) �= ∅. There are two phases, starting with Phase 1.

Phase 1. Start with u(0) = u. For all i ∈ Q−
max(u(t)), increase ui continuously at a

common speed. Terminate this phase of the algorithm when Q−
max(u(t)) = ∅

(or Q−(u(t)) = ∅), and call such t as t̃.20

Phase 2. Now Q−(u(t̃)) = ∅. Then we go to the procedure in (a) and we reach a
final outcome û= u(t̂) when N ∈ Q0(u(t̂)) occurs.

Let Q0(u) ≡ ⋃
S∈Q0(u) S, and define

W ≡ {
i ∈N : ∃t ≥ 0 with i ∈ Q−

max(u(t)) in Phase 1 of case (b)
}

I ≡ {
i ∈N : i ∈Q0(u(0)) in case (a), or i ∈Q0(u(t̃)) \W in case (b)

}
L ≡ {

i ∈N : i /∈Q0(u(0)) in case (a), or i /∈Q0(u(t̃)) in case (b)
}
�

These sets will be shown to be collections of players who gain, remain indifferent, and
lose in the above algorithm relative to the initial value u, respectively. By the construc-
tion of the algorithm, the following lemma is straightforward.

Lemma 1. Set N is partitioned into W , I, and L: ûi > ui for all i ∈ W , ûi = ui for all i ∈ I,
and ûi < ui for all i ∈L.

Proof. Note that the payoff for any player in W does not change in Phase 2 of case (b)
as W ⊆ ⋃

S∈Q0(u(t̃)) S. Thus, for all i ∈ W , ûi > ui. Given this, the rest is obvious. �

This lemma identifies the winners, unaffected players, and losers of the algorithm as
sets W , I, and L, respectively.

Lemma 2. Consider the above algorithm. In Phase 1 of case (b), Q−
max(u(t)) monotonically

expands as t increases for t ∈ [0� t̃). This phase terminates with Q−(u(t̃)) = ∅. Moreover,
W = limt→t̃ Q

−
max(u(t)) ∈ Q0(u(t̃)) and W ∈ Q0(u(t̂)).

Proof. As t increases, the payoffs of all members of Q−
max(u(t)) increase at the same

speed; thus for any S ∈ Q−
max(u(t)), η(S�u(t)) decreases at the same speed. Note

that for all other coalitions T /∈ Q−
max(u(t)), η(T�u(t)) decreases at a slower pace (if

T ∩ Q−
max(u(t)) �= ∅) or stays constant (if T ∩ Q−

max(u(t)) = ∅). Therefore, Q−
max(u(t))

from the definition of a convex game that V (T ∪T ′)+V (T ∩T ′) ≥ V (T)+V (T ′)= ∑
i∈T∪T ′ ui +∑

i∈T∩T ′ ui .
Since T ∩ T ′ ∈ Q0(u) ∪ Q+(u),

∑
i∈T∩T ′ ui ≥ V (T ∩ T ′). Together with the above inequality, this implies

V (T ∪ T ′) ≥ ∑
i∈T∪T ′ ui . Since Q−(u) = ∅, T ∪ T ′ ∈ Q0(u).

20This process guarantees that every player i ∈ Q−
max(u(t)) at some stage t ∈ [0� t̃] must belong to some

S′ ∈ Q0(u(t̃)) at the end of Phase 1.
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monotonically expands as t increases. This monotonic utility-raising process con-
tinues until Q−(u(t)) = ∅ realizes at t = t̃. Since Q−

max(u(t)) monotonically expands,
W = limt→t̃ Q

−
max(u(t)) holds.

Now we show Q−
max(u) = ⋃

S∈Q−
max(u)

S ∈ Q−
max(u), which proves W ∈ Q0(u(t̃)) and

W ∈ Q0(u(t̂)) (in Phase 2 of case (b), payoffs of players in W are not affected). Let
S1� S2 ∈ Q−

max(u) with S1 �= S2. Let

η̄ ≡ V (S1)− ∑
i∈S1

ui

|S1| = V (S2)− ∑
i∈S2

ui

|S2| �

By convexity, it follows that

V (S1 ∪ S2)+ V (S1 ∩ S2) ≥ V (S1)+ V (S2)

= η̄(|S1| + |S2|)+
∑
i∈S1

ui +
∑
i∈S2

ui�

Since

V (S1 ∩ S2)− ∑
i∈S1∩S2

ui

|S1 ∩ S2| ≤ η̄�

we have

V (S1 ∪ S2) ≥ η̄(|S1| + |S2|)+
∑
i∈S1

ui +
∑
i∈S2

ui − V (S1 ∩ S2)

≥ η̄(|S1| + |S2| − |S1 ∩ S2|)+
∑
i∈S1

ui +
∑
i∈S2

ui −
∑

i∈S1∩S2

ui

or

V (S1 ∪ S2)− ∑
i∈S1∪S2

ui

|S1 ∪ S2| ≥ η̄�

Thus, S1 ∪ S2 ∈ Q−
max(u). Repeated application of the same argument proves Q−

max(u) ∈
Q−

max(u). �

Lemma 3. Starting from any initial value u ∈ RN , the algorithm terminates with a core
allocation û ∈ Core(N�V ).

