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1. Introduction

The purpose of this paper is to prove the existence of Walras equilibrium in an
economy with satiable consumers under a set of weaker assumptions. We consider
a bounded model of exchange economy where consumers’ preferences are
non-ordered. In the classical theory of general equilibrium, in proving the



existence of Walras equilibrium, the first step is to prove the existence of
quasi-equilibrium and the second step is to show that any quasi-equilibrium is an
equilibrium under a certain assumption. That is a well-known procedure which
was established by McKenzie (1959) and Debreu (1962). The so-called
irreducibility is a famous condition under which any quasi-equilibrium is an
equilibrium. In this paper we define the irreducibility in a general formulation for
economies with satiable consumers. Following the classical procedure, first we
shall prove a basic theorem on the existence of dividend quasi-equilibrium in a very
general setting, and next based on the theorem we shall show that a dividend
equilibrium exists. The dividend equilibrium, which originates in the concept of
‘coupons equilibrium’ in Dreze &Miuller (1980), was defined by Aumann=Dreze
(1986). Furthermore, in order to prove the existence of Walras equilibrium, we
shall present two types of non-satiation assumption and show that under each of
them any dividend equilibrium is (or, can be viewed as) a Walras equilibrium.
Our existence theorems of Walras equilibrium are more general in two points than
those in the existing literatures such as Allouch & Le Van (2009), Sato (2010a), and
Won & Yannelis (2011). First, we do not assume that the initial endowment of
every consumer belongs to the interior of his consumption set. We shall show that
only the irreducibility is required even in the case that there are some satiable
consumers. Second, our assumptions of non-satiation are weaker and admit that
satiation may occur unexceptionally in feasible allocations.

Finally, we will discuss a relation between irreducibility and non-satiation
assumptions. We propose a new concept of irreducibility that we will refer to as
“generalized irreducibility”, and show that it implies both irreducibility and our
non-satiation assumptions. One of our conclusions is that the relaxation of
non-satiation assumptions can be viewed as the generalization of irreducibility
conditions.

This paper is formalized as follows. In section 2, we present a model of
exchange economy in which there are satiable consumers and state the basic
assumptions. In section 3, we prove an existence theorem of dividend
quasi-equilibrium under a very general setting. In section 4, we define the
irreducibility condition for an economy with possibly satiable consumers and prove

1 Unbounded economies have been studied in many papers. For example, see Sato (2010b) which

includes a recent good survey on those studies.



the existence of dividend equilibrium in the irreducible economy. In section 5, the
existence of Walras equilibrium is proved under two types of non-satiation
assumptions. In section 6, some remarks will be made to compare our result with
former papers and two examples of exchange economies will be given to show the
generality of our results.  All the proofs of lemmas are given in Appendix.

2. Model

We consider an exchange economy with L commodities and N consumers. The set
of consumers is denoted by 7={l---,N}. The commodity space is an

L-dimensional Euclidean space R“. The consumption set of each consumer ie/

is denoted by X, = R* and the initial endowmentisby e € X,.

An allocation is an N-tuple of vectors, X=(x;,---,x,), where x, €X, is an
amount of commaodities allotted to consumer i< /. Anallocation x=(x,---,x,)

N N
e X, x---x X, s said to be feasible if in:Zei. The set of all feasible

i=1 i=1

allocations is denoted by A, i.e.,
N

N
A={x=(x,,x,)eX, xxX, | inzz e, ;.
i=1

i=1

Since e € X, for each iel, set A is non-empty. The preference of each

consumer iel isdenoted by amappingby P:X, —2%. %

Throughout this paper, for each consumer i e/, we assume the following:

(A.1) X, isanon-empty, closed, and convex subset of R".

1

2 Itis known that by defining mapping p onset x, x...x X, instead of X, with no mathematical

difficulty, we can include cases where consumers’ preferences depend on each other.



(A2) P:X,—2"% is lower hemi-continuous, i.e., if 1° e P(x") and a sequence
{x"} converges to x°, then there is a sequence {y"} converging to y° such that

y" € P(x") for all n sufficiently large.

(A.3) Forevery x,eX,, P(x,) isconvexand x, P(x,).¥

In addition, we assume the boundedness of the economy:

(A.4) The set A is bounded, i.e., there is a number b >0 such that for any

X=(x,xy)eA, ||x|<b forall iel.

