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Abstract

This paper studies a class of infinitely repeated games with two players
in which the action space of each player is an interval, and the one-
shot payoff of each player is additively separable in their actions. We
define an immediately reactive equilibrium (IRE) as a pure-strategy
subgame perfect equilibrium such that each player’s action in each
period is a stationary function of the other player’s last action. We
completely characterize IREs and their dynamics in terms of certain
indifference curves. In a special case we establish a folk-type theo-
rem using only IREs that are continuous and punish deviations in
a minimal way. Our results are used to show that in a prisoners’
dilemma game with observable mixed strategies, gradual cooperation
occurs when the players are sufficiently patient, and that in a certain
duopoly game, kinked demand curves emerge naturally.

Keywords: Immediately reactive equilibria; additively separable pay-
offs; kinked demand; gradual cooperation; prisoners’ dilemma

∗This is a revised version of the paper entitled “Immediately Reactive Equilibria in
Infinitely Repeated Games with Additively Separable Continuous Payoffs.” Earlier versions
were presented in seminars at Kyoto University, University of Venice, University of Paris
1, and GREQAM. We would like to thank Atsushi Kajii, Tomoyuki Nakajima, Tadashi
Sekiguchi, Olivier Tercieux, Julio Davila, Sergio Currarini, Piero Gottardi, and anonymous
referees for helpful comments and suggestions.

†Corresponding author. RIEB, Kobe University, Rokkodai, Nada, Kobe 657-8501
JAPAN. Email: tkamihig@rieb.kobe-u.ac.jp. Tel/Fax: +81-78-803-7015.

‡Graduate School of Economics, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo
186-8601 JAPAN. Email: furusawa@econ.hit-u.ac.jp. Tel/Fax: +81-42-580-8866.



1 Introduction

In infinitely repeated games with a prisoners’ dilemma-like stage game, Nash
reversion trigger strategies (Friedman, 1971) are often used to show that
cooperation (or collusion) can be sustained by the threat to revert to a non-
cooperative Nash equilibrium. In such equilibria, each player continues to
cooperate as long as all the other players cooperate, but will choose to behave
selfishly once anyone defects.

While Nash reversion equilibria are simple and intuitive, they seem to
have two disadvantages. First, small deviations are punished as harshly
as large deviations.1 Second, there are no nontrivial transition dynamics
between the cooperative state and the noncooperative state. The first dis-
advantage can be avoided by considering continuous strategies, which are
insensitive to small deviations. This approach has been adopted by Samuel-
son (1987), Friedman and Samuelson (1990, 1994a, 1994b), and Langlois and
Sachs (1993), who established the existence of nontrivial continuous equilib-
ria. As for nontrivial transition dynamics, however, very few general results
seem to be available in the literature.

In this paper we study a class of infinitely repeated two-person games
in which the action space of each player is an interval. We follow Fried-
man (1968, 1973, 1976) in focusing on strategies such that the action cho-
sen in each period is a stationary function of the other player’s last action.
We call such strategies immediately reactive, and say that a subgame per-
fect equilibrium is an immediately reactive equilibrium (IRE) if each player
chooses an immediately reactive strategy.2 IREs are the natural choice in
alternating move games (e.g., Maskin and Tirole, 1988a; Bhaskar and Vega-
Redondo, 2002). Since they can be continuous or discontinuous, IREs extend
Nash reversion equilibria, avoiding their first disadvantage mentioned above.
Furthermore, the global dynamics of IREs are typically nontrivial and can
completely be characterized graphically.

In our framework, interesting dynamics arise naturally. For example,

1This also applies to more complex trigger strategy equilibria (Green and Porter 1984;
Abreu, 1986, 1988).

2Friedman (1968, 1973, 1976) called IREs “reaction function equilibria.” We avoid
his terminology since it has been used in a broader sense in subsequent literature. The
concept of IRE is related to a few other ones (Friedman and Samuelson, 1994a; Kalai,
Samet, and Stanford, 1988; Maskin and Tirole, 1988a, 1988b). Detailed discussions are
given in Subsections 2.4 and 2.5.
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cooperation is achieved gradually in a repeated prisoners’ dilemma with ob-
servable mixed strategies if the players are sufficiently patient.3 In a duopoly
game, kinked demand curves emerge naturally.4 In a collusive steady state,
each firm cuts its price if the other firm does so, but neither firm responds if
the other firm raises its price. In “inefficient” IREs, the collusive steady state
is unstable: after a small price cut by either firm, price war starts gradually,
accelerates, and leads to noncollusive prices in the long run. In “efficient”
IREs, however, the collusive steady state is stable: a price cut by either firm
is matched by a smaller price cut, and the steady state is restored in the
long run. All of these dynamic phenomena are properties of IREs in regular
form, which we define as IREs that are continuous and punish deviations in
a minimal way.

Unfortunately, these results come at a cost. In particular, we assume
that the one-shot payoff of each player is additively separable in their ac-
tions. This assumption is necessary since, as shown by Stanford (1986) and
Robson (1986), the only possible IRE is a trivial one in certain duopoly games
with additively non-separable payoffs. On the other hand, the assumption of
additive separability holds in various games, including a prisoner’s dilemma
with observable mixed strategies and a duopoly game in which each firm’s
one-shot payoff is given by the logarithm of its profit.5 Another example
is a two-country model of international trade in which each country sets its
tariff rate to maximize the sum of tariff revenue, consumer surplus, and pro-
ducer surplus.6 These and other examples are discussed in Subsection 2.2.
In addition to additive separability, we assume that each player’s one-shot
payoff is continuous, monotone in the other player’s action, and monotone
or unimodal in his own action.

3Gradual cooperation is known to arise in certain partnership games (e.g., Kranton,
1996; Watson, 1999, 2002; Furusawa and Kawakami, 2006). Our example shows a simplest
mechanism of gradual cooperation.

4Although there are game-theoretic models of kinked demand in the literature (e.g.,
Maskin and Tiroel, 1988b; Bhaskar, Machin, and Reid, 1991; Radner, 2003; Sen, 2004),
they typically require rather specific assumptions. Though our example also requires
specific assumptions, it allows one to derive and visualize kinked demand curves in an
extremely simple manner.

5This can be justified by assuming that the owner of each firm is “risk averse” or, more
precisely, prefers stable profit streams to unstable ones.

6Furusawa and Kamihigashi (2006) study such a model, focusing on issues specific to
international trade. A preliminary version of Furusawa and Kamihigashi (2006) contained
some of the arguments in this paper, which now appear exclusively in this paper.
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Given a stage game satisfying the assumptions mentioned above, we show
that the set of IREs in the simultaneous move game is identical to that in the
alternating move game.7 In both games, we completely characterize IREs in
terms of indifference curves associated with what we call effective payoffs.
The effective payoff of a player is the part of his discounted sum of payoffs
that is directly affected by his current action. By additive separability, the
effective payoff consists of only two functions. This structure substantially
simplifies each player’s dynamic maximization problem.8

We show that in any IRE, any equilibrium path stays on the associated
indifference curves except for the initial period. By this result, equilibrium
dynamics are always characterized by two indifference curves. Our main
result characterizes what pairs of indifference curves can be supported as
IREs: given a pair of indifference curves, there is an associated IRE if and
only if the following two graphical conditions are met. First, the intersection
of the areas on or above the indifference curves must be nonempty. Second,
the lowest point of each indifference curve must not be too low relative to
the other indifference curve.

In a special case in which each player’s payoff depends monotonically on
his own action, we provide a necessary and sufficient condition for an IRE
to be effective efficient, i.e., Pareto optimal among IREs in terms of effective
payoffs. The necessary and sufficient condition is that the intersection of the
areas strictly above the indifference curves be empty. Effective efficiency has
interesting dynamic implications, such as gradual cooperation in a prisoners’
dilemma with observable mixed strategies, as well as globally stable collusive
prices in a duopoly game, as mentioned above. In the same special case, we
also obtain the following folk-type theorem: if both players are sufficiently
patient, any “strictly individually rational” action profile—or any pair of
actions in which each player’s payoff is strictly greater than his minimax
payoff—can be supported as a steady state of an IRE in regular form.

Our folk-type theorem is similar in spirit to those shown by Friedman
and Samuelson (1994a, 1994b). Their results show that the main idea of

7Section 4 discusses the relationship of this result to Lagunoff and Matsui’s (1997) anti-
folk theorem for alternating move games of pure coordination. See Haller and Lagunoff
(2000) and Yoon (2001) for further results on alternating move games.

8Effective payoffs are similar to what Kamihigashi and Roy (2006) call partial gains
in an optimal growth model with linear utility. Equations (2.19)–(2.21) in this paper
are similar to (3.7)–(3.9) in Kamihigashi and Roy (2006), but essentially this is the only
similarity in analysis between the two papers.
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the standard folk theorem (Fudenberg and Maskin, 1986) is valid even if one
confines oneself to continuous equilibria. In our case the equilibria that we
consider are stationary, continuous, and immediately reactive. In addition,
the IREs used in our folk-type theorem punish deviations in a minimal way.

The rest of the paper is organized as follows. Section 2 describes the one-
shot game and our assumptions, discusses several examples, and introduces
the simultaneous and the alternating move games. Section 3 characterizes
the best responses of a player given the other player’s strategy, developing
and utilizing various graphical tools. The main result of Section 3 has some
immediate implications on IREs, which are shown in Section 4. Section 5
discusses the dynamics induced by IREs. Section 6 gives a complete char-
acterization of IREs. Section 7 characterizes effectively efficient IREs in a
special case and shows a folk-type theorem. Section 8 applies our results to
a prisoner’s dilemma game and a duopoly game. Section 9 concludes the
paper. The appendix contains the proof of our characterization result.