Proof. First, we show that case (a) terminates with a core allocation. To this end, we
need only show that

⋃
S∈Q0(u) S �= N whenever

∑
i∈N ui > V (N) (otherwise, the algo-

rithm terminates with an infeasible u). Suppose to the contrary that
∑

i∈N ui > V (N),
while

⋃
S∈Q0(u) S = N in case (a). Let S1� S2� � � � � SK ∈ Q0(u) be distinct subsets of N

with
⋃K

k=1 Sk = N . Then we have
∑

i∈S1
ui = V (S1) and

∑
i∈S2

ui = V (S2). By convexity,
V (S1 ∪ S2)+ V (S1 ∩ S2)≥ V (S1)+V (S2)= ∑

i∈S1
ui + ∑

i∈S2
ui holds. By the construction

of the algorithm, S1 ∩ S2 ∈ Q0(u) or S1 ∩ S2 ∈ Q+(u), i.e., V (S1 ∩ S2) ≤ ∑
i∈S1∩S2

ui holds.
Thus, we have V (S1 ∪ S2) ≥ ∑

i∈S1∪S2
ui. Applying the same argument to S1 ∪ S2 and S3,

we have V (S1 ∪ S2 ∪ S3)≥ ∑
i∈S1∪S2∪S3

ui, since (S1 ∪ S2)∩ S3 ⊂ S3 implies (S1 ∪ S2)∩ S3 ∈
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Q0(u) or (S1 ∪ S2) ∩ S3 ∈ Q+(u). Repeated application of the same argument generates
V (N) = V (

⋃K
k=1 Sk) ≥ ∑

i∈⋃K
k=1 Sk

ui = ∑
i∈N ui. This is a contradiction. Thus, in case (a),

the algorithm terminates with a feasible allocation. Since u(t) changes continuously,
N ∈ Q0(û) holds, and û ∈ Core(N�V ).

Now, it follows from Lemma 2 that Phase 1 of case (b) terminates with Q−(ũ) = ∅.
Thus, the same argument as in case (a) applies to Phase 2 of case (b), leading to the
conclusion that û ∈ Core(N�V ) also in case (b). �

Appendix B: Proofs

Proof of Proposition 1. First, we show that (T�a∗(T)�u′) ∈ Core(T) blocking
(S�a∗(S)�u) ∈ Core(S) implies a∗(S) < a∗(T). Since (S�a∗(S)�u) ∈ Core(S), S ⊇ T can-
not happen. Thus, we have either (i) S � T or (ii) S � T and S � T . Case (i) implies
a∗(S) < a∗(T), since if a∗(S) = a∗(T), blocking cannot occur (core allocations are effi-
cient for the contribution group). Thus, consider case (ii). Note that for all i ∈ T \ S, we
have u′

i ≥ ui = vi(a
∗(S)). Suppose to the contrary that a∗(S) ≥ a∗(T) holds. Since

∑
j∈T

u′
j =

∑
j∈T

vj(a
∗(T))−C(a∗(T))�

we have∑
j∈T∩S

u′
j =

∑
j∈T

vj(a
∗(T))−C(a∗(T))−

∑
i∈T\S

u′
i

=
∑

j∈T∩S
vj(a

∗(T))−C(a∗(T))−
( ∑
i∈T\S

u′
i −

∑
i∈T\S

vi(a
∗(T))

)

≤
∑

j∈T∩S
vj(a

∗(T ∩ S))−C(a∗(T ∩ S))−
( ∑
i∈T\S

u′
i −

∑
i∈T\S

vi(a
∗(T))

)

= V (T ∩ S)−
( ∑
i∈T\S

u′
i −

∑
i∈T\S

vi(a
∗(T))

)
�

Since (T�a∗(T)�u′) ∈ Core(T), the content of the above parentheses is nonpositive:∑
i∈T\S

u′
i ≤

∑
i∈T\S

vi(a
∗(T))�

Since a∗(S) ≥ a∗(T), we have u′
i ≥ vi(a

∗(S)) ≥ vi(a
∗(T)) for all i ∈ T \ S. Thus, we

conclude

u′
i = vi(a

∗(S)) = vi(a
∗(T)) for all i ∈ T \ S� and a∗(S) = a∗(T)�

This also implies ∑
j∈T∩S

u′
j = V (T ∩ S)�
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Since ui = vi(a
∗(S)) = u′

i for all i ∈ T \ S, none in coalition T is strictly better off by this
deviation (T�a∗(T)�u′). This is a contradiction. Thus, a∗(T) > a∗(S) must hold.

