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Abstract We consider nonparametric estimation of conditional medians for
time series data. The time series data are generated from two mutually in-
dependent linear processes. The linear processes may show long-range depen-
dence. The estimator of the conditional medians is based on minimizing the
locally weighted sum of absolute deviations for local linear regression. We
present the asymptotic distribution of the estimator. The rate of convergence
is independent of regressors in our setting. The result of a simulation study is
also given.
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1 Introduction

Let {(Xi, Yi)}∞i=1 be a stationary bivariate process generated by

Yi = u(Xi) + Vi, (1)

where Vi = V (Xi, Zi), {Xi}∞i=1 and {Zi}∞i=1 are mutually independent sta-
tionary linear processes, and the conditional median of Vi on Xi is 0. We
consider the estimation of the conditional median of Yi on Xi = x0, u(x0), by
local linear LAD (least absolute deviation) regression without any parametric
assumptions on u(x).

We specify {Xi}∞i=1 and {Zi}∞i=1 later in this section. Technical assumptions
on V (x, z) will be stated in Section 2. Note that we can incorporate some
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heteroscedasticity into error terms, for example, V (x, z) = σ(x)G(z − m),
where m is the median of Zi and G(z) is a symmetric function. Even when
Zi − m has finite variance, G(Zi − m) may not have finite mean or finite
variance and we may have to use some robust estimators as in this paper. We
deal with only conditional medians in this paper for simplicity of presentation.
However, the same arguments apply to other conditional quantiles.

Nonparametric regression is often used, for example, when no paramet-
ric assumption on regression functions is available or when we want to check
the parametric assumptions. There are so much literature on nonparametric
regression that we cannot name all of them and we mention only recent or rel-
evant papers. See Fan and Gijbels (1996) and Härdle et al. (2004) for surveys.
As for nonparametric regression for weakly dependent observations, see Nze
et al. (2002) and Fan and Yao (2003).

There have been a lot of studies on quantile regression for linear models
since Koenker and Basset (1978). See Koenker (2005) for recent developments
of quantile regression. Note that quantile regression is reduced to LAD regres-
sion when we estimate conditional medians. Pollard (1991) presented a simple
proof of the asymptotic normality of regression coefficient estimators.

Chaudhuri (1991) considered nonparametric estimation of conditional quan-
tiles and Fan et al. (1994) applied the method of Pollard (1991) to nonpara-
metric robust estimation including nonparametric estimation of conditional
quantiles. We examine the estimator of Chaudhuri (1991) in our setting by
applying the method of Pollard (1991).

The results of Chaudhuri (1991) are for i.i.d. observations. Many authors
considered cases of weakly dependent observations and studied the asymptotic
properties of the estimators since Chaudhuri (1991). For example, Truong and
Stone (1992) considered local medians for α-mixing processes. Honda (2000a)
and Hall et al. (2002) examined the asymptotic properties of the estimator
of Chaudhuri (1991). Hall et al. (2002) also employed the method of Pollard
(1991). Zhao and Wu (2006) considered another setting from α-mixing pro-
cesses. The asymptotic distributions in the above papers are the same as for
i.i.d. observations under random design.

Following the recent developments of research on time series with long-
range dependence, some authors investigated robust or nonparametric estima-
tion of regression functions for time series with long-range dependence. See
Beran (1994), Chapter 5 of Taniguchi and Kakizawa (2000), Robinson (2003),
and Doukhan et al. (2003) for empirical and theoretical studies of time series
with long-range dependence. We give a brief exposition on long-range depen-
dence later in this section.

Koul and Mukherjee (1993) and Giraitis et al. (1996) considered robust es-
timation for linear models with long-range dependent errors. Koul et al. (2001)
examined cases of errors with infinite variance and long-range dependence. As
for nonparametric estimation of conditional mean functions for time series
with long-range dependence, there are, for example, Robinson (1997), Hidalgo
(1997), Csörgő and Mielniczuk (2000), Mielniczuk and Wu (2004) and Guo and
Koul (2007). Wu and Mielniczuk (2002) fully examined the asymptotic prop-
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erties of kernel density estimators. Honda (2000b) considered nonparametric
estimation of conditional quantiles under long-range dependence. In Honda
(2000b), Vi = Zi in (1) and some restrictive moment assumptions are imposed
since the proof depends on the approximation theorem of joint density func-
tions in Giraitis et al. (1996). Peng and Yao (2004) deals with nonparametric
quantile estimators in the cases of heavy-tailed errors.

It is known that the asymptotic distributions of nonparametric regression
estimators depend on how strong the long-range dependence is in random
design models. When the long-range dependence is rather weak, the estimators
asymptotically behave in the same way as for i.i.d. observations. On the other
hand, the estimators asymptotically behave in the same way as the sample
means when the long-range dependence exceeds some level. This is true of
kernel density estimation. Robinson (1997), Peng and Yao (2004), and Guo
and Koul (2007) considered nonparametric estimation of trend functions under
fixed design and the asymptotics are different from those under random design.

We apply the methods of Wu and Mielniczuk (2002) and Mielniczuk and
Wu (2004) to nonparametric quantile regression, or nonparametric estimation
of conditional quantiles, in this paper. The stochastic structure in (1) is mo-
tivated by Mielniczuk and Wu (2004). Mielniczuk and Wu (2004) allows for
some dependence between {Xi}∞i=1 and {Zi}∞i=1. However, we concentrate on
the cases where {Xi}∞i=1 and {Zi}∞i=1 are independent in order to avoid com-
plicated assumptions on A1 and B1 in (23) of this paper. The results of the
two papers by Wu and Mielniczuk and this paper also rely on the martingale
decompositions of long-range dependent linear processes initiated by Ho and
Hsing (1996, 1997). The results of the two papers are improved by Koul and
Surgailis (2002) and Wu (2003). We also mention Honda (2008), which studies
kernel density estimation for heavy-tailed linear processes.

We define (Xi, Zi) for i = 1, 2, . . . by

Xi =
∞∑

j=0

bjεi−j and Zi =
∞∑

j=0

cjζi−j , (2)

where {εi}∞i=−∞ and {ζi}∞i=−∞ are mutually independent mean-zero i.i.d. pro-
cesses. We denote the variances of ε1 and ζ1 by σ2

ε and σ2
ζ , respectively. We

assume that for some r > 2,

E{|ε1|r} < ∞ and E{|ζ1|r} < ∞. (3)

We also assume that

bj = j−(1+γX)/2LX(j) and cj = j−(1+γZ)/2LZ(j), j = 1, 2, . . . , (4)

where LX(j) and LZ(j) are slowly varying functions, γX > 0, and γZ > 0.
We put b0 = 1 and c0 = 1 for convenience. Under the regularity conditions
(see Assumptions A1-5 of Section 2), we derive the same kind of asymptotic
distribution of the estimator as in Mielniczuk and Wu (2004). The convergence
rate of the estimator is independent of {bj}∞j=0 in our setting (1)-(4).
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We describe the definition of short-range dependence and long-range de-
pendence. Some results on the autocovariances and the variances of partial
sums are also stated. We denote the autocovariance function of {Xi}∞i=0 by
rX(j) and write σ2

n,X for E{(
∑n

i=1 Xi)2}. In this paper, n stands for the sample
size.

When
∑∞

j=0 |bj | < ∞,
∑∞

j=−∞ |rX(j)| < ∞ and this property is called
short-range dependence. Then we have σ2

n,X = O(n). Note that γX must be
larger than or equal to 1. When {bj}∞j=0 does not meet restrictive conditions,
it is difficult to establish that short-range dependent {Xi}∞i=1 is an α-mixing
process with sufficiently rapidly decaying mixing coefficients. See Doukhan
(1994) about mixing processes. Thus the results on α-mixing processes do not
cover some results on short-range dependent processes of this paper.

When
∑∞

j=0 |bj | = ∞,
∑∞

j=−∞ |rX(j)| = ∞ and this property is called
long-range dependence. Then we have limn→∞(σ2

n,X/n) = ∞. Then γX must
be smaller than or equal to 1. Long-range dependent processes exhibit some
different properties from short-range dependent processes.

