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Abstract

In this paper, we study a dynamic portfolio-consumption optimization
problem when the market price of risk is driven by linear Gaussian pro-
cesses. We show sufficient conditions to verify that an explicit solution
derived from the Hamilton-Jacobi-Bellman equation is in fact an optimal
solution to the portfolio selection problem.
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1 Introduction

Since Merton’s seminal work (Merton [14], [15]), many studies have been done
on continuous-time portfolio optimization problems. In particular, there has
been increasing interest in finding an optimal portfolio strategy when invest-
ment opportunities are stochastic, because many empirical works conclude that
investment opportunities are time varying. In this paper, we study a continuous-
time utility maximization problem when the market price of risk is driven by
linear Gaussian processes in a complete market model. The investor allocates
his wealth among traded risky and riskless assets so that he can maximize his
utility from terminal wealth and intermediate consumption. The utility function
is assumed to be a power-utility.
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In general, it is difficult to solve optimal portfolio problems when the in-
vestment opportunity is time varying. In the last ten years, however, many
authors have derived explicit solutions to the optimal portfolio problems when
the investment opportunity set is time varying; see, for example, Kim and
Omberg [10], Wachter [18], Liu [13], and references therein. An explicit solu-
tion allows detailed study of investor’s behavior. In most papers, the associated
Hamilton-Jacobi-Bellman (HJB) equation is transformed into an ordinary dif-
ferential equation (ODE) and an optimal solution is conjectured by guessing
the solution to the ODE. It is necessary to verify that the conjectured solution
is in fact a solution to the original problem. However, as Korn and Kraft [11]
emphasized, verification is often skipped since it is mathematically demanding.
Indeed, Kim and Omberg [10] and Liu [13] did not provide any verification con-
ditions although the former examined the finiteness of the conjectured value
function very carefully. Thus the purpose of this paper is to show sufficient
conditions which verify that an explicit solution derived in their papers is in
fact an optimal solution.

We concentrate on a model that is essentially similar to that of Wachter [18]
and Liu [13]. Wachter [18], using the martingale approach, gave a verification
condition for investors who are more risk averse than log-utility investor in
one-factor model. Thus in this paper we will give verification conditions for
both more risk averse than log-utility investor and more risk seeking than log-
utility investor in multifactor model. We will adapt the dynamic programming
approach to solve the problem and give different sufficient conditions from that
of Wachter [18].

Our assumption of a complete market is restrictive. In an incomplete market
model, it seems to be impossible to obtain an explicit solution to the associated
HJB equation. However, if we consider utility from terminal wealth only, we
can obtain an explicit solution; see Kim and Omberg [10] and Liu [13]. In such
a case, our analysis can be applied similarly.

There are many other interesting studies related to our problem. Brennan
et al. [6], Brandt [5], and Campbell and Viceira [7] computed an optimal portfo-
lio strategy using various numerical and approximation methods. Bielecki and
Pliska [3], Bielecki et al. [4], and Nagai [16] studied the problem in the context
of risk-sensitive control. Zariphopoulou [19], Stoikov and Zariphopoulou [17],
and Castañeda-Leyva and Hernández-Hernández [8] consider more general fac-
tor processes than ours, but they essentially assume that coefficients of price
processes are bounded. The coefficients of our model are not bounded.

From our results, we will see that a relative risk aversion coefficient of a
power-utility function and the definition of the admissible portfolio strategy are
important elements. If the investor is more risk seeking than log-utility investor,
the solution to the Riccati equation related to the HJB equation may blow up
on a time horizon. A verification theorem, however, can be proved under the
usual definition of admissibility as long as the solution to the related Riccati
equation exists. If, on the other hand, the investor is more risk averse than
log-utility investor, the solution to the related Riccati equation always exits,
but we may have to choose a restrictive set of admissible portfolio strategies to
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prove a verification theorem.
The rest of this paper is organized as follows. In Section 2, we describe the

model and formulate a portfolio optimization problem. In Section 3, we derive
the HJB equation. In Section 4, we study the related Riccati equation. In
Section 5, we give verification theorems. Section 6 concludes the paper.

2 Formulation of the problem

We fix a complete probability space (Ω,F , P ) on which a K-dimensional stan-
dard Brownian motion B is defined, and we also fix a time interval [0, T ]. Let
F(t) be the augmentation of the filtration σ(B(s) ; 0 < s < t), 0 < t < T .