Now, with the above result, it is easy to prove the rest. Since (T�a∗(T)�u′) ∈ Core(T)
blocks (S�a∗(S)�u) ∈ Core(S), and a∗(T) > a∗(S), it is clear that (T�a∗(T)�u′) weakly
Pareto-dominates (S�a∗(S)�u). �

Proof of Proposition 2. Pick a coalition S̄ that achieves the highest level of pub-
lic goods provision among the coalitions that support CoreFRP. There exists such S̄,
since the number of coalitions is finite. By Proposition 1, if (S�a∗(S)�u) ∈ CoreFRP(S) is

weakly blocked by (T�a∗(T)�u′) ∈ CoreFRP(T), then a∗(S) < a∗(T). Thus, no allocation
in CoreFRP(S̄) is weakly blocked by any other allocations in

⋃
S′∈2N CoreFRP(S′). Thus,

CoreFRP(S̄)⊆ ⋃
S′∈2N CoreFRP(S′) = CoreFRP. This implies that CoreFRP is nonempty. �

Proof of Theorem 1. Let Core〈XFRP� S〉 = {(S�a∗(S)�u) ∈ XFRP :∀T ⊆ S�∀(T�a∗(T)�
u′) ∈ XFRP�∃i ∈ T s.t. u′

i < ui}. This is a collection of FRP and efficient allocations for S
that are immune to nested FRP and efficient deviations. We first claim Core〈XFRP� S〉 =
CoreFRP(S). Since for CoreFRP(S), coalitional deviations are not required to be FRP, it is
obvious that Core〈XFRP� S〉 ⊇ CoreFRP(S) holds. To see the opposite direction, we only
need to show that the FRP condition is not binding for nested deviations. For this, notice
that a∗(T) ≤ a∗(S) holds for all T ⊂ S. That is, vi(a∗(T \ {i})) < vi(a

∗(S \ {i})) holds for all
i ∈ T , which implies that if ui ≥ vi(a

∗(S \ {i})), then ui ≥ vi(a
∗(T \ {i})) holds for all i ∈ T .

This implies that all coalitional deviations that block (S�a∗(S)�u) must at least satisfy
the FRP condition. This proves our first claim, Core〈XFRP� S〉 = CoreFRP(S).

Now, let us consider nonnested coalitional deviations. Pick (S�a∗(S)�u) ∈
CoreFRP(S) = Core〈XFRP� S〉. If for all nonnested T , (S�a∗(S)�u) is not blocked by any
(T�a∗(T)�u′) ∈ CoreFRP(T), then (S�a∗(S)�u) ∈ CoreFRP holds since (S�a∗(S)�u) is im-
mune to nested deviations. Now if (S�a∗(S)�u) is not blocked by all (T�a∗(T)�u′) ∈
XFRP(T), then (S�a∗(S)�u) ∈ Core〈XFRP〉 holds. Since CoreFRP(T) ⊆ XFRP(T) for all
T , for an allocation (S�a∗(S)�u) to be in Core〈XFRP〉, it needs to be immune to more
deviations than to be in CoreFRP(S). Thus, clearly, CoreFRP ⊇ Core〈XFRP〉 holds. We
will show the opposite direction is also true. Pick (S�a∗(S)�u) ∈ Core〈XFRP� S〉 =
CoreFRP(S) ⊆ CoreFRP and assume T is not nested from S. Suppose that there is
(T�a∗(T)�u′) ∈ XFRP(T) \ CoreFRP(T) such that u′

i > ui for all i ∈ T . Then there exists
T ′ ⊂ T such that

∑
i∈T ′ u′

i < V (T ′). The FRP condition u′
i ≥ vi(a

∗(T ′ \ {i})) is trivially sat-
isfied since u′

i ≥ vi(a
∗(T \ {i})) for all i ∈ T ′ and T ⊃ T ′. However, this implies that there

exists (T ′� a∗(T ′)�u′′) ∈ XFRP(T ′) with u′′
i > u′

i for all i ∈ T ′ that blocks (S�a∗(S)�u) ∈
Core〈XFRP� S〉 = CoreFRP(S). If (T ′� a∗(T ′)�u′′) /∈ CoreFRP(T ′), then again there ex-
ists T ′′ ⊂ T ′ with (T ′′� a∗(T ′′)�u′′′) ∈ XFRP(T ′′) and u′′′

i > u′′
i for all i ∈ T ′′ that blocks

(S�a∗(S)�u) ∈ Core〈XFRP� S〉 = CoreFRP(S). This process must stop since T ⊃ T ′ ⊃
T ′′ ⊃ · · · and XFRP({i}) = CoreFRP({i}) = ({i}� a∗({i})� vi(a∗({i}) − C({i})� (vj(a∗{i}))j �=i).
Thus, there exists T ′′′ ⊂ T and (T ′′′� a∗(T ′′′)�u′′′′) ∈ CoreFRP(T ′′′) that blocks (S�a∗(S)�u).
This proves that whenever (S�a∗(S)�u) is blocked by nonnested T via (T�a∗(T)�u′) ∈
XFRP(T), it is also blocked by some T ′′′ ⊂ T via (T ′′′� a∗(T ′′′)�u′′′′) ∈ CoreFRP(T ′′′). This
completes the proof of CoreFRP = Core〈XFRP〉. �
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Proof of Proposition 3. First, we construct a strategy profile σ , which will be shown
to support (S∗� a∗(S∗)�u∗), where u∗ ∈ CoreFRP(S∗), as a PCPNE. In defining σ , we assign
a CPNE utility profile to every subgame S′. Then we show by way of contradiction that
there is no credible and profitable deviation from σ .