It is well known that when γX < 1,

rX(t) ∼ CγX
t−γX L2

X(t)σ2
ε and σ2

n,X ∼ DγX
n2−γX L2

X(n)σ2
ε , (5)

where

Cγ =
∫ ∞

0

(u + u2)−(1+γ)/2du and Dγ =
2Cγ

(1 − γ)(2 − γ)
.

an ∼ a′
n means limn→∞(an/a′

n) = 1 throughout this paper. The same results
hold for {Zi}∞i=0 and we define rZ(j) and σ2

n,Z in the same way.
We carried out a simulation study to examine small sample properties

of the estimators of conditional medians. The results show that the estimator
does not work well when {Zi}∞i=0 is long-range dependent and that the effect of
the long-range dependence of {Xi}∞i=0 may not be negligible in small sample
cases. However, the estimator seems to work well when γZ = 1.5, 2.5 and
γX = 2.5.

This paper is organized as follows. In Section 2, we state assumptions and
the asymptotic distribution of the estimator in Theorem 1. The theorem is
verified in Section 4. We treat short-range dependent and long-range dependent
processes in a unified manner in the proof of Theorem 1. The results of the
simulation study are presented in Section 3.

We denote the Euclidean norm of w ∈ Rk and the transpose of a matrix
A by |w| and AT , respectively. We denote (E{|W |2})1/2 by ‖W‖ for a random
variable W . Let C stand for generic positive constants. The values of d, δ,
and M with no subscript also change from place to place. The sign function is
defined by sign(v) = 1, v ≥ 0, −1, v < 0 and d→ and

p→ stand for convergence
in law and in probability, respectively.



NONPARAMETRIC MEDIAN ESTIMATION 5

2 The local linear estimator and the asymptotic distribution

First we state Assumptions A1-5 and related notations. Assumptions A1, A3,
and A5 are necessary even for i.i.d. observations. Assumption A2 may be more
restrictive. Our assumptions are much simpler than those in Mielniczuk and
Wu (2004).
Assumption A1: u(x) in (1) is twice continuously differentiable in a neigh-
borhood of x0.

Assumption A2: There exists a unique number m0 satisfying V (x0, m0) =
0. In addition V (x, z) is continuously differentiable in a neighborhood Ω of
(x0,m0)T and ∂V

∂z (x0,m0) 6= 0. There are also three positive constants, δ1, δ2,
δ3, such that [x0 − δ1, x0 + δ1]× [m0 − δ2,m0 + δ2] ⊂ Ω and inf{|V (x, z)| | |x−
x0| < δ1 and |z − m0| ≥ δ2} > δ3.

Assumption A2 and the implicit function theorem implies that there exists
a unique function m(x) in a neighborhood of x0 such that V (x,m(x)) = 0 and
m0 = m(x0). We also have that |V (x, z)| > d|z −m(x)| for some positive d in
a neighborhood of (x0,m0)T . Besides by the uniqueness of m0, the continuity
of V (x, z), and the last condition in Assumption A2, |z − m0| is small when
both |V (x, z)| and |x − x0| is sufficiently small.
Assumption A3: The kernel function K(ξ) is a bounded and symmetric
density function and the support is included in [−CK , CK ] for some positive
CK . Let h = cn−1/5 as bandwidths for nonparametric regression.

It is easy to see that almost the same results hold with some necessary
modifications when we choose other bandwidths. However, the rate of conver-
gence of the estimator is not improved by choosing h = cn−d(d 6= 1/5). We
define κj and νj by

κj =
∫

ξjK(ξ)dξ and νj =
∫

ξjK2(ξ)dξ,

respectively. We omit the domain of integration when it is R or Rk or when
there is no possibility of confusion.

The next assumption is imposed to deal with dependence among observa-
tions.
Assumption A4: Let φε(t) and φζ(t) denote the characteristic function of ε1
and ζ1, respectively. Then for some positive δ1 and δ2,

|φε(t)| ≤ δ1(1 + |t|)−δ2 and |φζ(t)| ≤ δ1(1 + |t|)−δ2 .

We also assume that both of ε1 and ζ1 have continuously differentiable density
functions f1(x) and g1(z), respectively. In addition, they and their derivatives
satisfy the following conditions.

|v(t)| ≤ C
1

1 + t2
and |v(s) − v(t)| ≤ C

1
1 + t2

for |s − t| < 1, (6)

where v = f1, f ′
1, g1, or g′1. Remember that we have already assumed that

E{|ε1|r} < ∞ and E{|ζ1|r} < ∞ for some r > 2.
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Remark 1 All the necessary technical conditions on density functions are as-
sured by (2)-(4) and Assumption A4. When we define Xi,j and Zi,j by

Xi,j =
j−1∑
k=0

bkεi−k, and Zi,j =
j−1∑
k=0

ckζi−k,

the arguments in Giraitis et al. (1996) and Koul and Surgailis (2001, 2002)
imply that Xi,j and Zi,j have continuously differentiable density functions
for any positive integer j. Besides the density functions and their derivatives
satisfy (6) with some common C. We denote the density functions by fj(x)
and gj(z), respectively. This notation is conformable with those of Assumption
A4 since b0 = c0 = 1. Write f(x) and g(z) for f∞(x) and g∞(z), respectively
for notational simplicity.

The proofs of Theorems 1-3 and Lemma 1 of Honda (2008) imply that
the part of (6) of Assumption A4 is not necessary. The assumptions on the
characteristic functions and the moments are sufficient.

We need an assumption on f(x0) and g(m0).
Assumption A5: f(x0) > 0 and g(m0) > 0.

We introduce some more notations. Set

X̃i,j = Xi − Xi,j =
∞∑

k=j

bkεi−k and Z̃i,j = Zi − Zi,j =
∞∑

k=j

ckζi−k. (7)

When
∑∞

j=0 |bj | = ∞, E{(
∑n

i=1(Xi − X̃i,j))2} = o(σ2
n,X) for any j. We have

the same result for Zi and Z̃i,j .
Next define filtrations, {S0,i}∞i=−∞, {S1,i}∞i=−∞, and {S2,i}∞i=−∞, by

S0,i = σ(εi, ζi, εi−1, ζi−1, . . . , ), S1,i = σ(εi, εi−1, . . . , ),
and S2,i = σ(ζi, ζi−1, . . . , ),

where σ(· · ·) stands for the σ-field generated by the random variables inside
the parentheses.

We define the local linear estimator of u(x0) as in Chaudhuri (1991). By
the Taylor series expansion of u(x) at x0, we have

Yi = u(x0) +
Xi − x0

h
hu′(x0) +

1
2

(Xi − x0

h

)2

h2u′′(X̄i) + Vi,

where X̄i is between x0 and Xi. We define V ∗
i = V ∗(Xi, Zi) by

V ∗
i = Yi − (u(x0), hu′(x0))T ηi = Vi +

1
2

(Xi − x0

h

)2

h2u′′(X̄i), (8)

where ηi = (1, (Xi − x0)/h)T . We estimate (u(x0), hu′(x0))T by β̂ = (β̂1, β̂2)T

defined in (9).

β̂ = argminβ∈R2

n∑
i=1

Ki|Yi − ηT
i β|, (9)
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where Ki = K((Xi − x0)/h). When β̂ is not uniquely determined, we should
choose one from the candidates by some rule.

The asymptotic distribution of the estimator depends mainly on γZ and
LZ(j) and there are the following two cases. The normalization constant τn is
defined according to the cases.
Case 1: n−γZ L2

Z(n) = o(n−4/5) = o(1/(nh)). Then we set τn =
√

nh.
Case 2: n−4/5 = o(n−γZ L2

Z(n)). Then we set τn = (σ2
Z,n/n2)−1/2.

