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Abstract.  Irreducible exchange economies in which consumers’ preferences are 
satiable and non-ordered are considered.  A general existence theorem of dividend 
quasi-equilibrium is proved and by the theorem the existence of Walras equilibrium is 
proved under weak assumptions of non-satiation. 
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1.  Introduction 
 
The purpose of this paper is to prove the existence of Walras equilibrium in an 
economy with satiable consumers under a set of weaker assumptions.  We consider 
a bounded model of exchange economy where consumers’ preferences are 
non-ordered.1/  In the classical theory of general equilibrium, in proving the 



2 

existence of Walras equilibrium, the first step is to prove the existence of 
quasi-equilibrium and the second step is to show that any quasi-equilibrium is an 
equilibrium under a certain assumption.  That is a well-known procedure which 
was established by McKenzie (1959) and Debreu (1962).  The so-called 
irreducibility is a famous condition under which any quasi-equilibrium is an 
equilibrium.  In this paper we define the irreducibility in a general formulation for 
economies with satiable consumers.  Following the classical procedure, first we 
shall prove a basic theorem on the existence of dividend quasi-equilibrium in a very 
general setting, and next based on the theorem we shall show that a dividend 
equilibrium exists.  The dividend equilibrium, which originates in the concept of 
‘coupons equilibrium’ in Drèze &Müller (1980), was defined by Aumann=Drèze 
(1986).  Furthermore, in order to prove the existence of Walras equilibrium, we 
shall present two types of non-satiation assumption and show that under each of 
them any dividend equilibrium is (or, can be viewed as) a Walras equilibrium.  
Our existence theorems of Walras equilibrium are more general in two points than 
those in the existing literatures such as Allouch & Le Van (2009), Sato (2010a), and 
Won & Yannelis (2011).  First, we do not assume that the initial endowment of 
every consumer belongs to the interior of his consumption set.  We shall show that 
only the irreducibility is required even in the case that there are some satiable 
consumers.  Second, our assumptions of non-satiation are weaker and admit that 
satiation may occur unexceptionally in feasible allocations. 

Finally, we will discuss a relation between irreducibility and non-satiation 
assumptions.  We propose a new concept of irreducibility that we will refer to as 
“generalized irreducibility”, and show that it implies both irreducibility and our 
non-satiation assumptions.  One of our conclusions is that the relaxation of 
non-satiation assumptions can be viewed as the generalization of irreducibility 
conditions. 

This paper is formalized as follows.  In section 2, we present a model of 
exchange economy in which there are satiable consumers and state the basic 
assumptions.  In section 3, we prove an existence theorem of dividend 
quasi-equilibrium under a very general setting.  In section 4, we define the 
irreducibility condition for an economy with possibly satiable consumers and prove 
 
________________ 
1 Unbounded economies have been studied in many papers.  For example, see Sato (2010b) which 

includes a recent good survey on those studies. 
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the existence of dividend equilibrium in the irreducible economy.  In section 5, the 
existence of Walras equilibrium is proved under two types of non-satiation 
assumptions.  In section 6, some remarks will be made to compare our result with 
former papers and two examples of exchange economies will be given to show the 
generality of our results.  All the proofs of lemmas are given in Appendix. 
 
 
2.  Model 
 
We consider an exchange economy with L commodities and N consumers.  The set 
of consumers is denoted by },,1{ NI L= .  The commodity space is an 

L-dimensional Euclidean space LR .  The consumption set of each consumer Ii∈  

is denoted by L
iX R⊂  and the initial endowment is by ii Xe ∈ . 

An allocation is an N-tuple of vectors, ),,( 1 Nxx L=x , where ii Xx ∈  is an 

amount of commodities allotted to consumer Ii∈ .  An allocation ),,( 1 Nxx L=x  

NXX ××∈ L1  is said to be feasible if ∑
=

N

i
ix

1

=∑
=

N

i
ie

1

.  The set of all feasible 

allocations is denoted by A, i.e.,  

A:={ NN XXxx ××∈= LL 11 ),,(x ｜∑
=

N

i
ix

1

=∑
=

N

i
ie

1

}. 

Since ii Xe ∈  for each Ii∈ , set A is non-empty.  The preference of each 

consumer Ii∈  is denoted by a mapping by iX
ii XP 2: → . 2/ 

 
  Throughout this paper, for each consumer Ii∈ , we assume the following: 
 

(A.1)  iX  is a non-empty, closed, and convex subset of LR . 

 
________________ 
2 It is known that by defining mapping iP  on set NXX ××L1  instead of Xi, with no mathematical 

difficulty, we can include cases where consumers’ preferences depend on each other. 
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(A.2)  iX
ii XP 2: →  is lower hemi-continuous, i.e., if )( 00 xPy i∈  and a sequence 

{xn} converges to x0, then there is a sequence {yn} converging to y0 such that 

)( n
i

n xPy ∈  for all n sufficiently large. 

(A.3)  For every ii Xx ∈ , )( ii xP  is convex and )( iii xPx ∉ . 3/ 

 
In addition, we assume the boundedness of the economy: 

 
(A.4)  The set A is bounded, i.e., there is a number 0>b  such that for any 

Ax ∈= ),,( 1 Nxx L , bxi ≤||||  for all Ii∈ .  

 

A dividend vector is a non-negative vector, N
Nddd R∈= ),,( 1 L , where di is an 

extra income given to consumer Ii∈ . 
 

Definition 1.  A dividend quasi-equilibrium is a triplet }ˆ,ˆ,ˆ{ dpx  of a feasible 

allocation Ax ∈= )ˆ,,ˆ(ˆ 1 Nxx L , a price vector 0R ≠∈ pp L ˆwithˆ , and a dividend 

vector )ˆ,,ˆ(ˆ
1 Nddd L=  N

+∈R  such that for each Ii∈  

(1) iii depxp ˆˆˆˆ +⋅≤⋅ , 

(2) iii depyp ˆˆˆ +⋅≥⋅  for all )ˆ( iii xPy ∈ . 