A dividend vector is a non-negative vector, d =(d,,---,d,) € R", where d; is an

extra income given to consumer ie /.
Definition 1. A dividend quasi-equilibrium is a triplet {f(,fy,c?} of a feasible
allocation X =(%,,---,x,) €A, a price vector peR" with p=0, and a dividend
vector d =(d,,---,d,) €R”" suchthatforeach iel
(1) p-i<pe+d,
(2 p-y.=p-e+d foral y eP(%).

A dividend equilibrium is a dividend quasi-equilibrium {X, p,d} such that, instead

of condition (2), p-y,> p-e,+d, forall y, eP(%).

3 It is well known that this assumption can be slightly weaken as follows: For every x X,

x, co P(x,). Here, foranysetX —R*, co X denotes the convex hull of set X.



In the original definition of quasi-equilibrium due to Debreu (1962), instead of (2) of
Definition 1, the following condition is required:

N
A

p-y,>p-e+d forany y eP(%) andlor p-% =p-e+d =infp-X,.

l

For example, when Pi(x;) is open in X; for any x, € X, foreach ie I, we can easily
show that Debreu’s condition is equivalent to (2) in Definition 1, and therefore a

dividend  quasi-equilibrium {)“(,;3,51} is a dividend equilibrium if
pre+d >infp-X forall iel.

Definition 2. A Walras equilibrium (resp. quasi-equilibrium) is a pair {X, p} of a

dividend equilibrium (resp. quasi-equilibrium) {)?,;3,&} suchthat d =0.

For each x=(x,,---,x,) € A, we define two sets of consumers as follows:
IPX)={iel|P(x)=¢} and I"™(x):=1\I°(X).

To exclude trivial cases in which every consumer is simultaneously satiated and a
dividend equilibrium always exists, we assume the following condition which is the
weakest non-satiation assumption.

(A5) Forany xeA, I¥(X)=¢.

I™(X)=¢ for some X=(%,,%X,)eA. For any price

In fact, assume that
vector peR" with p =0, choose a large dividend vector d = (d ,---,&N) eR"

so that p-% <p-e +d, for all iel. Then, since P(%)=¢ for all iel,

{%, p,d} is adividend equilibrium.



3. Existence of dividend quasi-equilibrium

First, let us modify consumers’ preference relations. For each ie/l and each

x, €X,, we define a convex cone K,(x;) by
K (x)={A(y,—x,) |y, €P,(x,),A>0}.
Set K, (x,) indicates the desirable directions from x, €X, for consumer iel.

Moreover, for each ie/, aset X, and a mapping P : X, — 2% are defined in the

following way:

)?i ={x, eX: |l x, I<b+1}.

P(x)={z, +x |z, e K,(x)}n X, foreach x, € X,.
Consider the modified economy in which the consumption set and the preference

relation of each consumer i</ are replaced by X, and P:X, — 2% . We should

1 1

note that for each i e 7, set X, isboundedand P(x,) isconvex foreach x, € X,.

Now, we can prove the following lemma.

Lemma 3.1. Any dividend quasi-equilibrium for the modified economy is a dividend

quasi-equilibrium for the original economy.

By virtue of Lemma 3.1, to prove the existence of a dividend quasi-equilibrium, it
suffices only to prove the existence of a dividend quasi-equilibrium for the modified

economy. In addition, it is easy to show that mapping P. has the same properties as
mapping P, has, that is, it is lower hemi-continuous, convex-valued, and x, ¢ P(x;)
for every xe X,. Thus, in what follows, we shall identify X, with X, and

1

P:X, 2% with P: X, —»2%,



The following theorem on the existence of dividend quasi-equilibrium is a basic and
key theorem for our argument.

Theorem 1. Under assumptions (A.1)—(A.5), there exists a dividend

quasi-equilibrium. ~ More precisely, there exists a dividend quasi-equilibrium

{X, p,d} suchthat p-x,=p-e +d, forall iel™(X) and d,=---=d,.

Now, let us confine prices to the closed unit ball, B={peR" ||| p|<3. For

each ie/, define a mapping B :B —2% by:

ﬂi(p) ::{yi €X, |p'yi <p'ei+1_”p”} for each pEB.A/

Moreover, for each i e I, define a mapping F,:Bx X, — 2" by:

{yieXi|p'yi<p'xi} Whenp'xi>p'ei+1_”p”

F[(p,xi) = |:ﬂ, (p) A R(xi) otherwise

for each (p,x;)eBx.X,. This mapping is a modification of the mapping originally

constructed by Gale=Mas-Colell (1975). The modification is slight, but crucial since

we do not assume that e, eint X, for each iel?® The mapping can be applied to

cases where consumers’ budget sets do not always have interior.