A strategy profile in the second stage σ2 is generated from utility allocations assigned
in each subgame (we utilize truthful strategies that support utility outcomes). We par-
tition the set of subgames S = {S′ ∈ 2N :S′ �= ∅} into three categories: S1 = {S∗} on the
equilibrium path, S2 = {S′ ∈ S :S′ ∩S∗ = ∅}, and S3 = {S′ ∈ S \ S1 :S′ ∩S∗ �= ∅}. As Laussel
and Le Breton (2001) show, a CPNE outcome in a subgame S′ corresponds to a core al-
location for S′. To support the equilibrium path (S∗� a∗(S∗)�u∗), we need to show that
there is no credible deviation in the first stage. Since a credible deviation requires both
free-riding-proofness and profitability, utility level ūi = max{u∗

i � vi(S
′ \ {i})} plays an im-

portant role as to whether player i joins a coalitional deviation.
We construct a core allocation for subgame S′ with the algorithm described in Ap-

pendix A, starting with the initial value ū. Then we show that if there exists a credible
deviation by coalition T , which induces (S′� a∗(S′)�u′) from (S∗� a∗(S∗)�u∗), then (S \S∗�
a∗(S \ S∗)� (u′

i)i∈S′\S∗� (vj(a∗(S′ \ S∗)))j /∈S′\S∗) ∈ CoreFRP(S′ \ S∗) and Pareto-dominates
(S∗� a∗(S∗)�u∗). This is a contradiction to the presumption that (S∗� a∗(S∗)�u∗) ∈
CoreFRP. Thus, we will conclude that there is no credible deviation from (S∗� a∗(S∗)�u∗).

The construction of the core allocation for each subgame is as follows.

1. We assign (S∗� a∗(S∗)�u∗) ∈ CoreFRP to the on-equilibrium subgame S∗.

2. For any S′ with S′ ∩ S∗ = ∅, we assign an extreme point of the core for S′ of a
convex game. For an arbitrarily selected order ω over S′, we assign payoff vec-
tor uω(1) = V ({ω(1)}) − V (∅), uω(2) = V ({ω(1)�ω(2)}) − V ({ω(1)}), and so on,
following Shapley (1971). Call this allocation ûS′ ∈ Core(S′� V ) (see Property 1 in
Appendix A).

3. For any S′ with S′ ∩ S∗ �= ∅, we assign a core allocation in the following man-
ner. It requires a few steps. First, we deal with the outsiders S′ \ S∗. Let
ω : {1� � � � � |S′ \ S∗|} → S′ \ S∗ be an arbitrary bijection and let ûω(1) = V ({ω(1)}),
ûω(2) = V ({ω(1)�ω(2)}) − V ({ω(1)}), � � � , ûω(|S′\S∗|) = V (S′ \ S∗) − V ((S′ \ S∗) \
{ω(|S′ \S∗|)}). Such a core allocation minimizes the total payoffs for S′ \S∗ (Shapley
1971). The rest of V (S′) − V (S′ \ S∗) goes to S′ ∩ S∗. Consider a reduced game
of (S′� V ) on S′ ∩ S∗ with uS′\S∗ as given above and ṼS′∩S∗ : 2S

′∩S∗ → R such that
ṼS′∩S∗(Q) = V (Q ∪ (S′ \ S∗)) − ∑

j∈S′\S∗ uj = V (Q ∪ (S′ \ S∗)) − V (S′ \ S∗). By Prop-

erty 2, we know that uS′∩S∗ ∈ Core(S′ ∩ S∗� ṼS′∩S∗) if and only if (uS′∩S∗�uS′\S∗) ∈
Core(S′� V ). For each i ∈ S′ ∩ S∗, let ūi = max{u∗

i � vi(S
′ \ {i})}. By Algorithm 1 in

Appendix A, we construct a core allocation ûS′∩S∗ from vector ūS′∩S∗ = (ūi)i∈S′∩S∗
for the reduced game ṼS′∩S∗ of game V : 2S

′ → R.

We support these core allocations by truthful strategies. Let σ1
i = 1 for i ∈ S∗

and σ1
i = 0 for i /∈ S∗. Let σ2

i [S∗] be a truthful strategy relative to a∗(S∗) such that
σ2
i [S∗](a∗(S∗)) = vi(a

∗(S∗)) − u∗
i for all i ∈ S∗, and let σ2

i [S′] be a truthful strategy rela-
tive to a∗(S′) with σ2

i [S′](a∗(S′)) = vi(a
∗(S′))− ûi(S

′) for all i ∈ S′. Since a core allocation
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with truthful strategies is assigned to every subgame, it is a CPNE. If there is a deviation
from σ , therefore, it must happen in the first stage.

Suppose to the contrary that there exists a coalition T that profitably and credibly
deviates from the equilibrium σ . Note that in the reduced game played by T , it must be
a PCPNE deviation with σ ′

T for given σ−T . In the original equilibrium, S∗ is the contri-
bution group. This implies that every i ∈ (N \ S∗) \T plays σ1

i = 0 (i.e., free-riding) in the
first stage, while every i ∈ S∗ \ T plays σ1

i = 1 in the first stage and engages in the same
strategy, i.e., the prescribed menu σ2

i (S
′) contingent to group S′, in the second stage.