In Case 1, τn = c1/2n2/5 and the asymptotic distribution of β̂ is the
same as for i.i.d. observations. In Cases 2, {Zi}∞i=1 have long-range depen-
dence. If LZ(j) is a constant function, τn ∼ dnγZ/2 for some positive d. The
asymptotic distribution of β̂ depends only on ∂V

∂z (x0, z0) and {Zi}∞i=1. When
n−γZ L2

Z(n)/n−4/5 → d for some positive d, we just know the convergence rate
and have not obtained the asymptotic distribution yet.

Normalize β̂ and define θ̂, the normalized β̂, by

θ̂ = τn

(
β̂1 − u(x0)

β̂2 − hu′(x0)

)
. (10)

We can represent θ̂ as

θ̂ = argminθ∈R2

n∑
i=1

Ki|V ∗
i − τ−1

n ηT
i θ|, (11)

Before we state Theorem 1, we comment on the conditional density function
of Vi on Xi, for which we write fV (v|x). It is easy to see from Assumptions A2
and Remark 1 below Assumption A4 that fV (v|x) exists in a neighborhood of
(0, x0) and

fV (0|x) = g(m(x))
(∂V

∂z
(x, m(x))

)−1

(12)

in a neighborhood of x0.

Theorem 1 Suppose that Assumptions A1-A5 hold in our setting (1)-(4).
Then as n → ∞,
Case 1(τn =

√
nh):

θ̂
d→ N

((
c5/2u′′(x0)κ2

2
0

)
,

1
4f2

V (0|x0)f(x0)

(
ν0 0
0 κ−2

2 ν2

))
,

Case 2(τn = (σ2
Z,n/n2)−1/2):

θ̂ = − 1
2fV (0|x0)

∫
sign(V (x, z))g′(z)dz

(
1
0

)
1

σn,Z

n∑
i=1

Zi + op(1).
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The proof of Theorem 1 is given in Section 4.
It follows from (12) that

1
2fV (0|x0)

∫
sign(V (x, z))g′(z)dz = −∂V

∂z
(x0,m0).

The asymptotic distribution does not depend on {Xi}∞i=1 since the RHS of
the above expression does not depend on {Xi}∞i=1. It is also well known that
σ−1

n,Z

∑n
i=1 Zi

d→ N(0, 1) as n → ∞. See Theorem 5.2.3 of Taniguchi and
Kakizawa for the proof. Hereafter we omit n → ∞.

One might say that Theorem 1 focuses on some cases of Theorems 1 and 3
of Mielniczuk and Wu (2004). However, as mentioned before, we have proved
that the rate of convergence does not depend on γX or LX(j) under the in-
dependence of {Xi}∞i=1 and {Zi}∞i=1 and no complicated assumptions are im-
posed.

Remark 2 Suppose that we estimate u(x0) and u(x1) for x0 6= x1. Then the
proof of Theorem 1 implies that the two estimators are asymptotically in-
dependent in Case 1 since E{K((Xi − x0)/h)K((Xi − x1)/h)} = 0 when
|x0 − x1| > 2hCK . On the other hand, the asymptotic correlation coefficient
of the estimators is 1 in Case 2.

Remark 3 In Case 1, the same kind of statistical inference will be possible as
for i.i.d. observations. On the other hand, in Case 2, the effect of long-range
dependence appears and we have to estimate σ2

n,Z from {(Xi, Yi)}n
i=1. Even if

we could observe Vi directly, this would be extremely difficult in the presence
of heteroscedasticity. See also the last paragraph of Mielniczuk and Wu (2004)
of p.1117 about this sort of difficulty.

3 Simulation study

We carried out a simulation study to examine small sample properties of the
estimator. The results are given in Tables 2-9. We used R 2.7.1 and the rq
function of the quantreg library. See R Development Core Team (2008) and
Koenker (2008) about R and the quantreg library.

In this study, we set
Yi = u(Xi) + Zi, (13)

where u(x) = x2 +x4 in Tables 2,3,6,7 and u(x) = cos x in Tables 4,5,8,9. The
sample size is 200 and the replication number is 2000. The same random seed
is used for each table.

We describe {Xi}∞i=1 and {Zi}∞i=1 of this simulation study. {bj}∞j=0 and
{cj}∞j=0 are given by

bj =
{

(j + 1)−(1+γX)/2/(
∑999

j=0(j + 1)−(1+γX))1/2, 0 ≤ j ≤ 999,

0, j ≥ 1000,
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cj =
{

(j + 1)−(1+γZ)/2/(
∑999

j=0(j + 1)−(1+γZ))1/2, 0 ≤ j ≤ 999,

0, j ≥ 1000.

In Tables 2-5, εi and ζi follow the standard normal distribution. In Tables 6-9,√
3εi and

√
3ζi follow the t-distribution with d.f. 3. Then it is easy to see that

E{X2
i } = E{Z2

i } = 1. Note that the error term Zi is relatively large compared
to u(Xi). We used the Epanechnikov kernel to estimate u(x0).

In each table, we give the simulation results for x0 = 0.0, 0.5, 1.0, h =
0.2, 0.3, 0.4, and γZ = 0.5, 1.5, 2.5. Note that 0.0, 0.5, 1.0 on the left margin
mean x0 = 0.0, 0.5, 1.0, respectively. We estimate u(x0) and they are

u(0.0) = 0.000, u(0.5) = 0.3125, u(1.0) = 2.000 in Tables 2, 3, 6, 7 and

u(0.0) = 1.000, u(0.5) = 0.8776, u(1.0) = 0.5403 in Tables 4, 5, 8, 9.

As for the design density function,

f(0.0) = 0.399, f(0.5) = 0.352, f(1.0) = 0.242 in Tables2 − 5, (14)

f(0.0) = 0.581, f(0.5) = 0.408, f(1.0) = 0.179 in Tables 6, 8 of γX = 2.5,
(15)

f(0.0) = 0.461, f(0.5) = 0.384, f(1.0) = 0.219 in Tables 7, 9 of γX = 0.5.
(16)

The above values of f(x0) for Tables 6-9 are estimated by kernel density esti-
mation from simulated 100,000 i.i.d. samples.

To see the effects of the long-range dependence of {Xi}∞i=1, we set γX = 0.5
in Tables 3,5,7,9. We can see the effects by comparing Table i and Table (i+1)
for i = 2, 4, 6, 8.

Those parameters for tables are summarized in Table 1. In Table 1, t3 in
the dist. row implies that

√
3εi and

√
3ζi follow the t-distribution with d.f. 3.

In Tables 2-9, mean, bias, var, and mse stand for the sample mean, the
sample mean −u(x0), the sample variance, and the sample mean squared error
of the replications. NA4 stand for the number of replications for which there
are only less than 4 observations available to estimate u(x0) in [x0−h, x0 +h].
Then we did not use the rq function. Instead we estimated u(x0) by local
medians if at least one observation is available. NA stands for the number of
replications for which there is no observation available to estimate u(x0) in
[x0 − h, x0 + h]. We just removed those replications. The numbers of the NA4
rows include the replications in the NA rows.

{ Tables 1-9 are around here. }

We obtained the following implications from the simulation:
1. We took γZ less than or equal to 2.5. However, the estimator worked well
when {Xi}∞i=1 and {Zi}∞i=1 are short-range dependent. See columns of γZ = 1.5
and 2.5 of Tables 2,4,6,8.
2. The columns of γZ = 0.5 of Tables 2-9 shows that the long-range dependence
of {Zi}∞i=1 badly affects the properties of the estimator.
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3. We can see the effect of the long-range dependence of {Xi}∞i=1, especially in
the rows of x0 = 1.0 of Tables 7,9. It seems that there were many cases in which
not enough observations were available to estimate u(1.0). The phenomenon
will be characteristic of long-range dependent processes since f(1.0) is not so
small. See (14)-(16). One remedy will be to select larger bandwidths by using
local quadratic or cubic regression. However, if there is no observation around
x0, it is not possible to estimate u(x0).

4 Proof of Theorem 1

The proof of Theorem 1 is presented in this section. We begin with three
results, Lemmas 1-3, which will be verified after the proof of Theorem 1. The
setting (1)-(4) is assumed throughout this section. We omit a.s.(almost surely)
for notational convenience.