Lemma 3.2. For each iel, mapping F,:BxX, —2% is convex-valued and

lower hemi-continuous.

We shall follow the usual process to apply the fixed-point theorem that was

4 The technique of adding extra income 1—||p|| to consumers is due to Bergstrom (1976) and is used
by Shafer (1976) , Mas-Colell (1992), and Kajii (1996).

5 ForanysetX — R’ int.X denotes the interior of set Xin R*.



innovated by Gale=Mas-Colell (1975). Let us define a mapping F, :BxR" — 2°
by:
Fy(p.z)={qeB|q-z>p-z} foreach (p,z)eBxR"Y?

Obviously, mapping Fy is convex-valued and lower hemi-continuous.
Now, by using mappings Fo, F1, ** -, Fy, we can define a convex-valued and lower

hemi-continuous mapping F:Bx X, x---x X, > Bx X, x---x X, by:

F(p.x,-xy) = Fy(p, ) x, = Y e)x F(p.x)x---x Fy(p,xy)

iel iel

for each (p,x,,---,xy)eBx X, x---xX,. Thus, by Gale=Mas-Colell’s fixed point

theorem (see Appendix), there is a point (p, X,,-++, X, ) € Bx X, x---x X, such that

either FO(l;’Z)’ei_zei):¢ or ﬁeﬂ(ﬁizii_zez)

iel iel iel iel
and

either F/(p,x,)=¢ or x, e F(p,x,) foreach iel.

From definition of Fo, Fi, ---, Fy, it follows that p ¢ Fy(p,Y %, — > e) and

iel iel
x, & F(p,x;) foreach iel. Thus, it follows that

F(p,Y).%-Y.e)=¢ and F(p,%)=¢ foreach iel.

iel iel

Since F,(p,x,)=¢ foreach ie I, itfollows from the definition of F; that
p-x,<p-e+1-|pll and B(p)NP(x,)=¢ foreach iel. (3.2)

Furthermore, suppose that D X, # > e,. Since Fy(p, ) X, — Y e) =4, by the

iel iel iel iel

6  This mapping is first used by Shafer (1976) in a case where preference relations are not necessarily

transitive. Mas-Colell (1992) also applied the mapping to a case with possibly satiated consumers.



definition of Fo, ¢-(O % -Y e)< p-O %, -D e)for any geB. Therefore,

iel iel iel iel

| pll=1 and p-(O % - e)>0. Thus, (3.1) implies that p-% < p-e for each

iel iel

iel, and that p-(D_% - ¢)<0, which is a contradiction. Hence, we can

iel iel

conclude that > X, =>e;.

el il
Suppose that |p|=0. Then, B(p)=2X, forall iel, and, by (3.1), P(%)=¢
forall i</, which contradicts assumption (A.5). Thus, |p]#0.
Now, let c?l = :aAIN =1-| p||. Then, by (3.1), foreach ie[,
pX<p-e+d and p-y, >p-e+d forall y eP(%). (3.2)

Thus, if we let X=(x,,---,x,) and d= (c?l,---,a?N), we have shown that {X, p,d} is
a dividend quasi-equilibrium.

Finally, since we identify P; with P, for ieI™(X) there is a point y e P(%,)

which is arbitrarily close to x,. Therefore, (3.2) implies that p-x, :ﬁ-ei+dA,..

This completes the proof of Theorem 1.

4. Equilibrium and quasi-equilibrium

A well-known sufficient condition under which any quasi-equilibrium is an equilibrium
is the irreducibility assumption that originates with McKenzie (1956). In case of
economies with possibly satiated consumers, the irreducibility can be defined as
follows:

Irreducibility. Let x=(x,,---,x,) e Aand {1, L} be a partition of 7"°(x) such

that both /; and I, are non-empty. Then there is an allocation y=(y,,---,yy)



e X, x---x X, such that the following conditions hold:

(I) Z(.yi _ei) +Z(yi _xi) =0.

iel; iel,

(if) y, € P(x,) foreach iel,.

The meaning of Irreducibility is that the initial endowment of any group of
non-satiated consumers is desired by other non-satiated consumers. Obviously, when
I°(x) = ¢, the above condition is equivalent to the original irreducibility condition for
economies where consumers are never satiated.