Any i ∈ T \ S∗ has chosen σ1
i = 0 but chooses σ1′

i = 1 upon deviation in the first stage,
whereas i ∈ T ∩ S∗ may or may not choose σ1′

i = 1. Some may choose to free-ride by
switching to 0, while others stay in the contribution group, adjusting their strategies in
the second stage. To summarize, let S′ be the contribution group formed as a result of T ’s
deviation, i.e., S′ = S(σ1

−T �σ
1′
T ). Then there are five groups of players to be considered

(see Figure 1).

(i) The members of S∗ \ S′ ⊂ T that switch to free-riding after the deviation.

(ii) The members of S′ \ S∗ ⊂ T that join the contribution group upon deviation.

(iii) The members of (S∗ ∩ S′) \ T ⊂ S′ that still participate in the contribution group
after the deviation, with the same prescribed menu in the second stage.

(iv) The members of (S∗ ∩S′)∩T ⊂ S′ that change their strategies in the second stage.

(v) The members of N \ (S′ ∪ S∗) that are outsiders both before and after the
deviation.

Let the resulting allocation be (S′� a∗(S′)�u′). Since the deviation is profitable and
credible, the members of T , i.e., those who are categorized in (i), (ii), and (iv), are better
off after the deviation. That is,

vi(a
∗(S′)) ≥ u∗

i for all i ∈ S∗ \ S′

u′
i ≥ ūi for all i ∈ S′ \ S∗

u′
i ≥ ūi for all i ∈ (S∗ ∩ S′)∩ T�

where ūi = max{u∗
i � vi(a

∗(S′ \ {i})}.
Given our supposition, the following claims must be true.
First we claim that members of (ii) exist and that a∗(S′) > a∗(S∗), as they are better

off after the deviation. The set of players in (ii) is nonempty, since otherwise S′ ⊂ S∗ and
a coalitional deviation by T cannot be profitable, as (S∗� a∗(S∗)�u∗) is a core allocation.
This result is from Proposition 1.

Claim 1. We have S′ \ S∗ �= ∅ and a∗(S′) > a∗(S∗).

Since all players use truthful strategies in the strategy profile σ even after T ’s devi-
ation, the members in (iii) (outsiders of T ) obtain the same payoff vector û(S∗∩S′)\T (S′)
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as in the original subgame CPNE for S′. This is because in subgame S′ (even after devia-
tion), a∗(S′) must be provided, as a CPNE (core) must be assigned to the subgame. Thus,
we have the following claim for group (iii).

Claim 2. After the deviation by T , every i ∈ (S∗ ∩ S′) \ T ⊂ S′ receives exactly u′
i = ûi.

Since u′ needs to be a CPNE payoff vector in the second stage of the reduced game
by T , we have

∑
i∈S′\S∗ u′

i ≥ V (S′ \ S∗) for uS′ to be in Core(S′� V ). By the construction
of ûS′ , on the other hand, we have

∑
i∈S′\S∗ ûi = V (S′ \ S∗). Thus, we have the following

claim for group (ii).

Claim 3. We have
∑

i∈S′\S∗ u′
i ≥ V (S′ \ S∗) = ∑

i∈S′\S∗ ûi.

The next claim shows that the counterpart of Claim 3 holds for group (iv).

Claim 4. We have
∑

i∈S′∩S∗∩T u′
i =

∑
i∈S′∩S∗∩T ûi.

Proof. Group (iv) consists of members of W , I, and L. Note that u′
i ≥ ūi for any

i ∈ S′ ∩ S∗ ∩ T since otherwise they would have no incentive to join the deviation.
First consider the set W of winners in group (iv); we have ûi ≥ ūi by the definition

of W . The contribution group S′ must be immune to a coalitional deviation by W , so we
have ∑

i∈W
u′
i ≥ Ṽ (W ) =

∑
i∈W

ûi�

where the equality holds by Lemma 2. As for players in I, we have ûi = ūi by definition.
Thus, it follows from u′

i ≥ ūi that u′
i ≥ ûi for any i ∈ I. Payoffs for losers, by definition,

must satisfy ûi < ūi, so we have u′
i > ûi because u′

i ≥ ūi. However, it follows from Claim 2,
Claim 3, and

∑
i∈S′ u′

i =
∑

i∈S′ ûi = V (S′) that

∑
i∈S′∩S∗∩T

u′
i ≤

∑
i∈S′∩S∗∩T

ûi� (3)

Together with
∑

i∈W u′
i ≥ ∑

i∈W ûi and
∑

i∈I u′
i ≥ ∑

i∈I ûi, these imply that L is empty,
and hence

∑
i∈S′∩S∗∩T u′

i ≥ ∑
i∈S′∩S∗∩T ûi. Consequently, we have from (3) that∑

i∈S′∩S∗∩T u′
i =

∑
i∈S′∩S∗∩T ûi. �

Claims 2, 3, and 4 immediately imply the following claim for group (ii).