The first result deals with τn(nh)−1
∑n

i=1 Kiηisign(Vi), which is related to
the stochastic part of θ̂.

Lemma 1 Suppose that Assumptions A1-A4 hold. Then we have
Case 1:

τn

nh

n∑
i=1

Kiηisign(Vi)
d→ N

((
0
0

)
, f(x0)

(
ν0 0
0 ν2

))
,

Case 2:

τn

nh

n∑
i=1

Kiηisign(Vi) +
(

1
0

)
f(x0)

∫
sign(V (x, z))g′(z)dz

1
σn,Z

n∑
i=1

Zi = op(1).

The second result is used to evaluate the loss function in (11). See (8) for
the definitions of ηi and V ∗

i .

Lemma 2 Suppose that Assumptions A1-A4 hold. Then we have for any
fixed θ,

τ2
n

nh

n∑
i=1

Ki(|V ∗
i − τ−1

n ηiθ| − |V ∗
i |)

= θT

(
1 0
0 κ2

)
θfV (0|x0)f(x0) −

( τn

nh

n∑
i=1

Kiηisign(V ∗
i )

)T

θ + op(1).

The third result is used to replace V ∗
i with Vi in the sign function and the

result is related to the bias term of θ̂ in Case 1.

Lemma 3 Suppose that Assumptions A1-A4 hold. Then we have

τn

nh

n∑
i=1

Kiηisign(V ∗
i )

=
τn

nh

n∑
i=1

Kiηisign(Vi) +
τn√
nh

(c5/2κ2u
′′(x0)fV (0|x0)f(x0), 0)T + op(1).
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Now we prove Theorem 1.
Proof of Theorem 1 Recall that τn/

√
nh = 1 in Case 1 and τn/

√
nh =

o(1) in Case 2. (11) is equivalent to

θ̂ = argminθ∈R2
τ2
n

nh

n∑
i=1

Ki(|V ∗
i − τ−1

n ηT
i θ| − |V ∗

i |). (17)

By Lemmas 2-3, we have for any fixed θ ∈ R2,

τ2
n

nh

n∑
i=1

Ki(|V ∗
i − τ−1

n ηiθ| − |V ∗
i |) (18)

= θT

(
1 0
0 κ2

)
θfV (0|x0)f(x0) −

( τn

nh

n∑
i=1

Kiηisign(Vi)
)T

θ

− τn√
nh

(c5/2κ2u
′′(x0)fV (0|x0)f(x0), 0)θ + op(1).

As in Pollard (1991), Fan et al. (1994), and Hall et al. (2002), the convexity
lemma implies that (18) holds uniformly on {|θ| < M} for any positive M .

We consider the RHS of (18). Lemma 1 implies that

τn

nh

n∑
i=1

Kiηisign(Vi) = Op(1). (19)

Combining (19), τn/
√

nh = O(1), the uniformity of (18), and the convexity of
the objective function in (17), we conclude that |θ̂| = Op(1) by appealing to
the standard argument.

By using |θ̂| = Op(1) and the uniformity of (18) again, we obtain

θ̂ =
1

2fV (0|x0)f(x0)

(
1 0
0 κ2

)−1

(20)

×
{ τn

nh

n∑
i=1

Kiηisign(Vi) +
τn√
nh

(c5/2κ2u
′′(x0)fV (0|x0)f(x0), 0)T

}
+ op(1).

The results of the theorem follow from (20) and Lemma 1. Hence the proof
of the theorem is complete.

We next consider the evaluation of n−1
∑n

i=1 A(X̃i,1)B(Z̃i,1), where X̃i,1

and Z̃i,1 are defined in (7), |A(X̃i,1)| ≤ M1, |B(Z̃i,1)| ≤ M1, and A(X̃i,1) and
B(Z̃i,1) depend on ξ ∈ [−CK , CK ]. The evaluation is important in the proofs
of Lemmas 1-3 and given in Lemma 4 below.

Define UA,i,j and UB,i,j respectively by

UA,i,j = E{A(X̃i,1)|S1,i−j} − E{A(X̃i,1)|S1,i−j−1} − A1bjεi−j , (21)

UB,i,j = E{B(Z̃i,1)|S2,i−j} − E{B(Z̃i,1)|S2,i−j−1} − B1cjζi−j , (22)
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where

A1 =
∂

∂v
E{A(X̃i,1 + v)}|v=0 and B1 =

∂

∂v
E{B(Z̃i,1 + v)}|v=0. (23)

Set UA,i,0 = UB,i,0 = 0. Then we have

∞∑
j=1

UA,i,j = A(X̃i,1) − E{A(X̃i,1)} − A1X̃i,1, (24)

∞∑
j=1

UB,i,j = B(Z̃i,1) − E{B(Z̃i,1)} − B1Z̃i,1. (25)

Write W (ξ) = Om(an) when supξ∈[−CK ,CK ] ‖W (ξ)‖ ≤ Can for conve-
nience. When supξ∈[−CK ,CK ] ‖W (ξ)‖ = o(an), W (ξ) = om(an).

Lemma 4 Suppose that Assumption A4 holds and that we have, uniformly
in ξ ∈ [−CK , CK ],

E{U2
A,i,j} ≤ M2(j + 1)−(δ+1+γX) and E{U2

B,i,j} ≤ M2(j + 1)−(δ+1+γZ)

(26)
for positive numbers M2 and δ such that δ + γX 6= 1, δ + γZ 6= 1, and 2δ <
1 ∧ γX . Then

1
n

n∑
i=1

A(X̃i,1)B(Z̃i,1)

= E{A(X̃i,1)}E{B(Z̃i,1)} + A1E{B(Z̃i,1)}
1
n

n∑
i=1

X̃i,1

+E{A(X̃i,1)}B1
1
n

n∑
i=1

Z̃i,1 + Om(M1M2(n−(δ+γZ)/2 ∨ n−1/2))

+A1B1Om(n−(δ+γZ)/2 ∨ n−1/2) + B1Om(M2(n−(δ+γZ)/2 ∨ n−1/2))
+E{B(Z̃i,1)}Om(M2(n−(δ+γX)/2 ∨ n−1/2)).

We verify Lemma 4 after Lemmas 1-3 are proved. A similar result to Lemma
4 is given Lemma 4.1 of Koul et al. (2004). However, we cannot use the result
directly to prove Lemmas 1-3. Note that (26) have to be verified when we
use Lemma 4. The proofs of (26) for Lemmas 1-3 are almost the same as the
arguments of Section 6 of Koul and Surgailis (2002). We prove only the latter
of (26) for Lemma 2. See Lemma 6 at the end of this section for the proof.

Proof of Lemma 1 The former half of the lemma will be established as
in Wu and Mielniczuk (2002) and Mielniczuk and Wu (2004).

We deal with only the first element. We can treat the second element in
the same way and the joint distribution follows from the Cramér and Wold
device.
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Define Ti by Ti = Kisign(Vi) − E{Kisign(Vi)|S0,i−1} and notice that we
have by (2)

1
h

E{Kisign(Vi)|S0,i−1} (27)

=
1
h

∫ ∫
K

(x + X̃i,1 − x0

h

)
sign(V (x + X̃i,1, z + Z̃i,1))f1(x)g1(z)dxdz

=
∫

K(ξ)
{

f1(x0 + ξh − X̃i,1)
∫

sign(V (x0 + ξh, z))g1(z − Z̃i,1)dz
}

dξ.

Set A(X̃i,1) = f1(x0 +ξh−X̃i,1) and B(Z̃i,1) =
∫

sign(V (x0 +ξh, z))g1(z−
Z̃i,1)dz in Lemma 4. Then, by Assumptions A2 and Remark 1, we have uni-
formly in ξ ∈ [−CK , CK ],

E{A(X̃i,1)} = f(x0 + ξh) = f(x0) + O(h),

E{B(Z̃i,1)} =
∫

sign(V (x0 + ξh, z)g(z)dz = 0,

A1 = −f ′(x0 + ξh) = −f ′(x0) + O(h),

B1 = −
∫

signV (x0 + ξh, z)g′(z)dz = −
∫

signV (x0, z)g′(z)dz + o(1).