  A dividend equilibrium is a dividend quasi-equilibrium }ˆ,ˆ,ˆ{ dpx  such that, instead 

of condition (2), iii depyp ˆˆˆ +⋅>⋅  for all )ˆ( iii xPy ∈ . 

 
________________ 
3 It is well known that this assumption can be slightly weaken as follows:  For every ii Xx ∈ , 

)(co iii xPx ∉ .  Here, for any set X LR⊂ , co X denotes the convex hull of set X. 
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In the original definition of quasi-equilibrium due to Debreu (1962), instead of (2) of 
Definition 1, the following condition is required: 

iii depyp ˆˆˆ +⋅>⋅  for any )ˆ( iii xPy ∈  and/or  iiii Xpdepxp ⋅=+⋅=⋅ ˆinfˆˆˆˆ . 

For example, when Pi(xi) is open in Xi for any ii Xx ∈  for each Ii∈ , we can easily 

show that Debreu’s condition is equivalent to (2) in Definition 1, and therefore a 

dividend quasi-equilibrium }ˆ,ˆ,ˆ{ dpx  is a dividend equilibrium if 

iii Xpdep ⋅>+⋅ ˆinfˆˆ  for all Ii∈ . 

 
Definition 2.  A Walras equilibrium (resp. quasi-equilibrium) is a pair }ˆ,ˆ{ px  of a 

dividend equilibrium (resp. quasi-equilibrium) }ˆ,ˆ,ˆ{ dpx  such that 0=d̂ . 

 
For each Ax ∈= ),,( 1 Nxx L , we define two sets of consumers as follows: 

 })(|{:)( φ=∈= ii
S xPIiI x  and )(\:)( xx SNS III = . 

To exclude trivial cases in which every consumer is simultaneously satiated and a 
dividend equilibrium always exists, we assume the following condition which is the 
weakest non-satiation assumption. 
 

(A.5)  For any Ax∈ , φ≠)(xNSI . 

 

In fact, assume that φ=)ˆ(xNSI  for some Ax ∈= )ˆ,,ˆ(ˆ 1 Nxx L .  For any price 

vector Lp R∈ˆ  with 0≠p̂ , choose a large dividend vector )ˆ,,ˆ(ˆ
1 Nddd L= NR∈  

so that iii depxp ˆˆˆˆ +⋅≤⋅  for all Ii∈ .  Then, since φ=)ˆ( ii xP  for all Ii∈ , 

}ˆ,ˆ,ˆ{ dpx  is a dividend equilibrium. 
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3.  Existence of dividend quasi-equilibrium 
 
First, let us modify consumers’ preference relations.  For each Ii∈  and each 

ii Xx ∈ , we define a convex cone )( ii xK  by 

}0),(|)({:)( >∈−= λλ iiiiiii xPyxyxK . 

Set )( ii xK  indicates the desirable directions from ii Xx ∈  for consumer Ii∈ .  

Moreover, for each Ii∈ , a set iX  and a mapping iX
ii XP 2: →  are defined in the 

following way: 

 }1|||||{: +≤∈= bxXxX iiii . 

iiiiiiii XxKzxzxP ∩∈+= )}(|{:)(  for each ii Xx ∈ . 

Consider the modified economy in which the consumption set and the preference 

relation of each consumer Ii∈  are replaced by iX  and iX
ii XP 2: → .  We should 

note that for each Ii∈ , set iX  is bounded and )( ii xP  is convex for each ii Xx ∈ . 

Now, we can prove the following lemma. 
 
Lemma 3.1.  Any dividend quasi-equilibrium for the modified economy is a dividend 
quasi-equilibrium for the original economy. 
 

By virtue of Lemma 3.1, to prove the existence of a dividend quasi-equilibrium, it 
suffices only to prove the existence of a dividend quasi-equilibrium for the modified 

economy.  In addition, it is easy to show that mapping iP  has the same properties as 

mapping iP  has, that is, it is lower hemi-continuous, convex-valued, and )( iii xPx ∉  

for every iXx∈ .  Thus, in what follows, we shall identify iX  with iX  and 

iX
ii XP 2: →  with iX

ii XP 2: → . 
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The following theorem on the existence of dividend quasi-equilibrium is a basic and 
key theorem for our argument. 
 
Theorem 1.  Under assumptions (A.1)–(A.5), there exists a dividend 
quasi-equilibrium.  More precisely, there exists a dividend quasi-equilibrium 

}ˆ,ˆ,ˆ{ dpx  such that iii depxp ˆˆˆˆ +⋅=⋅  for all )ˆ(xNSIi∈  and Ndd ˆˆ
1 ==L . 

 
Now, let us confine prices to the closed unit ball, }1|||||{ ≤∈= pp nRB .  For 

each Ii∈ , define a mapping iX
i 2: →Bβ  by: 

||}||1|{:)( pepypXyp iiiii −+⋅<⋅∈=β   for each B∈p . 4/ 

Moreover, for each Ii∈ , define a mapping iX
ii XF 2: →×B  by: 

⎢
⎣

⎡
∩

−+⋅>⋅⋅<⋅∈
=

otherwise)()(
||||1when}|{

:),(
iii

iiiiii
ii xPp

pepxpxpypXy
xpF

β
 

for each ii Xxp ×∈B),( .  This mapping is a modification of the mapping originally 

constructed by Gale=Mas-Colell (1975).  The modification is slight, but crucial since 

we do not assume that ii Xe int∈  for each Ii∈ .5/  The mapping can be applied to 

cases where consumers’ budget sets do not always have interior. 

 

Lemma 3.2.  For each Ii∈ , mapping iX
ii XF 2: →×B  is convex-valued and 

lower hemi-continuous.  
 

We shall follow the usual process to apply the fixed-point theorem that was 
 
________________ 
4 The technique of adding extra income 1－||p|| to consumers is due to Bergstrom (1976) and is used 

by Shafer (1976) , Mas-Colell (1992), and Kajii (1996). 