There are K factors X = (X1, . . . , XK)⊤, which determine investment op-
portunity and satisfy

dX(t) = µX(X(t))dt+ σXdB(t), X(0) = x0 ∈ RK , (1)

where µX(x) = κ−Mx, κ ∈ RK , M ∈ RK×K , and σX ∈ RK×K . There is one
riskless asset and K risky assets. Suppose that the price S0 of the riskless asset
satisfies

dS0(t) = r(X(t))S0(t)dt, S0(0) = 1.

Here r : RK → R is defined by r(x) = r0 + r⊤1 x + x⊤r2x/2, where r0 ∈ R,
r1 ∈ RK , and r2 ∈ RK×K is nonnegative definite. The risky asset price S
satisfies the stochastic differential equation

dSi(t) = Si(t)µ
S
i (X(t))dt+ Si(t)

K∑
j=1

σS
ij(X(t))dBj(t),

Si(0) = si > 0, i = 1, 2, . . . ,K,

(2)

where σS(x) := (σS
ij(x))1≤i,j≤K is a function from RK to RK×K such that

ΣS(x) := σS(x)(σS(x))⊤ is positive definite for all x ∈ RK . A coefficient
µS(x) := (µS

1 (x), . . . , µ
S
K(x))⊤ is defined by

µS(x) = r(x)1+ σS(x)x,

where 1 denotes an appropriate dimension vector with every component equal
to one. This means that the market price of risk θ := (σS)−1(µS − r1) satisfies
θ(x) = x. Since the number of risky assets is equal to the total number of
risk sources, the market is complete in the sense that any random processes are
replicated by the self-financing strategy.

We consider an investor who allocates his wealth between risky assets and a
riskless asset and chooses a consumption rate to maximize expected utility from
terminal wealth and intermediate consumption in a self-financing way. Suppose
that the investor has power-utility. Let η0(t) and ηi(t) be the unit of the riskless
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asset and the i-th risky assets which the investor holds at time t, respectively.
The investor’s wealth W (t) at time t is then defined by

W (t) = η0(t)S0(t) +
K∑
i=1

ηi(t)Si(t).

Let c(t) be the consumption rate at time t. The self-financing hypothesis implies
that, given a initial wealth w0 > 0, the wealth dynamics is

dW (t) = η0(t)dS0(t) +
K∑
i=1

ηi(t)dSi(t)− c(t)dt, W (0) = w0.

Let ϕ0(t) and ϕi(t) (i = 1, 2, . . . ,K) be the processes such that

ϕi(t) :=

{
ηi(t)Si(t)/W (t), W (t) ̸= 0

0, W (t) = 0,
ϕ0(t) :=

{
1−

∑K
i=1 ϕi(t), W (t) ̸= 0

0, W (t) = 0.

Then ϕi(t) and ϕ0(t) denote the fraction of the wealth invested in the i-th risky
asset and riskless asset at time t, respectively.

We call (ϕ, c) a portfolio-consumption strategy on [t0, t1] if ϕ ∈ L2(t0, t1),
c ∈ L1(t0, t1), c(t) ≥ 0 and W (t) ≥ 0 for all t ∈ [t0, t1] a.s., where W is the
wealth process corresponding to (ϕ, c),

L1(t0, t1) :=

{
f : Ω× [t0, t1] → R

∣∣∣∣ P (∫ t1

t0

|f(t)|dt < ∞
)

= 1

}
,

and

L2(t0, t1) :=

{
f : Ω× [t0, t1] → RK

∣∣∣∣ P (∫ t1

t0

∥f(t)∥2dt < ∞
)

= 1

}
.

The set of all portfolio-consumption strategies on [t0, t1] will be denoted by
H(t0, t1). The investor’s wealth process W corresponding to (ϕ, c) ∈ H(0, T ) is
then given by

dW (t) = W (t)[ϕ(t)⊤(µS(X(t))− r(X(t))1) + r(X(t))]dt

+W (t)ϕ(t)⊤σS(X(t))dB(t)− c(t)dt.
(3)

Let π be a stochastic process such that π := (σS)⊤ϕ. The wealth process (3)
then can be rewritten as

dW (t) = W (t)[π(t)⊤θ(X(t)) + r(X(t))]dt+W (t)π(t)⊤dB(t)− c(t)dt. (4)

For simplicity, we will regard (π, c) a portfolio-consumption strategy instead of
(ϕ, c).