Claim 5. We have
∑

i∈S′\S∗ u′
i =

∑
i∈S′\S∗ ûi = V (S′ \ S∗).

The final claim follows from Claim 5 and the supposition that the deviation by T is
profitable and credible.

Claim 6. Consider a deviation by S′ ∪ S∗ such that S′ \ S∗ is the resulting contri-
bution group (all members in S∗ stop contributing). Then the allocation (S′ \ S∗�
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a∗(S′ \S∗)� (u′
i)i∈S′\S∗� (vj(a∗(S′ \S∗)))j /∈S′\S∗) is in CoreFRP(S′ \S∗) and Pareto-dominates

(S∗� a∗(S∗)�u∗).

Proof. Since the deviation by T is profitable, we have

∑
i∈S′\S∗

vi(a
∗(S′ \ S∗))−C(a∗(S′ \ S∗)) = V (S′ \ S∗)

=
∑

i∈S′\S∗
u′
i

>
∑

i∈S′\S∗
vi(a

∗(S∗))�

Thus, we have
∑

i∈S′\S∗ vi(a∗(S′ \ S∗)) >
∑

i∈S′\S∗ vi(a∗(S∗)) and hence a∗(S′ \ S∗) >

a∗(S∗). Now, since the deviation by T is credible, and hence u′
i ≥ vi(a

∗(S′ \ {i})) ≥
vi(a

∗((S′ \S∗) \ {i})) for any i ∈ S′ \S∗, Claim 5 implies that (S′ \S∗� a∗(S′ \S∗)� (u′
i)i∈S′\S∗�

(vj(a
∗(S′ \ S∗)))j /∈S′\S∗) ∈ CoreFRP(S′ \ S∗).

Next, we show that ((u′
i)i∈S′\S∗� (vj(a∗(S′ \S∗)))j /∈S′\S∗) Pareto dominates u∗. First, the

profitability of the deviation by T immediately implies that u′
i ≥ vi(a

∗(S∗)) = u∗
i for any

i ∈ S′ \S∗. Thus, we have shown the Pareto domination for group (ii). Pareto domination
for group (v) is immediate from a∗(S′ \ S∗) > a∗(S∗). As for groups (i), (iii), and (iv), i.e.,
for all i ∈ S∗, we first note that since u∗ ∈ Core(S∗) and the game V is convex, we have
u∗
i ≤ V (S∗)− V (S∗ \ {i}) (Shapley 1971). Now

V (S∗)− V (S∗ \ {i})

=
∑
j∈S∗

vj(a
∗(S∗))−C(a∗(S∗))−

( ∑
j∈S∗\{i}

vj
(
a∗(S∗ \ {i})) −C

(
a∗(S∗ \ {i}))

)

< vi(a
∗(S∗))+

∑
j∈S∗\{i}

vj(a
∗(S∗))−C(a∗(S∗))

−
( ∑
j∈S∗\{i}

vj
(
a∗(S∗ \ {i})) −C

(
a∗(S∗ \ {i}))

)

< vi(a
∗(S′ \ S∗))�

where the last inequality holds since
∑

j∈S∗\{i} vj(a) − C(a) is maximized at a =
a∗(S∗ \ {i}). This proves that all members of groups (i), (iii), and (iv) are better off in the
allocation (S′ \ S∗� a∗(S′ \ S∗)� (u′

i)i∈S′\S∗� (vj(a∗(S′ \ S∗)))j /∈S′\S∗). Hence, we conclude
that (S∗� a∗(S∗)�u∗) ∈ CoreFRP is Pareto-dominated by (S′ \ S∗� a∗(S′ \ S∗)� (u′

i)i∈S′\S∗�
(vj(a

∗(S′ \ S∗)))j /∈S′\S∗), which is in CoreFRP(S′ \ S∗). �

The statement of Claim 6 is an apparent contradiction to (S∗� a∗(S∗)�u∗) ∈ CoreFRP

(see Proposition 2). Thus, we have shown that there is no profitable and credible devia-
tion from the constructed strategy profile σ , so σ is a PCPNE. �
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Proof of Proposition 4. Suppose to the contrary that for any natural number l, there
exists r ≥ l such that (Sr� a

∗(Sr)�u∗
r ) ∈ CoreFRP(V r) and a∗(Sr) ≥ ā. This implies that

there exists an increasing sequence of natural numbers r that satisfy (Sr� a
∗(Sr)�u∗

r ) ∈
CoreFRP(V r). We show that (under this supposition) for any r with (Sr� a

∗(Sr)�u∗
r ) ∈

CoreFRP(V r) and any iq ∈ Sr , a∗(Sr \ {iq}) approaches a∗(Sr) as r → ∞, and hence the
left-hand side of

∑
i∈N

mi(S)

r

[
vi(a

∗(S))− vi
(
a∗(S \ {iq})

)] ≥ C(a∗(S))

diminishes to zero (since v′
i(a

∗(S)) ≤ v′
i(ā) < ∞). Since C(a∗(S)) ≥ C(ā) > 0, this im-

plies that (1) is violated eventually as r → ∞, which in turn leads to a contradiction to
(Sr� a

∗(Sr)�u∗
r ) ∈ CoreFRP(V r).