5 For any set X LR⊂ , int X denotes the interior of set X in LR . 
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innovated by Gale=Mas-Colell (1975).  Let us define a mapping BRB 2:0 →× LF  

by: 

}|{:),(0 zpzqqzpF ⋅>⋅∈= B   for each Lzp RB×∈),( .6/ 

Obviously, mapping F0 is convex-valued and lower hemi-continuous. 
Now, by using mappings F0, F1, ･･･, FN, we can define a convex-valued and lower 

hemi-continuous mapping NN XXXXF ×××→××× LL 11: BB  by: 

),,,( 1 NxxpF L ),(),(),(: 110 NN
Ii

i
Ii

i xpFxpFexpF ×××−= ∑∑
∈∈

L  

for each NN XXxxp ×××∈ LL 11 ),,,( B .  Thus, by Gale=Mas-Colell’s fixed point 

theorem (see Appendix), there is a point ∈)ˆ,,ˆ,ˆ( 1 Nxxp L NXX ××× L1B  such that 

either φ=−∑∑
∈∈

)ˆ,ˆ(0
Ii

i
Ii

i expF  or )ˆ,ˆ(ˆ 0 ∑∑
∈∈

−∈
Ii

i
Ii

i expFp  

and 

either φ=)ˆ,ˆ( ii xpF  or )ˆ,ˆ(ˆ iii xpFx ∈  for each Ii∈ . 

From definition of F0，F1，･･･，FN, it follows that )ˆ,ˆ(ˆ 0 ∑∑
∈∈

−∉
Ii

i
Ii

i expFp  and 

)ˆ,ˆ(ˆ iii xpFx ∉  for each Ii∈ .  Thus, it follows that 

φ=−∑∑
∈∈

)ˆ,ˆ(0
Ii

i
Ii

i expF  and φ=)ˆ,ˆ( ii xpF   for each Ii∈ .  

Since φ=)ˆ,ˆ( ii xpF  for each Ii∈ , it follows from the definition of Fi that 

||ˆ||1ˆˆˆ pepxp ii −+⋅≤⋅  and φβ =∩ )ˆ()ˆ( iii xPp  for each Ii∈ . (3.1) 

Furthermore, suppose that ∑∑
∈∈

≠
Ii

i
Ii

i ex̂ .  Since φ=−∑∑
∈∈

)ˆ,ˆ(0
Ii

i
Ii

i expF , by the 

 
________________ 
6 This mapping is first used by Shafer (1976) in a case where preference relations are not necessarily 

transitive.  Mas-Colell (1992) also applied the mapping to a case with possibly satiated consumers.  
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definition of F0, ≤−⋅ ∑∑
∈∈

)ˆ(
Ii

i
Ii

i exq )ˆ(ˆ ∑∑
∈∈

−⋅
Ii

i
Ii

i exp for any B∈q .  Therefore, 

1||ˆ|| =p  and )ˆ(ˆ ∑∑
∈∈

−⋅
Ii

i
Ii

i exp >0.  Thus, (3.1) implies that ii epxp ⋅≤⋅ ˆˆˆ  for each 

Ii∈ , and that 0)ˆ(ˆ ≤−⋅ ∑∑
∈∈ Ii

i
Ii

i exp , which is a contradiction.  Hence, we can 

conclude that ∑∑
∈∈

=
Ii

i
Ii

i ex̂ . 

Suppose that 0ˆ =p .  Then, ii Xp =)ˆ(β  for all Ii∈ , and, by (3.1), φ=)ˆ( ii xP  

for all Ii∈ , which contradicts assumption (A.5).  Thus, 0ˆ ≠p . 

Now, let ||ˆ||1ˆˆ
1 pdd N −===L .  Then, by (3.1), for each Ii∈ , 

iii depxp ˆˆˆˆ +⋅≤⋅  and iii depyp ˆˆˆ +⋅≥⋅  for all )ˆ( iii xPy ∈ .  (3.2) 

Thus, if we let )ˆ,,ˆ(ˆ 1 Nxx L=x  and )ˆ,,ˆ(ˆ
1 Nddd L= , we have shown that }ˆ,ˆ,ˆ{ dpx  is 

a dividend quasi-equilibrium. 

  Finally, since we identify Pi with iP , for )ˆ(xNSIi∈  there is a point )ˆ( ii xPy∈  

which is arbitrarily close to ix̂ .  Therefore, (3.2) implies that iii depxp ˆˆˆˆ +⋅=⋅ .  

This completes the proof of Theorem 1. 
 
 
4.  Equilibrium and quasi-equilibrium 
 
A well-known sufficient condition under which any quasi-equilibrium is an equilibrium 
is the irreducibility assumption that originates with McKenzie (1956).  In case of 
economies with possibly satiated consumers, the irreducibility can be defined as 
follows: 
 

Irreducibility.  Let Ax ∈= ),,( 1 Nxx L and {I1, I2} be a partition of )(xNSI  such 

that both I1 and I2 are non-empty.  Then there is an allocation ),,( 1 Nyy L=y  
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NXX ××∈ L1  such that the following conditions hold: 

(i)  ∑
∈

−
1

)(
Ii

ii ey +∑
∈

−
2

)(
Ii

ii xy =0. 

(ii) )( iii xPy ∈  for each 2Ii∈ . 
 
  The meaning of Irreducibility is that the initial endowment of any group of 
non-satiated consumers is desired by other non-satiated consumers.  Obviously, when 

φ=)(xSI , the above condition is equivalent to the original irreducibility condition for 
economies where consumers are never satiated. 
  A weaker condition of irreducibility was considered by Bergstrom (1976).  The 
condition can be defined for economies with possibly satiated consumers in the 
following fashion: 7/ 
 

(A.6)  Let Ax ∈= ),,( 1 Nxx L  and )(xNSIj∈ .  If φ≠}{\)( jI NS x , then there 

exist an allocation ),,( 1 Nyy L=y NXX ××∈ L1  and a scalar θ >0 such that 

(i) )( jj ey −θ + ∑
∈

−
)(

)(
xSIi

ii ex + ∑
∈

−
}{\)(

)(
jIi

ii
NS

ey
x

=0 and 

(ii) )( iii xPy ∈  for each }{\)( jIi NS x∈ . 