The investor’s problem is

max
(π,c)∈Aγ(0,T )

E

[∫ T

0

c(u)1−γ

1− γ
du+

W (T )1−γ

1− γ

]
. (5)
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Here Aγ ⊂ H denotes the set of admissible strategies which will be defined later.
The set of all admissible strategies on [t0, t1] is denoted by Aγ(t0, t1). Let

J(t, w, x;π, c) = Et,w,x

[∫ T

t

c(u)1−γ

1− γ
du+

W (T )1−γ

1− γ

]
,

where W is the wealth process corresponding to (π, c). Here and in the sequel,
we use the notation Et,w,x[ · ] := E[ · |W (t) = w,X(t) = x]. We then define
V : [0, T )× (0,∞)× RK → R by

V (t, w, x) := sup
(π,c)∈Aγ(t,T )

J(t, w, x;π, c). (6)

The function V is called a value function.

3 The HJB equation

Using the dynamic programming principle, we obtain the HJB equation related
to the problem (5) as follows:

sup
π∈RK ,c≥0

{
c1−γ

1− γ
+Dπ,cG(t, w, x)

}
= 0 (7)

with the boundary condition

G(T,w, x) =
w1−γ

1− γ
, (8)

where

Dπ,cG(t, w, x) = Gt + w(π⊤θ(x) + r(x))Gw + µX(x)⊤Gx

+
1

2
w2∥π∥2Gww +

1

2
tr[ΣXGxx] + w(σXπ)⊤Gwx − cGw,

where ΣX := σX(σX)⊤.
It follows from the first order condition for (7) that the candidate optimal

strategy (π∗, c∗) is given by

π∗ = − Gw

wGww
θ(x)− (σX)⊤Gwx

wGww
, c∗ = G

− 1
γ

w . (9)

The HJB equation (7) is then reduced to

Gt −
1

2

G2
w

Gww
∥θ(x)∥2 − Gw

Gww
θ(x)⊤(σX)⊤Gwx + wr(x)Gw + µX(x)⊤Gx

− 1

2Gww

∥∥(σX)⊤Gwx

∥∥2 + 1

2
tr
[
ΣXGxx

]
+

γ

1− γ
G

γ−1
γ

w = 0. (10)
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It is well known from Kim and Omberg [10], Liu [13], and others that the
function G is separable and has the following form:

G(t, w, x) =
w1−γ

1− γ
f(t, x)γ . (11)

Substituting (11) into (10), we obtain the linear differential equation for f :

ft +

(
1− γ

γ
σXθ(x) + µX(x)

)⊤

fx +
1

2
tr[ΣXfxx]

+

(
1− γ

2γ2
∥θ(x)∥2 + 1− γ

γ
r(x)

)
f + 1 = 0 (12)

with the boundary condition f(T, x) = 1.
Now we conjecture that

f(t, x) =

∫ T

t

exp

(
α(u) + β(u)⊤x+

1

2
x⊤ζ(u)x

)
du

+ exp

(
α(t) + β(t)⊤x+

1

2
x⊤ζ(t)x

)
(13)

with the boundary conditions α(T ) = 0, β(T ) = 0, and ζ(T ) = 0, where ζ(t) is
a symmetric matrix. Substituting (13) into (12) and using µX(x) = κ − Mx,
θ(x) = x, and r(x) = r0 + r⊤1 x+ x⊤r2x/2, we obtain following ODEs:

ζ̇(t) = −ζ(t)Z2ζ(t)− ζ(t)Z1 − Z⊤
1 ζ(t)− Z0 (14)

β̇(t) = −ζ(t)B2β(t)− ζ(t)B11 −B12β(t)−B0 (15)

α̇(t) = −β(t)⊤A2β(t)− β(t)⊤A1 −
1

2
tr[ΣXζ(t)]−A0, (16)

where

Z2 = ΣX , Z1 =
1− γ

γ
σX −M, Z0 =

1− γ

γ

(
1

γ
IK + r2

)
B2 = Z2, B11 = κ, B12 = Z1, B0 =

1− γ

γ
r1

A2 =
1

2
Z2, A1 = B11, A0 =

1− γ

γ
r0.