Now, a∗(Sr), the public goods provision level induced by the contribution group Sr ,
is chosen so as to satisfy the first-order condition

∑
j∈N

mj(Sr)

r
v′
j(a

∗(Sr))−C ′(a∗(Sr)) = 0� (4)

where [mj(Sr)/r]v′
j(a) = ∑

iq∈S v
r′
iq
(a). For any r, the left-hand side of (4) is continuous

and strictly decreasing in the public goods provision level a since v′′
j ≤ 0 and C ′′ > 0 (as

Figure 2 illustrates). Similarly, for any iq ∈ Sr , the optimality of public goods provision
requires that a∗(Sr \ {iq}) satisfy

∑
j∈N

mj(Sr \ {iq})
r

v′
j

(
a∗(Sr \ {iq})

) −C ′(a∗(Sr \ {iq})
) = 0 (5)

Figure 2. Convergence of a∗(Sr \ {iq}) to a∗(Sr).
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or, equivalently,

∑
j∈N

mj(Sr)

r
v′
j

(
a∗(Sr \ {iq})

) − v′
i(a

∗(Sr \ {iq}))
r

−C ′(a∗(Sr \ {iq})
) = 0�

where the second term in the second equation represents the free-rider iq’s marginal
benefit from the public goods provision.

Now we claim that for any ε ∈ (0� ā), there exists a positive integer rε such that for
any r ≥ rε,

∑
j∈N

mj(Sr)

r
v′
j(a

∗(Sr)− ε)− v′
i(a

∗(Sr)− ε)

r
−C ′(a∗(Sr)− ε) > 0�

i.e., the left-hand side of (5), evaluated at a = a∗(Sr) − ε instead of a∗(Sr \ {iq}), is posi-
tive as Figure 2 shows. Together with v′′

j ≤ 0 and C ′′ > 0, this implies that a∗(Sr \ {iq}) ∈
(a∗(Sr)− ε�a∗(Sr)), which in turn implies the convergence of a∗(Sr \ {iq}) to a∗(Sr).

To show the claim, we first define the minimum C ′′ over the relevant range as
c ≡ mina∈[0�a∗(N)] C ′′(a). It follows from C ′′ > 0 that c > 0. Now, for any r, it follows from
(4) and Taylor’s formula that there exists a′ ∈ [a∗(Sr)− ε�a∗(Sr)] such that

∑
j∈N

mj(Sr)

r
v′
j(a

∗(Sr)− ε)−C ′(a∗(Sr)− ε) =
∑
j∈N

mj(Sr)

r
v′
j(a

∗(Sr))−C ′(a∗(Sr))

− ε

[∑
j∈N

mj(Sr)

r
v′′
j (a

′)−C ′′(a′)
]

= ε

[
C ′′(a′)−

∑
j∈N

mj(Sr)

r
v′′
j (a

′)
]

≥ cε�

where we have used v′′
j ≤ 0 to derive the last inequality. On the other hand, it follows

from v′
i(a

∗(Sr)− ε) ≤ v′
i(ā− ε) (as a∗(Sr) > ā) that there exists rε such that

v′
i(a

∗(Sr)− ε)

r
≤ v′

i(ā− ε)

r
< 1

2cε

holds for any r ≥ rε. Then the claim follows immediately since

∑
j∈N

mj(Sr)

r
v′
j(a

∗(Sr)− ε)− v′
i(a

∗(Sr)− ε)

r
−C ′(a∗(Sr)− ε) > cε− 1

2cε > 0�

Now we have from mi(Sr)≤ r and the claim established above that

∑
i∈N

mi(Sr)

r

[
vi(a

∗(Sr))− vi
(
a∗(Sr \ {iq})

)]

≤
∑
i∈N

[
vi(a

∗(Sr))− vi
(
a∗(Sr \ {iq})

)] → 0 as r → ∞�
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Since C(a∗(S)) > C(ā) > 0, we have shown that there exists r̄(ā) such that for any
r ≥ r̄(ā), the free-riding-proofness condition (1) fails to be satisfied, which implies that
a∗(S∗) < ā for any (S∗� a∗(S∗)�u∗) ∈ CoreFRP(V r) when r ≥ r̄(ā). �

Appendix C

In this appendix, we provide some logical relationships between PCPNE of our game
and other equilibrium concepts of (possibly other) noncooperative coalition formation
games. For the sake of simplicity, we assume that the TU game generated from the pub-
lic goods provision game is not only a convex game but also a strictly convex game (i.e.,
inequalities are strict). This is not at all a restrictive assumption when the public goods
space is the nonnegative real line.