2 The Games

2.1 The One-Shot Game

Before introducing repeated games, let us describe the one-shot game. There
are two players, 1 and 2. Define

Q = {(1, 2), (2, 1)}. (2.1)

For (i, j) ∈ Q, let Si denote player i’s action space, πi : Si × Sj → R player
i’s payoff. The following assumptions are maintained throughout.

Assumption 2.1. For i = 1, 2, Si ⊂ R is an interval with nonempty interior.

Assumption 2.2. For (i, j) ∈ Q, there exist ui : Si → [−∞,∞) and vi :
Sj → R such that

∀(si, sj) ∈ Si × Sj, πi(si, sj) = ui(si) + vi(sj). (2.2)

Assumption 2.3. v1 and v2 are continuous. Either both are strictly increas-
ing or both are strictly decreasing.
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Assumption 2.4. For i = 1, 2, ui is continuous, and there exists ŝi ∈ Si such
that ui is strictly increasing on Si∩ (−∞, ŝi) provided Si∩ (−∞, ŝi) 6= ∅, and
strictly decreasing on Si ∩ (ŝi,∞) provided Si ∩ (ŝi,∞) 6= ∅.9

Assumption 2.5. For i = 1, 2, ui is bounded above, and vi is bounded.

Assumption 2.2 is our key assumption. Assumptions 2.4 and 2.5 imply
that ŝi is player i’s strictly dominant strategy and that (ŝ1, ŝ2) is the unique
static Nash equilibrium. Assumption 2.2 allows ui to be unbounded below
because such cases are common in economic models.

2.2 Examples

Though Assumption 2.2 may appear rather strong as a restriction on general
games with two players, it is satisfied in various games. We provide specific
examples below. Our intention here is not to claim that our assumptions
are general, but to suggest that our framework is useful in analyzing certain
types of games as well as special cases of more general games.

2.2.1 Tariff War

Consider a two-country world in which the payoff of each country is given by
the sum of its tariff revenue, consumer surplus, and producer surplus. Each
country is better off if the other country reduces its tariff rate, while each
country has an incentive to choose the tariff rate that maximizes the sum of
its tariff revenue and consumer surplus. To be more specific, let ŝi be this
maximizing tariff rate, and si be country i’s tariff rate imposed on imports
from country j. Under standard assumptions, country i’s producer surplus
is strictly decreasing in sj, while the sum of its tariff revenue and consumer
surplus is strictly increasing in si for si ≤ ŝi and strictly decreasing for
si ≥ ŝi. This game satisfies our assumptions, and is analyzed in detail in
Furusawa and Kamihigashi (2006).

2.2.2 Aggregative Games

Consider a game in which the payoff of player i can be written as a function
of si and si + sj, i.e., πi(si, sj) = π̃i(si, si + sj) for some π̃i. This type of

9We follow the convention that if ui(r) = −∞ for some r ∈ Si, then ui is continuous
at r if limsi→r ui(si) = −∞. Such r can only be min Si or max Si by Assumption 2.4.
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game is called an aggregative game (Corchon, 1994). For example, si can
be player i’s contribution to a public good, or his pollution emission. If π̃ is
additively separable and depends linearly on si + sj, then there are various
cases in which our assumptions are satisfied.

2.2.3 Bertrand Competition

Consider a game played by two firms, each producing a differentiated product
with a constant marginal cost ci and with no fixed cost. Firm i faces a demand
function Di(pi, pj) that depends on the prices pi and pj chosen by the two
firms. Firm i’s profit is Di(pi, pj)(pi − ci). Suppose Di is multiplicatively
separable: Di(pi, pj) = di

i(pi)d
j
i (pj) for some functions di

i and dj
i . Then the

profit maximization problem of firm i is equivalent to maximizing ui(pi) +
vi(pj), where

ui(pi) = ln di
i(pi) + ln(pi − ci), vi(pj) = ln dj

i (pj). (2.3)

This transformation is innocuous in the one-shot game, and our assumptions
are satisfied under reasonable assumptions on di

i and dj
i . In repeated games

the above transformation may be justified by assuming that the owners of
the firms are “risk averse” or, more precisely, prefer stable profit streams to
unstable ones.

2.2.4 Prisoner’s Dilemma

Though the action spaces are assumed to be intervals in this paper, our
framework applies to 2×2 games with mixed strategies. A case in point is the
prisoner’s dilemma game in Figure 1 (with a, c > 0), which is a parametrized
version of the game discussed by Fudenberg and Tirole (1991, p. 10, p. 111).
For i = 1, 2, let si be player i’s probability of choosing action C. Let πi(si, sj)
be player i’s expected payoff:

πi(si, sj) = sisjc + si(1− sj)(−a) + (1− si)sj(c + a) (2.4)

= −asi + (c + a)sj. (2.5)

Let S1 = S2 = [0, 1]. Then all our assumptions are clearly satisfied with
ŝ1 = ŝ2 = 0.10

10Furusawa and Kawakami (2006) use a payoff function similar to (2.4) to analyze perfect
Bayesian equilibria in a model with stochastic outside options.
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Figure 1: Prisoner’s dilemma
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Figure 2: General 2× 2 game

2.2.5 General 2× 2 Games

The preceding example suggests that our framework applies to more general
2× 2 games. To see this, consider the 2 × 2 game in Figure 2. For i = 1, 2,
let si be player i’s probability of choosing action 1. Let πi(si, sj) be player
i’s expected payoff:

πi(si, sj) (2.6)

= sisjp
11
i + si(1− sj)p

12
i + (1− si)sjp

21
i + (1− si)(1− sj)p

22
i (2.7)

= (p12
i − p22

i )si + (p21
i − p22

i )sj + (p11
i − p12

i − p21
i + p22

i )sisj + p22
i . (2.8)

It is easy to see that all our assumptions hold if and only if p12
i 6= p22

i , (p21
1 −

p22
1 )(p21

2 − p22
2 ) > 0, and p11

i − p12
i − p21

i + p22
i = 0. The last condition sug-

gests some form of additive separability. For example, it can be written as
p11

i − p21
i = p12

i − p22
i , i.e., player i’s choice has the same effect on his pay-

off independently of player j’s action. Alternatively, it can be written as
p11

i − p12
i = p21

i − p22
i , i.e., player j’s choice has the same effect on player i’s

payoff independently of player i’s action.
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2.3 Normalizing Assumptions

To simplify the exposition, we introduce some assumptions that can be made
without loss of generality.

Assumption 2.6. For i = 1, 2, inf Si = 0 and sup Si = 1.

This can be assumed without loss of generality since none of our assump-
tions is affected by strictly increasing, continuous transformations of Si. If
0 6∈ Si and/or 1 6∈ Si, we extend ui and vi to 0 and/or 1 as follows:

ui(0) = lim
s↓0

ui(s), ui(1) = lim
s↑1

ui(s), (2.9)

vi(0) = lim
s↓0

vi(s), vi(1) = lim
s↑1

vi(s). (2.10)

By the above and Assumption 2.5, the following can be assumed without loss
of generality.

Assumption 2.7. For i = 1, 2, ui : [0, 1] → [−∞,∞) and vi : [0, 1] → R are
continuous, and ui((0, 1]), vi([0, 1]) ⊂ R.

Strictly speaking, the next assumption is not a normalization, but it is
innocuous and is made merely for notational simplicity.11

Assumption 2.8. S1 = S2 = [0, 1].

The following is our last normalizing assumption.

Assumption 2.9. For i = 1, 2, vi is strictly increasing.

To see that this is a normalization, suppose v1 and v2 are both strictly
decreasing (recall Assumption 2.3). For (i, j) ∈ Q, define S̃i = [0, 1], s̃i =
1− si, ũi(s̃j) = ui(1− s̃j), and ṽi(s̃i) = vi(1− s̃i). Then ṽ1 and ṽ2 are strictly
increasing, and ũ1, ṽ1, S̃1, ũ2, ṽ2, and S̃2 satisfy all the other assumptions.

2.4 The Repeated Game with Simultaneous Moves

Consider the infinitely repeated game in which the stage game is given by
the one-shot game described above. For i = 1, 2, let δi ∈ (0, 1) be player
i’s discount factor. We restrict ourselves to pure-strategy subgame perfect

11It is innocuous because removing 0 and/or 1 from Si does not affect our analysis.
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equilibria in which player i’s action in period t, si,t, is a stationary function fi

of player j’s action in period t−1, sj,t−1. We call such strategies immediately
reactive.

Friedman (1968) called such strategies reaction functions. Immediately
reactive strategies are a special case of single-period-recall strategies (Fried-
man and Samuelson, 1994a) and reactive strategies (Kalai et al., 1988).
Single-period-recall strategies depend only on both players’ last actions, and
reactive strategies depend only on the other player’s past actions. We focus
on stationary strategies that depend only on the other player’s last action.
This feature is shared by well-known strategies such as grim trigger and
tit-for-tat.