 
Evidently, when φ=)(xSI , the above condition is equivalent to the condition of 

Bergstrom (1976).  Moreover, we can prove the following lemma. 
 
Lemma 4.1.  Irreducibility implies assumption (A.6). 
 

In order to prove that any quasi-equilibrium is an equilibrium, we need the following 
assumptions: 
 
________________ 
7 In Bergstrom (1976), the irreducibility condition is assumed only on individually rational 

allocations in which no consumers are worse off than in their initial endowments.  Since in a 

quasi-equilibrium some consumers might be worse off than in their endowments, we need to 

include all feasible allocations in defining irreducibility.  
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(A.7)  For each Ii∈ , )( ii xP  is open in Xi for every ii Xx ∈ .8/ 

(A.8)  For any Ax∈ , ∑
∈ )(xNSIi

ie ∑
∈

∈
)(

int
xNSIi

iX . 

 

Condition (A.8) is weaker than the assumption that ii Xe int∈  for all Ii∈ .  For 

example, if there is at least one consumer who is never satiated and if his initial 
endowment belongs to the interior of his consumption set, then the condition holds. 

The following is a fundamental lemma due to Debreu (1962), which is derived from 
the irreducibility condition. 
 
Lemma 4.2.  Under assumptions (A.6) and (A.7), for any dividend quasi-equilibrium 

}ˆ,ˆ,ˆ{ dpx , if ii Xpep ⋅>⋅ ˆinfˆˆ  occurs for some )ˆ(xNSIi∈ , then it occurs for every 

)ˆ(xNSIi∈ . 
 

Now, let }ˆ,ˆ,ˆ{ dpx  be a dividend quasi-equilibrium.  From (A.8), it follows that 

ii Xpep ⋅>⋅ ˆinfˆˆ  occurs for some )ˆ(xNSIi∈ , and by Lemma 4.2, it occurs for all 

)ˆ(xNSIi∈ .  Therefore, iii Xpdep ⋅>+⋅ ˆinfˆˆˆ  for all )ˆ(xNSIi∈ , and by (A.7) we 

can show that }ˆ,ˆ,ˆ{ dpx  is a dividend equilibrium.  Thus, we have the following 

theorem. 
 
Theorem 2.  Under assumptions (A.6), (A.7), and (A.8), any dividend 
quasi-equilibrium is a dividend equilibrium. 
 
  By Theorems 1 and 2 we have the following corollary. 
 
________________ 
8 As Bergstrom (1976) and Won & Yannelis (2011) showed, this assumption can be weaken in the 

following way:  If )( iii xPy ∈  and ii Xz ∈ , then there exists a number θ>0 such that 

)()1( iiii xPzy ∈+− θθ . 
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Corollary 1. Under assumptions (A.1)-(A.8), there exists a dividend equilibrium.  

More precisely, there exists a dividend equilibrium }ˆ,ˆ,ˆ{ dpx  such that 

iii depxp ˆˆˆˆ +⋅=⋅  for all )ˆ(xNSIi∈  and Ndd ˆˆ
1 ==L . 

 
 

5.  Existence of Walras equilibrium 
 
In order prove the existence of Walras equilibrium, we need an additional 
assumption which relates satiated and non-satiated consumers.  Won and Yannelis 
(2011) assumed the following condition. 
 

(W-Y)  For any Ax∈ , ]}){)(([cl
)(

∑
∈

−∈−
xNSIj

jjjii xxPex  for all )(xSIi∈ . 

 
For Ax∈ , we define a convex cone by 

∑
∈

=
)(

)(:)(
x

x
NSIi

ii xKK . 

The above condition is slightly generalized in the following fashion. 
 

(R.0)  For any Ax∈ , ii ex − )(cl xK∈  for all )(xSIi∈ . 

 
Obviously, (W-Y) implies (R.0), since )(}){)(( iiiii xKxxP ⊂− .  Set K(x) 

indicates the desirable directions for the non-satiated consumers in allocation 
A∈x .  Therefore, condition (R.0) means that in any allocation the direction of 

satiation point from initial endowment for any satiated consumer is one of the 
directions which are desirable for the non-satiated consumers. 

In what follows, we shall consider two types of non-satiation condition which are 
weaker than condition (R.0).  First we consider the following condition, which is 
immediately implied by (R.0). 
 

(R.1)  For any Ax∈ , ∑
∈

−
)(

)(
xSIi

ii ex )(cl xK∈ . 
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Now, let }ˆ,ˆ,ˆ{ dpx  be a dividend equilibrium such that iii depxp ˆˆˆˆ +⋅=⋅  for all 

)ˆ(xNSIi∈  and Ndd ˆˆ
1 ==L .  From the definition of dividend equilibrium, it follows 

that, for each )ˆ(xNSIi∈ , iiii xpdepyp ˆˆˆˆˆ ⋅=+⋅>⋅  for any )ˆ( iii xPy ∈ .  Therefore, 

0ˆ >⋅ zp  for any )ˆ( ii xKz∈ .  Hence, by the definition of )ˆ(xK , 0ˆ ≥⋅ zp  for any 

)ˆ(cl xKz∈ .  Thus, by (R.1), 0)ˆ(ˆ
)(

≥−⋅ ∑
∈ xSIi

ii exp .   