It follows from (2)-(4), Assumptions A2 and A4, and the arguments of Section
6 of Koul and Surgailis (2002) that (26) holds. The details are omitted. Now
by Lemma 4, there is a positive constant δ such that

1
n

n∑
i=1

A(X̃i,1)B(Z̃i,1) (28)

= −f(x0)
∫

sign(V (x0, z))g′(z)dz
1
n

n∑
i=1

Z̃i,1 + Om(n−(δ+γZ)/2 ∨ n−1/2).

By (28), Jensen’s inequality regarding
∫
·K(ξ)dξ, and Fubini’s theorem, we

have

1
nh

n∑
i=1

{Kisign(Vi)|S0,i−1} (29)

= −f(x0)
∫

K(ξ)
{∫

sign(V (x0 + ξh, z))g′(z)dz
}

dξ
1
n

n∑
i=1

Z̃i,1

+Op(n−(δ+γZ)/2 ∨ n−1/2).

Since τnn−1σn,Z = o(1) in Case 1,

τn

nh

n∑
i=1

{Kisign(Vi)|S0,i−1} (30)

=


op(1) in Case1,

−f(x0)
∫

sign(V (x0, z))g′(z)dz
τn

n

n∑
i=1

Zi + op(1) in Case2.
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Next we apply the martingale central limit theorem (e.g. Theorem 9.5.2 of
Chow and Teicher (1988)) to (nh)−1/2

∑n
i=1 Ti. Since |Ti| ≤ C, we have only

to verify the convergence in probability of the conditional variance. Noticing
that |E{Kisign(Vi)|S0,i−1}| ≤ Ch and |sign(Vi)| = 1, we can evaluate the
conditional variance in the following way.

1
nh

n∑
i=1

E{T 2
i |S0,i−1}

=
1

nh

n∑
i=1

∫ ∫
K2

(x + X̃i,1 − x0

h

)
f1(x)g1(z)dxdz + Op(h)

=
1
n

n∑
i=1

∫
K2(ξ)f1(x0 + ξh − X̃i,1)dξ + Op(h)

=
ν0

n

n∑
i=1

f1(x0 − X̃i,1) + Op(h)
p→ ν0f(x0).

The last line follows from the ergodic theorem.
Since the convergence of the conditional variance is established, the mar-

tingale CLT implies that

1√
nh

n∑
i=1

Ti
d→ N(0, f(x0)ν0).

Therefore, recalling that τn/
√

nh = o(1) in Case 2, we have

τn

nh

n∑
i=1

Ti

{
d→ N(0, f(x0)ν0) in Case1,
= op(1) in Case2.

(31)

The desired result follows from (30) and (31). Hence the proof is complete.

Proof of Lemma 2 Define Sθ(Xi, Zi) by

Sθ(Xi, Zi) = |V ∗
i − τ−1

n ηT
i θ| − |V ∗

i | + τ−1
n ηT

i θsign(V ∗
i ). (32)

Since |V ∗
i − Vi| ≤ Ch2 and τn = O(h−2), it is easy to see that

Sθ(Xi, Zi)| ≤ 2|τ−1
n ηT

i θ|I(|Vi| ≤ Cτ−1
n |θ|). (33)

Set
Ti = KiSθ(Xi, Zi) − E{KiSθ(Xi, Zi)|S0,i−1}.

Since

E
{( τ2

n

nh

n∑
i=1

Ti

)2}
≤ C

τ2
n|θ|2

(nh)2

n∑
i=1

E{K2
i I(|Vi| ≤ Cτ−1

n |θ|)} ≤ C
τn|θ|3

nh
→ 0,
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we have

τ2
n

nh

n∑
i=1

Ti = op(1). (34)

Assumption A2 implies that d|Zi−m(Xi)| ≤ |Vi| when both |Vi| and |Xi−x0| is
sufficiently small. We used this inequality to evaluate E{K2

i I(|Vi| ≤ Cτ−1
n |θ|)}

and this inequality will be also used to verify (26) for Lemmas 2-3.
Next notice that we have by (2),

τ2
n

h
E{KiSθ(Xi, Zi)|S0,i−1}

=
τ2
n

h

∫ ∫
K

(x + X̃i,1 − x0

h

)
Sθ(x + X̃i,1, z + Z̃i,1)f1(x)g1(z)dxdz

=
∫

K(ξ)
{

f1(x0 + ξh − X̃i,1)τ2
n

∫
Sθ(x0 + ξh, z)g1(z − Z̃i,1)dz

}
dξ.

Then set A(X̃i,1) = f1(x0+ξh−X̃i,1) as in the proof of Lemma 1 and B(Z̃i,1) =
τ2
n

∫
Sθ(x0 + ξh, z)g1(z − Z̃i,1)dz in Lemma 4. By Assumptions A1-A2 and

Remark 1, we have uniformly in ξ ∈ [−CK , CK ],

E{B(Z̃i,1)} = ((1, ξ)θ)2fV (0|x0) + o(1),

B1 = −τ2
n

∫
Sθ(x0 + ξh, z)g′(z)dz = O(1).

(26) follows from (2)-(4), Assumptions A1, A2, and A4, and the arguments
of Section 6 of Koul and Surgailis (2002). We prove only the latter of (26) in
Lemma 6 at the end of this section for reference. Then by Lemma 4, we have

1
n

n∑
i=1

A(X̃i,1)B(Z̃i,1) = ((1, ξ)θ)2fV (0|x0)f(x0) + om(1).

Therefore in the same way as (29), we obtain

τ2
n

nh
E{KiSθ(Xi, Zi)|S0,i−1} (35)

=
∫

K(ξ)((1, ξ)θ)2dξfV (0|x0)f(x0) + op(1)

= θT

(
1 0
0 κ2

)
θfV (0|x0)f(x0) + op(1).

The desired result follows from (34) and (35). Hence the proof is complete.

Proof of Lemma 3 The proof is similar to that of Lemma 2 and we
consider only the first element.

Define Ti by

Ti = Ki(sign(V ∗
i ) − sign(Vi)) − E{Ki(sign(V ∗

i ) − sign(Vi))|S0,i−1}.
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Since |V ∗
i − Vi| ≤ Ch2,

E
{( τn

nh

n∑
i=1

Ti

)2}
(36)

≤ 4τ2
n

(nh)2

n∑
i=1

E{K2
i I(|Vi| ≤ Ch2)} ≤ C

τ2
nh3

nh2
= C

τ2
nh

n
→ 0.

Next notice that we have by (2),

τn

h
E{Ki(sign(V ∗

i ) − sign(Vi))|S0,i−1}

=
τn

h

∫ ∫
K

(x + X̃i,1 − x0

h

)
×(sign(V ∗(x + X̃i,1, z + Z̃i,1) − sign(V (x + X̃i,1, z + Z̃i,1))f1(x)g1(z)dxdz

=
∫

K(ξ)
{

f1(x0 + ξh − X̃i,1)

×τn

∫
(sign(V ∗(x0 + ξh, z) − sign(V (x0 + ξh, z))g1(z − Z̃i,1)dz

}
dξ.

Set A(X̃i,1) = f1(x0 +ξh−X̃i,1) as in the proof of Lemma 1 and B(Z̃i,1) =
τn

∫
(sign(V ∗(x0 +ξh, z)− sign(V (x0 +ξh, z))g1(z− Z̃i,1)dz in Lemma 4. Then

by (8), Assumptions A1 and A2, and Remark 1, we have uniformly in ξ ∈
[−CK , CK ],

E{B(Z̃i,1)} =
τn√
nh

c5/2ξ2u′′(x0)fV (0|x0) + o(1),

B1 = −τn

∫
(sign(V ∗(x0 + ξh, z) − sign(V (x0 + ξh, z))g′(z)dz

= O(1).