Let F be the set of all functions from [0, 1] to [0, 1]. Let (i, j) ∈ Q. Taking
player j’s strategy fj ∈ F as given, player i faces the following problem:

max
{si,t}∞t=1

∞∑
t=1

δt−1
i [ui(si,t) + vi(sj,t)] (2.11)

s.t. ∀t ∈ N, sj,t = fj(si,t−1), (2.12)

∀t ∈ N, si,t ∈ [0, 1]. (2.13)

We say that fi ∈ F is a best response to fj if for any (si,0, sj,0) ∈ [0, 1]2, the
above maximization problem has a solution {si,t}∞t=1 such that si,t = fi(sj,t−1)
for all t ∈ N. We call a strategy profile (f1, f2) ∈ F 2 an immediately reactive
equilibrium (IRE) if f1 is a best response to f2 and vice versa. Note that
f1 and f2 are not required to be continuous or even measurable, but the
maximization problem (2.11)–(2.13) is required to be well defined given fj.

12

2.5 The Repeated Game with Alternating Moves

Now consider the case of alternating moves. Player 1 updates his action in
odd periods, while player 2 updates his action in even periods.13 Define

T1 = {1, 3, 5, · · · }, T2 = {2, 4, 6, · · · }. (2.14)

12Our results are unaffected even if f1 and f2 are required to be continuous or upper
semi-continuous. The same remark applies to the alternating move game.

13In alternating move games, it is often assumed that the players play simultaneously
in the initial period and take turns afterwards. Such an assumption does not affect our
analysis, which is concerned only with stationary subgame perfect equilibria.
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As in the simultaneous move case, we restrict ourselves to subgame perfect
equilibria in which each player chooses an immediately reactive strategy, i.e,
in each period t ∈ Ti, player i chooses an action si,t according to a stationary
function fi of player j’s last (or equivalently current) action sj,t−1.

Let (i, j) ∈ Q. Given player j’s strategy fj ∈ F , player i faces the
following problem:

max
{si,t}∞t=1

∞∑
t=i

δt−i
i [ui(si,t) + vi(sj,t)] (2.15)

s.t. ∀t ∈ Tj, sj,t = fj(si,t−1), si,t = si,t−1, (2.16)

∀t ∈ Ti, si,t ∈ [0, 1], sj,t = sj,t−1. (2.17)

We say that fi ∈ F is a best response to fj if for any sj,i−1 ∈ [0, 1],14 the above
maximization problem has a solution {si,t}∞t=1 such that si,t = fi(sj,t−1) for
all t ∈ Ti. We call a strategy profile (f1, f2) ∈ F 2 an immediately reactive
equilibrium (IRE) if f1 is a best response to f2 and vice versa. This equilib-
rium concept is consistent with one definition of Markov perfect equilibrium
(Maskin and Tirole, 1988b, Section 2), but distinct from another (Maskin
and Tirole, 2001) due to additive separability of payoffs.

2.6 Effective Payoffs

We now introduce a function that plays a central role in our analysis. For
(i, j) ∈ Q, define wi : [0, 1]2 → R+ by

wi(si, sj) = ui(si) + δivi(sj). (2.18)

We call this function player i’s effective payoff since in both repeated games,
player i in effect seeks to maximize the discounted sum of effective payoffs.
Indeed, in both games, player i’s discounted sum of payoffs from period 1

14Notice that for i = 1, 2, the first period in which player i plays is period i.

10



onward is written as

∞∑
t=1

δt−1
i [vi(sj,t) + ui(si,t)] (2.19)

= vi(sj,1) +
∞∑

t=1

δt−1
i [ui(si,t) + δivi(sj,t+1)] (2.20)

= vi(sj,1) +
∞∑

t=1

δt−1
i wi(si,t, sj,t+1). (2.21)

In both games, player i has no influence on sj,1, so that player i’s problem is
equivalent to maximizing the discounted sum of effective payoffs.

3 Characterizing Best Responses

Let (i, j) ∈ Q. This section takes player j’s strategy fj ∈ F as given, and
studies player i’s best responses. We show first a simple result that charac-
terizes them. The purpose of this section is to reexpress the result in terms of
indifference curves associated with effective payoffs so as to obtain a graphical
understanding of player i’s problem. The following result characterizes player
i’s best responses in both the simultaneous and alternating move games.

Proposition 3.1. In both the simultaneous and the alternating move games,
fi ∈ F is a best response to fj if and only if

∀sj ∈ [0, 1], fi(sj) ∈ argmax
si∈[0,1]

wi(si, fj(si)) ≡ Mi(fj). (3.1)

Proof. Consider the simultaneous move game. From (2.19)–(2.21) and (2.12),
player i’s discounted sum of payoffs is written as

∞∑
t=1

δt−1
i [ui(si,t) + vi(sj,t)] = vi(sj,1) +

∞∑
t=1

δt−1
i wi(si,t, fj(si,t)). (3.2)

Thus the maximization problem (2.11)–(2.13) is equivalent to maximizing
the right-hand side of (3.2), which is maximized if and only if si,t ∈ Mi(fj)
for all t ∈ N. Therefore, if fi ∈ F is a best response, then fi(sj,0) ∈ Mi(fj)
for all sj,0 ∈ [0, 1]; thus (3.1) holds. Conversely, if fi ∈ F satisfies (3.1), then
it is a best response since si,t = fi(sj,t−1) ∈ Mi(fj) for all t ∈ N.
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Now consider the alternating move game. From (2.19)–(2.21), (2.16), and
(2.17), player i’s discounted sum of payoffs from period i onward is written
as

∞∑
t=i

δt−i
i [ui(si,t) + vi(sj,t)] (3.3)

= vi(sj,i) +
∑
t∈Ti

δt−i
i (1 + δi)wi(si,t, sj,t+1) (3.4)

= vi(sj,i) + (1 + δi)
∑
t∈Ti

δt−1
i wi(si,t, fj(si,t)). (3.5)

Thus the maximization problem (2.15)–(2.17) is equivalent to maximizing
the right-hand side of (3.5), which is maximized if and only if si,t ∈ Mi(fj)
for all t ∈ Ti. Hence the proposition follows as in the simultaneous move
case.

To translate the above result into more usable forms, define

R(fi) = {fi(sj) | sj ∈ [0, 1]}. (3.6)

Note that R(fi) is the range of fi. The following is a simple restatement of
Proposition 3.1.

Corollary 3.1. fi ∈ F is a best response to fj if and only if R(fi) ⊂ Mi(fj).

Let us now introduce indifference curves associated with effective pay-
offs. Those indifference curves are closely connected with both players’ best
responses, and crucial in understanding IREs and their global dynamics.

Since vi is strictly increasing by Assumption 2.9, each indifference curve
wi(si, sj) = ω can be expressed as the graph of a function from si to sj. We
denote this function by gω

j , i.e.,

ω = wi(si, g
ω
j (si)) = ui(si) + δivi(g

ω
j (si)). (3.7)

Depending on si and ω, however, gω
j (si) may or may not be defined. We

specify the domain of gω
j , denoted D(gω

j ), as follows:

D(gω
j ) = {si ∈ [0, 1] | ∃sj ∈ [0, 1], ui(si) + δivi(sj) = ω} (3.8)

= {si ∈ [0, 1] |ω − δivi(1) ≤ ui(si) ≤ ω − δivi(0)}. (3.9)
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Figure 3: Indifference curve gω
j and D(gω

j )

See Figure 3. It follows from (3.7) that

∀si ∈ D(gω
j ), gω

j (si) = v−1
i

(
ω − ui(si)

δi

)
. (3.10)

The following lemma collects useful observations on gω
j .

Lemma 3.1. Let Ω = [wi(ŝi, 0), wi(ŝi, 1)]. (i) For ω ∈ Ω, gω
j (·) is continuous

on D(gω
j ), ŝi ∈ D(gω

j ), and D(gω
j ) is a nonempty closed interval. (ii) If

ω, ω′ ∈ Ω with ω < ω′, then D(gω
j ) ⊂ D(gω′

j ) and

∀si ∈ D(gω′
j ), gω

j (si) < gω′
j (si). (3.11)

(iii) Let ω ∈ [wi(ŝi, 0), wi(ŝi, 1)). Then D(gω
j ) is a closed interval with

nonempty interior. Furthermore, gω
j (·) is strictly decreasing on D(gω

j )∩ [0, ŝi]
provided ŝi > 0, and strictly increasing on D(gω

j ) ∩ [ŝi, 1] provided ŝi < 1.

Proof. Let ω ∈ Ω. The continuity of gω
j is obvious. Both inequalities in (3.9)

hold with si = ŝi since

ω ≤ wi(ŝi, 1) = ui(ŝi) + δivi(1), (3.12)

ω ≥ wi(ŝi, 0) = ui(ŝi) + δivi(0). (3.13)

13



Hence ŝi ∈ D(gω
j ). Note from Assumption 2.4 and (3.13) that

∀si ∈ [0, 1], ui(si) ≤ ui(ŝi) ≤ ω − δivi(0). (3.14)

Thus by (3.9),

D(gω
j ) = {si ∈ [0, 1] |ω − δivi(1) ≤ ui(si)}. (3.15)

It follows by Assumption 2.4 and (3.12) that D(gω
j ) is a nonempty closed

interval. We have verified (i).
To see (ii), note that the inequality in (3.11) is immediate from (3.10)

for si ∈ D(gω
j ) ∩ D(gω′

j ). Thus it suffices to show D(gω′
j ) ⊂ D(gω

j ). Let

si ∈ D(gω′
j ). Then the inequality in (3.15) holds with ω = ω′, so it holds for

any ω ≤ ω′. It follows that D(gω′
j ) ⊂ D(gω

j ).
To see (iii), let ω ∈ [wi(ŝi, 0), wi(ŝi, 1)). By (i), D(gω

j ) is a nonempty
closed interval. Since ω < wi(ŝi, 1) = ui(ŝi)+δivi(1), i.e., ω−δivi(1) < ui(ŝi),
it follows by (3.15) that si ∈ D(gω

j ) for si sufficiently close to ŝi. Thus the
first conclusion in (i) holds. The second conclusion is immediate from (3.10)
and Assumptions 2.9 and 2.4.