Since 0)ˆ( =−∑
∈Ii

ii ex , it follows that 0)ˆ(ˆ
)(

≤−⋅ ∑
∈ xNSIi

ii exp .  Since 

0ˆ)ˆ(ˆ ≥=−⋅ iii dexp  for all )ˆ(xNSIi∈ , we conclude that 0ˆ)ˆ(ˆ ==−⋅ iii dexp  for all 

)ˆ(xNSIi∈ , and that 0ˆ =id  for all Ii∈ .  Therefore, }ˆ,ˆ{ px  is a Walras equilibrium.  

Thus, by virtue of Corollary 1 we have proved the following theorem. 
 
Theorem 3.  Under assumptions (A.1)-(A.8) and (R.1), there exists a Walras 

equilibrium }ˆ,ˆ{ px  such that ii epxp ⋅=⋅ ˆˆˆ  for all Ii∈ . 

 
  It should be noted that the existence of a dividend equilibrium with equal dividends 
is essential in proving Theorem 3. 

Next, we assume another weaker form of non-satiation.  For Ax∈ , we define the 
following sets: 

}0),(|)({:)( >∈−+= λλ iiiiii xKzexzxL  for each )(xNSIi∈ .  

)}0|)({:)( >−= λλ iiii exxL  for each )(xSIi∈ . 

 

(R.2)  For any Ax∈ , if ∑
∈

∉
)(

)(int
x

0
NSIi

ii xL , then ∑
∈

∉
Ii

ii xL )(int0 . 

 
For consumer )(xNSIi∈ , set L(xi) indicates the desirable directions from initial 

endowment ei.  Therefore, condition (R.2) means that in any allocation the desirable 
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directions for the satiated consumers are roughly desirable for the non-satiated 
consumers in that the desirable directions for both satiated and non-satiated consumers 
are contained in a common half space of RL. 
 
Lemma 5.1.  Condition (R.0) implies condition (R.2). 
 

  Now, let }ˆ,ˆ,ˆ{ dpx  be a dividend equilibrium such that iii depxp ˆˆˆˆ +⋅=⋅  for all 

)ˆ(xNSIi∈ .  From the definition of dividend equilibrium, it follows that for each 

)ˆ(xNSIi∈ , iiii depxpyp ˆˆˆˆ +⋅=⋅>⋅  for any )ˆ( iii xPy ∈ .  Therefore,  

 0)ˆ(ˆ >−⋅ ii xyp  and 0)ˆ(ˆ >−⋅ ii exp  for any )ˆ( iii xPy ∈ ,  

 i.e., 0)ˆ(ˆ)ˆ(ˆ >−⋅+−⋅ iiii expxyp λ  for any )ˆ( iii xPy ∈  and 0>λ , 

i.e., 0)ˆ(ˆ >−+⋅ iii exzp  for any )ˆ( iii xKz ∈ . 

This implies that for each )ˆ(xNSIi∈ , 0ˆ ≥⋅ iwp  for any )ˆ( iii xLw ∈ , and that 

∑
∈

∉
)ˆ(

)ˆ(int
x

0
NSIi

ii xL . 

Under assumption (R.2), by Minkowski’s separation theorem we have a vector 
Lp R∈  with 0≠p  such that 0≥⋅ zp  for all ∑

∈

∈
Ii

ii xLz )ˆ( .  Namely, 

0)ˆ()ˆ(
)ˆ()ˆ(

≥−⋅+−+⋅ ∑∑
∈∈ xx SNS Ii

iii
Ii

iiii expexzp λλ  

for any )ˆ( iii xKz ∈  and 0>iλ .  Hence, for each )ˆ(xNSIi∈ , 0)ˆ( ≥−⋅ ii exp  and 

0)( ≥−⋅ ii eyp  for any )ˆ( iii xPy ∈ .  Moreover, for each )ˆ(xSIi∈ , 

0)ˆ( ≥−⋅ ii exp . Since 0)ˆ( =−∑
∈Ii

ii ex , 0)ˆ(ˆ =−⋅ ii exp  for all Ii∈ .  Thus, we 

conclude that },ˆ{ px  is a Walras equilibrium such that ii epxp ⋅=⋅ ˆ  for all Ii∈ .  

Thus, we have proved the following theorem. 
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Theorem 4.  Let }ˆ,ˆ,ˆ{ dpx  be a dividend equilibrium such that iii depxp ˆˆˆˆ +⋅=⋅  for 

all )ˆ(xNSIi∈ .  Then, under assumption (R.2), for some non-zero vector Lp R∈ , 

},ˆ{ px  is a Walras equilibrium such that ii epxp ⋅=⋅ ˆ  for all Ii∈ . 

 
  By Corollary 1 and Theorem 4 we have the following corollary. 
 
Corollary 2. Under assumptions (A.1)-(A.8) and (R.2), there exists a Walras 

equilibrium }ˆ,ˆ{ px  such that ii epxp ⋅=⋅ ˆˆˆ  for all Ii∈ . 

 
While the irreducibility condition is a relation among non-satiated consumers, each 

of conditions (R.0)-(R.2) describes a relation between satiated consumers and 
non-satiated consumers.  However, we can combine conditions (R.0) – (R.2) to the 
irreducibility condition in the following way, which we call Generalized Irreducibility. 
 
Generalized Irreducibility.  Let Ax ∈= ),,( 1 Nxx L  and Ij∈ .  If  

φ≠}{\)( jI NS x , then there exist an allocation ),,( 1 Nyy L=y NXX ××∈ L1  and a 

scalar θ with 0 < θ < 1 such that 

(i) )( jj ey −θ + ∑
∈

−
}{\)(

)(
jIi

ii
S

ex
x

+ ∑
∈

−
}{\)(

)(
jIi

ii
NS

ey
x

=0, 

(ii) )( iii xPy ∈  for each }{\)( jIi NS x∈ , 

(iii) jj xy =  when )(xSIj∈ . 

 
  We have the following lemma. 
 
Lemma 5.2.  Generalized Irreducibility implies conditions (A.6) and (R.0). 
 