A weaker condition of irreducibility was considered by Bergstrom (1976). The
condition can be defined for economies with possibly satiated consumers in the
following fashion:”

(AB) Let x=(x,,x,)eA and jel™(x). If I(X)\{j}=¢, then there
exist an allocation y = (y,,---,vy) € X, x---x X, and a scalar 8 >0 such that

() 0(yj_ej)+ Z(xi_ei)+ Z(yi_ei)zoand

iel® (x) iel™ (x)\{,/}

(i) y, e P(x;) foreach ieI™(x)\{;}.

Evidently, when I°(x)=¢, the above condition is equivalent to the condition of
Bergstrom (1976). Moreover, we can prove the following lemma.

Lemma 4.1. Irreducibility implies assumption (A.6).

In order to prove that any quasi-equilibrium is an equilibrium, we need the following
assumptions:

7 In Bergstrom (1976), the irreducibility condition is assumed only on individually rational
allocations in which no consumers are worse off than in their initial endowments. Since in a
quasi-equilibrium some consumers might be worse off than in their endowments, we need to

include all feasible allocations in defining irreducibility.

10



(A7) Foreach iel, P(x,) isopeninX,forevery x, eX,?

(A.8) Forany xeA, Y e eint > X,

iel™ (x) iel™ (x)

Condition (A.8) is weaker than the assumption that e, eint.X, for all ie/. For

example, if there is at least one consumer who is never satiated and if his initial
endowment belongs to the interior of his consumption set, then the condition holds.

The following is a fundamental lemma due to Debreu (1962), which is derived from
the irreducibility condition.

Lemma 4.2. Under assumptions (4.6) and (A.7), for any dividend quasi-equilibrium
{)A(,f),c;’}, if p-e>infp-X. occurs for some ielI™(X), then it occurs for every
iel™(X).

Now, let {X, p,d} be a dividend quasi-equilibrium. From (A.8), it follows that
p-e >inf p- X, occurs for some ie ™ (X), and by Lemma 4.2, it occurs for all
ieI™(X). Therefore, p-é +d >inf p-X, for all ieI™(X), and by (A7) we

can show that {i,ﬁ,ci} is a dividend equilibrium. Thus, we have the following

theorem.

Theorem 2. Under assumptions (A.6), (A.7), and (A.8), any dividend

quasi-equilibrium is a dividend equilibrium.

By Theorems 1 and 2 we have the following corollary.

8 As Bergstrom (1976) and Won & Yannelis (2011) showed, this assumption can be weaken in the
following way: If y epP(x,) and z e.x,, then there exists a number 6>0 such that

(l_a)yi +921 EPi(xi)'

11



Corollary 1. Under assumptions (A.1)-(4.8), there exists a dividend equilibrium.

More precisely, there exists a dividend equilibrium {X, ﬁdA} such that

pi=pe+d forall iel™X) and d,=-=d,.

5. Existence of Walras equilibrium

In order prove the existence of Walras equilibrium, we need an additional
assumption which relates satiated and non-satiated consumers. Won and Yannelis
(2011) assumed the following condition.

(W-Y) Forany xeA, x,—¢ ecl[ > (P(x,)-{x;D] forall iel®(x).

jel™ (x)

For x e A, we define a convex cone by
K(x)= Y K,(x).

iel™ (x)

The above condition is slightly generalized in the following fashion.
(R.0) Forany xeA, x,—e ccl K(x) forall iel®(X).

Obviously, (W-Y) implies (R.0), since (P(x;)—{x}) <K, ,(x;). Set K(x)
indicates the desirable directions for the non-satiated consumers in allocation
xe A. Therefore, condition (R.0) means that in any allocation the direction of
satiation point from initial endowment for any satiated consumer is one of the
directions which are desirable for the non-satiated consumers.

In what follows, we shall consider two types of non-satiation condition which are
weaker than condition (R.0). First we consider the following condition, which is
immediately implied by (R.0).

(R1) Forany xeA, > (x—e¢)ecl K(x).

iel®(x)

12



Now, let {X, p,d} be a dividend equilibrium such that DX, =p-e +c§,. for all
iel™(X) and d,=---=d,. From the definition of dividend equilibrium, it follows
that, for each ieI™(X), p-y,>p-e +d =p-% for any y, e P(%). Therefore,

p-z>0 forany zeK,(x,). Hence, by the definition of K(X), p-z>0 for any

zecl K(X). Thus,by (R.1), p- D (X —¢)=0.

iel’ (x)

Since D (% -¢)=0 , it follows that p- > (X -¢)<0 . Since

iel iel™ (x)

;3~(£[—e[)=c?[20 for all ie 1™ (X), we conclude that ﬁ-(ii—e[)zc?[:o for all

ieI™(X),andthat d, =0 forall ieI. Therefore, {X p} isa Walras equilibrium.