Here In is a n-dimensional identity matrix. Note that if the solution to (14)
exists, then the solutions to (15) and (16) also exist, because these are usual
linear differential equations.

The ODE (14) is called the Riccati equation. If the solution to (14) exists
on [0, T ], then the candidate value function and optimal strategy are given by

G(t, w, x) =
w1−γ

1− γ
f(t, x)γ , (17)
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π∗(t) :=
1

γ
X(t) +

(σX)⊤fx(t,X(t))

f(t,X(t))
, (18)

c∗(t) :=
W ∗(t)

f(t,X(t))
, (19)

where W ∗ is the wealth process corresponding to (π∗, c∗),

f(t, x) =

∫ T

t

exp

(
α(u) + β(u)⊤x+

1

2
x⊤ζ(u)x

)
du

+ exp

(
α(t) + β(t)⊤x+

1

2
x⊤ζ(t)x

)
,

and ζ, β, and α are solutions to (14), (15), (16), respectively.
The first term of (18) is the usual mean-variance portfolio in a continuous-

time model. The second term is a so-called hedging portfolio, which is held by
investors in order to hedge against an unfavorable shift in the state variables.

In order to complete the whole story, we need to investigate the existence
of the solution to the Riccati equation (14) and verify that G = V and the
candidate optimal portfolio-consumption strategy (π∗, c∗) is indeed a solution
to (5). In the next section, we study the Riccati equation (14). A verification
theorem is given in Section 5.

4 The Riccati equation

In this section, we discuss the solution to the Riccati equation (14). The repre-
sentation of the solution to the Riccati equation is well known. Set

H :=

(
Z1 Z2

−Z0 −Z⊤
1

)
∈ R2K×2K ,

which is the so-called Hamiltonian matrix. Let (Q,P )⊤ be a solution of the
linear system of differential equations

d

dt

(
Q(t)
P (t)

)
= H

(
Q(t)
P (t)

)
, Q(T ) = IK , P (T ) = ζ(T )(= 0). (20)

Then
ζ(t) = P (t)Q−1(t)

is the solution to the Riccati equation (14) as long as Q−1(t) exists. Further, the
linear system (20) can be solved as follows. We assume that H is diagonalizable,
that is, there exists 2K-dimensional basis of eigenvectors v1, . . . , v2K . Suppose
that λ1, . . . , λ2K are the eigenvalues corresponding to v1, . . . , v2K , respectively.
Let V := (v1, . . . , v2K). Then the solution to the linear system (20) has the
form (

Q(t)
P (t)

)
= V e−∆(T−t)V −1

(
Q(T )
P (T )

)
= V e−∆(T−t)V −1

(
IK
0

)
, (21)
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where ∆ := diag(λ1, . . . , λ2K).
Since Q(T ) = IK , ζ(t) = P (t)Q−1(t) is a solution to the Riccati equation

(14) at least on a small neighborhood of T . However it is a delicate matter
whether ζ(t) = P (t)Q−1(t) is a global solution on [0, T ], that is, detQ(t) ̸= 0 on
[0, T ]. It is well known that if Z2 is positive definite and Z0 is negative definite,
then the solution to (14) exists globally on [0, T ], that is, detQ(t) ̸= 0 on [0, T ];
see, for example, Fleming and Rishel [9, Theorem 4.5.2] and Abou-Kandil et
al. [1, Theorem 4.1.6]. Hence, if γ > 1, then the solution to (14) exists globally.

Proposition 1. If γ > 1, then the solution to the Riccati equation (14) exists
on [0, T ].

On the other hand, if 0 < γ < 1, that is, Z0 is not negative definite, then
detQ(t) may be zero for some t ∈ [0, T ). The proof of global existence results
is rather complicated; see Abou-Kandil et al. [1, Chapter 3 and 4] for a general
discussion. In this paper, we will see how detQ(t) becomes zero in the following
example.

Example. Assume that

0 < γ < 1, σX =

(
σX
1 0
0 σX

2

)
, M =

(
m1 0
0 m2

)
, r2 = 0,

where σX
1 , σX

2 ,m1,m2 > 0 with σX
1 ̸= σX

2 and m1 ̸= m2. That is, we consider
two independent factor processes which follow the Ornstein-Uhlenbeck process.
Then

H =


1−γ
γ σX

1 −m1 0 (σX
1 )2 0

0 1−γ
γ σX

2 −m2 0 (σX
2 )2

−1−γ
γ2 0 −1−γ

γ σX
1 +m1 0

0 − 1−γ
γ2 0 − 1−γ

γ σX
2 +m2

 .