To understand Corollary 3.1 in terms of indifference curves gω
j , we define

w∗
i (fj) = sup

si∈[0,1]

wi(si, fj(si)). (3.16)

Since vi is strictly increasing by Assumption 2.9,

wi(ŝi, 0) ≤ w∗
i (fj) ≤ wi(ŝi, 1). (3.17)

By Lemma 3.1(i), a higher indifference curve is associated with a higher
effective payoff. Thus by (3.17),

g
wi(ŝi,0)
j (ŝi) ≤ g

w∗i (fj)
j (ŝi) ≤ g

wi(ŝi,1)
j (ŝi). (3.18)

See Figure 3 (with ω = w∗
i (fj)).

Now consider the maximization problem associated with (3.1) (or (3.16)),
which can equivalently be expressed as

max
si,sj∈[0,1]

wi(si, sj) s.t. sj = fj(si). (3.19)

14



The graph sj = fj(si) represents the set of feasible pairs (si, sj) for player
i, who takes player j’s reaction as a constraint. Since the highest feasible

indifference curve is given by sj = g
w∗i (fj)
j (si),

∀si ∈ D(g
w∗i (fj)
j ), fj(si) ≤ g

w∗i (fj)
j (si). (3.20)

See Figure 4, which shows two ad hoc examples (recall that fj is arbitrary
here). It follows that the solution to (3.19) is to choose any pair (si, sj)

satisfying sj = fj(si) and sj = g
w∗i (fj)
j (si). More precisely,

Mi(fj) = {si ∈ D(g
w∗i (fj)
j ) | fj(si) = g

w∗i (fj)
j (si)}. (3.21)

See Figure 4 again. By Corollary 3.1 and (3.21),

R(fi) ⊂ Mi(fj) ⊂ D(g
w∗i (fj)
j ), (3.22)

whenever fi is a best response to fj. We are ready to restate Corollary 3.1
in terms of indifference curves gω

j .

Proposition 3.2. fi ∈ F is a best response to fj if and only if

∀si ∈ R(fi), si ∈ D(g
w∗i (fj)
j ), fj(si) = g

w∗i (fj)
j (si). (3.23)

Proof. This holds since (3.23) is equivalent to R(fi) ⊂ Mi(fj) by (3.21).

In Figure 4(a), Mi(fj) is a singleton, so by Corollary 3.1, there is a unique
best response, which is the constant function from sj to si corresponding to
the dotted vertical line. This function trivially satisfies (3.23). In Figure
4(b), Mi(fj) is an interval, so all functions from sj to si whose ranges are
confined to that interval are best responses. Notice that all those functions
satisfy (3.23).

4 Immediate Implications on IREs

The following result is immediate from Corollary 3.1, Proposition 3.2, and
the definitions of IRE in Subsections 2.4 and 2.5.
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1
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Mi(fj)

Ψωi
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g
w∗i (fj)
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0 1
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sj

Mi(fj)

Ψωi
i

fj(si)

(b)

Figure 4: Mi(fj) and Ψωi
i (defined in (6.1)) with ωi = w∗

i (fj)
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Theorem 4.1. In both the simultaneous and the alternating move games, a
strategy profile (f1, f2) ∈ F 2 is an IRE if and only if

∀(i, j) ∈ Q, R(fi) ⊂ Mi(fj), (4.1)

or, equivalently,

∀(i, j) ∈ Q, ∀si ∈ R(fi), si ∈ D(g
w∗i (fj)
j ), fj(si) = g

w∗i (fj)
j (si). (4.2)

This result implies that the simultaneous and the alternating move games
are equivalent as far as IREs are concerned. This would appear in sharp con-
trast to the anti-folk theorem of Lagunoff and Matsui (1997) for alternating
move games of pure coordination. They showed that there is a consider-
able difference between the simultaneous and the alternating move games in
the case of pure coordination. If ui(si) = vj(si) and vi(sj) = uj(sj) for all
si, sj ∈ [0, 1] and (i, j) ∈ Q, then the one-shot game described in Subsection
2.1 becomes a pure coordination game. Theorem 4.1 of course applies to
this case (which is consistent with our assumptions), but does not contra-
dict Lagunoff and Matsui’s result. This is because their result deals with all
subgame perfect equilibria, while Theorem 4.1 deals only with IREs.15

For the remainder of the paper, we do not distinguish between the two
games except when we explicitly consider dynamics. The differences in dy-
namics between the two games are discussed in Section 5.

To illustrate Theorem 4.1, let (f1, f2) be given by fi(sj) = ŝi for sj ∈ [0, 1]
and (i, j) ∈ Q. See Figure 5. This strategy profile corresponds to the static

Nash equilibrium. One can easily see from Figure 5 that f2 and g
w∗1(f2)
2

coincide on R(f1) = {ŝ1}, and f1 and g
w∗2(f1)
1 coincide on R(f2) = {ŝ2}. Thus

(f1, f2) satisfies (4.2), so it is an IRE by Theorem 4.1.
As another example, let (f1, f2) be such that fi(sj) = si if sj = sj, and

fi(sj) = ŝi otherwise, where s1 and s2 are as in Figure 6. In words, each
player “cooperates” as long as the other player does so, but reverts to the
static Nash equilibrium if the other player deviates in any direction. One can

15Theorem 4.1 suggests that the concept of IRE has some resemblance to that of con-
jectural variation equilibrium. The main difference between the two concepts is that while
a conjectural variation equilibrium is a static equilibrium that consists of an equilibrium
point and supporting conjectures that are typically required to satisfy certain local prop-
erties, an IRE is a fully dynamic equilibrium that consists of two functions that represent
the players’ actual reactions. See Sabourian (1992) and Tidball et al. (2000) for detailed
discussions on the relation between conjectural variation equilibria and repeated games.
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Figure 5: Static Nash equilibrium

see from Figure 6 that f2 and g
w∗1(f2)
2 coincide on R(f1) = {ŝ1, s1}, and f1

and g
w∗2(f1)
1 coincide on R(f2) = {ŝ2, s2}. Thus this strategy profile satisfies

(4.2), so it is an IRE.
The main purpose of this paper is to characterize the entire set of IREs,

many of which induce more interesting dynamics. To this end we define an
IRE associated with (ω1, ω2) ∈ R2 as an IRE (f1, f2) such that

∀(i, j) ∈ Q, ωi = w∗
i (fj). (4.3)

Notice that any IRE (f1, f2) is associated with (w∗
1(f2), w

∗
2(f1)). The follow-

ing result shows one way to construct an IRE with nontrivial dynamics.

Proposition 4.1. Let ω1, ω2 ∈ R. Suppose

∀(i, j) ∈ Q, D(gωi
j ) = [0, 1]. (4.4)

Then there exists an IRE associated with (ω1, ω2). In particular, (gω2
1 , gω1

2 ) is
such an IRE.

Proof. Let fj = gωi
j for (i, j) ∈ Q. For (i, j) ∈ Q and si ∈ [0, 1], we have

wi(si, fj(si)) = wi(si, g
ωi
j (si)) = ωi, so ωi = w∗

i (fj). To verify (4.2), let (i, j) ∈
Q and si ∈ R(fj). Then si ∈ [0, 1] = D(g

w∗i (fj)
j ) and fj(si) = g

w∗i (fj)
j (si). Thus

(4.2) holds, so (f1, f2) is an IRE by Theorem 4.1.
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Figure 6: Nash reversion

See Figure 7 for an example of an IRE satisfying (4.4) and (4.3). Since

f1 = g
w∗2(f1)
1 and f2 = g

w∗1(f2)
2 , the example trivially satisfies (4.2).

5 Dynamics

Before we turn to a detailed characterization of IREs, it is useful to have a
basic understanding of their dynamics. This section takes an IRE (f1, f2) ∈
F 2 as given and studies its dynamic properties.

Consider first the alternating move game. Recall that in each period
t ∈ N, player i with t ∈ Ti updates his action as a function of player j’s last
(or current) action. So the “state variable” in each period t ∈ Ti is player j’s
last action sj,t−1 ∈ [0, 1]. Given an initial condition s2,0 ∈ [0, 1], the entire
path {s1,t, s2,t}∞t=1 of the game is uniquely determined by

∀(i, j) ∈ Q, ∀t ∈ Ti, si,t+1 = si,t = fi(sj,t−1). (5.1)

In step-by-step form,

s1,1 = f1(s2,0), s2,2 = f2(s1,1), s1,3 = f1(s2,2), · · · . (5.2)
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1

s1

s2

ŝ1

ŝ2

s2,0

f1(s2) (= g
w∗2 (f1)
1 (s2))

f2(s1) (= g
w∗1 (f2)
2 (s1))

Figure 7: Example of IRE satisfying (4.4) and (4.3).

For the alternating move game, we define an IRE path associated with (f1, f2)
as a sequence {s1,t, s2,t}∞t=0 satisfying (5.1). See Figure 7 for an example an
IRE path.