Thus, by virtue of Corollary 1 we have proved the following theorem.

Theorem 3. Under assumptions (A.1)-(A.8) and (R.1), there exists a Walras

equilibrium {X, p} suchthat p-x,=p-e, forall iel.

It should be noted that the existence of a dividend equilibrium with equal dividends
is essential in proving Theorem 3.

Next, we assume another weaker form of non-satiation. For x e A, we define the
following sets:

L(x)={A(z+x,—¢)|zeK,(x,),A>0} foreach ie I (x).

L(x)={A(x, —¢)| A >0)} foreach iel’(x).

(R2) Forany xeA,if Ogint > L(x,),then Ogint) L(x,).

iel™ (x) iel

For consumer ieI™(x), set L(x) indicates the desirable directions from initial
endowment ¢;. Therefore, condition (R.2) means that in any allocation the desirable

13



directions for the satiated consumers are roughly desirable for the non-satiated
consumers in that the desirable directions for both satiated and non-satiated consumers
are contained in a common half space of R”.

Lemmab5.1. Condition (R.0) implies condition (R.2).

Now, let {X, p,d} be a dividend equilibrium such that p-% = p-e +d. for all
ieI™(X). From the definition of dividend equilibrium, it follows that for each
iel™X), p-y.>p-X,=p-e +c;’,. forany y, e P(x;). Therefore,

p-(y,—x)>0 and p-(x,—e¢)>0 forany y, e P(x,),
ie, p-Ay,—-x)+p-(x,—e)>0 forany y,eP(x,) and A>0,
ie., p(z;+x —e)>0 forany z eK,(x,).

This implies that for eachie I™(X), p-w, >0 for any w, eL (%), and that

Ogint > L(%).

iel™ (%)
Under assumption (R.2), by Minkowski’s separation theorem we have a vector

peR” with p#0 suchthat p-z>0 forall ze» L(%). Namely,

iel

P DAz +%—e)+p D A(X—e)=0

ieI™ (%) iel (%)

forany z €K (x) and A, >0. Hence, foreach ie/™(X), p-(x,—¢)>0 and

p-(vy—¢)=0 for any y eP(x) . Moreover, for each iel®(X) ,

p-(%—e¢)20. Since Y (X -¢)=0, p-(x,—¢)=0 for all iel. Thus, we

iel
conclude that {X, p} is a Walras equilibrium such that p-x,=p-e, forall iel.

Thus, we have proved the following theorem.

14



Theorem 4. Let {X, p, c?} be a dividend equilibrium such that p-Xx, = p-e, + aAVl. for
all ieI™(X). Then, under assumption (R.2), for some non-zero vector peR",

{X, p} is a Walras equilibrium such that p-x, = p-e, forall iel.

By Corollary 1 and Theorem 4 we have the following corollary.

Corollary 2. Under assumptions (A.1)-(A.8) and (R.2), there exists a Walras

equilibrium {X, p} suchthat p-x,=p-e forall iel.

While the irreducibility condition is a relation among non-satiated consumers, each
of conditions (R.0)-(R.2) describes a relation between satiated consumers and
non-satiated consumers. However, we can combine conditions (R.0) — (R.2) to the
irreducibility condition in the following way, which we call Generalized Irreducibility.

Generalized Irreducibility. Let x=(x,-,xy)eA and jel . If
]NS

(x)\{j}= ¢, then there exist an allocation y=(y,,---,yy) € X;x---x X, and a

scalar 8 with 0 < 8 < 1 such that

) 0, —e)* D (n-e)+ Y (y-¢)=0,
iels OV} iel™ ()}

(i)  y, eP(x) foreach iel™()\{},

(iiiy  y,=x, when jel’(x).

We have the following lemma.
Lemmab5.2. Generalized Irreducibility implies conditions (A.6) and (R.0).

Thus, by this lemma and Theorem 3 (or Corollary 2), we have the following
corollary.

15



Corollary 3.  Under assumptions (A.1)-(A.5), (A.7), (A.8), and Generalized
Irreducibility, there exists a Walras equilibrium {X, p} such thatp-x, = p-e, for all

iel.