Eigenvalues of H are given by

λ1 =
√
d1, λ2 = −

√
d1, λ3 =

√
d2, λ4 = −

√
d2,

where

di =
γ − 1

γ
(σX

i )2 +
2mi(γ − 1)

γ
σX
i +m2

i , i = 1, 2

Eigenvectors vi = (vi1, . . . , vi4)
⊤ corresponding to λi (i = 1, . . . , 4) are given by

v1 =


1
0

− 1
(σX

1 )2
(k1 −

√
d1)

0

 , v2 =


1
0

− 1
(σX

1 )2
(k1 +

√
d1)

0

 ,

v3 =


0
1
0

− 1
(σX

2 )2
(k2 −

√
d2)

 , v4 =


0
1
0

− 1
(σX

2 )2
(k2 +

√
d2)

 ,
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where ki = (1 − γ)σX
i /γ − mi (i = 1, 2). Set V −1 = (v′1, . . . , v

′
4), where v′i =

(v′i1, . . . , v
′
i4)

⊤ (i = 1, . . . , 4). We then have

v′1 =


k1+

√
d1

2
√
d1

−k1+
√
d1

2
√
d1

0
0

 , v′2 =


0
0

k2+
√
d2

2
√
d2

−k2+
√
d2

2
√
d2

 .

It follows from (21) that

Q(t) =

(
q1(t) 0
0 q2(t)

)
,

where

q1(t) = v11v
′
11e

−
√
d1(T−t) + v21v

′
12e

√
d1(T−t),

q2(t) = v32v
′
23e

−
√
d2(T−t) + v42v

′
24e

√
d2(T−t).

We first assume that d1, d2 > 0. We then have ki < 0 (i = 1, 2). In fact, it
follows from 0 < γ < 1 and

di =

(
1− γ

γ
σX
i −mi

)2

+
γ − 1

γ2
(σX

i )2 > 0

that

ki =
1− γ

γ
σX
i −mi < −

√
1− γ

γ
σX
i < 0.

We then obtain

qi(t) =
ki +

√
di

2
√
di

e−
√
di(T−t) +

−ki +
√
di

2
√
di

e
√
di(T−t) > 0, i = 1, 2.

Therefore the condition d1, d2 > 0 is sufficient for detQ(t) ̸= 0 on [0, T ]. Note
that if γ > 1, then di > 0 and ki < 0 (i = 1, 2) always hold.

On the other hand, if di < 0 (i = 1, 2), then

qi(t) = cos
(√

−di(T − t)
)
− ki√

−di
sin

(√
−di(T − t)

)
.

Hence if, for i = 1 or 2,

0 < (T ∗
i :=)

1√
−di

tan−1

(√
−di
ki

)
< T,

then detQ(t) = 0 for some t ∈ [0, T ).
From the above discussion, we can see that if one of the following conditions

(i) d1 > 0 and d2 > 0
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(ii) d1 < 0, T < T ∗
1 , and d2 > 0

(iii) d1 > 0, d2 < 0, and T < T ∗
2

(iv) d1 < 0, d2 < 0, and T < min{T ∗
1 , T

∗
2 }

is satisfied, then detQ(t) ̸= 0 on [0, T ]. Further we can also see that when
0 < γ < 1 and ∥σX∥ and T are too large, then detQ(t) may be zero on [0, T ).

5 Verification theorem

The following lemma is crucial to the proof of the verification theorem. For a
stochastic process g, define

E(t, g) := exp

{∫ t

0

g(u)⊤dB(u)− 1

2

∫ t

0

∥g(u)∥2du
}
.

Lemma 2. Let g(t) := g̃(t,X(t)), where g̃ : [0, T ] × RK → RK satisfies the
linear growth condition 1. Then

E [E(T, g)] = 1.

Proof. Given the process (1) of X, the result is derived as in Bensoussan [2,
Lemma 4.1.1] or Liptser and Shiryaev [12, Section 6.2].

5.1 Case 0 < γ < 1

In this case, we define the set of admissible portfolio-consumption strategies Aγ

by
Aγ := H.