  Thus, by this lemma and Theorem 3 (or Corollary 2), we have the following 
corollary. 
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Corollary 3.  Under assumptions (A.1)-(A.5), (A.7), (A.8), and Generalized 
Irreducibility, there exists a Walras equilibrium }ˆ,ˆ{ px  such that ii epxp ⋅=⋅ ˆˆˆ  for all 

Ii∈ . 
 
 
6.  Concluding Remarks and Examples 
 
As for the existence of dividend quasi-equilibrium, Theorem 1 is more general than 
the result by Allouch & Le Van (2008), (2009, Prop.1, p. 321) since we consider  
economies with consumers whose preferences are non-ordered.  As for the existence 
of dividend equilibrium, Corollary 1 is more general than the results by Mas-Colell 
(1992, Thm.1, p.205) and Kajii (1996, Prop.1, p.79) & Le Van (2009, Prop.1, p. 321) 
since we consider irreducible economies in which consumers have not always positive 
incomes. 

As for the existence of Walras quasi-equilibrium, Theorem 3 and Corollary 2 are 
neither a special case nor a general case of the results by Allouch & Le Van (2009, 
Thm.2, p. 323) or by Sato (2010, Thm.2, p541, Thm.3, p.543).  While our assumption 
on consumers’ preferences is weaker than their assumptions in the sense that 
consumers’ preferences are non-ordered, the assumptions of non-satiation are quite 
different and cannot be compared directly with each other.  However, our assumption 
admits that satiation generally occurs in the set of feasible allocations, and our theorem 
applies to a broader set of economies.  In fact, the example of an economy by Sato 
(2010, Eg.1, p.537) satisfies our assumptions. 

In comparison with the result by Won & Yannelis (2011, Thm.4.1, p.249) in which 
economies with non-ordered preferences are considered, our results are an extension of 
their result, since we use the assumptions of irreducibility and a weaker assumption of 
non-satiation.  In what follows, we shall show two examples of exchange economy 
that satisfies weaker assumption of non-satiation than theirs.   

In order to show that conditions (R.1) and (R.2) are different, first we shall show that 
the following example satisfies condition (R.2), but does not satisfy (R.1). 
 
Example 1.  The economy consists of two kinds of commodities and two consumers, 
i.e., L=2 and I={1, 2}.  The utility function Ui and the initial endowment ei of 
consumer i are as follows: 
Consumer 1:  U1(c1, c2)=min {c1, c2},  e1=(3, 1) 
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Consumer 2:  U2(c1, c2)= 2
2

2
1 )2()2( −−−− cc , e2=(1, 3). 

  Let }ˆ,ˆ,ˆ{ dpx  be a triplet which is defined by 

)2,2(ˆ1 =x , )2,2(ˆ2 =x , )1,1(ˆ δ−=p , and ),(ˆ δδ=d . 

Then, }ˆ,ˆ,ˆ{ dpx  is a dividend equilibrium when 10 ≤≤ δ .  In particular, when 

0=δ , it is a Walras equilibrium that is unique. 
 

In allocation x̂  of Example 1, consumer 2 is satiated, i.e., }1{)ˆ( =xNSI  and 
}2{)ˆ( =xSI .  We can easily show the following: 

}0,0|),{()ˆ( 212111 >>= ccccxK , and )ˆ(cl)1,1(ˆ 1122 xKex ∉−=− . 
Therefore, condition (R.1) is not met.  On the other hand, we can show the following: 

}0,0|),{()ˆ( 2212111 >>+= cccccxL , }0,0|),{()ˆ( 2112122 =+>= cccccxL , 
}0|),{()ˆ()ˆ( 21212211 >+=+ ccccxLxL , and )]ˆ()ˆ([int 2211 xLxL +∉0 . 

Therefore, condition (R.2) is met.  In any other allocation, no consumers are satiated, 
and condition (R.2) is automatically satisfied. 

In the following second example, condition (R.1) is satisfied, but neither condition 
(R.0) nor (R.2) are met. 
 
Example 2.  Add one more consumer, ‘consumer 3’, to the economy of Example 1.  
The utility function U3 and the initial endowment e3 of consumer 3 are as follows: 
Consumer 3:  U3(c1, c2)= 2

2
2

1 )2()2( −−−− cc , e3=(1, 1). 
  Let }ˆ,ˆ{ px  be a pair which is defined by 

)2,2(ˆ1 =x , )2,2(ˆ2 =x , )1,1(ˆ3 =x , and )1,1(ˆ =p . 
Then, }ˆ,ˆ{ px  is a Walras equilibrium that is unique. 
 

To show that the economy of Example 2 satisfies condition (R.1), we need to verify 
that condition (R.1) is met for all feasible allocation of the economy. 

(Case 1) Let ),,( 321 xxx=x  be any feasible allocation such that }2{)( =xSI , i.e., 

),( 12111 xxx = , )2,2(2 =x , and )2,2(),( 32313 ≠= xxx , where 33111 =+ xx  and 
33212 =+ xx .  Allocation x̂  of the Walras equilibrium }ˆ,ˆ{ px  in Example 2 is a 

special case of such allocation x .  When 1211 xx < , it follows that 
}0|),{()( 12111 >= cccxK , and that )()1,1( 1122 xKex ∈−=− . 

In case of 1211 xx ≥ , since )1,1()2,2( 12113 −−=− xxx , it follows that 



18 

}0)1()1(|),{()( 1221112133 >−+−= xcxcccxK , and that )(cl 3322 xKex ∈− .  
Thus, )]()([cl 331122 xKxKex +∈− , and therefore condition (R.1) is met. 

(Case 2) Let ),,( 321 xxx=x  be any feasible allocation such that }3{)( =xSI , i.e., 

),( 12111 xxx = , )2,2(),( 22212 ≠= xxx , and )2,2(3 =x , where 32111 =+ xx  and 
32212 =+ xx .  Since )1,1(33 =− ex , it follows that )( 1133 xKex ∈− .  Thus, 

)]()([cl 221133 xKxKex +∈− , and condition (R.1) is met in this case, too. 