6. Concluding Remarks and Examples

As for the existence of dividend quasi-equilibrium, Theorem 1 is more general than
the result by Allouch & Le Van (2008), (2009, Prop.1, p. 321) since we consider
economies with consumers whose preferences are non-ordered. As for the existence
of dividend equilibrium, Corollary 1 is more general than the results by Mas-Colell
(1992, Thm.1, p.205) and Kajii (1996, Prop.1, p.79) & Le Van (2009, Prop.1, p. 321)
since we consider irreducible economies in which consumers have not always positive
incomes.

As for the existence of Walras quasi-equilibrium, Theorem 3 and Corollary 2 are
neither a special case nor a general case of the results by Allouch & Le Van (2009,
Thm.2, p. 323) or by Sato (2010, Thm.2, p541, Thm.3, p.543). While our assumption
on consumers’ preferences is weaker than their assumptions in the sense that
consumers’ preferences are non-ordered, the assumptions of non-satiation are quite
different and cannot be compared directly with each other. However, our assumption
admits that satiation generally occurs in the set of feasible allocations, and our theorem
applies to a broader set of economies. In fact, the example of an economy by Sato
(2010, Eg.1, p.537) satisfies our assumptions.

In comparison with the result by Won & Yannelis (2011, Thm.4.1, p.249) in which
economies with non-ordered preferences are considered, our results are an extension of
their result, since we use the assumptions of irreducibility and a weaker assumption of
non-satiation. In what follows, we shall show two examples of exchange economy
that satisfies weaker assumption of non-satiation than theirs.

In order to show that conditions (R.1) and (R.2) are different, first we shall show that
the following example satisfies condition (R.2), but does not satisfy (R.1).

Example 1. The economy consists of two kinds of commodities and two consumers,
i.e., L=2 and /={1, 2}. The utility function U; and the initial endowment e; of
consumer i are as follows:

Consumer 1. Ui(c1, c2)=min {c1, c2}, e1=(3,1)

16



Consumer 2:  Us(c1, c2)=— (¢, —2)* —(c, - 2)*,  ex=(1, 3).

Let {X, p, d} be a triplet which is defined by
=22, %,=(22), p=@1-51),and d=(5,0).

Then, {X, p, a?} is a dividend equilibrium when 0<¢6<1. In particular, when

o0 =0, it is a Walras equilibrium that is unique.

In allocation X of Example 1, consumer 2 is satiated, i.e., /™ (X)={1} and
I°(X) ={2}. We can easily show the following:
K, (%) ={(c;,¢,)| ¢, >0,¢, >0}, and x,—e,=(1, -1 gcl K (x,).
Therefore, condition (R.1) is not met.  On the other hand, we can show the following:
L(x)={(c;, ;) le; +¢, >0,¢, >0}, Ly (x,) ={(c;, ;) | ¢, > 0, ¢, +¢, =0},
Li(x%,) + Ly (x,) ={(c1, ¢;) | e, + ¢, > O}, and 0 g int [L, (x,) + L, (x,)] -
Therefore, condition (R.2) is met. In any other allocation, no consumers are satiated,
and condition (R.2) is automatically satisfied.
In the following second example, condition (R.1) is satisfied, but neither condition
(R.0) nor (R.2) are met.

Example 2.  Add one more consumer, ‘consumer 3’, to the economy of Example 1.
The utility function Us and the initial endowment e3 of consumer 3 are as follows:
Consumer 3:  Us(ct, c2)=— (¢, —2)* —(c, - 2)*,  es=(1, 1).
Let {X, p} be a pair which is defined by
»=022), x,=(2,2, x,=@11),and p=(11).
Then, {X, p} is a Walras equilibrium that is unique.

To show that the economy of Example 2 satisfies condition (R.1), we need to verify
that condition (R.1) is met for all feasible allocation of the economy.

(Case 1) Let x=(x,, x,, x;) be any feasible allocation such that 7°(x) ={2}, i.e.,

xo=(x, X)), X, =(2,2), and x5 =(xy, x5,) #(2,2) , where x,+x; =3 and
X, + %, =3. Allocation X of the Walras equilibrium {X, p} in Example 2 is a
special case of such allocation x. When x;; <x,,, it follows that

K, (x)) ={(c;, ¢,) | ¢, >0}, and that x, —e, = (1, —1) € K, (x;).
In case of x;; >x,,,since (2, 2)—-x; =(x,; -1 x;, —1), it follows that
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K, (x;) ={(c;, ¢;) | ¢, (xyy 1) + ¢, (x,, —1) > O}, and that x, —e, € Cl K;(x;).
Thus, x, —e, ecl[K,(x;)+ K;(x;)], and therefore condition (R.1) is met.