(26) follows from (2)-(4), Assumptions A1, A2, and A4, and the arguments of
Section 6 of Koul and Surgailis (2002). The details are omitted. Therefore by
Lemma 4, we obtain

1
n

n∑
i=1

A(X̃i,1)B(Z̃i,1) =
τn√
nh

c5/2ξ2u′′(x0)fV (0|x0)f(x0) + om(1).

Finally in the same way as (29) and (35), we can see that

τn

nh

n∑
i=1

E{Ki(sign(V ∗
i ) − sign(Vi))|S0,i−1} (37)

=
τn√
nh

c5/2κ2u
′′(x0)fV (0|x0)f(x0) + op(1).

The desired result follows from (36) and (37). Hence the proof is complete.
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Lemma 5 below is a tool to prove Lemma 4. Lemma 5 is just a modification
of a familiar lemma which has been used explicitly or implicitly in papers on
long-range dependent linear processes.

Lemma 5 Let {Fi}∞i=−∞ be a filtration. Suppose that we have a set of random
variables {Ui,j | 1 ≤ i ≤ n, 0 ≤ j < ∞} such that Ui,j are Fi−j-measurable
and E{Ui,j |Fi−j−1} = 0. In addition we have another set of random variables
{Di}∞i=1 which is independent of {Ui,j | 1 ≤ i ≤ n, 0 ≤ j < ∞}. Suppose that
every Di has the second moment and that

E{U2
i,j} ≤ M(j + 1)−(1+γ+δ) (38)

for some positive numbers M , δ, and γ (δ + γ 6= 1). Then we have

E{(
n∑

i=1

Di

∞∑
j=0

Ui,j)2} (39)

≤
∞∑

j=0

(
n∑

i=1

‖Di‖‖Ui,i+j‖)2 +
−1∑

j=−n

(
n∑

i=−j

‖Di‖‖Ui,i+j‖)2

≤ CM max
1≤i≤n

{‖Di‖}(n2−γ−δ ∨ n).

The first inequality in (39) is essentially given in Lemma 2 of Mielniczuk
and Wu (2004). The last inequality follows from (38) and some standard cal-
culation. The details of the proof are omitted.

Proof of Lemma 4 By applying Lemma 5 twice with {Fi}∞i=−∞ =
{S1,i}∞i=−∞ and {S2,i}∞i=−∞, respectively, we obtain

1
n

n∑
i=1

A(X̃i,1)B(Z̃i,1) (40)

=
1
n

n∑
i=1

A(X̃i,1){E{B(Z̃i,1)} + B1Z̃i,1}

+Om(M1M2(n−(δ+γZ)/2 ∨ n−1/2))

= E{A(X̃i,1)}E{B(Z̃i,1)} + A1E{B(Z̃i,1)}
1
n

n∑
i=1

X̃i,1

+B1
1
n

n∑
i=1

A(X̃i,1)Z̃i,1 + Om(M1M2(n−(δ+γZ)/2 ∨ n−1/2))

+E{B(Z̃i,1)}Om(M2(n−(δ+γX)/2 ∨ n−1/2)).

We evaluate n−1
∑n

i=1 A(X̃i,1)Z̃i,1 in the last expression of (40). It is
rewritten as

1
n

n∑
i=1

A(X̃i,1)Z̃i,1 (41)
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= E{A(X̃i,1)}
1
n

n∑
i=1

Z̃i,1 + A1
1
n

n∑
i=1

X̃i,1Z̃i,1

+
1
n

n∑
i=1

{A(X̃i,1) − E{A(X̃i,1)} − A1X̃i,1}Z̃i,1.

For the second term of the RHS of (41), we have by (2)-(4),

E
{( 1

n

n∑
i=1

X̃i,1Z̃i,1

)2}
(42)

=
1
n2

n∑
i=1

n∑
j=1

E{X̃i,1X̃j,1}E{Z̃i,1Z̃j,1}

≤ 1
n2

n∑
i=1

n∑
j=1

(1 + |i − j|)−2δ|E{Z̃i,1Z̃j,1}| ≤ C(n−(δ+γZ) ∨ n−1).

Remember that we took δ which is smaller than (γX ∧ 1)/2.
To deal with the third term of the RHS of (41), we use the following fact

owing to (2)-(4) and Assumption A4.

|E[{A(X̃i,1) − E{A(X̃i,1)} − A1X̃i,1}{A(X̃j,1) − E{A(X̃j,1)} − A1X̃j,1}]|

≤
{

CM2
2 (|i − j| + 1)−(δ+γX), if δ + γX < 1,

CM2
2 (|i − j| + 1)−(1+δ+γX)/2, if δ + γX > 1.

(43)

See Lemma 6.1 of Koul and Surgailis (2002). Then by using (5) with Z̃i,1 and
(43), we evaluate the varinance and obtain

1
n

n∑
i=1

{A(X̃i,1) − E{A(X̃i,1)} − A1X̃i,1}Z̃i,1 = Om(M2(n−(δ+γZ)/2 ∨ n−1/2)).

(44)
The desired result follows from (40)-(42), and (44). Hence the proof is

complete.

The latter of (26) for Lemma 2 is demonstrated in Lemma 6 below.

Lemma 6 Suppose that Assumptions A1, A2, and A4 hold. When

B(Z̃i,1) =
∫

τ2
nSθ(x0 + ξh, z)g1(z − Z̃i,1)dz,

there are positive M and δ such that

E{U2
B,i,j} ≤ M(j + 1)−(δ+1+γZ) uniformly in ξ ∈ [−CK , CK ].
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Proof We follow the arguments of Koul and Surgailis (2002) and they rely
on (2)-(4) and Assumption A4. We suppress B of UB,i,j for notational conve-
nience.

Define U
(1)
i,j , U

(2)
i,j , and U

(3)
i,j by

U
(1)
i,j =

∫
τ2
nSθ(x0 + ξh, z)(gj+1(z − Z̃i,j) − gj+1(z − Z̃i,j+1))dz

+cjζi−j

∫
τ2
nSθ(x0 + ξh, z)g′j+1(z − Z̃i,j+1)dz,

U
(2)
i,j =

∫
τ2
nSθ(x0 + ξh, z)(gj(z − Z̃i,j) − gj+1(z − Z̃i,j))dz,

U
(3)
i,j = −cjζi−j

∫
τ2
nSθ(x0 + ξh, z)(g′j+1(z − Z̃i,j+1) − g′(z))dz.

Then we have

Ui,j = U
(1)
i,j + U

(2)
i,j + U

(3)
i,j . (45)

Recall that the support of Sθ(x0 +ξh, z) is contained in {z | |z−m(x0 +ξh)| <
Cτ−1

n } for some positive C because of Assumption A2. This is crucial to the
evaluation of U

(l)
i,j , l = 1, 2, 3. In addition when δ ≥ 2, we have by Rosenthal’s

inequality,

E{|Z̃i,j+1|δ} ≤ C{(
∞∑

l=j+1

c2
l )

δ/2 +
∞∑

l=j+1

|cl|δ}. (46)

First write U
(1)
i,j as

U
(1)
i,j =

∫ −cjζi−j

0

{∫
τ2
nSθ(x0 + ξh, z)(g′j+1(z + u − Z̃i,j+1)

−g′j+1(z − Z̃i,j+1))dz
}

du.