Now consider the simultaneous move game. The state variable in each
period t ∈ N is the pair of both players’ last actions (s1,t−1, s2,t−1) ∈ [0, 1]2.
Given an initial condition (s1,0, s2,0) ∈ [0, 1]2, the entire path {s1,t, s2,t}∞t=1 of
the game is uniquely determined by

∀(i, j) ∈ Q, ∀t ∈ N, si,t = fi(sj,t−1). (5.3)

For the simultaneous move game, we define an IRE path associated with
(f1, f2) as a sequence {s1,t, s2,t}∞t=0 satisfying (5.3). Any IRE path can be
decoupled into two sequences, one originating from s2,0, the other from s1,0:

s1,1 = f1(s2,0), s2,2 = f2(s1,1), s1,3 = f1(s2,2), · · · , (5.4)

s2,1 = f2(s1,0), s1,2 = f1(s2,1), s2,3 = f2(s1,2), · · · . (5.5)

Obviously, given s2,0 ∈ [0, 1], the sequences given by (5.2) and (5.4) are
identical. The sequence given by (5.5) can be viewed as an IRE path for the
alternating move game in which player 2 moves first. Hence an IRE path for
the simultaneous move game is equivalent to a pair of IRE paths for the two
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alternating move games in one of which player 1 moves first and in the other
of which player 2 moves first.

The following result is a simple consequence of Theorem 4.1.

Theorem 5.1. Any IRE path {s1,t, s2,t}∞t=0 associated with (f1, f2) for the
simultaneous move game satisfies

∀t ≥ 2,∀(i, j) ∈ Q, si,t = g
w∗j (fi)

i (sj,t−1). (5.6)

Furthermore, any IRE path {s1,t, s2,t}∞t=0 associated with (f1, f2) for the al-
ternating move game satisfies

∀t ≥ 2,∀(i, j) ∈ Q, t ∈ Ti ⇒ si,t = g
w∗j (fi)

i (sj,t−1). (5.7)

Proof. Consider the simultaneous move game. Let {s1,t, s2,t}∞t=0 be an IRE
path associated with (f1, f2). Let (i, j) ∈ Q and t ≥ 2. Then sj,t−1 ∈ R(fj).

Hence si,t = g
w∗j (fi)

i (sj,t−1) by (5.3) and (4.2). Thus (5.6) follows. The proof
for the alternating move game is similar.

The above result shows that any IRE path is characterized by the cor-

responding pair of indifference curves (g
w∗2(f1)
1 , g

w∗1(f2)
2 ) except for the initial

period. To better understand this result, consider the alternating move game.
The initial period must be excluded in (5.7) because s2,0 is an arbitrary ini-
tial condition that need not be optimal for player 2 given f1, i.e., it need not

satisfy s1,1 = g
w∗2(f1)
1 (s2,0). Since all subsequent actions must be individually

optimal, they must be on the optimal indifference curves. In Figure 7, any
IRE path satisfies the equality in (5.7) for all t ≥ 1. In Figure 5, by contrast,
an IRE path (not shown in the figure) violates the equality for t = 1 unless
s2,0 = ŝ2, but trivially satisfies it for t ≥ 2.

Theorem 5.1 also shows that in both cases the dynamics of an IRE associ-
ated with (ω1, ω2) ∈ R2 are essentially characterized by the same dynamical
system:

∀t ∈ T1, s1,t+2 = gω2
1 (gω1

2 (s1,t)). (5.8)

To be precise, the simultaneous move game has another equation, s2,t+2 =
gω1
2 (gω2

1 (s2,t)) for t ∈ T2, but this system is equivalent to (5.8) in terms of
dynamics. Hence one can obtain conditions for dynamic properties such
as monotonicity and chaos by applying numerous results available on one-
dimensional dynamical systems (e.g., Devaney, 1989).16

16See Rand (1978) for an early example of complex dynamics in an “adaptive” dynamic
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6 Characterizing IREs

Theorem 5.1 shows that the dynamics of an IRE are characterized by the
associated pair of indifference curves. The remaining question then is what
pairs of indifference curves are supported in IREs. To answer this question,
we need additional notation. For (i, j) ∈ Q and ωi, ωj ∈ R, define

Ψωi
i = {(si, sj) ∈ [0, 1]2 |wi(si, sj) ≥ ωi} (6.1)

= {(si, sj) ∈ [0, 1]2 | si ∈ D(gωi
j ), sj ≥ gωi

j (si)}. (6.2)

The set Ψωi
i is the collection of all pairs (si, sj) with player i’s effective payoff

at least as large as ωi. In the (si, sj) space, it is the area on or above the
graph sj = gωi

j (si); see Figure 4 in Section 3.

Provided Ψωi
i ∩Ψ

ωj

j 6= ∅,17 define

s
(ωi,ωj)
i = max{si ∈ [0, 1] | ∃sj ∈ [0, 1], (si, sj) ∈ Ψωi

i ∩Ψ
ωj

j }, (6.3)

s
(ωi,ωj)
i = min{si ∈ D(gωi

j ) | gωi
j (si) ≤ s

(ωj ,ωi)
j }. (6.4)

By (6.2) and continuity, gωi
j (s

(ωi,ωj)
i ) ≤ s

(ωj ,ωi)
j . Hence s

(ωi,ωj)
i exists as long as

Ψωi
i ∩ Ψ

ωj

j 6= ∅. See Figure 8. In the case of Figure 7, s
(ω1,ω2)
1 = s

(ω2,ω1)
2 = 1

and s
(ω1,ω2)
1 = s

(ω2,ω1)
2 = 0. It follows from Lemma 3.1(iii) that

∀(i, j) ∈ Q, s
(ωi,ωj)
i ≤ ŝi ≤ s

(ωi,ωj)
i . (6.5)

See Figure 8 again.18 The following result characterizes all IREs in terms of
effective payoffs.

model that has a structure similar to Figure 7. See Rosser (2002) for a recent survey of
adaptive duopoly/oligopoly models that generate complex dynamics. This paper does not
consider complex dynamics, which should be left to more specialized studies.

17Here it is understood that the coordinates of Ψωj

j (or Ψωi
i ) are interchanged so that

Ψωi
i and Ψωj

j have the same order of the coordinates. Similar comments apply to similar
expressions below.

18The first inequality in (6.5) is immediate from (6.4) and Lemma 3.1(iii). To formally
verify the second inequality, let (i, j) ∈ Q and suppose si < ŝi. (We omit superscripts
here.) By (6.2) and (6.3), sj ≥ gj(si) and si ≥ gi(sj). Since gj is strictly decreasing at
si by Lemma 3.1(iii), both inequalities continue to hold even if si is slightly increased,
contradicting (6.3).
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Figure 8: si, si, and IRE in regular form

Theorem 6.1. There exists an IRE associated with (ω1, ω2) ∈ R2 if and only
if

Ψω1
1 ∩Ψω2

2 6= ∅, (6.6)

∀(i, j) ∈ Q, ŝj ∈ D(g
ωj

i ), s
(ωi,ωj)
i ≤ g

ωj

i (ŝj). (6.7)

In particular, under (6.6) and (6.7), (f1, f2) ∈ F 2 is an IRE associated with
(ω1, ω2) if for (i, j) ∈ Q,

fi(sj) =

{
min{gωj

i (sj), s
(ωi,ωj)
i } if sj ∈ D(g

ωj

i ),

s
(ωi,ωj)
i otherwise.

(6.8)

Proof. See Appendix A.

We say that an IRE satisfying (6.8) is in regular form. See Figure 8 for
an example of an IRE in regular form. One can easily see that the example
satisfies (4.2) and thus is an IRE. We call (6.6) the nonemptiness condition,
and (6.7) the no-sticking-out condition. The nonemptiness condition says
that the intersection of the two sets Ψω1

1 and Ψω2
2 must be nonempty. The

no-sticking-out condition says that the graph of g
ωj

i must not “stick out” of
the straight line si = si.
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These conditions can be better understood by considering examples in
which they are violated. In Figure 9(a), the nonemptiness condition (6.6) is
violated. In this case, if an IRE exists, any IRE path for the alternating move
game must behave like the path depicted in the figure (except for the initial
period) by Theorem 5.1. But since such a path cannot stay on the indifference
curves forever, it cannot be an IRE path, a contradiction. In Figure 9(b), the
no-sticking-out condition (6.7) is violated for (i, j) = (1, 2). In this case, if an

IRE exists, there is s2,0 such that f1(s2,0) ≤ gω2
1 (s2,0) < s

(ω1,ω2)
1 .19 As shown

in the figure, the IRE path from such s2,0 cannot stay on the indifference
curves forever, contradicting Theorem 5.1.

We should mention that the IRE in regular form associated with (ω1, ω2) ∈
R2 is not the only IRE associated with (ω1, ω2). In fact, fi(sj) is arbitrary

for sj 6∈ [s
(ωj ,ωi)
j , s

(ωj ,ωi)
j ] as long as it does not affect R(fi). However, any

IRE satisfies one restriction:

Proposition 6.1. Let (f1, f2) be an IRE associated with (ω1, ω2) ∈ R2. Then

∀(i, j) ∈ Q, ∀sj ∈ [0, 1], fi(sj) ≤ s
(ωi,ωj)
i . (6.9)

Proof. Immediate from (A.2), (A.12), and (6.3).