(Case 2) Let x=(x, x,, x;) be any feasible allocation such that 7°(x) ={3}, i.e.,

X = (X, Xp) s X, =(xy, X)) #(2,2), and x,=(2,2), where x,+x, =3 and
X, +X,=3. Since x;—-e,=(1), it follows that x;-e, € K,(x;) . Thus,
x; —e; € cl [K,(x,) + K, (x,)], and condition (R.1) is met in this case, too.

(Case 3) Let X=(¥,Xx,,x;) be an allocation such that 7°(X)={2,3}, ie,

=011, x,=(2,2), and x,=(2,2). Since K, (x,)={(¢;,¢,)|¢c;>0,¢c, >0}, it
follows that (x,-e,)+(x;—e;)=(2,0)eclK,(x;) . Thus, in allocation X ,
condition (R.1) is met.

Hence, it has been shown that the economy of Example 2 satisfies condition (R.1).
However, in allocation X, x, —e, = (1, —1) ¢ cl K,(x,), which implies that Example 2
does not satisfy condition (R.0). Furthermore, we have the following.

L(%) ={(c,. ¢;) | ¢, > O},

X—e=0-1),and L,(x,) ={(c;, ¢;) |, + ¢, =0, ¢, > O},

X —es=@01),and Ly(x;) ={(c;, ;) [ e, =, > O}
Therefore, O¢int L(x;) and Oeint[L(x,)+ L,(x,)+ L(x;)]. Thus, in allocation X,
condition (R.2) is not met. This implies that Example 2 does not satisfy condition
(R.2).

Appendix

The fixed point theorem [Gale=Mas-Colell (1975, 1979)]. If for each

i=1--- M X, is a non-empty convex compact subset of R* and

1

F: X, x---xX,, —=2% is a convex-valued and lower hemi-continuous mapping,

1

then there exists a point (x;,~:-,x,,) €X,x---xX, such that either

x eF(x,-,x,) or F(x,-,x,)=¢ foreach i=1---,M .
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Proof of Lemma 3.1. Let {X, p, c?} be a dividend quasi-equilibrium for the modified

economy. Namely, the triplet {)?,ﬁ,c?} satisfies all the conditions of Definition 1

when each P is replaced by P . Since X=(%,--,xy)€A, by (A4) we have

| X, I<b . By constructionof P, P(x,)=¢ ifandonlyif P(%)=4.
Now, suppose that ﬁ-yo<ﬁ-el.+c}i for some y°eP(x,). Then, for all

sufficiently small >0, A(»°-X)+x € P(x,), and therefore, by the definition of
quasi-equilibirum, we have an inequality,

PIAGS —3)+ 512 pre +d.

Since ﬁ-iisﬁ-eiﬂ?i, by letting A —0 in the above inequality we have

A
A

p-% =p-e+d,. Thus, the above inequality implies that p-(»°-Xx,)>0, ie,

=)

A

p-y'=p-e +c§l., a contradiction. Hence, for each iel, p-y>p-e, +c}i for all
yeP(x,). Thisshows that {X, ﬁ,dA} is a dividend quasi-equilibrium for the original

economy. [

Proof of Lemma 3.2. Let (p°,x°)eBxX,. The convexity of F(p° x")
immediately follows from the definition of F;.

Assume that y° € F,(p°,x") and a sequence {(p", x")} converges to (p°, x°). In
case that p°-x°> p®-e +1-| p°||, from the definition of F it follows that
p° -y <p®-x°. Therefore, for all n sufficiently large, p"-x" > p"-e, +1-| p" ||

and p"-y°<p"-x". Define a sequence {)"} by letting »" =" for each n.

19



Then, for all n sufficiently large, p"-y" <p"-x",i.e., y" € F(p" x").

In case that p°-x° < p°-e +1-| p°||, from the definition of F;, it follows that
Y e B(p°)NP(x°). Since relations P; is lower hemi-continuous, there is a
sequence {y"} converging to y° such that y" e P(x") for all n sufficiently large.
In addition, since y° e B.(p°), p°-y°<p’-e +1-| p°|l. Therefore, for all n
sufficiently large, p"-y"<p"-e+1-|p"|l , ie, »"epB(p") . Hence,
y'epB(p")nP(x") for all n sufficiently large. This implies that
y'eF(p",x") when p"-x"<p"-e +1-||p"||. On the other hand, when
p"-x">p"-e+1-| p"|, it follows that B (p")c{yv, e X, |p" -y, <p"-x"}, and
therefore " e F(p",x"). Thus, y" e F(p",x") forall n sufficiently large.