Theorem 3. Assume that the solution to (14) exists on [0, T ]. Then the func-
tion G defined by (17) satisfies G = V . Further, (π∗, c∗), defined by (18) and
(19), is an optimal portfolio-consumption strategy.

Proof. We first show that (π∗, c∗) is admissible. We have

dW ∗(t) = W ∗(t)
[
π∗(t)⊤θ(X(t)) + r(X(t))

]
dt+W ∗(t)π∗(t)⊤dB(t)− c∗(t)dt

= W ∗(t)

[
π∗(t)⊤θ(X(t)) + r(X(t))− 1

f(X(t))

]
dt+W ∗(t)π∗(t)⊤dB(t),

where f is given by (13) and W ∗ is the wealth process corresponding to (π∗, c∗).
It then follows that

W ∗(t) = w0 exp

{∫ t

0

(
π∗(u)⊤θ(X(u)) + r(X(u))− 1

f(X(u))
− 1

2
∥π∗(u)∥2

)
du

+

∫ t

0

π∗(u)⊤dB(u)

}
> 0,

1A function h : [0, T ]×RK → RK is said to satisfy the linear growth condition if ∥h(t, x)∥ ≤
k(1 + ∥x∥) for some k > 0.
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which implies that (π∗, c∗) ∈ Aγ(0, T ).
Let (t, w, x) ∈ [0, T ]× [0,∞)× R be fixed. We define the value process

gπ,c(s) :=

∫ s

t

c(u)1−γ

1− γ
du+G(s,W (s), X(s)), s ∈ [t, T ]. (22)

Using Itô’s formula, we obtain

dgπ,c(s) =

[
c(s)1−γ

1− γ
+Dπ,cG (s,W (s), X(s))

]
ds+ gπ,c(s)hπ,c(s)⊤dB(s),

(23)

where

hπ,c(s) :=

[
(1− γ)π(s) + γ

(σX)⊤fx(s,X(s))

f(s,X(s))

]
G(s,W (s), X(s))

gπ,c(s)

for all s ∈ [t, T ] and (π, c) ∈ Aγ(t, T ). Since G is the solution to the HJB
equation (7) and (π∗, c∗) is the maximizer in (7), it follows that

g∗(s′) = g∗(s)
E(s′, h∗)

E(s, h∗)
(24)

for all s, s′ ∈ [t, T ] with s′ ≥ s, where g∗ := gπ
∗,c∗ and h∗ := hπ∗,c∗ . Here it is

easy to see that ∥∥∥∥fx(s, x)f(s, x)

∥∥∥∥ ≤ k(1 + ∥x∥) (25)

for some k > 0 and ∣∣∣∣G(s,Ws, Xs)

gπ,c(s)

∣∣∣∣ ≤ 1 (26)

for all s ∈ [0, T ] and (π, c) ∈ Aγ(0, T ). From (18), (25), (26), and Lemma 2,
{E(s, h∗)}s∈[t,T ] is a martingale. Hence, from (24), we have

Et,w,x

[∫ T

t

c∗(u)1−γ

1− γ
du+

W ∗(T )
1−γ

1− γ

]
= Et,w,x[g∗(T )]

= Et,w,x

[
g∗(t)

E(T, h∗)

E(t, h∗)

]
= G(t, w, x).

(27)

On the other hand, it follows from the HJB equation (7) and (23) that

gπ,c(s) ≤ gπ,c(t) +

∫ s

t

gπ,c(u)hπ,c(u)⊤dB(u) (28)

for all (π, c) ∈ Aγ(t, T ) and s ∈ [t, T ]. Set

Φ(s) :=

∫ s

t

∥gπ,c(u)hπ,c(u)∥2 du (29)
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and τn := T ∧ inf{s ∈ [t, T ] | Φ(s) ≥ n}, n ∈ N. It follows from E[Φ(s)] < n
for s ∈ [t, τn] that the stochastic integral in (28) is a martingale for s ∈ [t, τn].
Thus

Et,w,x[gπ,c(τn)] ≤ Et,w,x[gπ,c(t)] + Et,w,x

[∫ τn

t

gπ,c(u)hπ,c(u)⊤dB(u)

]
= G(t, w, x).