(5.14) of Lemma 5.2 of Koul and Surgailis (2002) and Remark 1 of this paper
imply that there is a positive γ1 such that 1 < γ1 ≤ r/2 and

|U (1)
i,j | ≤ C|cj |γ1 |ζi−j |γ1(1 ∨ |Z̃i,j+1|γ1). (47)

Hence we have

E{|U (1)
i,j |

2} ≤ C|cj |2γ1 . (48)

Next we consider U
(2)
i,j . By Lemma 5.1 of Koul and Surgailis (2002), we

have

|U (2)
i,j | ≤ Cc2

j

∫
|τ2

nSθ(x0 + ξh, z)|(1 + |z − Z̃i,j |)−2dz ≤ Cc2
j . (49)
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Finally we deal with U
(3)
i,j . We introduce a random variable Z̄i,j+1 which

is an independent copy of Z̃i,j+1. We denote the expectation with respect to
Z̄i,j+1 by Ē{·}. By using Z̄i,j+1 and Ē{·}, we can represent U

(3)
i,j as

U
(3)
i,j = −cjζi−j

[ ∫
τ2
nSθ(x0 + ξh, z)(g′j+1(z − Z̃i,j+1) − g′j+1(z))dz

−Ē
{∫

τ2
nSθ(x0 + ξh, z)(g′j+1(z − Z̄i,j+1) − g′j+1(z))dz

}]
By (5.13) of Lemma 5.2 of Koul and Surgailis (2002), there is a positive γ2

such that 1 < γ2 ≤ r/2,∣∣∣Ē{∫
τ2
nSθ(x0 + ξh, z)(g′j+1(z − Z̄i,j+1) − g′j+1(z))dz

}∣∣∣ (50)

≤ CĒ{|Z̄i,j+1| ∨ |Z̄i,j+1|γ2}
and ∣∣∣ ∫

τ2
nSθ(x0 + ξh, z)(g′j+1(z − Z̃i,j+1) − g′j+1(z))dz

∣∣∣ (51)

≤ C(|Z̃i,j+1| ∨ |Z̃i,j+1|γ2).

(50) and (51) yield

E{|U (3)
i,j |

2} ≤ C|cj |2[E{|Z̃i,j+1|2} + E{|Z̃i,j+1|2γ2}]. (52)

The desired result follows from (45), (46), (48), (49), and (52). Hence the proof
is complete.
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Table 1: Parameters of tables 

 
Table  

2 3 4 5 6 7 8 9 
γx 2.5 0.5 2.5 0.5 2.5 0.5 2.5 0.5 
u(x) x2+x4 x2+x4 cos(x) cos(x) x2+x4 x2+x4 cos(x) cos(x) 
dist. N(0,1) N(0,1) N(0,1) N(0,1) t3 t3 t3 t3 

 



Table 2:γx=2.5, N(0,1), u(x)=x2+x4  
 

γz 0.5 1.5 2.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean 0.016 0.026 0.039 0.013 0.022 0.033 0.003 0.017 0.031

bias 0.016 0.026 0.039 0.013 0.022 0.033 0.003 0.017 0.031

var 0.271 0.258 0.248 0.088 0.070 0.062 0.074 0.052 0.043

mse 0.271 0.258 0.249 0.088 0.071 0.063 0.074 0.053 0.044

NA4 0 0 0 0 0 0 0 0 0 

 

 

0.0 

 

    

NA 0 0 0 0 0 0 0 0 0 

mean 0.347 0.370 0.403 0.332 0.361 0.394 0.325 0.347 0.383

bias 0.035 0.058 0.091 0.020 0.049 0.082 0.013  0.035  0.071 

var 0.282 0.263 0.255 0.103 0.081 0.069 0.080 0.057 0.047

mse 0.284 0.266 0.263 0.103 0.083 0.076 0.080 0.058 0.052

NA4 0 0 0 0 0 0 0 0 0 

 

 

0.5 

 

 

NA 0 0 0 0 0 0 0 0 0 

mean 2.048 2.127 2.220 2.044 2.119 2.208 2.051 2.124 2.209

bias 0.048 0.127 0.220 0.044 0.119 0.208 0.051 0.124 0.209

var 0.321 0.283 0.272 0.148 0.109 0.095 0.121 0.085 0.068

mse 0.323 0.299 0.320 0.150 0.123 0.138 0.124 0.100 0.112

NA4 0 0 0 0 0 0 0 0 0 

 

 

1.0 

 

 

NA 0 0 0 0 0 0 0 0 0 

 



Table 3:γx=0.5, N(0,1), u(x)=x2+x4  
 

γz 0.5 1.5 2.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean 0.022 0.028 0.041 0.014 0.020 0.031 0.000 0.009 0.026

bias 0.022 0.028 0.041 0.014 0.020 0.031 0.000 0.009 0.026

var 0.295 0.274 0.266 0.106 0.085 0.073 0.077 0.056 0.047

mse 0.295 0.275 0.267 0.106 0.085 0.074 0.077 0.056 0.048

NA4 2 1 0 0 0 0 1 0 0 

 

 

0.0 

 

    

NA 1 0 0 0 0 0 0 0 0 

mean 0.341 0.364 0.395 0.332 0.358 0.389 0.325 0.348 0.380

bias 0.029  0.052  0.083 0.020 0.046 0.077 0.013  0.036  0.068 

var 0.298 0.284 0.279 0.131 0.103 0.088 0.099 0.072 0.055

mse 0.299 0.286 0.285 0.132 0.105 0.094 0.099 0.073 0.060

NA4 4 1 0 9 2 1 4 1 0 

 

 

0.5 

 

 

NA 1 0 0 0 0 0 0 0 0 

mean 2.058 2.114 2.199 2.041 2.111 2.196 2.036 2.103 2.198

bias 0.058 0.114 0.199 0.041 0.111 0.196 0.036 0.103 0.198

var 0.415 0.367 0.356 0.245 0.198 0.172 0.213 0.163 0.171

mse 0.418 0.380 0.396 0.247 0.210 0.210 0.215 0.173 0.210

NA4 94 41 17 87 37 18 89 43 23 

 

 

1.0 

 

 

NA 8 3 3 10 5 2 10 3 0 

 



Table 4:γx=2.5, N(0,1), u(x)=cos(x) 
 

γz 0.5 1.5 2.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean 1.005 0.999 0.991 1.002 0.995 0.986 0.992 0.990 0.984

bias 0.005 -0.001 -0.009 0.002 -0.005 -0.014 -0.008 -0.010 -0.016

var 0.272 0.258 0.248 0.089 0.071 0.063 0.074 0.052 0.043

mse 0.272 0.258 0.248 0.089 0.071 0.063 0.074 0.052 0.043

NA4 0 0 0 0 0 0 0 0 0 

 

 

0.0 

 

    

NA 0 0 0 0 0 0 0 0 0 

mean 0.889 0.883 0.876 0.874 0.873 0.867 0.867 0.861 0.855

bias 0.011 0.005 -0.002 -0.004 -0.005 -0.011 -0.011 -0.017 -0.023

var 0.283 0.263 0.253 0.103 0.080 0.068 0.080 0.056 0.046

mse 0.283 0.263 0.253 0.103 0.080 0.068 0.080 0.057 0.047

NA4 0 0 0 0 0 0 0 0 0 

 

 

0.5 

 

 

NA 0 0 0 0 0 0 0 0 0 

mean 0.533 0.541 0.544 0.528 0.533 0.527 0.535 0.540 0.534

bias -0.007 0.001 0.004 -0.012 -0.007 -0.013 -0.005 0.000 -0.006

var 0.320 0.281 0.271 0.146 0.109 0.091 0.122 0.084 0.064

mse 0.320 0.281 0.271 0.146 0.109 0.091 0.122 0.084 0.065

NA4 0 0 0 0 0 0 0 0 0 

 

 

1.0 

 

 

NA 0 0 0 0 0 0 0 0 0 

 



Table 5:γx=0.5, N(0,1), u(x)=cos(x)  
 

γz 0.5 1.5 2.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean 1.011 1.001 0.991 1.002 0.993 0.982 0.988 0.982 0.979

bias 0.011 0.001 -0.009 0.002 -0.007 -0.018 -0.012 -0.018 -0.021

var 0.295 0.275 0.265 0.106 0.085 0.072 0.078 0.056 0.047

mse 0.295 0.275 0.265 0.106 0.085 0.073 0.078 0.056 0.047

NA4 2 1 0 0 0 0 1 0 0 

 

 

0.0 

 

 