To see the idea of this result, suppose the inequality in (6.9) is violated
for (i, j) = (1, 2). Consider the alternating move game. Then for some s2,0,

s1,1 = f1(s2,0) > s
(ω1,ω2)
1 . If this path is continued, it behaves like the one

depicted in Figure 8 by Theorem 5.1. But such a path cannot be an IRE
path since it cannot stay on the indifference curves forever.

Proposition 6.1 along with (6.8) implies that if (f1, f2) is an IRE associ-
ated with (ω1, ω2) ∈ R2, and if (f 1, f 2) is the IRE in regular form associated
with (ω1, ω2), then fi ≤ f i for i = 1, 2. In other words, in the IRE (f 1, f 2),
each player gives the other player the highest possible effective payoff consis-
tent with an IRE associated with (ω1, ω2) in response to any action by the
other player. This becomes important when we discuss our folk-type theorem
in the next section.

In what follows, we say that an IRE (f1, f2) is effectively efficient if there
is no IRE (f̃1, f̃2) such that w∗

1(f2) ≤ w∗
1(f̃2) and w∗

2(f1) ≤ w∗
2(f̃1) with at

least one of them holding strictly. That is, (f1, f2) is effectively efficient if it

19The first inequality holds by (3.20). In Figure 9(b), f1(s2,0) = gω2
1 (s2,0).
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Figure 9: Examples with no IRE
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ŝ1

ŝ2

f1(s2) gω2
1 (s2)

f2(s1)

gω1
2 (s1) Ψω1

1

Ψω2
2

Figure 10: Effectively efficient IRE

is not Pareto dominated by any other IRE in terms of effective payoffs. As
shown in Section 8, effective efficiency has important dynamic implications.

For (i, j) ∈ Q and ωi, ωj ∈ R, define

Ψ̃ωi
i = {(si, sj) ∈ [0, 1]2 |wi(si, sj) > ωi}. (6.10)

It is clear from Theorem 6.1 and Lemma 3.1(ii) that an IRE associated with
(ω1, ω2) ∈ R2 is effectively efficient if

Ψ̃ω1
1 ∩ Ψ̃ω2

2 = ∅. (6.11)

See Figures 10 and 9(a).
One might conjecture that (6.11) is also necessary for effective efficiency.

Unfortunately it is not the case. This is because the no-sticking-out condition
(6.7), a necessary condition for an IRE, is not stable under small perturba-
tions to (ωi, ωj). In other words, even when (6.11) does not hold, (6.7) can
be violated if either ωi or ωj is increased. For example, when (6.7) holds with
equality for (i, j) = (1, 2), it can be violated after ω2 is slightly increased,
depending on how fast the two sides of the inequality in (6.7) vary with ω2.

Even if (6.7) holds with strict inequality, (6.7) can be violated after small

perturbations to (ωi, ωj), since s
(ωi,ωj)
i need not be continuous in (ωi, ωj).
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Figure 11 illustrates this point. There is an IRE in Figure 11(a), but there

is no IRE in Figure 11(b) due to violation of (6.7). Note that both s
(ω1,ω2)
1

and s
(ω2,ω1)
2 are discontinuous in this example.20

7 Effective Efficiency and a Folk-Type Theo-

rem: A Special Case

The anomaly in Figure 11 is largely due to the fact that the indifferent curves
are unimodal there. The purpose of this section to characterize effective
efficiency and to show a folk-type theorem under the assumption that both
indifference curves are “upward sloping.” More precisely, we focus on the case
in which the following assumption holds.

Assumption 7.1. For i = 1, 2, ŝi = 0 or, equivalently, ui is strictly decreas-
ing.21

This assumption holds, for example, in the prisonner’s dilemma game
in Subsection 2.2.4. More generally, it holds whenever an increase in si is
costly to player i but beneficial to player j. Assumption 7.1 is maintained
throughout this section. The following result simplifies Theorem 6.1 and
facilitates subsequent analysis.

Lemma 7.1. There exists an IRE (in regular form)22 associated with (ω1, ω2) ∈
R2 if and only if the nonemptiness condition (6.6) holds and

∀(i, j) ∈ Q, 0 ∈ D(g
ωj

i ). (7.1)

Proof. By Theorem 6.1, it suffices to show that (7.1) is equivalent to the no-
sticking-out condition (6.7) under (6.6). By Assumption 7.1, (6.7) implies
(7.1). Conversely, assume (6.6) and (7.1). Let (i, j) ∈ Q. By Assumption

20Though in fact Figure 11 shows that the IRE in (a) is only “locally” effectively efficient,
it should be clear that one can easily construct a fully specified example of an effectively
efficient IRE that violates (6.11).

21If one chooses to normalize vi in the opposite direction, i.e., if one chooses to assume
that vi is strictly decreasing for i = 1, 2 in Assumption 2.9, then the case considered here
corresponds to the case ŝi = 1 for i = 1, 2.

22All the results stated in this section hold true with or without “in regular form.”
We include “(in regular form)” if the version with this qualification is not an immediate
consequence of the version without it.
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Figure 11: Effectively efficient IRE violating (6.11)
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7.1 and (6.5), s
(ωi,ωj)
i = 0. Since 0 ∈ D(g

ωj

i ), we have s
(ωi,ωj)
i = 0 ≤ g

ωj

i (0) =
g

ωj

i (ŝj) by Assumption 7.1. Now (6.7) follows.

The above proof shows that under (6.6) and (7.1), the inequality in the
no-sticking-out condition (6.7) automatically holds. This implies that if an
IRE exists such that Ψ̃ω1

1 ∩Ψ̃ω2
2 6= ∅, then an IRE continues to exist when both

indifference curves are slightly shifted upward. Therefore an IRE cannot be
effectively efficient if Ψ̃ω1

1 ∩ Ψ̃ω2
2 6= ∅. This is the idea of the following result.

Theorem 7.1. Suppose an IRE associated with (ω1, ω2) ∈ R2 exists. Then
it is effectively efficient if and only if (6.11) holds, i.e., Ψ̃ω1

1 ∩ Ψ̃ω2
2 = ∅.

Proof. The “if” part is obvious, as mentioned earlier. To see the “only if”
part, suppose there is an IRE associated with (ω1, ω2) ∈ R2 that is effectively
efficient. Suppose (6.11) does not hold, i.e.,

Ψ̃ω1
1 ∩ Ψ̃ω2

2 6= ∅. (7.2)

Since for (i, j) ∈ Q, gωi
j (·) is strictly increasing by (3.10) and Assumption 7.1,

(7.1) and (7.2) imply 0 ≤ gωi
j (0) < 1 for (i, j) ∈ Q. Since gωi

j is continuous and
strictly increasing in ωi by (3.10), it follows that there is (ω̃1, ω̃2) À (ω1, ω2)
such that 0 < gω̃i

j (0) < 1 and Ψ̃ω̃1
1 ∩ Ψ̃ω̃2

2 6= ∅ for (i, j) ∈ Q. Hence (6.6) and
(7.1) hold with ω̃1 and ω̃2 replacing ω1 and ω2. But this implies that the
given IRE cannot be effectively efficient, a contradiction.

Let us now turn to the development of our folk-type theorem. The fol-
lowing result gives an alternative characterization of IREs that proves useful.

Lemma 7.2. There exists an IRE (in regular form) associated with (ω1, ω2) ∈
R2 if and only if there exists (s1, s2) ∈ [0, 1]2 such that

∀(i, j) ∈ Q, ωi = wi(si, sj), (7.3)

(s1, s2) ∈ Ψ
w1(0,0)
1 ∩Ψ

w2(0,0)
2 . (7.4)

Proof. First we observe from (3.7), (6.1), and Lemma 3.1(ii) that

(7.3) ⇔ ∀(i, j) ∈ Q, si ∈ D(gωi
j ), sj = gωi

j (si), (7.5)

(7.3) ⇒ (s1, s2) ∈ Ψω1
1 ∩Ψω2

2 . (7.6)

If: Let (ω1, ω2) ∈ R2. Suppose there exists (s1, s2) ∈ [0, 1]2 satisfying
(7.3) and (7.4). Then by (7.6), the nonemptiness condition (6.6) holds. By
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Lemma 7.1, it suffices to verify (7.1). Let (i, j) ∈ Q. By (7.4) and (6.1),
wi(si, sj) ≥ wi(0, 0). Since ui is strictly decreasing by Assumption 7.1, ωi =
wi(si, sj) ≤ wi(0, 1). It follows that

ui(0) + δivi(0) ≤ ωi ≤ ui(0) + δivi(1), (7.7)

which can be written as

ωi − δivi(1) ≤ ui(0) ≤ ωi − δivi(0). (7.8)

Hence (7.1) holds by (3.9).
Only if: Let there be an IRE associated with (ω1, ω2) ∈ R2. By (7.1),

gωi
j (0) ≥ 0 for (i, j) ∈ Q. Thus if the graphs of gω1

2 and gω2
1 have no intersec-

tion, then the nonemptiness condition (6.6) does not hold, a contradiction.
Hence the graphs of gω1

2 and gω2
1 have an intersection (s1, s2) ∈ [0, 1]2, i.e.,

sj = gωi
j (si) for (i, j) ∈ Q. Thus (7.3) holds by (7.5). We have (7.4) by (7.3),

(7.6), (4.3), (3.17), Assumption 7.1, and (6.1).