From limn→∞ τn = T a.s., gπ,c(t) ≥ 0, and Fatou’s lemma, we have

Et,w,x

[∫ T

t

c(u)1−γ

1− γ
du+

W (T )
1−γ

1− γ

]
= Et,w,x[gπ,c(T )]

≤ lim inf
n→∞

Et,w,x[gπ,c(τn)]

≤ G(t, w, x)

(30)

for all (π, c) ∈ Aγ(t, T ).
Combining (27) and (30), we see that G = V and (π∗, c∗) is an optimal

strategy.

5.2 Case γ > 1

In this case, since a power-utility function is unbounded from below, so is the
(candidate) value process gπ,c defined by (22). Therefore, we cannot use Fatou’s
lemma in proving the inequality (30). To prove (30), we will restrict the set of
admissible portfolio-consumption strategies as follows:

Aγ(t0, t1) :=

(π, c) ∈ H(t0, t1)

∣∣∣∣∣∣∣
for some function π̃ : [t0, t1]× R → R
satisfying the linear growth condition,

π(t) = π̃(t,X(t)).

 .

Under this definition, we can show the following result. Recall that when γ > 1,
the solution to (14) always exists.

Theorem 4. G = V and (π∗, c∗) is an optimal portfolio-consumption strategy,
where G and (π∗, c∗) are given by (17), (18) and (19), respectively.

Proof. It follows from (25) that π∗ satisfies the linear growth condition with re-
spect to X(t). This implies (π∗, c∗) ∈ Aγ(0, T ). We can show the equation (27)
in the same way as in the proof of Theorem 3. We will show the inequality (30).
By (28), we have

gπ,c(T ) ≤ gπ,c(t)
E(T, hπ,c)

E(t, hπ,c)
(31)

for all (π, c) ∈ Aγ(t, T ). It follows from the definition of Aγ and Lemma 2,
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{E(s, hπ,c)}s∈[t,T ] is a martingale for all (π, c) ∈ Aγ(t, T ). Hence

Et,w,x

[∫ T

t

c(u)1−γ

1− γ
du+

W (T )1−γ

1− γ

]
= Et,w,x[gπ,c(T )]

≤ Et,w,x

[
gπ,c(t)

E(T, hπ,c)

E(t, hπ,c)

]
= G(t, w, x)

for all (π, c) ∈ Aγ(t, T ), which completes the proof.

From the above proof, we can see that one general definition of admissibility
is that

(π, c) ∈ H(t0, t1) and {E(t, hπ,c)} is a martingale.

Wachter [18] restricted market parameters instead of the set of admissible strate-
gies to prove a verification result.

One may think that the choice of our admissible set of portfolio-consumption
strategies is too restrictive. As long as the stochastic integral in a wealth process
is well defined and the doubling strategy is excluded, there is no trivial reason
to restrict investor’s possible choice set. In our model, the wealth process is
assumed to be nonnegative, then the doubling strategy is excluded. Given the
price processes, an investor may choose the portfolio strategy (π, c) /∈ Aγ if he
is better off. However, from the mathematical viewpoint, additional restrictions
to the set of admissible strategies or market parameters seem to be essential
although it is hard to motivate economically.

6 Conclusion

In this paper, we have considered a dynamic portfolio-consumption problem
when the market price of risk is driven by linear Gaussian processes. We have
basically shown that if the Riccati equation related to the HJB equation has
a global solution, the conjectured explicit solution is in fact a solution to the
original problem. We however find that the definition of admissible portfolio
strategies should be carefully chosen. If the investor is more risk seeking than
log-utility investors and the solution to the related Riccati equation exists, then
the conjectured optimal strategy is in fact optimal. However, the solution to the
Riccati equation may not exist globally for some parameter combinations. On
the other hand, if the investor is more risk averse than log-utility investors, then
the solution to the Riccati equation always exists. However, the conjectured
optimal strategy is verified when portfolio-consumption strategies are chosen
from a rather restricted set of stochastic processes.

One limitation of our analysis is the assumption of a complete market. In
the case of an incomplete market model, the partial differential equation (PDE)
corresponding to (12) becomes essentially a nonlinear equation. It seems to be
impossible to obtain an explicit solution to such a nonlinear PDE. Hence we have

13



to show the existence of the solution f to the nonlinear PDE and calculate fx
using another method. However, if we do not consider utility from intermediate
consumption, the associated HJB equation can be reduced to a linear PDE as
(12); see Zariphopoulou [19]. In such a case, an explicit solution can be expected
and hence our analysis will be applied in almost the same way.
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