NA 1 0 0 0 0 0 0 0 0 

mean 0.884 0.878 0.872 0.876 0.871 0.864 0.868 0.862 0.857

bias 0.006  0.000  -0.006 -0.002 -0.007 -0.014 -0.010  -0.016  -0.021 

var 0.297 0.282 0.279 0.131 0.103 0.089 0.099 0.072 0.053

mse 0.297 0.282 0.279 0.131 0.104 0.089 0.099 0.072 0.054

NA4 4 1 0 9 2 1 4 1 0 

 

 

0.5 

 

    

NA 1 0 0 0 0 0 0 0 0 

mean 0.551 0.545 0.538 0.532 0.539 0.531 0.530 0.534 0.536

bias 0.011  0.005  -0.002 -0.008 -0.001 -0.009 -0.010  -0.006  -0.004 

var 0.410 0.358 0.333 0.238 0.179 0.146 0.197 0.143 0.150

mse 0.410 0.358 0.333 0.238 0.179 0.146 0.197 0.143 0.150

NA4 94 41 17 87 37 18 89 43 23 

 

 

1.0 

 

 

NA 8 3 3 10 5 2 10 3 0 

 



Table 6:γx=2.5, t3, u(x)= x2+x4 

 
γz 0.5 1.5 2.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean -0.002 0.005 0.019 0.000 0.012 0.026 0.004 0.016 0.029

bias -0.002 0.005 0.019 0.000 0.012 0.026 0.004 0.016 0.029

var 0.224 0.213 0.208 0.049 0.041 0.037 0.027 0.020 0.017

mse 0.224 0.213 0.209 0.049 0.041 0.038 0.027 0.020 0.018

NA4 0 0 0 0 0 0 0 0 0 

 

 

0.0 

 

 

NA 0 0 0 0 0 0 0 0 0 

mean 0.321 0.345 0.377 0.334 0.357 0.387 0.334 0.358 0.388

bias 0.009  0.033  0.065 0.022 0.045 0.075 0.022  0.046  0.076 

var 0.241 0.230 0.223 0.060 0.048 0.042 0.038 0.027 0.023

mse 0.242 0.231 0.228 0.060 0.050 0.048 0.038 0.029 0.028

NA4 0 0 0 0 0 0 0 0 0 

 

 

0.5 

 

 

NA 0 0 0 0 0 0 0 0 0 

mean 2.033 2.098 2.179 2.057 2.112 2.189 2.042 2.105 2.186

bias 0.033 0.098 0.179 0.057 0.112 0.189 0.042 0.105 0.186

var 0.313 0.270 0.261 0.139 0.091 0.081 0.117 0.070 0.057

mse 0.314 0.279 0.293 0.143 0.104 0.116 0.118 0.081 0.092

NA4 2 0 0 1 0 0 2 0 0 

 

 

1.0 

 

 

NA 0 0 0 0 0 0 0 0 0 

 
 
 



Table 7:γx=0.5, t3, u(x)= x2+x4 

 
γz 0.5 1.5 2.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean -0.004 0.006 0.017 0.016 0.023 0.038 0.014 0.020 0.033

bias -0.004 0.006 0.017 0.016 0.023 0.038 0.014 0.020 0.033

var 0.245 0.230 0.262 0.065 0.053 0.047 0.037 0.026 0.022

mse 0.245 0.230 0.263 0.066 0.053 0.048 0.037 0.026 0.023

NA4 4 1 0 2 1 0 1 0 0 

 

 

0.0 

 

NA 1 1 0 0 0 0 0 0 0 

mean 0.324 0.349 0.377 0.325 0.349 0.381 0.327 0.352 0.384

bias 0.012  0.037  0.065 0.013 0.037 0.069 0.015  0.040  0.072 

var 0.293 0.269 0.254 0.088 0.066 0.067 0.075 0.046 0.038

mse 0.293 0.270 0.258 0.088 0.068 0.072 0.075 0.048 0.043

NA4 16 8 3 20 14 5 26 11 7 

 

 

0.5 

 

 

NA 4 2 2 0 0 0 1 0 0 

mean 2.029 2.090 2.162 2.040 2.092 2.174 2.051 2.100 2.174

bias 0.029 0.090 0.162 0.040 0.092 0.174 0.051 0.100 0.174

var 0.418 0.415 0.381 0.231 0.195 0.240 0.176 0.171 0.120

mse 0.418 0.423 0.408 0.233 0.203 0.271 0.179 0.181 0.151

NA4 193 89 53 185 84 52 184 87 58 

 

 

1.0 

 

 

NA 27 16 12 30 13 5 28 16 6 

 



Table 8:γx=2.5, t3, u(x)=cos(x) 

 
γz 0.5 1.5 2.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean 0.986 0.979 0.972 0.988 0.986 0.979 0.992 0.990 0.983

bias -0.014  -0.021  -0.028 -0.012 -0.014 -0.021 -0.008  -0.010  -0.017 

var 0.224 0.213 0.208 0.049 0.041 0.037 0.027 0.020 0.017

mse 0.224 0.214 0.209 0.049 0.041 0.038 0.027 0.020 0.017

NA4 0 0 0 0 0 0 0 0 0 

 

 

0.0 

 

 

NA 0 0 0 0 0 0 0 0 0 

mean 0.863 0.860 0.853 0.876 0.871 0.865 0.877 0.873 0.866

bias -0.015  -0.018  -0.025 -0.002 -0.007 -0.013 -0.001  -0.005  -0.012 

var 0.241 0.229 0.222 0.060 0.047 0.042 0.038 0.027 0.022

mse 0.241 0.229 0.222 0.060 0.048 0.042 0.038 0.027 0.022

NA4 0 0 0 0 0 0 0 0 0 

 

 

0.5 

 

 

NA 0 0 0 0 0 0 0 0 0 

mean 0.522 0.520 0.521 0.543 0.535 0.531 0.532 0.530 0.533

bias -0.018  -0.020  -0.019 0.003 -0.005 -0.009 -0.008  -0.010  -0.007 

var 0.313 0.269 0.256 0.139 0.086 0.072 0.115 0.066 0.050

mse 0.313 0.270 0.257 0.139 0.086 0.072 0.115 0.066 0.050

NA4 2 0 0 1 0 0 2 0 0 

 

 

1.0 

 

 

NA 0 0 0 0 0 0 0 0 0 

 



Table 9:γx=0.5, t3, u(x)=cos(x) 
 

γz 0.5 1.5 2.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean 0.985 0.980 0.969 1.004 0.997 0.991 1.002 0.993 0.986

bias -0.015  -0.020  -0.031 0.004 -0.003 -0.009 0.002  -0.007  -0.014 

var 0.245 0.231 0.260 0.065 0.053 0.047 0.037 0.026 0.022

mse 0.245 0.231 0.261 0.065 0.053 0.047 0.037 0.026 0.022

NA4 4 1 0 2 1 0 1 0 0 

 

 

0.0 

 

 

NA 1 1 0 0 0 0 0 0 0 

mean 0.867 0.865 0.856 0.868 0.867 0.862 0.870 0.869 0.863

bias -0.011  -0.013  -0.022 -0.010 -0.011 -0.016 -0.008  -0.009  -0.015 

var 0.295 0.269 0.254 0.087 0.064 0.065 0.074 0.045 0.037

mse 0.295 0.269 0.254 0.087 0.064 0.065 0.074 0.045 0.037

NA4 16 8 3 20 14 5 26 11 7 

 

 

0.5 

 

 

NA 4 2 2 0 0 0 1 0 0 

mean 0.536 0.531 0.525 0.547 0.536 0.544 0.562 0.549 0.552

bias -0.004  -0.009  -0.015 0.007 -0.004 0.004 0.022  0.009  0.012 

var 0.389 0.379 0.340 0.225 0.171 0.201 0.153 0.141 0.085

mse 0.389 0.379 0.340 0.225 0.171 0.201 0.153 0.141 0.086

NA4 193 89 53 185 84 52 184 87 58 

 

 

1.0 

 

 

NA 27 16 12 30 13 5 28 16 6 

 