First note that even within our game, PCPNE is different from a subgame perfect
Nash equilibrium (SPNE) with a coalition-proof Nash equilibrium (CPNE) assigned to
each subgame (i.e., a Nash equilibrium in the participation game with a CPNE assigned
to each subgame of the contribution stage). In PCPNE, when a group of players deviates
in the first stage, they can coordinate their strategies in the following subgames so as
to support a target outcome (as long as such a deviation strategy profile is credible in
the recursive sense). In contrast, in SPNE, only a single player can change her strategy
in the first stage and also in the following subgame. Since an equilibrium strategy is
taken in each subgame, the deviating player has no incentive to switch her strategies
in the subgames. Thus, given that a CPNE is assigned to every subgame, we need only
check if there exists a unilateral deviation incentive in the first stage to see if a given
strategy profile for the entire game is SPNE. This distinction makes a big difference. In
the following discussion, we compare the set of equilibrium outcomes of various rules
of games including (noncooperative) coalition bargaining games.

In this paper, we have analyzed CoreFRP(S) for S ⊆ N , CoreFRP, and PCPNE of our
voluntary participation game with common agency games as the second-stage sub-
games. Recall that we found that the PCPNE of our game is equivalent to CoreFRP and
Core〈XFRP〉. Here, we consider the following other possible games and equilibrium
concepts.

1. SPNE with CPNE of the common agency game, i.e., Nash equilibrium (NE) of
our voluntary participation game with CPNE assigned to each common agency
subgame.

2. SPNE with the strong Nash equilibrium (SNE) of the common agency game, i.e., NE
of our voluntary participation game with SNE assigned to each common agency
subgame.

3. Perfect strong Nash equilibrium (PSNE), i.e., SNE of our voluntary participation
game with SNE assigned to each common agency subgame.
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Figure 3. Relationships with other equilibrium concepts.

4. SPNE with the stationary subgame perfect Nash equilibrium (SSPNE) of Perry and
Reny’s (1994) or Moldovanu and Winter’s (1995) noncooperative coalition bargain-
ing games in the second stage that follows the voluntary participation game in the
first stage.

We restrict our attention to the open-membership participation game in the first stage
since voluntary participation in the common agency contribution game is of primary
interest to us. We show the logical relationship that is schematically described in
Figure 3.

Claim 7. Games 1, 2, and 4 generate a common set of outcomes that includes PCPNE =
CoreFRP of our game. This inclusion relationship is strict in general.

Proof. In our common agency (sub)game, the set of CPNE outcomes, the set of SNE
outcomes, and the core of the TU game generated from our public goods economy are
all equivalent. Perry and Reny (1994) show that the core of a TU game is implementable
by a noncooperative coalitional bargaining game when it is totally balanced. Similarly,
Moldovanu and Winter (1995) show that the core of an NTU game is implementable by
their noncooperative coalitional bargaining game when the NTU game has a nonempty
core in all subgames. Thus, in the subgame S ⊆N of games 1, 2, and 4 generate Core(S).
The sets of outcomes of these three games are the same, since the Nash equilibrium
concept is adopted in the first-stage voluntary participation game of all the three.

As for the comparison with PCPNE = CoreFRP, it is clear that every PCPNE allocation
is included in the outcome allocations of the above three games, since the perfectness
of PCPNE is more demanding than Nash equilibrium.

We show that this inclusion relationship is strict with Example 1 in the main text.
Since the TU game generated from the public goods provision problem is convex, we
can utilize Property 1 of Appendix A (Shapley 1971). That is, the worst core allocation for
each player i is V ({i}) in any convex games. First, consider singleton coalition S = {11} as
the contribution group. In this case, a∗({11}) = 11 and V ({11}) = 60�5. The unique alloca-
tion of Core(S) is (S�a∗(S)�u) = ({11}�11� (60�5�55�33�11)). Although it does not belong
to CoreFRP (or the set of allocations in PCPNE), we can support it as a subgame per-
fect Nash equilibrium of games 1, 2, and 4. Since the participation stage just demands
being a Nash equilibrium in these three games, we need to consider only three sub-
games S′ = {11�1}, S′′ = {11�3}, and S′′′ = {11�5}, which yield V (S′) = 72, V (S′′) = 98, and
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V (S′′′) = 128, respectively. We assign an extreme point of the core to each of subgames
S′, S′′, and S′′′: (u′

11�u
′
1) = (71�5�0�5), (u′′

11�u
′′
3) = (93�5�4�5), and (u′′′

11�u
′′′
5 ) = (115�5�12�5),

respectively. Clearly, none of 1, 3, and 5 has an incentive to deviate. Thus, the allocation
(S�a∗(S)�u) = ({11}�11� (60�5�55�33�11)) is in SPNE of games 1, 2, and 4. �

Claim 8. Game 3 generates the set of outcomes that is included in PCPNE = CoreFRP of
our game. Moreover, it is empty unless there is a grand coalition free-riding-proof core
allocation.

Proof. Clearly, PSNE ⊂ PCPNE since SNE ⊂ CPNE. In the public goods provision prob-
lem, for all S � N and all (S�a∗(S)�u) ∈ Core(S), there is an allocation (N�a∗(N)�u′) ∈
Core(N) with u′ > u; the grand coalition with this allocation blocks the allocation
(S�a∗(S)�u). Thus, unless there is an FRP-core allocation with the grand coalition, PSNE
is an empty set. �
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