This proves the lower hemi-continuity of relation F;. [

Proof of Lemma 4.1. Let x=(x,--,x,)eA and jelI™(x). Let I, ={;} and

L= I"(x)\{;} .  Then, Irreducibility implies that there is an allocation
Z=(z,,zy) € X, x---x X, such that
z,—e;+ Y (z,—x)=0 (L4.1.1)

iel™ ()W}

and
z, € P(x,) foreach ie ™ (x)\{/}. (L4.1.2)

Since ) (x, —¢,)=0, by (L4.1.1) we have

iel

20 (x,+2) =) T (s-e)* Tlx-e)=0

iel™ (x)\{ 3} iel® (x)

Define an allocation y = (y,,---,yy) € X; x---x X, by:
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1
ijE(xj-'_Zj)’

y, =z, foreach iel™(x)\{j},
and

y, =x, foreach iel®(x).

Note that y, e X, since X; is convex. Thus, if we put 6=2, then allocation

y =y, -, yy) satisfiesall the conditions in (A.6). O

Proof of Lemma 4.2. Let {)“(,ﬁ,a?} be a dividend quasi-equilibrium. Define two
sets in the following way:

Li={ieI™X)|p-e+d =inf p- X}

]2::{je]NS(§()|ﬁ-€i +c§l. >|nfﬁXl}

Suppose that /> were non-empty. Choose je ;. Then, (A.6) implies that there
are an allocation (y,,---,yy) € X; x---x X, and a scalar 6 >0 such that

O(y;—e)*+ D(y—e)+ D (5 —e)=0 (L4.2.1)

iel™ (M} iel® (%)

and y, e P(x;) foreach iel™(X)\{j}. Since> (%, —¢)=0,by (L4.2.1) we have

iel

0y, —e)+(e,—5)+ 3 (y,—%)=0. (L4.2.2)

iel™ (R}

On the other hand, from the definition of quasi-equilibrium, it follows

thatﬁ~yi213-ei+c}[213~5ci for all iel™(X) and in particular, by (A.7),

DY, >13-e,.+c§,. for each iel,. In addition, as for j, since e, € X,, we have

A

d,=0 and p-e;=p-x,. Hence, p-(y,—e;)=0. Thus, we have

J

@'(yj_ej)-l-ﬁ.(ej_)’&j)-i- Zﬁ'(yi_)’ei)Z Zﬁ'(yi_)ei)>o'

iel™ (M} iel™ (M}

This is a contradiction to (L4.2.2). This shows that 7, # ¢ impliesthat 7, =¢. [
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Proof of Lemma 5.1. Let X< A and assume that 0¢int ZLZ.()EZ,). Then, by

iel™ (%)
Minkowski’s separation theorem, there is a vector peR" with p=0 such that

p-z=0 forall ze ) L(x). Therefore, for each ie /™ (X), p-z, >0 for any

iel™ (%)

z, e L(x,).

Furthermore, by the definition of L.(x,), we have that

> p(z,+%—¢)=0 forany z €K (%) with iel™(X).

iel™ (%)

Since ) (%, —¢,) =0, the above inequality implies that p-z> > p- (% —¢,) forany

iel iEIS()A()

z € K(X). Hence, by (R.0), since K(X) isa cone, we have that for each ;e I°(X)

P-AX; —e)= D p-(x —¢) foranyi>0.

iel’ (%)
By letting A be a number greater than #7°(X) and adding the above inequalities

with respect to j e 7°(X), we can conclude that z p-(x,—e)>0. Therefore, the
iel’ (X)

above inequality implies that, for each ie/°(X), p-A(x,—e¢) >0 for any 1>0.

Thus, foreach ie I°(X), p-z, >0 forany z eL.(%,).

Thus, we have proved that O gintd L (%). O
iel
Proof of Lemma 5.2. Obviously, Generalized Irreducibility implies condition

(A.6). To prove (R.0), let x=(x,-,x,)eA and jel’(x). Then, by

INS

Generalized Irreducibility, there are y, € P(x,) for each iel™(x) and a scalar 8

with 0 < 8 < 1 such that such that
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H(Xj _ej)+ Z(xi _ei)+ Z(y; _e[):o'

iels ()} iel™ (x)

Since Z(x,.—ei):o,we have —(1-6)(x; —e;)+ Z(y,.—x,.):o. This implies that

iel iel™ (x)

(x;—e;) € ZK,.(xi). This proves that condition (R.0) holds. []

iel™ (x)
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