(Case 3) Let ),,( 321 xxx=x  be an allocation such that }3,2{)( =xSI , i.e.,  

)1,1(1 =x , )2,2(2 =x , and )2,2(3 =x .  Since }0,0|),{()( 212111 >>= ccccxK , it 
follows that )(cl)0,2()()( 113322 xKexex ∈=−+− .  Thus, in allocation x , 
condition (R.1) is met. 

Hence, it has been shown that the economy of Example 2 satisfies condition (R.1).  
However, in allocation x , )(cl)1,1( 1122 xKex ∉−=− , which implies that Example 2 
does not satisfy condition (R.0).  Furthermore, we have the following. 

}0|),{()( 22111 >= cccxL , 
)1,1(22 −=− ex , and }0,0|),{()( 1212122 >=+= cccccxL , 

)1,1(33 =− ex , and }0|),{()( 212133 >== ccccxL . 
Therefore, )(int 1xL∉0  and )]()()([int 3221 xLxLxL ++∈0 .  Thus, in allocation x , 
condition (R.2) is not met.  This implies that Example 2 does not satisfy condition 
(R.2). 
 
 
Appendix 
 
The fixed point theorem [Gale=Mas-Colell (1975, 1979)].  If for each 

Mi ,,1L=  iX  is a non-empty convex compact subset of LR  and 

iX
Mi XXF 2: 1 →××L  is a convex-valued and lower hemi-continuous mapping, 

then there exists a point ),,( **
1 Mxx L MXX ××∈ L1 such that either 

),,( **
1

*
Mii xxFx L∈  or φ=),,( **

1 Mi xxF L  for each Mi ,,1L= . 
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Proof of Lemma 3.1.  Let }ˆ,ˆ,ˆ{ dpx  be a dividend quasi-equilibrium for the modified 

economy.  Namely, the triplet }ˆ,ˆ,ˆ{ dpx  satisfies all the conditions of Definition 1 

when each iP  is replaced by iP .  Since Ax ∈= )ˆ,,ˆ(ˆ 1 Nxx L , by (A.4) we have 

bxi ≤||ˆ|| .  By construction of iP , φ=)ˆ( ii xP  if and only if φ=)ˆ( ii xP . 

  Now, suppose that ii depyp ˆˆˆ 0 +⋅<⋅  for some )ˆ(0
ii xPy ∈ .  Then, for all 

sufficiently small 0>λ , )ˆ(ˆ)ˆ( 0
iiii xPxxy ∈+−λ , and therefore, by the definition of 

quasi-equilibirum, we have an inequality, 

iiii depxxyp ˆˆ]ˆ)ˆ([ˆ 0 +⋅≥+−⋅ λ . 

Since iii depxp ˆˆˆˆ +⋅≤⋅ , by letting 0→λ  in the above inequality we have 

iii depxp ˆˆˆˆ +⋅=⋅ .  Thus, the above inequality implies that 0)ˆ(ˆ 0 ≥−⋅ ixyp , i.e., 

ii depyp ˆˆˆ 0 +⋅≥⋅ , a contradiction.  Hence, for each Ii∈ , ii depyp ˆˆˆ +⋅≥⋅  for all 

)ˆ( ii xPy∈ .  This shows that }ˆ,ˆ,ˆ{ dpx  is a dividend quasi-equilibrium for the original 

economy.  ☐ 
 

Proof of Lemma 3.2.  Let iXxp ×∈B),( 00 .  The convexity of ),( 00 xpFi  

immediately follows from the definition of Fi. 

Assume that ),( 000 xpFy i∈  and a sequence {(pn, xn)} converges to (p0, x0).  In 

case that ||||1 0000 pepxp i −+⋅>⋅ , from the definition of Fi, it follows that 

0000 xpyp ⋅<⋅ .  Therefore, for all n sufficiently large, ||||1 n
i

nnn pepxp −+⋅>⋅  

and nnn xpyp ⋅<⋅ 0 .  Define a sequence {yn} by letting 0yyn =  for each n.  
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Then, for all n sufficiently large, nnnn xpyp ⋅<⋅ , i.e., ),( nn
i

n xpFy ∈ . 

In case that ||||1 0000 pepxp i −+⋅≤⋅ , from the definition of Fi, it follows that 

)()( 000 xPpy ii ∩∈β .  Since relations Pi is lower hemi-continuous, there is a 

sequence {yn} converging to y0 such that )( n
i

n xPy ∈  for all n sufficiently large.    

In addition, since )( 00 py iβ∈ , ||||1 0000 pepyp i −+⋅<⋅ .  Therefore, for all n 

sufficiently large, ||||1 n
i

nnn pepyp −+⋅<⋅ , i.e., )( n
i

n py β∈ .  Hence,  

)()( n
i

n
i

n xPpy ∩∈β  for all n sufficiently large.  This implies that 

),( nn
i

n xpFy ∈  when ||||1 n
i

nnn pepxp −+⋅≤⋅ .  On the other hand, when 

||||1 n
i

nnn pepxp −+⋅>⋅ , it follows that }|{)( nn
i

n
ii

n
i xpypXyp ⋅<⋅∈⊂β , and 

therefore ),( nn
i

n xpFy ∈ .  Thus, ),( nn
i

n xpFy ∈  for all n sufficiently large.   

This proves the lower hemi-continuity of relation Fi.  ☐ 
 

Proof of Lemma 4.1.  Let Ax ∈= ),,( 1 Nxx L  and )(xNSIj∈ .  Let }{1 jI =  and 

I2= }{\)( jI NS x .  Then, Irreducibility implies that there is an allocation 
),,( 1 Nzz L=z NXX ××∈ L1  such that 

jj ez − + ∑
∈

−
}{\)(

)(
jIi

ii
NS

xz
x

=0      (L4.1.1) 

and 

)( iii xPz ∈  for each }{\)( jIi NS x∈ .    (L4.1.2) 

Since ∑
∈

−
Ii

ii ex )( =0, by (L4.1.1) we have 

))(
2
1(2 jjj ezx −+ + ∑

∈

−
}{\)(

)(
jIi

ii
NS

ez
x

+ ∑
∈

−
)(

)(
xSIi

ii ex =0. 