See Figure 12 for an illustration of Ψ
w1(0,0)
1 ∩ Ψ

w2(0,0)
2 . Note that both

indifference curves g
w2(0,0)
1 and g

w1(0,0)
2 emanate from the origin because they

correspond to the effective payoffs associated with the action profile (0, 0).
Given an IRE (f1, f2), we say that (s1, s2) ∈ [0, 1]2 is a steady state if

s1 = f1(s2) and s2 = f2(s1). In other words, any intersection of f1 and
f2 is a steady state. Needless to say, the IRE path starting from a steady
state remains there forever. Thus by Theorem 5.1, any steady state is an
intersection of the associated indifference curves.

Proposition 7.1. There exists an IRE (in regular form) such that (s1, s2) ∈
[0, 1]2 is a steady state if and only if (7.4) holds.

Proof. Let there be an IRE such that (s1, s2) ∈ [0, 1]2 is a steady state.
Define ω1 and ω2 by (7.3). Then this IRE is associated with (ω1, ω2). Thus
(7.4) holds by Lemma 7.2. Conversely, let (s1, s2) ∈ R2 satisfy (7.4). Define
ω1 and ω2 by (7.3). By Lemma 7.2, an IRE (f1, f2) in regular form associated
with (ω1, ω2) exists. Thus (6.6) and (6.7) hold by Theorem 6.1. By (7.5), (a)

sj = gωi
j (si) for (i, j) ∈ Q. Since (s1, s2) ∈ Ψω1

1 ∩Ψω2
2 by (7.6), (b) si ≤ s

(ωi,ωj)
i

for (i, j) ∈ Q. Hence by (a) and (b), for (i, j) ∈ Q, gωi
j (si) = sj ≤ s

(ωj ,ωi)
j ,

so fj(si) = gωi
j (si) by (6.8). This together with (a) shows that (s1, s2) is a

steady state.
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w1(0,0)
1 ∩Ψ

w2(0,0)
2 and lower bounds of Ψ̃∗

i

(wi = wi(0, 0) in this figure)

By this result, the set Ψ
w1(0,0)
1 ∩ Ψ

w2(0,0)
2 can be viewed as the collection

of all steady states supported by IREs. For (i, j) ∈ Q, define

Ψ̃∗
i = {(si, sj) ∈ [0, 1]2 |ui(si) + vi(sj) > ui(0) + vi(0)}. (7.9)

Since ui(0)+vi(0) is player i’s minimax payoff in the one-shot game, Ψ̃∗
1∩ Ψ̃∗

2

may be called the set of “strictly individually rational” action profiles without
randomization.

Note that the definition of Ψ̃ωi
i in (6.10) becomes identical to (7.9) if

δi = 1 and ωi = ui(0) + vi(0). It follows from (3.10) that for (i, j) ∈ Q,

∀si ∈ D(g
wi(0,0)
j ), g

wi(0,0)
j (si) = v−1

i

(
vi(0) +

ui(0)− ui(si)

δi

)
. (7.10)

Thus the graph of g
wi(0,0)
j shifts downward as δi increases; see Figure 12. The

idea of our folk-type theorem is that as δi ↑ 1, Ψ̃
w1(0,0)
1 ∩ Ψ̃

w2(0,0)
2 “converges”

to Ψ̃∗
1 ∩ Ψ̃∗

2, so by Proposition 7.1, any point in Ψ̃∗
1 ∩ Ψ̃∗

2 can be supported as
a steady state of an IRE for (δ1, δ2) sufficiently close to (1, 1).

Theorem 7.2. Let
(s1, s2) ∈ Ψ̃∗

1 ∩ Ψ̃∗
2. (7.11)
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Then for (δ1, δ2) ¿ (1, 1) sufficiently close to (1, 1), there exists an IRE (in
regular form) such that (s1, s2) is a steady state.

Proof. Assume (7.11). By (7.9), for (δ1, δ2) close enough to (1, 1),

∀(i, j) ∈ Q, ui(si) + δivi(sj) > ui(0) + δivi(0), (7.12)

so (7.4) holds by (6.1). Now the theorem follows by Proposition 7.1.

Theorem 7.2 of course holds true without “in regular form,” but in that
case, it can easily be shown by using an IRE based on Nash reversion;23

recall Figure 6. Part of the significance of Theorem 7.2 lies in the fact that
IREs in regular form are continuous. In this regard the result is similar in
spirit to the folk-type theorems by Friedman and Samuelson (1994a, 1994b),
which show that the main idea of the standard folk theorem (Fudenberg and
Maskin, 1986) is valid even if one confines oneself to continuous equilibria.
Our result shows that any (s1, s2) ∈ Ψ̃∗

1 ∩ Ψ̃∗
2 is supported as a steady state

of a continuous IRE for (δ1, δ2) sufficiently close to (1, 1).
In addition, it should be noted that a deviation is punished in a minimal

way in IREs in regular form. Indeed, after the initial period, player i is
indifferent between conforming to the current IRE path and choosing any

si ∈ [0, s
(ωi,ωj)
i ] (recall that s

(ωi,ωj)
i = 0 here by the proof of Lemma 7.1).

This suggests that sever punishment may not be necessary for maintaining
a subgame perfect equilibrium or even for establishing a folk-type theorem.

8 Applications

8.1 Prisoner’s Dilemma

Consider the alternating move game associated with the prisoner’s dilemma
game in Subsection 2.2.4.24 For simplicity, we assume directly that the one-
shot payoff of player i is given by (2.5),25 and that both players have the

23We owe this observation to an anonymous referee.
24The simultaneous move game can be analyzed similarly; recall Proposition 6.1 and

Section 5.
25Alternatively one may assume that player i’s mixed action in period t ∈ Ti is observable

to player j at the beginning of period t + 1. In this case, the expected one-shot payoff of
player i in period t is −asi,t + (c + a)rj,t−1, where si,t is player i’s probability of choosing
C, and rj,t−1 is player j’s realized action in period t−1. Since rj,t−1 does not affect player
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same discount factor: δ1 = δ2 = δ ∈ (0, 1). The effective payoff of player i is
given by

wi(si, sj) = −asi + δesj, (8.1)

where e = c + a. Replacing wi(si, sj) with ωi and solving for sj, we see that
the indifference curve associated with ωi ∈ R, or gωi

j , is linear:

gωi
j (si) =

ωi

δe
+

a

δe
si. (8.2)

Since Assumption 7.1 holds here, all the results in Section 7 apply.
We consider three cases separately. First suppose δ < a/e, i.e., the slope

of gωi
j is strictly greater than one. By (7.1), g

ωj

i (0) ≥ 0 for (i, j) ∈ Q in any

IRE. Thus if g
ωj

i (0) > 0 for either (i, j) ∈ Q, the nonempiness condition (6.6)
will be violated; see Figure 13. Hence in any IRE, g

ωj

i (0) = 0 for (i, j) ∈ Q.
It follows that there is a unique IRE, which corresponds to the static Nash
equilibrium, i.e., fi(sj) = 0 for all sj ∈ [0, 1] and (i, j) ∈ Q. This is because

by Proposition 6.1, fi(sj) ≤ s
(0,0)
i = 0 for all sj ∈ [0, 1] and (i, j) ∈ Q. See

Figure 13 again. This IRE is effectively efficient by Theorem 7.1 (or simply
by uniqueness).

Now suppose δ = a/e, i.e., the slope of gωi
j is equal to one. In this knife

edge case, the two indifference curves emanating from the origin coincide.
The above argument still shows g

ωj

i (0) = 0 for (i, j) ∈ Q. Though, as in the
previous case, there is an IRE corresponding to the static Nash equilibrium,
there are many other IREs here. Figure 14 shows one example.

Finally, suppose δ > a/e, i.e., the slope of gωi
j is strictly less than one.

In this case, there are many pairs of effective payoffs supported by IREs. A
“typical” case is depicted in Figure 15, where there is a unique and globally
stable steady state. The existence of a unique and globally stable steady
state is a general property of this case by (5.8) and (8.2).

Figure 16 shows a symmetric IRE that is effectively efficient. In this
case, gradual cooperation occurs, and full cooperation is achieved in the long
run.26 Figure 17 shows an effectively efficient IRE in which uneven gradual
cooperation occurs: only player 2 fully cooperates in the long run, and player
1 enjoys the highest possible effective payoff.

i’s preferences over his actions from period t onward, all our results hold in this case. This
argument is unnecessary for the simultaneous move game, where rj,t−1 must be replaced
by sj,t.

26Gradual cooperation is known to arise in certain partnership games; see Furusawa and
Kawakami (2006) and the references therein.
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Figure 13: Prisoner’s dilemma with δ < a/e
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Figure 14: Prisoner’s dilemma with δ = a/e
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Figure 15: Prisoner’s dilemma with δ > a/e: “typical” case

By Theorem 7.2, any strictly individually rational action profile (s1, s2),
which by definition satisfies −asi + esj > 0 for (i, j) ∈ Q, is supported as
a steady state of an IRE for δ sufficiently close to one. Notice that the set
of payoff profiles supported by strictly individually rational action profiles is
convex here, so that this set coincides with the set of “strictly individually
rational” payoff profiles (Fudenberge and Maskin, 1986). Thus our folk-type
theorem coincides with the standard folk theorem in this example.27

8.2 Duopoly

Consider the alternating move game associated with the duopoly game of
Subsection 2.2.3.28 For simplicity we assume that the firms are symmetric.
Let c and δ denote their common marginal cost and discount factor. Recall
that firm i’s one-shot profit is given by Di(pi, pj)(pi− c). We parametrize Di

as follows:
∀(i, j) ∈ Q, Di(pi, pj) = (p− pi)pj, (8.3)

27See Stahl (1991) for a characterization of subgame perfect correlated equilibria of a
more general repeated prisoners’ dilemma game.