Define an allocation ),,( 1 Nyy L=y NXX ××∈ L1  by: 
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)(
2
1

jjj zxy += , 

ii zy =  for each }{\)( jIi NS x∈ , 

and 

ii xy =  for each )(xSIi∈ . 

Note that jj Xy ∈ , since Xj is convex.  Thus, if we put θ=2, then allocation 

),,( 1 Nyy L=y  satisfies all the conditions in (A.6).  ☐ 

 

Proof of Lemma 4.2.  Let }ˆ,ˆ,ˆ{ dpx  be a dividend quasi-equilibrium.  Define two 

sets in the following way: 

I1:= }ˆinfˆˆ|)ˆ({ iii
NS XpdepIi ⋅=+⋅∈ x . 

  I2:= }ˆinfˆˆ|)ˆ({ iii
NS XpdepIi ⋅>+⋅∈ x . 

Suppose that I2 were non-empty.  Choose 1Ij∈ .  Then, (A.6) implies that there 
are an allocation ),,( 1 Nyy L NXX ××∈ L1  and a scalar θ >0 such that 

)( jj ey −θ + ∑
∈

−
}{\)ˆ(

)(
jIi

ii
NS

ey
x

+ ∑
∈

−
)ˆ(

)ˆ(
xSIi

ii ex =0    (L4.2.1) 

and )ˆ( iii xPy ∈  for each }{\)ˆ( jIi NS x∈ .  Since∑
∈

=−
Ii

ii ex 0)ˆ( , by (L4.2.1) we have 

)( jj ey −θ + )ˆ( jj xe − + ∑
∈

−
}{\)ˆ(

)ˆ(
jIi

ii
NS

xy
x

=0.    (L4.2.2) 

On the other hand, from the definition of quasi-equilibrium, it follows 

that iiii xpdepyp ˆˆˆˆˆ ⋅≥+⋅≥⋅  for all )ˆ(xNSIi∈  and in particular, by (A.7), 

iii depyp ˆˆˆ +⋅>⋅  for each 2Ii∈ .  In addition, as for j, since jj Xe ∈ , we have 

0ˆ =jd  and jj xpep ˆˆˆ ⋅=⋅ .  Hence, 0)(ˆ ≥−⋅ jj eyp .  Thus, we have 

)(ˆ jj eyp −⋅θ + )ˆ(ˆ jj xep −⋅ + ∑
∈

−⋅
}{\)ˆ(

)ˆ(ˆ
jIi

ii
NS

xyp
x

0)ˆ(ˆ
}{\)ˆ(

>−⋅≥ ∑
∈ jIi

ii
NS

xyp
x

. 

This is a contradiction to (L4.2.2).  This shows that φ≠2I  implies that φ=1I .  ☐ 
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Proof of Lemma 5.1.  Let Ax∈ˆ  and assume that ∑
∈

∉
)ˆ(

)ˆ(int
x

0
NSIi

ii xL .  Then, by 

Minkowski’s separation theorem, there is a vector Lp R∈ˆ  with 0≠p̂  such that  

0ˆ ≥⋅ zp  for all ∑
∈

∈
)ˆ(

)ˆ(
xNSIi

ii xLz .  Therefore, for each )ˆ(xNSIi∈ , 0ˆ ≥⋅ izp  for any 

)ˆ( iii xLz ∈ .  

Furthermore, by the definition of )ˆ( ii xL , we have that 

 0)ˆ(ˆ
)ˆ(

≥−+⋅∑
∈ xNSIi

iii exzp  for any )ˆ( iii xKz ∈  with )ˆ(xNSIi∈ . 

Since ∑
∈

−
Ii

ii ex )ˆ( =0, the above inequality implies that ∑
∈

−⋅≥⋅
)ˆ(

)ˆ(ˆˆ
xSIi

ii expzp  for any 

)ˆ(xKz ∈ .  Hence, by (R.0), since )ˆ(xK  is a cone, we have that for each )ˆ(xSIj∈  

≥−⋅ )ˆ(ˆ jj exp λ ∑
∈

−⋅
)ˆ(

)ˆ(ˆ
xSIi

ii exp  for any λ>0. 

By letting λ be a number greater than )ˆ(# xSI  and adding the above inequalities 

with respect to )ˆ(xSIj∈ , we can conclude that 0)ˆ(ˆ
)(

≥−⋅∑
∈ xSIi

ii exp .  Therefore, the 

above inequality implies that, for each )ˆ(xSIi∈ , 0)ˆ(ˆ ≥−⋅ ii exp λ  for any λ>0.  

Thus, for each )ˆ(xSIi∈ , 0ˆ ≥⋅ izp  for any )ˆ( iii xLz ∈ . 

Thus, we have proved that ∑
∈

∉
Ii

ii xL )ˆ(int0 .  ☐ 

 
Proof of Lemma 5.2.  Obviously, Generalized Irreducibility implies condition 

(A.6).  To prove (R.0), let Ax ∈= ),,( 1 Nxx L  and )(xSIj∈ .  Then, by 

Generalized Irreducibility, there are )( iii xPy ∈  for each )(xNSIi∈  and a scalar θ 

with 0 < θ < 1 such that such that 
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)( jj ex −θ + ∑
∈

−
}{\)(

)(
jIi

ii
S

ex
x

+ ∑
∈

−
)(

)(
xNSIi

ii ey =0. 

Since 0)( =−∑
∈Ii

ii ex , we have ))(1( jj ex −−− θ + ∑
∈

−
)(

)(
xNSIi

ii xy =0.  This implies that 

)( jj ex − ∑
∈

∈
)(

)(
xNSIi

ii xK .  This proves that condition (R.0) holds.  ☐ 
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