28Once again, the dynamics of the simultaneous move game can be analyzed similarly.
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Figure 17: Uneven gradual cooperation
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where p > c. Let (i, j) ∈ Q. Recalling (2.3), we see that the effective payoff
of firm i is given by

wi(pi, pj) = ln(p− pi) + ln(pi − c) + δ ln pj. (8.4)

Replacing wi(pi, pj) with ωi and solving for pj, we obtain

gωi
j (pi) = exp[{ωi − ln(p− pi)− ln(pi − c)}/δ]. (8.5)

Note that gωi
j (c) = gωi

j (p) = ∞. Direct calculation of the second derivative
shows that gωi

j is strictly convex. It is easy to see that given pj, firm i’s one-
shot profit, as well as its effective payoff, is maximized at pi = p̂ ≡ (c + p)/2.
This is the price charged by both firms in the unique static Nash equilibrium.

Figure 18 illustrates a symmetric IRE in which both firms receive the ef-
fective payoff corresponding to the static Nash equilibrium. The indifference
curves in this figure are similar to those in Figure 5, which shows the IRE
corresponding to the static Nash equilibrium. Figure 18 shows an alterna-
tive IRE (which is in regular form). In this IRE, there is a steady state in
which both firms charge the static Nash price, as in Figure 5. In Figure 18,
however, there is another steady state with a higher symmetric price. At this
steady state, each firm faces a “kinked demand curve.” If one of the firms
raises its price, the other does not follow. Proposition 6.1 implies that this
kinked feature is a rather general property in the sense that in any IRE, the
firms never charge prices higher than those given by the highest intersection
of the two indifference curves. On the other hand, if one of the firms lowers
its price, this triggers price war, and the prices converge to the lower steady
state. Figure 18 shows an example of an IRE path after a small price cut by
firm 2 in period 0 (which is taken as the initial condition of the model).

Clearly the above properties of the two steady states continue to hold
even if the firms receive higher effective payoffs, as long as there are two
steady states. It is easy to see that there can be at most two steady states
by strict concavity of gωi

j , provided that the firms receive effective payoffs
at least as large as the level associated with the static Nash equilibrium.
Note that effective payoffs higher than the static Nash level correspond to
indifference curves higher than those depicted in Figure 18.

If there is only one steady state, then the IRE is effectively efficient by
(6.11). Figure 19 illustrates a symmetric, effectively efficient IRE in regular
form. At the unique steady state, each firm faces a kinked demand curve once
again. This steady state, however, is globally stable. If one of the firms raises
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Figure 18: Kinked demand curves with unstable collusion

its price, the other does not follow, as in Figure 18. If one of them lowers
its price, the other lowers its price too but by a smaller degree. Eventually
the prices return to the initial high levels. This process is shown in Figure
19 assuming that firm 2 cuts its price to the static Nash level in period 0. It
follows from Theorem 5.1 that the global stability of the unique steady state
is a general property of any effectively efficient IRE here.

9 Concluding Comments

This paper offers a complete and graphical characterization of immediately
reactive equilibria (IREs) and their global dynamics for infinitely repeated
games with two players in which the action space of each player is an interval,
and the one-shot payoff of each player consists of two continuous functions,
one unimodal in his own action, the other strictly monotone in the other
player’s action. IREs extend Nash reversion equilibria by allowing for con-
tinuous strategies and nontrivial dynamics. Characterized by two indifference
curves, the global dynamics of an IRE can be analyzed graphically. Though
IREs constitute only a small subset of the subgame perfect equilibria, the
structure of IREs is rich enough to allow us to show a folk-type theorem in
a special case.
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Figure 19: Kinked demand curves with stable collusion

Although additive separability, which is crucial to our analysis, is rather
restrictive, there are various interesting games that satisfy it. We have ana-
lyzed two such games and characterized their IREs by applying our general
results. We have shown among other things that gradual cooperation arises
in an effectively efficient IRE of a prisoners’ dilemma game, and that kinked
demand curves with stable collusion emerge in an effectively efficient IRE of
a duopoly game.

We believe that our results are useful not only in analyzing games that
satisfy our assumptions, but also in constructing completely tractable spe-
cial cases of more general games. Such special cases, whose dynamics can
be analyzed explicitly, would enhance understanding of various interesting
problems.

Appendix A Proof of Theorem 6.1

Throughout the proof, we omit the superscripts ωi, ωj, (ωi, ωj), and (ωj, ωi).

A.1 Sufficiency

The “if” part of the proposition follows from the following.
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Lemma A.1. Let ω1, ω2 ∈ R satisfy (6.6) and (6.7). Then the strategy
profile (f1, f2) given by (6.8) is an IRE associated with (ω1, ω2).

Proof. It suffices to show R(fi) ⊂ Mi(fj) for (i, j) ∈ Q by Theorem 4.1. Let
(i, j) ∈ Q. By (3.21) and (6.8),

Mi(fj) = {si ∈ D(gj) | gj(si) ≤ sj}. (A.1)

By (6.3) and (6.2), gj(si) ≤ sj, so si ∈ Mi(fj). By (6.4), gj(si) ≤ sj, so
si ∈ Mi(fj). Let si ∈ R(fi). By (6.7), Lemma 3.1(iii), and (6.8), si ≤
gi(ŝj) ≤ si ≤ si. Thus si ∈ Mi(fj) since si, si ∈ Mi(fj) and Mi(fj) is an
interval by (A.1) and Lemma 3.1(iii). It follows that R(fi) ⊂ Mi(fj).

A.2 Necessity

We show the “only if” part in a few steps. Throughout we take as given an
IRE (f1, f2) associated with (ω1, ω2) ∈ R2. For (i, j) ∈ Q, define

ri = inf R(fi), ri = sup R(fi), (A.2)

r̃i = min{si ∈ D(gj) | gj(si) ≤ rj}. (A.3)

Lemma A.2. For (i, j) ∈ Q,

ri, ri ∈ D(gj), (A.4)

gj(ri), gj(ri) ∈ D(gi), (A.5)

ri ≤ gi(gj(ri)), ri ≥ gi(gj(rj)). (A.6)

Proof. Let (i, j) ∈ Q. Recall from (3.22) that

R(fi) ⊂ Mi(fj) ⊂ D(gj). (A.7)

Since D(gj) is closed by (3.17) and Lemma 3.1(i), (A.4) follows from (A.7)
and (A.2). Note from (4.2) and (A.7) that

∀sj ∈ R(fj), fi(sj) = gi(sj). (A.8)

Hence
ri ≤ inf

sj∈R(fj)
gi(sj), ri ≥ sup

sj∈R(fj)

gi(sj). (A.9)
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By (A.8) and (A.7) (with i and j interchanged),

∀si ∈ R(fi), gj(si) = fj(si) ∈ R(fj) ⊂ D(gi). (A.10)

Thus (A.5) follows by continuity of gj and closeness of D(gi).
To see (A.6), let si ∈ R(fi). By (A.10), gj(si) ∈ R(fj). Hence by (A.9),

ri ≤ gi(gj(si)) and ri ≥ gi(gj(si)). Thus (A.6) follows by continuity of gi and
gj.

When (i, j) ∈ Q is given, we interchange the coordinates in Ψj so that Ψi

and Ψj have the same coordinates, i.e., we redefine

Ψj = {(si, sj) ∈ [0, 1]2 | sj ∈ D(gi), si ≥ gi(sj)}. (A.11)

This is identical to (6.2) with i and j interchanged, except for the order of
the coordinates; recall footnote 17.

Lemma A.3. For (i, j) ∈ Q,

(ri, gj(ri)) ∈ Ψi ∩Ψj, (A.12)

(a) ŝj ∈ D(gi), (b) r̃i ≤ gi(ŝj). (A.13)

Proof. Let (i, j) ∈ Q. Since ri ∈ D(gj) by (A.4), we have (ri, gj(ri)) ∈ Ψi by
(6.2) (with sj = gj(ri) and si = ri). By (A.5) and (A.6), gj(ri) ∈ D(gi) and
ri ≥ gi(gj(ri)). So by (A.11), (ri, gj(ri)) ∈ Ψj. Thus (A.12) follows.29

It remains to show (A.13). Note that (A.13)(a) is immediate from (3.17)
and Lemma 3.1(i). By (A.2), fj(si) ≤ rj for si ∈ [0, 1]. Thus by (3.21),

∀si ∈ Mi(fj), gj(si) = fj(si) ≤ rj. (A.14)

Hence Mi(fj) ⊂ {si ∈ D(gj) | gj(si) ≤ rj} ≡ B. Thus by (3.20) and (4.1),

gi(ŝj) ≥ fi(ŝj) ∈ Mi(fj) ⊂ B. (A.15)

Since r̃i = min B by (A.3), (A.13)(b) follows.

Let us now complete the “only if” part of the proof. We have (6.6) by
(A.12). Let (i, j) ∈ Q. By (A.12) and (6.3), rj ≤ sj. Thus the set in (6.4)
includes the set in (A.3), so sj ≤ r̃j . This together with (A.13) shows (6.7).

29The corresponding result for ri does not hold since ri cannot be replaced by ri in
(ri, gj(ri)) ∈ Ψj unless ri = gi(gj(ri)); recall (A.6).
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